Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China

Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 26; pp. 10275 - 10280
Main Authors Zhang, Haonan, Tian, Wen, Zhao, Jing, Jin, Lin, Yang, Jun, Liu, Chunhui, Yang, Yihua, Wu, Shuwen, Wu, Kongming, Cui, Jinjie, Tabashnik, Bruce E, Wu, Yidong
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.06.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera , selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75–84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59–94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.
AbstractList Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.
Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera , selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75–84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59–94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.
Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera , selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75–84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59–94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.
Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. [PUBLICATION ABSTRACT]
Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of fieldevolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with fieldselected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance alíele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance alíele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.
Author Liu, Chunhui
Yang, Yihua
Wu, Kongming
Yang, Jun
Tian, Wen
Zhao, Jing
Zhang, Haonan
Jin, Lin
Wu, Shuwen
Cui, Jinjie
Tabashnik, Bruce E
Wu, Yidong
Author_xml – sequence: 1
  fullname: Zhang, Haonan
– sequence: 2
  fullname: Tian, Wen
– sequence: 3
  fullname: Zhao, Jing
– sequence: 4
  fullname: Jin, Lin
– sequence: 5
  fullname: Yang, Jun
– sequence: 6
  fullname: Liu, Chunhui
– sequence: 7
  fullname: Yang, Yihua
– sequence: 8
  fullname: Wu, Shuwen
– sequence: 9
  fullname: Wu, Kongming
– sequence: 10
  fullname: Cui, Jinjie
– sequence: 11
  fullname: Tabashnik, Bruce E
– sequence: 12
  fullname: Wu, Yidong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22689968$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURLeFMyfAUi9c0o7HsWNfkGD5lCpxgN6QLCdxtl5l7a3tXdR_T8Jut9ADXDyW32fGr8dzUhz54G1RPKdwTqFmF2tv0jlFAMoFBfWomI0rLUWl4KiYAWBdygqr4-IkpSUAKC7hSXGMKKRSQs6KH-_d1sZkycJ6m11LGpNcIqEnvbNDV9ptGLa2I9GOx9n41pIcyLtM2pBz8MT5u10ThuFniCvSx7Ai82vnzdPicW-GZJ_t42lx9fHD9_nn8vLrpy_zt5dly5HnUtRtpXhjemy4pWPowQjGLIq6YxKVMg1Hg9B1CE3PaCeYQex6VVXQ10qw0-LNru5606xs11qfoxn0OrqVibc6GKf_Vry71ouw1YzJGioYC7zeF4jhZmNT1iuXWjsMxtuwSZpKYFQgA_p_FBA5l7zGET17gC7DJvqxE7-pqq4rnMy__NP8wfXdH43AxQ5oY0gp2v6AUNDTFOhpCvT9FIwZ_EFG67LJLkyvd8M_8sjeyiTc36I0islyzUfkxQ5ZphzigamoAJR8as-rnd6boM0iuqSvviGMMlCUUjL2C2ID01I
CitedBy_id crossref_primary_10_1038_srep07219
crossref_primary_10_1007_s10340_023_01646_0
crossref_primary_10_1016_j_envres_2023_117301
crossref_primary_10_1016_j_peptides_2014_08_012
crossref_primary_10_3389_fmicb_2021_670402
crossref_primary_10_5897_BMBR2016_0256
crossref_primary_10_1631_jzus_B1500056
crossref_primary_10_1016_j_cois_2016_04_003
crossref_primary_10_1093_jee_toac182
crossref_primary_10_1007_s10340_013_0517_7
crossref_primary_10_1111_afe_12095
crossref_primary_10_1016_j_cropro_2021_105702
crossref_primary_10_1016_j_cois_2016_04_002
crossref_primary_10_1371_journal_pone_0204154
crossref_primary_10_3390_toxins13090658
crossref_primary_10_1093_jisesa_iey075
crossref_primary_10_1128_AEM_02871_15
crossref_primary_10_1016_j_ecoenv_2021_113129
crossref_primary_10_1371_journal_pgen_1005534
crossref_primary_10_2174_1381612826666200721002354
crossref_primary_10_3390_insects14020201
crossref_primary_10_3390_toxins14010023
crossref_primary_10_1016_j_ibmb_2017_07_004
crossref_primary_10_1186_s12864_024_10216_2
crossref_primary_10_1128_AEM_01519_13
crossref_primary_10_1186_s13071_018_3110_3
crossref_primary_10_1111_eva_12573
crossref_primary_10_1111_eea_12060
crossref_primary_10_3390_insects11070449
crossref_primary_10_1002_arch_21547
crossref_primary_10_1371_journal_pone_0053418
crossref_primary_10_3390_toxins14060366
crossref_primary_10_1017_S0007485314000066
crossref_primary_10_1093_jee_toad143
crossref_primary_10_1093_jee_toae194
crossref_primary_10_1186_1471_2164_14_582
crossref_primary_10_1038_srep15107
crossref_primary_10_1371_journal_pone_0126288
crossref_primary_10_1021_acs_jafc_1c03156
crossref_primary_10_1371_journal_pgen_1005646
crossref_primary_10_1016_j_ijbiomac_2019_12_063
crossref_primary_10_1093_jee_toz208
crossref_primary_10_1016_j_ibmb_2013_09_003
crossref_primary_10_1038_nbt_3100
crossref_primary_10_1038_srep07714
crossref_primary_10_1002_ps_4160
crossref_primary_10_1016_j_heliyon_2023_e18730
crossref_primary_10_1016_j_jinsphys_2014_08_010
crossref_primary_10_1186_s42397_020_00074_0
crossref_primary_10_1016_j_ibmb_2013_05_007
crossref_primary_10_1038_s41477_020_0615_5
crossref_primary_10_3390_genes14051070
crossref_primary_10_1016_j_pestbp_2013_06_007
crossref_primary_10_3390_agronomy15010155
crossref_primary_10_1016_j_ibmb_2016_06_008
crossref_primary_10_1111_eva_12438
crossref_primary_10_1134_S102144371501015X
crossref_primary_10_3390_plants11202755
crossref_primary_10_1016_j_xinn_2023_100454
crossref_primary_10_1002_ps_6192
crossref_primary_10_1021_acs_jafc_4c05875
crossref_primary_10_4001_003_024_0518
crossref_primary_10_3390_insects13080673
crossref_primary_10_1038_srep40222
crossref_primary_10_1134_S1021443719010187
crossref_primary_10_1038_s41598_018_21012_w
crossref_primary_10_1007_s11274_013_1548_1
crossref_primary_10_1002_mbo3_360
crossref_primary_10_1093_jee_tow310
crossref_primary_10_1016_j_ibmb_2017_05_004
crossref_primary_10_1038_s41598_018_31840_5
crossref_primary_10_1371_journal_pone_0097900
crossref_primary_10_1080_14735903_2013_806408
crossref_primary_10_1016_j_pestbp_2019_03_023
crossref_primary_10_1038_srep06184
crossref_primary_10_1002_ps_6242
crossref_primary_10_1021_acs_jafc_9b04563
crossref_primary_10_1371_journal_pbio_3002704
crossref_primary_10_3390_su7078598
crossref_primary_10_1534_g3_120_401053
crossref_primary_10_3390_toxins16070315
crossref_primary_10_1016_j_jip_2015_02_009
crossref_primary_10_1016_j_pestbp_2014_11_013
crossref_primary_10_1002_ps_3807
crossref_primary_10_1021_acs_jafc_3c00259
crossref_primary_10_1128_aem_02505_21
crossref_primary_10_1016_j_ijbiomac_2020_08_175
crossref_primary_10_1007_s11248_023_00362_w
crossref_primary_10_1016_j_cropro_2014_06_019
crossref_primary_10_1134_S1021443717040185
crossref_primary_10_1146_annurev_ento_011019_025039
crossref_primary_10_1016_j_biocontrol_2013_05_003
crossref_primary_10_1360_SSV_2023_0218
crossref_primary_10_1002_ps_6243
crossref_primary_10_3389_fphys_2020_00093
crossref_primary_10_3390_agriculture12020298
crossref_primary_10_1111_eva_12099
crossref_primary_10_1146_annurev_ento_011118_111959
crossref_primary_10_1371_journal_ppat_1008697
crossref_primary_10_1007_s11248_017_0048_8
crossref_primary_10_3390_agronomy10020232
crossref_primary_10_1111_pbi_12709
crossref_primary_10_1371_journal_pone_0155785
crossref_primary_10_1007_s10340_018_1047_0
crossref_primary_10_1038_srep05629
crossref_primary_10_1016_j_ibmb_2021_103635
crossref_primary_10_1038_hdy_2016_104
crossref_primary_10_1016_j_cropro_2015_06_006
crossref_primary_10_1002_2211_5463_12689
crossref_primary_10_1016_j_jip_2015_07_007
crossref_primary_10_1111_jen_12880
crossref_primary_10_1002_ps_3662
crossref_primary_10_1016_j_biocontrol_2015_11_004
crossref_primary_10_3390_toxins15020137
crossref_primary_10_1074_jbc_M116_768671
crossref_primary_10_1186_s42397_018_0003_0
crossref_primary_10_1371_journal_ppat_1004490
crossref_primary_10_1038_s41598_019_44451_5
crossref_primary_10_1371_journal_pone_0156560
crossref_primary_10_1016_j_respol_2016_03_007
crossref_primary_10_1038_s41598_020_64811_w
crossref_primary_10_1038_s41598_017_05110_9
crossref_primary_10_1111_1744_7917_12418
crossref_primary_10_1371_journal_pone_0069675
crossref_primary_10_1016_j_agee_2015_08_021
crossref_primary_10_3390_insects14010075
crossref_primary_10_1016_j_pestbp_2019_04_007
crossref_primary_10_1073_pnas_1812138115
crossref_primary_10_1038_s41598_019_48188_z
crossref_primary_10_1038_srep45302
crossref_primary_10_1371_journal_pone_0072314
crossref_primary_10_1002_ps_5695
crossref_primary_10_1371_journal_ppat_1005450
crossref_primary_10_1111_eva_12355
crossref_primary_10_1126_science_1226994
crossref_primary_10_1016_j_pestbp_2023_105516
crossref_primary_10_1111_eva_12598
crossref_primary_10_1016_j_ibmb_2018_01_004
crossref_primary_10_1016_j_jip_2017_01_011
crossref_primary_10_1111_1744_7917_12826
crossref_primary_10_1002_ps_4928
crossref_primary_10_1111_1744_7917_12666
crossref_primary_10_1021_acs_jafc_5c00538
crossref_primary_10_1002_adma_201504993
crossref_primary_10_1371_journal_pone_0222395
crossref_primary_10_1016_j_ijbiomac_2023_125392
crossref_primary_10_3390_agriculture14091597
Cites_doi 10.1371/journal.pone.0035658
10.1073/pnas.94.24.12780
10.1126/science.1060949
10.1093/jee/91.3.572
10.1146/annurev.en.39.010194.000403
10.1016/j.ibmb.2010.01.001
10.1603/029.102.0601
10.1371/journal.pone.0022629
10.1371/journal.pone.0022874
10.1603/EN10077
10.1603/EC09289
10.1038/nbt.1704
10.1017/S0007485308006226
10.1146/annurev.ento.54.110807.090518
10.1111/j.1439-0418.2008.01368.x
10.1093/jee/92.2.273
10.1111/j.1467-7652.2011.00595.x
10.1371/journal.pone.0012567
10.1128/AEM.01703-07
10.1073/pnas.0831036100
10.1074/jbc.M408403200
10.1603/0022-0493-96.4.1290
10.1098/rspb.2003.2497
10.1038/nbt.1988
10.1016/j.cropro.2005.03.011
10.1146/annurev.ento.43.1.701
10.1371/journal.pone.0029975
10.1128/AEM.71.2.948-954.2005
10.1073/pnas.94.8.3519
10.1038/nbt0903-1003
10.1038/nbt1382
10.1080/02571862.2007.10634798
10.1186/1471-2148-7-117
10.1534/genetics.111.130971
10.1128/aem.63.6.2218-2223.1997
10.1126/science.1160550
10.1146/annurev.ento.47.091201.145234
10.1016/j.ibmb.2006.06.003
10.1111/j.1752-4571.2010.00129.x
10.1002/ps.2127
10.1146/annurev.ento.50.071803.130349
10.1126/science.1187881
10.1603/EC10040
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 26, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 26, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1200156109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
AGRICOLA


Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Genetic basis of field-evolved Bt resistance
EISSN 1091-6490
EndPage 10280
ExternalDocumentID PMC3387040
2698408621
22689968
10_1073_pnas_1200156109
109_26_10275
41602851
US201600128883
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c525t-67c495baf2b5e1af2f0a633e267d38299ab52a20dd20bf31d63a22df9440f7963
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:03 EDT 2025
Fri Jul 11 11:05:13 EDT 2025
Fri Jul 11 06:20:07 EDT 2025
Mon Jun 30 08:27:08 EDT 2025
Mon Jul 21 06:03:42 EDT 2025
Tue Jul 01 03:39:19 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Nov 11 00:29:52 EST 2020
Thu May 29 08:40:45 EDT 2025
Wed Dec 27 19:06:22 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-67c495baf2b5e1af2f0a633e267d38299ab52a20dd20bf31d63a22df9440f7963
Notes http://dx.doi.org/10.1073/pnas.1200156109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: Y.W. designed research; H.Z., W.T., J.Z., L.J., J.Y., C.L., Y.Y., S.W., K.W., and J.C. performed research; B.E.T. and Y.W. analyzed data; and B.E.T. and Y.W. wrote the paper.
1H.Z., W.T., and J.Z. contributed equally to this work.
Edited by Fred L. Gould, North Carolina State University, Raleigh, NC, and approved May 16, 2012 (received for review January 5, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/109/26/10275.full.pdf
PMID 22689968
PQID 1022477426
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1022558572
proquest_journals_1022477426
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3387040
jstor_primary_41602851
pnas_primary_109_26_10275
crossref_primary_10_1073_pnas_1200156109
pubmed_primary_22689968
fao_agris_US201600128883
crossref_citationtrail_10_1073_pnas_1200156109
proquest_miscellaneous_1803162301
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-26
PublicationDateYYYYMMDD 2012-06-26
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Liu YB (e_1_3_4_19_2) 1997; 63
Wu Y (e_1_3_4_34_2) 2009; 133
Tabashnik BE (e_1_3_4_4_2) 1994; 39
Downes S (e_1_3_4_10_2) 2010; 5
Carrière Y (e_1_3_4_36_2) 2010; 3
James C (e_1_3_4_3_2) 2011
Tabashnik BE (e_1_3_4_18_2) 2008; 26
Akhurst RJ (e_1_3_4_32_2) 2003; 96
Kranthi KR (e_1_3_4_33_2) 2006; 25
Mendelsohn M (e_1_3_4_1_2) 2003; 21
Xu X (e_1_3_4_22_2) 2005; 71
Gahan LJ (e_1_3_4_20_2) 2001; 293
Yang YH (e_1_3_4_23_2) 2009; 99
Gould F (e_1_3_4_29_2) 1997; 94
Downes S (e_1_3_4_41_2) 2010; 103
Fabrick JA (e_1_3_4_30_2) 2012; 7
Gassmann AJ (e_1_3_4_35_2) 2009; 54
Wu KM (e_1_3_4_37_2) 2005; 50
Gould F (e_1_3_4_5_2) 1998; 43
Tabashnik BE (e_1_3_4_17_2) 2011; 29
Behere GT (e_1_3_4_39_2) 2007; 7
Storer NP (e_1_3_4_11_2) 2010; 103
Baxter SW (e_1_3_4_16_2) 2011; 189
Yang Y (e_1_3_4_27_2) 2007; 73
Tabashnik BE (e_1_3_4_42_2) 2010; 28
Morin S (e_1_3_4_21_2) 2003; 100
Zhao J (e_1_3_4_28_2) 2010; 40
Andow DA (e_1_3_4_43_2) 1998; 91
Xie R (e_1_3_4_31_2) 2005; 280
Li GP (e_1_3_4_25_2) 2010; 39
Sanahuja G (e_1_3_4_2_2) 2011; 9
Ferré J (e_1_3_4_6_2) 2002; 47
Gassmann AJ (e_1_3_4_13_2) 2011; 6
Wu KM (e_1_3_4_24_2) 2008; 321
Tabashnik BE (e_1_3_4_9_2) 2009; 102
Zhang H (e_1_3_4_14_2) 2011; 6
Lu Y (e_1_3_4_40_2) 2010; 328
Janmaat AF (e_1_3_4_7_2) 2003; 270
Yang Y (e_1_3_4_26_2) 2006; 36
Van Rensburg JBJ (e_1_3_4_8_2) 2007; 24
Tabashnik BE (e_1_3_4_44_2) 1997; 94
Dhurua S (e_1_3_4_12_2) 2011; 67
Wan P (e_1_3_4_15_2) 2012; 7
Wu K (e_1_3_4_38_2) 1999; 92
References_xml – volume: 7
  start-page: e35658
  year: 2012
  ident: e_1_3_4_30_2
  article-title: Similar genetic basis of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of pink bollworm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035658
– volume: 94
  start-page: 12780
  year: 1997
  ident: e_1_3_4_44_2
  article-title: Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.24.12780
– volume: 293
  start-page: 857
  year: 2001
  ident: e_1_3_4_20_2
  article-title: Identification of a gene associated with Bt resistance in Heliothis virescens
  publication-title: Science
  doi: 10.1126/science.1060949
– volume: 91
  start-page: 572
  year: 1998
  ident: e_1_3_4_43_2
  article-title: F2 screen for rare resistance alleles
  publication-title: J Econ Entomol
  doi: 10.1093/jee/91.3.572
– volume: 39
  start-page: 47
  year: 1994
  ident: e_1_3_4_4_2
  article-title: Evolution of resistance to Bacillus thuringiensis
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.en.39.010194.000403
– volume: 40
  start-page: 113
  year: 2010
  ident: e_1_3_4_28_2
  article-title: Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2010.01.001
– volume: 102
  start-page: 2011
  year: 2009
  ident: e_1_3_4_9_2
  article-title: Field-evolved insect resistance to Bt crops: Definition, theory, and data
  publication-title: J Econ Entomol
  doi: 10.1603/029.102.0601
– volume: 6
  start-page: e22629
  year: 2011
  ident: e_1_3_4_13_2
  article-title: Field-evolved resistance to Bt maize by western corn rootworm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022629
– volume: 6
  start-page: e22874
  year: 2011
  ident: e_1_3_4_14_2
  article-title: Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022874
– volume: 39
  start-page: 1698
  year: 2010
  ident: e_1_3_4_25_2
  article-title: Frequency of Bt resistance alleles in Helicoverpa armigera in the Xinjiang cotton-planting region of China
  publication-title: Environ Entomol
  doi: 10.1603/EN10077
– volume: 103
  start-page: 2147
  year: 2010
  ident: e_1_3_4_41_2
  article-title: Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera: Noctuidae) isolated from a field population
  publication-title: J Econ Entomol
  doi: 10.1603/EC09289
– volume: 28
  start-page: 1304
  year: 2010
  ident: e_1_3_4_42_2
  article-title: Suppressing resistance to Bt cotton with sterile insect releases
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1704
– volume: 99
  start-page: 175
  year: 2009
  ident: e_1_3_4_23_2
  article-title: Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485308006226
– volume: 54
  start-page: 147
  year: 2009
  ident: e_1_3_4_35_2
  article-title: Fitness costs of insect resistance to Bacillus thuringiensis
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.54.110807.090518
– volume: 133
  start-page: 375
  year: 2009
  ident: e_1_3_4_34_2
  article-title: A single linkage group confers dominant resistance to Bacillus thuringiensis delta-endotoxin Cry1Ac in Helicoverpa armigera
  publication-title: J Appl Entomol
  doi: 10.1111/j.1439-0418.2008.01368.x
– volume: 92
  start-page: 273
  year: 1999
  ident: e_1_3_4_38_2
  article-title: Geographic variation in susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis insecticidal protein in China
  publication-title: J Econ Entomol
  doi: 10.1093/jee/92.2.273
– volume: 9
  start-page: 283
  year: 2011
  ident: e_1_3_4_2_2
  article-title: Bacillus thuringiensis: A century of research, development and commercial applications
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2011.00595.x
– volume: 5
  start-page: e12567
  year: 2010
  ident: e_1_3_4_10_2
  article-title: Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012567
– volume: 73
  start-page: 6939
  year: 2007
  ident: e_1_3_4_27_2
  article-title: Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01703-07
– volume: 100
  start-page: 5004
  year: 2003
  ident: e_1_3_4_21_2
  article-title: Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0831036100
– volume: 280
  start-page: 8416
  year: 2005
  ident: e_1_3_4_31_2
  article-title: Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M408403200
– volume: 96
  start-page: 1290
  year: 2003
  ident: e_1_3_4_32_2
  article-title: Resistance to the Cry1Ac δ-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae)
  publication-title: J Econ Entomol
  doi: 10.1603/0022-0493-96.4.1290
– volume-title: ISAAA Brief No.43
  year: 2011
  ident: e_1_3_4_3_2
– volume: 270
  start-page: 2263
  year: 2003
  ident: e_1_3_4_7_2
  article-title: Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni
  publication-title: P Roy Soc B-Biol Sci
  doi: 10.1098/rspb.2003.2497
– volume: 29
  start-page: 1128
  year: 2011
  ident: e_1_3_4_17_2
  article-title: Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1988
– volume: 25
  start-page: 119
  year: 2006
  ident: e_1_3_4_33_2
  article-title: Inheritance of resistance in Indian Helicoverpa armigera (Hübner) to Cry1Ac toxin of Bacillus thuringiensis
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2005.03.011
– volume: 43
  start-page: 701
  year: 1998
  ident: e_1_3_4_5_2
  article-title: Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.43.1.701
– volume: 7
  start-page: e29975
  year: 2012
  ident: e_1_3_4_15_2
  article-title: Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029975
– volume: 71
  start-page: 948
  year: 2005
  ident: e_1_3_4_22_2
  article-title: Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.2.948-954.2005
– volume: 94
  start-page: 3519
  year: 1997
  ident: e_1_3_4_29_2
  article-title: Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.8.3519
– volume: 21
  start-page: 1003
  year: 2003
  ident: e_1_3_4_1_2
  article-title: Are Bt crops safe?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0903-1003
– volume: 26
  start-page: 199
  year: 2008
  ident: e_1_3_4_18_2
  article-title: Insect resistance to Bt crops: Evidence versus theory
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1382
– volume: 24
  start-page: 147
  year: 2007
  ident: e_1_3_4_8_2
  article-title: First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize
  publication-title: S Afr J Plant Soil
  doi: 10.1080/02571862.2007.10634798
– volume: 7
  start-page: 117
  year: 2007
  ident: e_1_3_4_39_2
  article-title: Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-117
– volume: 189
  start-page: 675
  year: 2011
  ident: e_1_3_4_16_2
  article-title: Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera
  publication-title: Genetics
  doi: 10.1534/genetics.111.130971
– volume: 63
  start-page: 2218
  year: 1997
  ident: e_1_3_4_19_2
  article-title: Inheritance of resistance to Bacillus thuringiensis toxin Cry1C in the diamondback moth
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.6.2218-2223.1997
– volume: 321
  start-page: 1676
  year: 2008
  ident: e_1_3_4_24_2
  article-title: Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton
  publication-title: Science
  doi: 10.1126/science.1160550
– volume: 47
  start-page: 501
  year: 2002
  ident: e_1_3_4_6_2
  article-title: Biochemistry and genetics of insect resistance to Bacillus thuringiensis
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.47.091201.145234
– volume: 36
  start-page: 735
  year: 2006
  ident: e_1_3_4_26_2
  article-title: Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2006.06.003
– volume: 3
  start-page: 561
  year: 2010
  ident: e_1_3_4_36_2
  article-title: Evolutionary ecology of insect adaptation to Bt crops
  publication-title: Evol Appl
  doi: 10.1111/j.1752-4571.2010.00129.x
– volume: 67
  start-page: 898
  year: 2011
  ident: e_1_3_4_12_2
  article-title: Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.2127
– volume: 50
  start-page: 31
  year: 2005
  ident: e_1_3_4_37_2
  article-title: The evolution of cotton pest management practices in China
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.50.071803.130349
– volume: 328
  start-page: 1151
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China
  publication-title: Science
  doi: 10.1126/science.1187881
– volume: 103
  start-page: 1031
  year: 2010
  ident: e_1_3_4_11_2
  article-title: Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico
  publication-title: J Econ Entomol
  doi: 10.1603/EC10040
SSID ssj0009580
Score 2.467617
Snippet Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although...
Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10275
SubjectTerms Alleles
Animals
Bacillus thuringiensis
Bacillus thuringiensis - physiology
Biological Sciences
Cadherins
China
Cotton
Crops
evolution
field crops
Genetic loci
Genetic mutation
Genetics
Genotypes
Helicoverpa armigera
heterozygosity
Insect genetics
Insect pests
insecticidal proteins
Insecticide Resistance - genetics
Lepidoptera - genetics
Lepidoptera - physiology
loci
Molecular Sequence Data
Mutation
Pest control
Pest Control, Biological
Pest resistance
Pests
Proteins
resistance management
sequence deletion
Sprays
Toxins
Transgenic plants
Title Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China
URI https://www.jstor.org/stable/41602851
http://www.pnas.org/content/109/26/10275.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22689968
https://www.proquest.com/docview/1022477426
https://www.proquest.com/docview/1022558572
https://www.proquest.com/docview/1803162301
https://pubmed.ncbi.nlm.nih.gov/PMC3387040
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWAsMJCReBiqUhLbcZLHDTZVqJRJtKIPSJGdy5iEUkRTkPhR_EaOb7lMZQJe0ihxHDfny7k453xG6IWMy5TlBCLVPBE-WCh4pSQFLDMq8zSkkgeq3vndnE-X7O0qWo1Gv3pZS9tGTvKfO-tK_keqcAzkqqpk_0GybadwAPZBvrAFCcP2r2T8RidVlGoZZFWLOAaTZOhFdF6aX4Lq-V6q8pSN8hLVKwye5mkzVnwMJsXR7klAww_wXk21SbumtvNaL1ort3E5BXM3iXjSlaRYPbEZ--OLebfAcTsnPRVwRS_x18y9fuyK0aCl-RDk7KlK7TEkBzPLEG4nKFSmB_dNFXyf33vnePqamYC1ZKaeelIaZQy-jM-ZWU601dZB2oMl6SvfUH2C3WkWQI-ptYxrsZmERFePu24GBNzz99n5cjbLFmerxfCsNviEpxAOQwgI0fZtAmGJTiSd9kmeE1PyZP-Lo5KK6atr9x54QbcqsXbpsIpjF5ruineup-32_KDFPXTXBjD4xKBxH43K-j7ad48aH1se85cP0CcLT2zhiTU88brCA3jiDp64WePTBhtQ4qva7Tl4YgVPrOH5EC3Pzxavp75dzMPPIxI1Po9ziMWlqIiMyhB-qkBwSkvC44Im4BQJGRFBgqIggaxoWHAqCCmqlLGgisFMHKC9el2XhwinETTOK3DkhWAsFaKiPAY7w5IilyyqPDRxDzfLLdO9WnDlS6YzLmKaqUecddLw0HF7wVdD8vLnpocgrUxcggnOlh-IImhUPl6SUA8daBG2XUCsA957FHrI0710XacZ4ZmGq4eOnKAzq1k2maZ5hLiMcA89b0-D3lcf80RdrremTQSxfkxuaJOAyYb4JoAhPDLYaQcBYVeSpjzxUDxAVdtA8c4Pz9RXnzX_PKVg5Fnw-OahP0F3nDYIwiO013zblk_BgW_kM_3W_Abwau1W
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+genetic+basis+of+field-evolved+resistance+to+Bt+cotton+in+cotton+bollworm+from+China&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Haonan&rft.au=Tian%2C+Wen&rft.au=Zhao%2C+Jing&rft.au=Jin%2C+Lin&rft.date=2012-06-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=26&rft.spage=10275&rft_id=info:doi/10.1073%2Fpnas.1200156109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2698408621
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif