Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China
Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 26; pp. 10275 - 10280 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.06.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera , selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75–84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59–94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. |
---|---|
AbstractList | Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles.Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera , selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75–84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59–94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera , selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75–84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59–94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of field-evolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with field-selected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance allele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance allele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. [PUBLICATION ABSTRACT] Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although several pests have evolved resistance to Bt crops in the field, information about the genetic basis of fieldevolved resistance to Bt crops has been limited. In particular, laboratory-selected resistance to Bt toxin Cry1Ac based on recessive mutations in a gene encoding a toxin-binding cadherin protein has been identified in three major cotton pests, but previous work has not determined if such mutations are associated with fieldselected resistance to Bt cotton. Here we show that the most common resistance alleles in field populations of cotton bollworm, Helicoverpa armigera, selected with Bt cotton in northern China, had recessive cadherin mutations, including the deletion mutation identified via laboratory selection. However, unlike all previously studied cadherin resistance alleles, one field-selected cadherin resistance alíele conferred nonrecessive resistance. We also detected nonrecessive resistance that was not genetically linked with the cadherin locus. In field-selected populations, recessive cadherin alleles accounted for 75-84% of resistance alleles detected. However, most resistance alleles occurred in heterozygotes and 59-94% of resistant individuals carried at least one nonrecessive resistance alíele. The results suggest that resistance management strategies must account for diverse resistance alleles in field-selected populations, including nonrecessive alleles. |
Author | Liu, Chunhui Yang, Yihua Wu, Kongming Yang, Jun Tian, Wen Zhao, Jing Zhang, Haonan Jin, Lin Wu, Shuwen Cui, Jinjie Tabashnik, Bruce E Wu, Yidong |
Author_xml | – sequence: 1 fullname: Zhang, Haonan – sequence: 2 fullname: Tian, Wen – sequence: 3 fullname: Zhao, Jing – sequence: 4 fullname: Jin, Lin – sequence: 5 fullname: Yang, Jun – sequence: 6 fullname: Liu, Chunhui – sequence: 7 fullname: Yang, Yihua – sequence: 8 fullname: Wu, Shuwen – sequence: 9 fullname: Wu, Kongming – sequence: 10 fullname: Cui, Jinjie – sequence: 11 fullname: Tabashnik, Bruce E – sequence: 12 fullname: Wu, Yidong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22689968$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURLeFMyfAUi9c0o7HsWNfkGD5lCpxgN6QLCdxtl5l7a3tXdR_T8Jut9ADXDyW32fGr8dzUhz54G1RPKdwTqFmF2tv0jlFAMoFBfWomI0rLUWl4KiYAWBdygqr4-IkpSUAKC7hSXGMKKRSQs6KH-_d1sZkycJ6m11LGpNcIqEnvbNDV9ptGLa2I9GOx9n41pIcyLtM2pBz8MT5u10ThuFniCvSx7Ai82vnzdPicW-GZJ_t42lx9fHD9_nn8vLrpy_zt5dly5HnUtRtpXhjemy4pWPowQjGLIq6YxKVMg1Hg9B1CE3PaCeYQex6VVXQ10qw0-LNru5606xs11qfoxn0OrqVibc6GKf_Vry71ouw1YzJGioYC7zeF4jhZmNT1iuXWjsMxtuwSZpKYFQgA_p_FBA5l7zGET17gC7DJvqxE7-pqq4rnMy__NP8wfXdH43AxQ5oY0gp2v6AUNDTFOhpCvT9FIwZ_EFG67LJLkyvd8M_8sjeyiTc36I0islyzUfkxQ5ZphzigamoAJR8as-rnd6boM0iuqSvviGMMlCUUjL2C2ID01I |
CitedBy_id | crossref_primary_10_1038_srep07219 crossref_primary_10_1007_s10340_023_01646_0 crossref_primary_10_1016_j_envres_2023_117301 crossref_primary_10_1016_j_peptides_2014_08_012 crossref_primary_10_3389_fmicb_2021_670402 crossref_primary_10_5897_BMBR2016_0256 crossref_primary_10_1631_jzus_B1500056 crossref_primary_10_1016_j_cois_2016_04_003 crossref_primary_10_1093_jee_toac182 crossref_primary_10_1007_s10340_013_0517_7 crossref_primary_10_1111_afe_12095 crossref_primary_10_1016_j_cropro_2021_105702 crossref_primary_10_1016_j_cois_2016_04_002 crossref_primary_10_1371_journal_pone_0204154 crossref_primary_10_3390_toxins13090658 crossref_primary_10_1093_jisesa_iey075 crossref_primary_10_1128_AEM_02871_15 crossref_primary_10_1016_j_ecoenv_2021_113129 crossref_primary_10_1371_journal_pgen_1005534 crossref_primary_10_2174_1381612826666200721002354 crossref_primary_10_3390_insects14020201 crossref_primary_10_3390_toxins14010023 crossref_primary_10_1016_j_ibmb_2017_07_004 crossref_primary_10_1186_s12864_024_10216_2 crossref_primary_10_1128_AEM_01519_13 crossref_primary_10_1186_s13071_018_3110_3 crossref_primary_10_1111_eva_12573 crossref_primary_10_1111_eea_12060 crossref_primary_10_3390_insects11070449 crossref_primary_10_1002_arch_21547 crossref_primary_10_1371_journal_pone_0053418 crossref_primary_10_3390_toxins14060366 crossref_primary_10_1017_S0007485314000066 crossref_primary_10_1093_jee_toad143 crossref_primary_10_1093_jee_toae194 crossref_primary_10_1186_1471_2164_14_582 crossref_primary_10_1038_srep15107 crossref_primary_10_1371_journal_pone_0126288 crossref_primary_10_1021_acs_jafc_1c03156 crossref_primary_10_1371_journal_pgen_1005646 crossref_primary_10_1016_j_ijbiomac_2019_12_063 crossref_primary_10_1093_jee_toz208 crossref_primary_10_1016_j_ibmb_2013_09_003 crossref_primary_10_1038_nbt_3100 crossref_primary_10_1038_srep07714 crossref_primary_10_1002_ps_4160 crossref_primary_10_1016_j_heliyon_2023_e18730 crossref_primary_10_1016_j_jinsphys_2014_08_010 crossref_primary_10_1186_s42397_020_00074_0 crossref_primary_10_1016_j_ibmb_2013_05_007 crossref_primary_10_1038_s41477_020_0615_5 crossref_primary_10_3390_genes14051070 crossref_primary_10_1016_j_pestbp_2013_06_007 crossref_primary_10_3390_agronomy15010155 crossref_primary_10_1016_j_ibmb_2016_06_008 crossref_primary_10_1111_eva_12438 crossref_primary_10_1134_S102144371501015X crossref_primary_10_3390_plants11202755 crossref_primary_10_1016_j_xinn_2023_100454 crossref_primary_10_1002_ps_6192 crossref_primary_10_1021_acs_jafc_4c05875 crossref_primary_10_4001_003_024_0518 crossref_primary_10_3390_insects13080673 crossref_primary_10_1038_srep40222 crossref_primary_10_1134_S1021443719010187 crossref_primary_10_1038_s41598_018_21012_w crossref_primary_10_1007_s11274_013_1548_1 crossref_primary_10_1002_mbo3_360 crossref_primary_10_1093_jee_tow310 crossref_primary_10_1016_j_ibmb_2017_05_004 crossref_primary_10_1038_s41598_018_31840_5 crossref_primary_10_1371_journal_pone_0097900 crossref_primary_10_1080_14735903_2013_806408 crossref_primary_10_1016_j_pestbp_2019_03_023 crossref_primary_10_1038_srep06184 crossref_primary_10_1002_ps_6242 crossref_primary_10_1021_acs_jafc_9b04563 crossref_primary_10_1371_journal_pbio_3002704 crossref_primary_10_3390_su7078598 crossref_primary_10_1534_g3_120_401053 crossref_primary_10_3390_toxins16070315 crossref_primary_10_1016_j_jip_2015_02_009 crossref_primary_10_1016_j_pestbp_2014_11_013 crossref_primary_10_1002_ps_3807 crossref_primary_10_1021_acs_jafc_3c00259 crossref_primary_10_1128_aem_02505_21 crossref_primary_10_1016_j_ijbiomac_2020_08_175 crossref_primary_10_1007_s11248_023_00362_w crossref_primary_10_1016_j_cropro_2014_06_019 crossref_primary_10_1134_S1021443717040185 crossref_primary_10_1146_annurev_ento_011019_025039 crossref_primary_10_1016_j_biocontrol_2013_05_003 crossref_primary_10_1360_SSV_2023_0218 crossref_primary_10_1002_ps_6243 crossref_primary_10_3389_fphys_2020_00093 crossref_primary_10_3390_agriculture12020298 crossref_primary_10_1111_eva_12099 crossref_primary_10_1146_annurev_ento_011118_111959 crossref_primary_10_1371_journal_ppat_1008697 crossref_primary_10_1007_s11248_017_0048_8 crossref_primary_10_3390_agronomy10020232 crossref_primary_10_1111_pbi_12709 crossref_primary_10_1371_journal_pone_0155785 crossref_primary_10_1007_s10340_018_1047_0 crossref_primary_10_1038_srep05629 crossref_primary_10_1016_j_ibmb_2021_103635 crossref_primary_10_1038_hdy_2016_104 crossref_primary_10_1016_j_cropro_2015_06_006 crossref_primary_10_1002_2211_5463_12689 crossref_primary_10_1016_j_jip_2015_07_007 crossref_primary_10_1111_jen_12880 crossref_primary_10_1002_ps_3662 crossref_primary_10_1016_j_biocontrol_2015_11_004 crossref_primary_10_3390_toxins15020137 crossref_primary_10_1074_jbc_M116_768671 crossref_primary_10_1186_s42397_018_0003_0 crossref_primary_10_1371_journal_ppat_1004490 crossref_primary_10_1038_s41598_019_44451_5 crossref_primary_10_1371_journal_pone_0156560 crossref_primary_10_1016_j_respol_2016_03_007 crossref_primary_10_1038_s41598_020_64811_w crossref_primary_10_1038_s41598_017_05110_9 crossref_primary_10_1111_1744_7917_12418 crossref_primary_10_1371_journal_pone_0069675 crossref_primary_10_1016_j_agee_2015_08_021 crossref_primary_10_3390_insects14010075 crossref_primary_10_1016_j_pestbp_2019_04_007 crossref_primary_10_1073_pnas_1812138115 crossref_primary_10_1038_s41598_019_48188_z crossref_primary_10_1038_srep45302 crossref_primary_10_1371_journal_pone_0072314 crossref_primary_10_1002_ps_5695 crossref_primary_10_1371_journal_ppat_1005450 crossref_primary_10_1111_eva_12355 crossref_primary_10_1126_science_1226994 crossref_primary_10_1016_j_pestbp_2023_105516 crossref_primary_10_1111_eva_12598 crossref_primary_10_1016_j_ibmb_2018_01_004 crossref_primary_10_1016_j_jip_2017_01_011 crossref_primary_10_1111_1744_7917_12826 crossref_primary_10_1002_ps_4928 crossref_primary_10_1111_1744_7917_12666 crossref_primary_10_1021_acs_jafc_5c00538 crossref_primary_10_1002_adma_201504993 crossref_primary_10_1371_journal_pone_0222395 crossref_primary_10_1016_j_ijbiomac_2023_125392 crossref_primary_10_3390_agriculture14091597 |
Cites_doi | 10.1371/journal.pone.0035658 10.1073/pnas.94.24.12780 10.1126/science.1060949 10.1093/jee/91.3.572 10.1146/annurev.en.39.010194.000403 10.1016/j.ibmb.2010.01.001 10.1603/029.102.0601 10.1371/journal.pone.0022629 10.1371/journal.pone.0022874 10.1603/EN10077 10.1603/EC09289 10.1038/nbt.1704 10.1017/S0007485308006226 10.1146/annurev.ento.54.110807.090518 10.1111/j.1439-0418.2008.01368.x 10.1093/jee/92.2.273 10.1111/j.1467-7652.2011.00595.x 10.1371/journal.pone.0012567 10.1128/AEM.01703-07 10.1073/pnas.0831036100 10.1074/jbc.M408403200 10.1603/0022-0493-96.4.1290 10.1098/rspb.2003.2497 10.1038/nbt.1988 10.1016/j.cropro.2005.03.011 10.1146/annurev.ento.43.1.701 10.1371/journal.pone.0029975 10.1128/AEM.71.2.948-954.2005 10.1073/pnas.94.8.3519 10.1038/nbt0903-1003 10.1038/nbt1382 10.1080/02571862.2007.10634798 10.1186/1471-2148-7-117 10.1534/genetics.111.130971 10.1128/aem.63.6.2218-2223.1997 10.1126/science.1160550 10.1146/annurev.ento.47.091201.145234 10.1016/j.ibmb.2006.06.003 10.1111/j.1752-4571.2010.00129.x 10.1002/ps.2127 10.1146/annurev.ento.50.071803.130349 10.1126/science.1187881 10.1603/EC10040 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 26, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 26, 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1200156109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AGRICOLA Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Genetic basis of field-evolved Bt resistance |
EISSN | 1091-6490 |
EndPage | 10280 |
ExternalDocumentID | PMC3387040 2698408621 22689968 10_1073_pnas_1200156109 109_26_10275 41602851 US201600128883 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c525t-67c495baf2b5e1af2f0a633e267d38299ab52a20dd20bf31d63a22df9440f7963 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:03 EDT 2025 Fri Jul 11 11:05:13 EDT 2025 Fri Jul 11 06:20:07 EDT 2025 Mon Jun 30 08:27:08 EDT 2025 Mon Jul 21 06:03:42 EDT 2025 Tue Jul 01 03:39:19 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Wed Nov 11 00:29:52 EST 2020 Thu May 29 08:40:45 EDT 2025 Wed Dec 27 19:06:22 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c525t-67c495baf2b5e1af2f0a633e267d38299ab52a20dd20bf31d63a22df9440f7963 |
Notes | http://dx.doi.org/10.1073/pnas.1200156109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: Y.W. designed research; H.Z., W.T., J.Z., L.J., J.Y., C.L., Y.Y., S.W., K.W., and J.C. performed research; B.E.T. and Y.W. analyzed data; and B.E.T. and Y.W. wrote the paper. 1H.Z., W.T., and J.Z. contributed equally to this work. Edited by Fred L. Gould, North Carolina State University, Raleigh, NC, and approved May 16, 2012 (received for review January 5, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/26/10275.full.pdf |
PMID | 22689968 |
PQID | 1022477426 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1022558572 proquest_journals_1022477426 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3387040 jstor_primary_41602851 pnas_primary_109_26_10275 crossref_primary_10_1073_pnas_1200156109 pubmed_primary_22689968 fao_agris_US201600128883 crossref_citationtrail_10_1073_pnas_1200156109 proquest_miscellaneous_1803162301 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-26 |
PublicationDateYYYYMMDD | 2012-06-26 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Liu YB (e_1_3_4_19_2) 1997; 63 Wu Y (e_1_3_4_34_2) 2009; 133 Tabashnik BE (e_1_3_4_4_2) 1994; 39 Downes S (e_1_3_4_10_2) 2010; 5 Carrière Y (e_1_3_4_36_2) 2010; 3 James C (e_1_3_4_3_2) 2011 Tabashnik BE (e_1_3_4_18_2) 2008; 26 Akhurst RJ (e_1_3_4_32_2) 2003; 96 Kranthi KR (e_1_3_4_33_2) 2006; 25 Mendelsohn M (e_1_3_4_1_2) 2003; 21 Xu X (e_1_3_4_22_2) 2005; 71 Gahan LJ (e_1_3_4_20_2) 2001; 293 Yang YH (e_1_3_4_23_2) 2009; 99 Gould F (e_1_3_4_29_2) 1997; 94 Downes S (e_1_3_4_41_2) 2010; 103 Fabrick JA (e_1_3_4_30_2) 2012; 7 Gassmann AJ (e_1_3_4_35_2) 2009; 54 Wu KM (e_1_3_4_37_2) 2005; 50 Gould F (e_1_3_4_5_2) 1998; 43 Tabashnik BE (e_1_3_4_17_2) 2011; 29 Behere GT (e_1_3_4_39_2) 2007; 7 Storer NP (e_1_3_4_11_2) 2010; 103 Baxter SW (e_1_3_4_16_2) 2011; 189 Yang Y (e_1_3_4_27_2) 2007; 73 Tabashnik BE (e_1_3_4_42_2) 2010; 28 Morin S (e_1_3_4_21_2) 2003; 100 Zhao J (e_1_3_4_28_2) 2010; 40 Andow DA (e_1_3_4_43_2) 1998; 91 Xie R (e_1_3_4_31_2) 2005; 280 Li GP (e_1_3_4_25_2) 2010; 39 Sanahuja G (e_1_3_4_2_2) 2011; 9 Ferré J (e_1_3_4_6_2) 2002; 47 Gassmann AJ (e_1_3_4_13_2) 2011; 6 Wu KM (e_1_3_4_24_2) 2008; 321 Tabashnik BE (e_1_3_4_9_2) 2009; 102 Zhang H (e_1_3_4_14_2) 2011; 6 Lu Y (e_1_3_4_40_2) 2010; 328 Janmaat AF (e_1_3_4_7_2) 2003; 270 Yang Y (e_1_3_4_26_2) 2006; 36 Van Rensburg JBJ (e_1_3_4_8_2) 2007; 24 Tabashnik BE (e_1_3_4_44_2) 1997; 94 Dhurua S (e_1_3_4_12_2) 2011; 67 Wan P (e_1_3_4_15_2) 2012; 7 Wu K (e_1_3_4_38_2) 1999; 92 |
References_xml | – volume: 7 start-page: e35658 year: 2012 ident: e_1_3_4_30_2 article-title: Similar genetic basis of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of pink bollworm publication-title: PLoS ONE doi: 10.1371/journal.pone.0035658 – volume: 94 start-page: 12780 year: 1997 ident: e_1_3_4_44_2 article-title: Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.24.12780 – volume: 293 start-page: 857 year: 2001 ident: e_1_3_4_20_2 article-title: Identification of a gene associated with Bt resistance in Heliothis virescens publication-title: Science doi: 10.1126/science.1060949 – volume: 91 start-page: 572 year: 1998 ident: e_1_3_4_43_2 article-title: F2 screen for rare resistance alleles publication-title: J Econ Entomol doi: 10.1093/jee/91.3.572 – volume: 39 start-page: 47 year: 1994 ident: e_1_3_4_4_2 article-title: Evolution of resistance to Bacillus thuringiensis publication-title: Annu Rev Entomol doi: 10.1146/annurev.en.39.010194.000403 – volume: 40 start-page: 113 year: 2010 ident: e_1_3_4_28_2 article-title: Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2010.01.001 – volume: 102 start-page: 2011 year: 2009 ident: e_1_3_4_9_2 article-title: Field-evolved insect resistance to Bt crops: Definition, theory, and data publication-title: J Econ Entomol doi: 10.1603/029.102.0601 – volume: 6 start-page: e22629 year: 2011 ident: e_1_3_4_13_2 article-title: Field-evolved resistance to Bt maize by western corn rootworm publication-title: PLoS ONE doi: 10.1371/journal.pone.0022629 – volume: 6 start-page: e22874 year: 2011 ident: e_1_3_4_14_2 article-title: Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China publication-title: PLoS ONE doi: 10.1371/journal.pone.0022874 – volume: 39 start-page: 1698 year: 2010 ident: e_1_3_4_25_2 article-title: Frequency of Bt resistance alleles in Helicoverpa armigera in the Xinjiang cotton-planting region of China publication-title: Environ Entomol doi: 10.1603/EN10077 – volume: 103 start-page: 2147 year: 2010 ident: e_1_3_4_41_2 article-title: Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera: Noctuidae) isolated from a field population publication-title: J Econ Entomol doi: 10.1603/EC09289 – volume: 28 start-page: 1304 year: 2010 ident: e_1_3_4_42_2 article-title: Suppressing resistance to Bt cotton with sterile insect releases publication-title: Nat Biotechnol doi: 10.1038/nbt.1704 – volume: 99 start-page: 175 year: 2009 ident: e_1_3_4_23_2 article-title: Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac publication-title: Bull Entomol Res doi: 10.1017/S0007485308006226 – volume: 54 start-page: 147 year: 2009 ident: e_1_3_4_35_2 article-title: Fitness costs of insect resistance to Bacillus thuringiensis publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.54.110807.090518 – volume: 133 start-page: 375 year: 2009 ident: e_1_3_4_34_2 article-title: A single linkage group confers dominant resistance to Bacillus thuringiensis delta-endotoxin Cry1Ac in Helicoverpa armigera publication-title: J Appl Entomol doi: 10.1111/j.1439-0418.2008.01368.x – volume: 92 start-page: 273 year: 1999 ident: e_1_3_4_38_2 article-title: Geographic variation in susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis insecticidal protein in China publication-title: J Econ Entomol doi: 10.1093/jee/92.2.273 – volume: 9 start-page: 283 year: 2011 ident: e_1_3_4_2_2 article-title: Bacillus thuringiensis: A century of research, development and commercial applications publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2011.00595.x – volume: 5 start-page: e12567 year: 2010 ident: e_1_3_4_10_2 article-title: Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton publication-title: PLoS ONE doi: 10.1371/journal.pone.0012567 – volume: 73 start-page: 6939 year: 2007 ident: e_1_3_4_27_2 article-title: Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01703-07 – volume: 100 start-page: 5004 year: 2003 ident: e_1_3_4_21_2 article-title: Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0831036100 – volume: 280 start-page: 8416 year: 2005 ident: e_1_3_4_31_2 article-title: Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins publication-title: J Biol Chem doi: 10.1074/jbc.M408403200 – volume: 96 start-page: 1290 year: 2003 ident: e_1_3_4_32_2 article-title: Resistance to the Cry1Ac δ-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) publication-title: J Econ Entomol doi: 10.1603/0022-0493-96.4.1290 – volume-title: ISAAA Brief No.43 year: 2011 ident: e_1_3_4_3_2 – volume: 270 start-page: 2263 year: 2003 ident: e_1_3_4_7_2 article-title: Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni publication-title: P Roy Soc B-Biol Sci doi: 10.1098/rspb.2003.2497 – volume: 29 start-page: 1128 year: 2011 ident: e_1_3_4_17_2 article-title: Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance publication-title: Nat Biotechnol doi: 10.1038/nbt.1988 – volume: 25 start-page: 119 year: 2006 ident: e_1_3_4_33_2 article-title: Inheritance of resistance in Indian Helicoverpa armigera (Hübner) to Cry1Ac toxin of Bacillus thuringiensis publication-title: Crop Prot doi: 10.1016/j.cropro.2005.03.011 – volume: 43 start-page: 701 year: 1998 ident: e_1_3_4_5_2 article-title: Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.43.1.701 – volume: 7 start-page: e29975 year: 2012 ident: e_1_3_4_15_2 article-title: Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China publication-title: PLoS ONE doi: 10.1371/journal.pone.0029975 – volume: 71 start-page: 948 year: 2005 ident: e_1_3_4_22_2 article-title: Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.2.948-954.2005 – volume: 94 start-page: 3519 year: 1997 ident: e_1_3_4_29_2 article-title: Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.8.3519 – volume: 21 start-page: 1003 year: 2003 ident: e_1_3_4_1_2 article-title: Are Bt crops safe? publication-title: Nat Biotechnol doi: 10.1038/nbt0903-1003 – volume: 26 start-page: 199 year: 2008 ident: e_1_3_4_18_2 article-title: Insect resistance to Bt crops: Evidence versus theory publication-title: Nat Biotechnol doi: 10.1038/nbt1382 – volume: 24 start-page: 147 year: 2007 ident: e_1_3_4_8_2 article-title: First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize publication-title: S Afr J Plant Soil doi: 10.1080/02571862.2007.10634798 – volume: 7 start-page: 117 year: 2007 ident: e_1_3_4_39_2 article-title: Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-117 – volume: 189 start-page: 675 year: 2011 ident: e_1_3_4_16_2 article-title: Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera publication-title: Genetics doi: 10.1534/genetics.111.130971 – volume: 63 start-page: 2218 year: 1997 ident: e_1_3_4_19_2 article-title: Inheritance of resistance to Bacillus thuringiensis toxin Cry1C in the diamondback moth publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.6.2218-2223.1997 – volume: 321 start-page: 1676 year: 2008 ident: e_1_3_4_24_2 article-title: Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton publication-title: Science doi: 10.1126/science.1160550 – volume: 47 start-page: 501 year: 2002 ident: e_1_3_4_6_2 article-title: Biochemistry and genetics of insect resistance to Bacillus thuringiensis publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.47.091201.145234 – volume: 36 start-page: 735 year: 2006 ident: e_1_3_4_26_2 article-title: Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2006.06.003 – volume: 3 start-page: 561 year: 2010 ident: e_1_3_4_36_2 article-title: Evolutionary ecology of insect adaptation to Bt crops publication-title: Evol Appl doi: 10.1111/j.1752-4571.2010.00129.x – volume: 67 start-page: 898 year: 2011 ident: e_1_3_4_12_2 article-title: Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India publication-title: Pest Manag Sci doi: 10.1002/ps.2127 – volume: 50 start-page: 31 year: 2005 ident: e_1_3_4_37_2 article-title: The evolution of cotton pest management practices in China publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.50.071803.130349 – volume: 328 start-page: 1151 year: 2010 ident: e_1_3_4_40_2 article-title: Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China publication-title: Science doi: 10.1126/science.1187881 – volume: 103 start-page: 1031 year: 2010 ident: e_1_3_4_11_2 article-title: Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico publication-title: J Econ Entomol doi: 10.1603/EC10040 |
SSID | ssj0009580 |
Score | 2.467617 |
Snippet | Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although... Evolution of pest resistance reduces the efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays or in transgenic crops. Although... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10275 |
SubjectTerms | Alleles Animals Bacillus thuringiensis Bacillus thuringiensis - physiology Biological Sciences Cadherins China Cotton Crops evolution field crops Genetic loci Genetic mutation Genetics Genotypes Helicoverpa armigera heterozygosity Insect genetics Insect pests insecticidal proteins Insecticide Resistance - genetics Lepidoptera - genetics Lepidoptera - physiology loci Molecular Sequence Data Mutation Pest control Pest Control, Biological Pest resistance Pests Proteins resistance management sequence deletion Sprays Toxins Transgenic plants |
Title | Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China |
URI | https://www.jstor.org/stable/41602851 http://www.pnas.org/content/109/26/10275.abstract https://www.ncbi.nlm.nih.gov/pubmed/22689968 https://www.proquest.com/docview/1022477426 https://www.proquest.com/docview/1022558572 https://www.proquest.com/docview/1803162301 https://pubmed.ncbi.nlm.nih.gov/PMC3387040 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWAsMJCReBiqUhLbcZLHDTZVqJRJtKIPSJGdy5iEUkRTkPhR_EaOb7lMZQJe0ihxHDfny7k453xG6IWMy5TlBCLVPBE-WCh4pSQFLDMq8zSkkgeq3vndnE-X7O0qWo1Gv3pZS9tGTvKfO-tK_keqcAzkqqpk_0GybadwAPZBvrAFCcP2r2T8RidVlGoZZFWLOAaTZOhFdF6aX4Lq-V6q8pSN8hLVKwye5mkzVnwMJsXR7klAww_wXk21SbumtvNaL1ort3E5BXM3iXjSlaRYPbEZ--OLebfAcTsnPRVwRS_x18y9fuyK0aCl-RDk7KlK7TEkBzPLEG4nKFSmB_dNFXyf33vnePqamYC1ZKaeelIaZQy-jM-ZWU601dZB2oMl6SvfUH2C3WkWQI-ptYxrsZmERFePu24GBNzz99n5cjbLFmerxfCsNviEpxAOQwgI0fZtAmGJTiSd9kmeE1PyZP-Lo5KK6atr9x54QbcqsXbpsIpjF5ruineup-32_KDFPXTXBjD4xKBxH43K-j7ad48aH1se85cP0CcLT2zhiTU88brCA3jiDp64WePTBhtQ4qva7Tl4YgVPrOH5EC3Pzxavp75dzMPPIxI1Po9ziMWlqIiMyhB-qkBwSkvC44Im4BQJGRFBgqIggaxoWHAqCCmqlLGgisFMHKC9el2XhwinETTOK3DkhWAsFaKiPAY7w5IilyyqPDRxDzfLLdO9WnDlS6YzLmKaqUecddLw0HF7wVdD8vLnpocgrUxcggnOlh-IImhUPl6SUA8daBG2XUCsA957FHrI0710XacZ4ZmGq4eOnKAzq1k2maZ5hLiMcA89b0-D3lcf80RdrremTQSxfkxuaJOAyYb4JoAhPDLYaQcBYVeSpjzxUDxAVdtA8c4Pz9RXnzX_PKVg5Fnw-OahP0F3nDYIwiO013zblk_BgW_kM_3W_Abwau1W |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+genetic+basis+of+field-evolved+resistance+to+Bt+cotton+in+cotton+bollworm+from+China&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Haonan&rft.au=Tian%2C+Wen&rft.au=Zhao%2C+Jing&rft.au=Jin%2C+Lin&rft.date=2012-06-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=26&rft.spage=10275&rft_id=info:doi/10.1073%2Fpnas.1200156109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2698408621 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif |