Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling

Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transpor...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 5; p. 154
Main Authors Pottosin, Igor, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
AbstractList Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm4+>Spd3+ >Put2+. On the contrary, effects of polyamines on the plasma membrane cation and K+-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and plasma membrane H+ pumps and Ca2+ pump of the plasma membrane. On the other hand, catabolisation of polyamines generates H2O2 and other reactive oxygen species, including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca2+ influx across the plasma membrane. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm 4+ > Spd 3+ > Put 2+ . On the contrary, effects of polyamines on the plasma membrane (PM) cation and K + -selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H + pumps and Ca 2+ pump of the PM. On the other hand, catabolization of polyamines generates H 2 O 2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca 2+ influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Author Shabala, Sergey
Pottosin, Igor
AuthorAffiliation 1 Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of Colima Colima, Mexico
2 School of Land and Food, University of Tasmania Hobart, TAS, Australia
AuthorAffiliation_xml – name: 1 Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of Colima Colima, Mexico
– name: 2 School of Land and Food, University of Tasmania Hobart, TAS, Australia
Author_xml – sequence: 1
  givenname: Igor
  surname: Pottosin
  fullname: Pottosin, Igor
– sequence: 2
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24795739$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1rHSEUxYeS0qRp1t0Vl928F8ev0S4KJfQjEGgXLXQnd0Z9MTg6VV8g0D--vveSkhTqRvHe87viOS-7o5ii7brXPV5TKtW5W0JZE9yzNcY9Z8-6k14ItmKC_Dx6dD7uzkq5wW1xjJUaXnTHhA2KD1SddL-_pXAHs4-2oCnFmlNAyaEJqk8R1QyxLClXBFNOpaAlQKxotvPYKra8Q35egj90F-RSRjvZdZptKhWKLwiiQTD6VP2ESs22QYrfRAg-bl51zx2EYs_u99Pux6eP3y--rK6-fr68-HC1mjjhdcUlSEkp4QbMODgF0lFJ-35w0oAdRjYqJS2oQSgmuWNOEDYaogyhzhlL6Gl3eeCaBDd6yX6GfKcTeL2_SHmjIbcHBqultIZSxwXlI3MEQz8Qx0ZwSlgpmGis9wfWsh1naybb_gzCE-jTSvTXepNuNcNYYEEb4O09IKdfW1uqnn2ZbGg_a9O26OYk7okc-G7Wm8ez_g55sK818EPD3p1snZ583ZvRRvuge6x3SdG7pOhdUvQ-KU13_o_uAf0_xR_whcUm
CitedBy_id crossref_primary_10_1007_s42729_021_00479_z
crossref_primary_10_1016_j_jpha_2021_09_011
crossref_primary_10_14720_aas_2016_107_1_09
crossref_primary_10_3390_antiox13020227
crossref_primary_10_1016_j_scienta_2023_112725
crossref_primary_10_1007_s10343_025_01121_z
crossref_primary_10_1016_j_bbrc_2018_10_165
crossref_primary_10_1007_s11240_015_0805_4
crossref_primary_10_3390_ijms20030715
crossref_primary_10_1007_s13580_016_0113_x
crossref_primary_10_1134_S1021443718020188
crossref_primary_10_3389_fpls_2022_819658
crossref_primary_10_3390_ijms23031874
crossref_primary_10_1016_j_plaphy_2019_09_021
crossref_primary_10_3390_ijms232113288
crossref_primary_10_1007_s00344_024_11447_z
crossref_primary_10_1021_acs_jnatprod_2c01125
crossref_primary_10_1111_pce_13907
crossref_primary_10_3389_fpls_2016_00379
crossref_primary_10_1007_s11104_022_05395_4
crossref_primary_10_3389_fpls_2020_616077
crossref_primary_10_1071_FP21324
crossref_primary_10_3389_fpls_2023_1206246
crossref_primary_10_3390_plants10091872
crossref_primary_10_1007_s00344_018_9873_0
crossref_primary_10_1021_acs_jafc_4c00282
crossref_primary_10_1016_j_plaphy_2023_107654
crossref_primary_10_1371_journal_pone_0175848
crossref_primary_10_3390_agronomy13020285
crossref_primary_10_1016_j_envexpbot_2020_104226
crossref_primary_10_1007_s10725_017_0278_z
crossref_primary_10_1016_j_plgene_2017_05_007
crossref_primary_10_1093_jxb_erw444
crossref_primary_10_1080_01904167_2019_1617307
crossref_primary_10_1007_s11738_020_03066_4
crossref_primary_10_1007_s11240_023_02639_8
crossref_primary_10_1007_s00344_022_10802_2
crossref_primary_10_1016_j_plaphy_2021_11_028
crossref_primary_10_3389_fpls_2019_00320
crossref_primary_10_1016_j_envexpbot_2018_12_009
crossref_primary_10_1016_j_plgene_2017_04_004
crossref_primary_10_3389_fpls_2021_812360
crossref_primary_10_3389_fpls_2017_01701
crossref_primary_10_1007_s13562_023_00830_8
crossref_primary_10_1016_j_plaphy_2021_02_024
crossref_primary_10_1016_j_jplph_2022_153618
crossref_primary_10_1093_aob_mcu264
crossref_primary_10_3389_fpls_2019_00439
crossref_primary_10_3390_agronomy11081515
crossref_primary_10_1007_s11738_018_2671_2
crossref_primary_10_1071_FP16187
crossref_primary_10_1111_jac_12560
crossref_primary_10_1007_s00253_021_11748_3
crossref_primary_10_1007_s40610_017_0052_z
crossref_primary_10_3389_fpls_2015_00087
crossref_primary_10_1016_j_jplph_2017_05_018
crossref_primary_10_3389_fpls_2019_00555
crossref_primary_10_3389_fpls_2016_01343
crossref_primary_10_1016_j_envexpbot_2019_05_019
crossref_primary_10_1016_j_envexpbot_2020_104236
crossref_primary_10_1016_j_plaphy_2024_108379
crossref_primary_10_1007_s00726_014_1865_1
crossref_primary_10_1002_jpln_202400003
crossref_primary_10_1071_CP16311
crossref_primary_10_1134_S1021443722602993
crossref_primary_10_1016_j_molp_2021_07_020
crossref_primary_10_1007_s00344_023_11174_x
crossref_primary_10_1007_s11104_018_03913_x
crossref_primary_10_1007_s00344_022_10625_1
crossref_primary_10_1016_j_plantsci_2015_07_008
crossref_primary_10_1007_s11104_018_3793_4
crossref_primary_10_1016_j_scienta_2019_02_026
crossref_primary_10_1186_s40538_024_00537_5
crossref_primary_10_1111_pce_12521
crossref_primary_10_1016_j_ecoenv_2018_10_105
crossref_primary_10_1016_j_febslet_2014_09_003
crossref_primary_10_1111_ppl_12656
crossref_primary_10_1007_s11104_022_05823_5
crossref_primary_10_1007_s11240_021_02029_y
crossref_primary_10_1093_jxb_erv493
crossref_primary_10_1093_pcp_pcv175
crossref_primary_10_3389_fpls_2019_00601
crossref_primary_10_3389_fpls_2019_01415
crossref_primary_10_1007_s00709_018_1227_z
crossref_primary_10_1016_j_molp_2015_10_006
crossref_primary_10_1093_jxb_erac411
crossref_primary_10_1007_s12298_024_01462_5
crossref_primary_10_2478_s11756_020_00644_2
crossref_primary_10_3389_fpls_2015_00537
crossref_primary_10_1371_journal_pone_0174170
crossref_primary_10_3390_ijms25021306
crossref_primary_10_1071_FP16280
crossref_primary_10_1016_j_algal_2019_101504
crossref_primary_10_1016_j_aquatox_2016_09_007
crossref_primary_10_35550_vbio2019_01_006
crossref_primary_10_1016_j_heliyon_2019_e02631
crossref_primary_10_1042_BCJ20170900
crossref_primary_10_3389_fpls_2021_670369
crossref_primary_10_3103_S0095452721020079
crossref_primary_10_1111_tpj_14424
crossref_primary_10_3390_ijms20225746
crossref_primary_10_3390_agriculture12081270
crossref_primary_10_1186_s12870_018_1592_y
crossref_primary_10_3389_fpls_2014_00319
crossref_primary_10_3389_fpls_2016_00350
crossref_primary_10_1021_acs_est_8b04909
crossref_primary_10_1093_jxb_erv465
crossref_primary_10_1007_s11105_021_01328_0
crossref_primary_10_3389_fpls_2022_986688
crossref_primary_10_3390_horticulturae9020285
crossref_primary_10_35550_vbio2018_03_085
crossref_primary_10_1007_s42535_021_00238_6
crossref_primary_10_1002_cbic_202400873
crossref_primary_10_1071_FP22059
crossref_primary_10_1016_j_plaphy_2020_10_008
crossref_primary_10_1016_j_plantsci_2015_05_003
crossref_primary_10_1007_s00709_018_1289_y
crossref_primary_10_1007_s44154_022_00055_0
crossref_primary_10_1134_S0003683821030066
crossref_primary_10_1016_j_jplph_2016_12_012
crossref_primary_10_1111_nph_15758
crossref_primary_10_1016_j_ijbiomac_2025_141680
crossref_primary_10_1016_j_bcab_2024_103136
crossref_primary_10_1016_j_ecoenv_2015_03_023
crossref_primary_10_3389_fenvs_2015_00021
crossref_primary_10_3103_S0095452722020062
crossref_primary_10_3390_plants12030652
crossref_primary_10_1016_j_plaphy_2020_06_034
crossref_primary_10_1155_2023_5686484
crossref_primary_10_3389_fpls_2017_01346
crossref_primary_10_1007_s00468_016_1353_1
crossref_primary_10_3390_horticulturae10040401
crossref_primary_10_1016_j_envexpbot_2020_103989
crossref_primary_10_1111_pbr_12770
crossref_primary_10_1016_j_chroma_2019_460704
crossref_primary_10_1016_j_sajb_2024_01_069
crossref_primary_10_3390_ijms232314625
crossref_primary_10_1080_15592324_2020_1856546
crossref_primary_10_1016_j_chemosphere_2018_06_143
crossref_primary_10_3389_fpls_2015_00687
crossref_primary_10_3390_ijms21249476
crossref_primary_10_1016_j_chemosphere_2024_143438
crossref_primary_10_1016_j_flora_2020_151589
crossref_primary_10_1111_pce_12714
crossref_primary_10_1016_j_freeradbiomed_2018_01_011
crossref_primary_10_1080_15592324_2019_1665455
crossref_primary_10_1016_j_envexpbot_2017_05_003
crossref_primary_10_1007_s00344_023_11050_8
crossref_primary_10_1093_aob_mcy038
crossref_primary_10_1016_j_envexpbot_2019_103799
Cites_doi 10.1111/j.1365-3040.2009.02041.x
10.1093/jxb/ert373
10.1046/j.0016-8025.2003.01116.x
10.4161/psb.3.12.7172
10.1093/aob/mcq027
10.17221/62/2011-PPS
10.1104/pp.008532
10.1042/bj3250289
10.1104/pp.106.082388
10.1016/j.jplph.2013.11.013
10.1073/pnas.1434381100
10.1104/pp.111.179671
10.1016/S0065-2571(98)00010-7
10.1016/j.plantsci.2004.08.014
10.1016/S0176-1617(96)80051-4
10.1073/pnas.0702595104
10.1007/s00425-012-1668-0
10.1073/pnas.1121406109
10.1038/329833a0
10.1085/jgp.200509380
10.1007/s00344-012-9274-8
10.1093/jexbot/53.372.1237
10.1111/j.1399-3054.1997.tb03451.x
10.4161/psb.6.11.17640
10.1007/s10725-008-9298-z
10.1242/jcs.00201
10.1093/jxb/eru133
10.1016/j.envexpbot.2013.03.001
10.1016/j.plaphy.2010.01.017
10.1007/s10535-010-0023-1
10.1016/j.plantsci.2011.01.016
10.1016/j.jplph.2005.04.034
10.1023/A:1023078819935
10.1016/S0176-1617(11)80113-6
10.1007/s002320010007
10.1016/j.bbrc.2006.11.041
10.1007/s00299-010-0822-z
10.1007/s00425-011-1486-9
10.2307/3869871
10.1016/S0168-9452(03)00030-X
10.1073/pnas.95.19.11140
10.1007/s11104-006-9188-y
10.1085/jgp.113.1.35
10.1016/S0006-3495(01)76102-4
10.1007/s004250100519
10.1242/jcs.064352
10.1007/s002329900477
10.1007/s10725-009-9414-8
10.1023/B:MCBI.0000038227.91813.79
10.1111/j.1399-3054.1997.tb05353.x
10.1093/jxb/erp256
10.1111/j.1399-3054.2007.01029.x
10.1007/s002990050363
10.1038/372366a0
10.1093/jxb/ert423
10.1093/treephys/tps125
10.1134/S1021443710050079
10.1111/j.1365-313X.2006.02971.x
10.4161/psb.5.1.10291
10.17660/ActaHortic.1997.447.90
10.1104/pp.107.105882
10.1016/S0168-9452(99)00071-0
10.1093/aob/mcp259
10.1093/jxb/erm035
10.1134/S102144371301007X
10.1146/annurev.cellbio.16.1.221
10.1080/01904167.2013.807823
10.1074/jbc.M708213200
10.1134/S1021443710030155
10.1111/j.1399-3054.2007.01008.x
10.1104/pp.105.3.999
10.1080/17429145.2012.716455
10.1046/j.1469-8137.2001.00152.x
10.1016/j.febslet.2006.10.078
10.1111/j.1399-3054.1989.tb06194.x
10.1089/omi.2011.0084
10.21829/abm60.2002.902
10.1007/s10725-005-6395-0
10.1134/S1021443709060107
10.1007/s10529-006-9179-3
10.4161/psb.23425
10.1371/journal.pone.0060325
10.1104/pp.90.3.988
10.1111/j.1460-9568.1994.tb00284.x
10.1007/s11738-003-0014-3
10.1023/A:1024573305997
10.1016/j.pbi.2010.08.002
10.1016/j.jplph.2004.08.009
10.1016/S0168-9452(03)00005-0
10.1105/tpc.112.097881
10.1007/s00425-008-0772-7
10.1111/j.1469-8137.2010.03575.x
10.1016/S0014-5793(03)01395-4
10.1105/tpc.7.8.1333
10.1093/pcp/pci252
10.1016/j.jplph.2010.07.009
10.1007/s10725-006-9001-1
10.1007/s11183-005-0005-x
10.1007/s10535-012-0209-1
10.1007/s11248-012-9666-3
10.1016/j.plantsci.2011.03.013
10.1016/0031-9422(92)90009-F
10.1126/science.1152505
10.1016/j.jplph.2009.09.010
10.1007/s11738-009-0403-3
10.1016/j.febslet.2010.02.050
10.1104/pp.126.4.1646
10.1016/j.plaphy.2007.05.007
10.1104/pp.124.3.1315
10.1055/s-2000-9158
10.1085/jgp.200910253
10.1074/jbc.M513429200
10.1093/jxb/50.339.1547
10.1111/ppl.12165
10.1046/j.1365-313x.1997.12061387.x
10.1023/B:GROW.0000017478.40445.bc
10.1079/9781845939953.0059
10.1073/pnas.0733970100
10.1104/pp.010524
10.1134/S102144371206012X
10.1016/S0168-9452(01)00337-5
10.1111/j.1469-8137.2007.02128.x
10.1016/j.jcs.2010.05.009
10.1071/FP08029
10.1093/pcp/pcn109
10.1038/35021067
10.1104/pp.121.3.977
10.1007/s11738-013-1239-4
10.1093/mp/ssr017
10.1016/j.jplph.2007.02.005
10.1007/s00726-009-0423-8
10.1134/S1021443706060021
10.1016/j.plantsci.2005.01.024
10.1007/s10535-010-0130-z
10.1016/j.bbrc.2011.08.015
10.1104/pp.87.2.514
10.1016/S0168-9452(01)00593-3
10.1104/pp.122.3.835
10.1079/9781845939953.0000
10.1104/pp.107.110262
10.1055/s-2002-37401
10.1016/j.envexpbot.2010.09.007
10.1016/j.envexpbot.2007.07.002
10.1093/jxb/erm032
10.3389/fpls.2011.00085
10.1093/aob/mct205
10.1016/j.plaphy.2009.03.007
10.1007/s10725-007-9207-x
10.1007/s11738-003-0038-8
10.1104/pp.104.039255
10.1104/pp.104.050344
10.3389/fpls.2013.00313
10.1016/j.jplph.2009.10.022
10.4161/psb.5.3.10848
10.1016/j.plaphy.2011.08.005
10.1016/j.plantsci.2011.04.002
10.1104/pp.94.2.406
10.1016/S0006-3495(96)79276-7
10.1007/s00425-010-1106-0
10.1093/treephys/tpq030
10.1016/j.sajb.2012.08.009
10.1134/S1021443709030042
10.1146/annurev.arplant.52.1.817
10.1007/s10535-008-0156-7
10.1016/j.bbabio.2006.05.034
10.1016/j.febslet.2007.04.032
10.1007/s10725-006-9004-y
10.1007/s11738-006-0065-3
10.1085/jgp.115.6.783
10.1093/pcp/pcm010
10.1016/0168-9452(94)90028-0
10.4161/psb.3.6.5429
10.1111/j.1439-037X.2010.00422.x
10.1016/S0176-1617(11)82104-8
10.1104/pp.113.216572
10.1007/s11738-009-0307-2
10.1046/j.1365-313X.1997.11051059.x
10.1016/j.plaphy.2010.02.002
10.1016/j.jplph.2006.05.003
10.1093/pcp/pcq007
10.1093/jxb/erg067
10.1007/s00425-007-0606-z
10.1034/j.1399-3054.2002.1160208.x
10.1523/JNEUROSCI.18-11-04050.1998
10.1104/pp.111.4.1077
10.1046/j.1365-313x.1998.00274.x
10.1111/j.1438-8677.1988.tb00003.x
10.1002/jpln.200420516
10.1038/nature03381
10.1111/plb.12014
10.1007/s001220051352
10.5511/plantbiotechnology.10.1013a
10.1104/pp.91.3.1197
10.2306/scienceasia1513-1874.2010.36.254
10.4161/psb.6.11.17797
10.4161/psb.21185
10.1007/s10725-012-9760-9
10.1007/s002490050237
10.1007/s11103-009-9470-5
10.1016/j.plaphy.2012.09.002
10.1111/j.1439-037X.2005.00184.x
10.1111/j.1365-313X.2004.02177.x
10.3389/fpls.2013.00224
10.1034/j.1399-3054.2000.100409.x
ContentType Journal Article
Copyright Copyright © 2014 Pottosin and Shabala. 2014
Copyright_xml – notice: Copyright © 2014 Pottosin and Shabala. 2014
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2014.00154
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_88ed33f5635b4f20a172f4baf96e8646
PMC4006063
24795739
10_3389_fpls_2014_00154
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c525t-58a883325dadb7f9a8f383117f8dae7b4b998ea9769485f4f624bd29d23ffde23
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:18:34 EDT 2025
Thu Aug 21 18:31:13 EDT 2025
Thu Jul 10 23:51:39 EDT 2025
Thu Apr 03 07:04:22 EDT 2025
Tue Jul 01 02:44:31 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stress
vacuole
plasma membrane
cytosolic calcium
reactive oxygen species
polyamines
ion channels
ion pumps
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-58a883325dadb7f9a8f383117f8dae7b4b998ea9769485f4f624bd29d23ffde23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Antonio F. Tiburcio, Universitat de Barcelona, Spain
Reviewed by: Taku Takahashi, Okayama University, Japan; Paul F. Morris, Biological Sciences Bowling Green State University, USA
This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2014.00154
PMID 24795739
PQID 1540128756
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_88ed33f5635b4f20a172f4baf96e8646
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4006063
proquest_miscellaneous_1540128756
pubmed_primary_24795739
crossref_citationtrail_10_3389_fpls_2014_00154
crossref_primary_10_3389_fpls_2014_00154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-23
PublicationDateYYYYMMDD 2014-04-23
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-23
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2014
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bose (B15) 2011; 2
Pottosin (B122) 2014
Zepeda Jazo (B203) 2010
Farooq (B43) 2010; 196
Kinoshita (B78) 1995; 7
Radhakrishnan (B132) 2013; 32
Garufi (B49) 2007; 48
Shabala (B153) 2007a; 581
Demidchik (B33) 2007; 49
Galston (B47) 1990; 94
Zepeda-Jazo (B204) 2008; 3
Demidchik (B31) 2007; 175
Sudha (B167) 2003; 25
Liu (B90) 2006; 49
Do (B36) 2013; 8
KubiÅ (B82) 2006; 28
Igarashi (B69) 2010; 48
Aziz (B9) 1999; 145
Alet (B4) 2012; 182
Watson (B187) 1996; 111
Pei (B117a) 2000; 406
Ahern (B1) 2006; 281
Yamaguchi (B193) 2006; 580
Pistocchi (B120) 1988; 87
Neily (B109) 2011; 28
Pottosin (B130) 1997; 12
Wimalasekera (B189) 2011; 181
Huang (B66) 2001; 80
van der Mescht (B179) 1998; 94
Shabala (B152) 2008; 133
Moschou (B100) 2014; 65
Liu (B88a) 2008; 62
Rodrigo-Moreno (B139) 2013; 8
Zepeda-Jazo (B205) 2011; 157
Radyukina (B134) 2010; 57
Neill (B108) 2002; 53
Sharma (B158) 2013a; 4
Xie (B191) 2005; 126
Voesenek (B182) 2013; 15
Pottosin (B128) 2002; 60
Kreps (B80) 2002; 130
Liu (B89) 2005; 168
Williams (B188) 1997; 385
Brault (B17) 2004; 135
Moschou (B99) 2008; 3
Ward (B186) 1994; 6
Yiu (B196) 2009; 47
Ioannidis (B71) 2006; 1757
Gobert (B53) 2007; 104
Ozawa (B112) 2010; 5
Peiter (B118) 2005; 434
Ndayiragije (B106) 2006; 163
Roychoudhury (B144) 2011; 168
Friedman (B44) 1989; 76
Shabala (B151) 2013; 112
Demidchik (B34) 2002; 128
Kovacs (B79) 2010; 38
Pottosin (B127) 2003; 54
KubiÅ (B83) 2008; 165
Juhasz (B75) 1997; 447
Rodríguez (B140) 2009; 60
Toumi (B175) 2010; 167
De Diego (B29) 2013; 33
Shi (B163) 2008; 35
Su (B166) 2008; 52
Radyukina (B133) 2009; 56
Lu (B93) 1999; 113
Fromm (B45) 1997; 99
Parvin (B116) 2012; 59
Peremarti (B119) 2009; 70
Drouin (B39) 1994; 6
Nayyar (B105) 2005; 191
Demidchik (B30) 2010; 123
Kurata (B84) 2010; 135
Mulangi (B101) 2012a; 236
Wu (B190) 2010; 36
KubiÅ (B81) 2003; 25
Gilliham (B52) 2011; 6
Marco (B94) 2011; 15
Hedrich (B61) 1988; 101
Legocka (B87) 2005; 162
Mäser (B96) 2001; 126
Yang (B195) 2007; 58
Zhao (B206) 2007; 145
Chai (B23) 2010; 54
Arbona (B7) 2008; 132
Zandonadi (B198) 2010; 231
Upreti (B178) 2010; 54
Hurng (B68) 1994; 143
Shabala (B157) 2014
Ozturk (B113) 2003; 40
Carpaneto (B21) 2001; 213
Tikhonova (B173) 1997; 11
Piterkova (B121) 2012; 48
Cellier (B22) 2004; 39
Zhao (B207) 2004; 42
Fujita (B46) 2012; 109
Pei (B117) 1999; 121
Ng (B111) 2001; 151
Kakehi (B76) 2008; 49
Roy (B142) 2001; 160
Shevyakova (B160) 2013; 60
Hedrich (B63) 1987; 329
Chen (B25) 2007; 145
Velarde-Buendía (B181) 2012; 61
Dobrovinskaya (B37) 1999a; 167
Zhao (B208) 2003; 45
Gill (B51) 2010; 5
Xing (B192) 2007; 45
Farooq (B42) 2009; 31
Goyal (B54) 2010; 60
Palmgren (B114) 2001; 52
Pottosin (B124) 2014b
Ruiz-Carrasco (B145) 2011; 49
Shevyakova (B161) 2006; 53
Alcázar (B3) 2010; 48
Lopatin (B92) 1994; 372
Shabala (B156) 2012
Hughes (B67) 1999; 39
Nemeth (B110) 2002; 162
Shabala (B154) 2007b; 227
Sokolovski (B164) 2004; 136
Takeda (B171) 2008; 319
Tang (B172) 2005; 46
Hamamoto (B59) 2008; 283
Tun (B176) 2006; 47
Pottosin (B123) 2014a; 65
Imai (B70) 2004; 556
Di Tomaso (B35) 1989; 90
Karley (B77) 2000; 122
Botella (B16) 2000; 109
Pandolfi (B115) 2010; 51
Pottosin (B125) 2012; 7
Sagor (B146) 2013; 22
Hu (B65a) 2005; 168
Bailey-Serres (B10) 2010; 13
Amodeo (B5) 1994; 105
Marschner (B95) 1995
Roussos (B141) 2007; 164
Shabala (B150) 2012
Shi (B162) 2010; 30
Isayenkov (B72) 2010; 584
Yamaguchi (B194) 2007; 352
Zapata (B199) 2007; 53
Qi (B131) 2010; 32
Reggiani (B136) 1994; 102
An (B6) 2012; 83
Roy (B143) 2005; 168
Zeng (B202) 2013; 4
Liu (B91) 2000; 124
Mutlu (B103) 2005; 52
Das (B28) 2004; 262
Li (B87a) 2000; 100
Volkov (B183) 2003; 27
Laohavisit (B86) 2012; 24
Demidchik (B32) 2003; 116
Bonales-Alatorre (B14) 2013; 162
Janicka-Russak (B73) 2010; 167
Brüggemann (B19) 1999a; 50
Kusano (B85) 2008; 228
Miller (B98) 2010; 33
Reggiani (B138) 1992; 31
Guo (B55a) 2000; 115
Conn (B26) 2010; 105
Velarde-Buendía (B180) 2013
Blatt (B13) 2000; 16
Brüggemann (B20) 1999b; 50
Zacchini (B197) 1997; 17
Chattopadhayay (B24) 2002; 116
Sharma (B159) 2013b; 36
Zhu (B209) 2006; 49
Bertani (B12) 1997; 44
Tisi (B174) 2011; 6
Haghighi (B58) 1998; 18
Beffagna (B11) 2000; 2
Uehara (B177) 1996; 71
García-Mata (B48) 2003; 100
Fan (B40) 2013; 86
Sziderics (B169) 2010; 29
Shabala (B149) 2011; 190
Hasegawa (B60) 2013; 92
Cvikrova (B27) 2012; 182
Stetsenko (B165) 2009; 56
Hedrich (B62) 2011; 4
Takahashi (B170) 2010; 105
Asthir (B8) 2012; 56
Waie (B184) 2003; 164
Gicquiaud (B50) 2002; 4
Li (B88) 2005; 46
Gupta (B56) 2013; 35
Jia (B74) 2010; 57
Fariduddin (B41) 2013; 8
Dobrovinskaya (B38) 1999b; 28
Mulangi (B102) 2012b; 235
Reggiani (B137) 1989; 91
Shabala (B155) 2006; 141
Högy (B64) 2010; 52
Hosy (B65) 2003; 100
Mutlu (B104) 2007; 39
Ha (B57) 1998; 95
Reggiani (B135) 1993; 142
Zapata (B201) 2008; 56
Grzesiak (B55) 2013; 69
Brüggemann (B18) 1998; 16
McAinsh (B97) 1997; 100
Sun (B168) 2002; 44
Pottosin (B126) 2001; 181
Setter (B148) 2003; 253
Ndayiragije (B107) 2007; 291
Wang (B185) 2011; 413
Alcázar (B2) 2006; 28
Sarjala (B147) 1996; 147
Zapata (B200) 2003; 164
Pottosin (B129) 2007; 58
18333999 - Physiol Plant. 2008 Apr;132(4):452-66
16666174 - Plant Physiol. 1988 Jun;87(2):514-8
16415068 - Plant Cell Physiol. 2006 Mar;47(3):346-54
20060616 - J Plant Physiol. 2010 May 1;167(7):519-25
22067997 - Plant Signal Behav. 2011 Nov;6(11):1656-61
16828052 - Biochim Biophys Acta. 2006 Jul;1757(7):821-8
11842142 - Plant Physiol. 2002 Feb;128(2):379-87
20087595 - Plant Cell Rep. 2010 Mar;29(3):295-305
17355948 - J Exp Bot. 2007;58(7):1559-69
12232260 - Plant Physiol. 1994 Jul;105(3):999-1006
17658660 - J Plant Physiol. 2008 Mar 13;165(4):397-406
10541793 - Eur Biophys J. 1999;28(7):552-63
10557247 - Plant Physiol. 1999 Nov;121(3):977-986
20159658 - Plant Physiol Biochem. 2010 Jul;48(7):506-12
22899073 - Plant Signal Behav. 2012 Sep 1;7(9):1084-7
19704579 - Plant Signal Behav. 2008 Jun;3(6):401-3
24465010 - J Exp Bot. 2014 Mar;65(5):1271-83
17712568 - Planta. 2007 Dec;227(1):189-97
12354195 - Physiol Plant. 2002 Oct;116(2):192-199
8842215 - Biophys J. 1996 Aug;71(2):769-77
15772667 - Nature. 2005 Mar 17;434(7031):404-8
15532717 - Mol Cell Biochem. 2004 Jul;262(1-2):127-33
12949257 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11116-21
20206537 - Plant Physiol Biochem. 2010 Jul;48(7):547-52
9736703 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5
22711282 - Planta. 2012 Oct;236(4):1261-73
21980172 - Plant Physiol. 2011 Dec;157(4):2167-80
10712547 - Plant Physiol. 2000 Mar;122(3):835-44
20061303 - Plant Cell Physiol. 2010 Mar;51(3):422-34
17905858 - Plant Physiol. 2007 Nov;145(3):1061-72
23624857 - Plant Physiol. 2013 Jun;162(2):940-52
22118620 - Plant Sci. 2012 Jan;182:94-100
24085482 - Ann Bot. 2013 Nov;112(7):1209-21
16431906 - J Biol Chem. 2006 Mar 31;281(13):8991-5
15141069 - Plant Physiol. 2004 May;135(1):231-43
17332417 - J Exp Bot. 2007;58(6):1545-55
21459829 - Mol Plant. 2011 May;4(3):428-41
21796369 - Planta. 2012 Jan;235(1):1-11
19717530 - J Exp Bot. 2009;60(15):4249-62
23333964 - Plant Signal Behav. 2013 Mar;8(3):e23425
23818893 - Front Plant Sci. 2013 Jun 27;4:224
11031236 - Annu Rev Cell Dev Biol. 2000;16:221-41
17965172 - Plant Physiol. 2007 Dec;145(4):1714-25
23574304 - Plant Biol (Stuttg). 2013 May;15(3):426-35
20200489 - Plant Signal Behav. 2010 Mar;5(3):308-10
17467698 - FEBS Lett. 2007 May 15;581(10):1993-9
23967003 - Front Plant Sci. 2013 Aug 14;4:313
18669523 - Plant Cell Physiol. 2008 Sep;49(9):1342-9
16008088 - J Plant Physiol. 2005 Jun;162(6):662-8
19513239 - Plant Signal Behav. 2008 Dec;3(12):1061-6
17251201 - Plant Cell Physiol. 2007 Mar;48(3):434-40
21563365 - New Phytol. 2011 Apr;190(2):289-98
16798942 - Plant Physiol. 2006 Aug;141(4):1653-65
19828463 - Ann Bot. 2010 Jan;105(1):1-6
20410048 - Ann Bot. 2010 Jun;105(7):1081-102
22639615 - Front Plant Sci. 2011 Dec 02;2:85
15563619 - Plant Physiol. 2004 Dec;136(4):4275-84
22000057 - Plant Physiol Biochem. 2011 Nov;49(11):1333-41
11997372 - J Exp Bot. 2002 May;53(372):1237-47
12671068 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5549-54
24218329 - J Exp Bot. 2014 Mar;65(5):1285-96
20145950 - Planta. 2010 Apr;231(5):1025-36
17181775 - Plant J. 2007 Feb;49(3):377-86
19857911 - J Plant Physiol. 2010 Mar 1;167(4):261-9
16666910 - Plant Physiol. 1989 Jul;90(3):988-95
9230104 - Biochem J. 1997 Jul 15;325 ( Pt 2):289-97
17028780 - Biotechnol Lett. 2006 Dec;28(23):1867-76
8756495 - Plant Physiol. 1996 Aug;111(4):1077-83
20592804 - Plant Signal Behav. 2010 Jan;5(1):26-33
11506369 - Planta. 2001 Jul;213(3):457-68
20813578 - Curr Opin Plant Biol. 2010 Oct;13(5):489-94
11080307 - Plant Physiol. 2000 Nov;124(3):1315-26
11537482 - Plant Physiol. 1990 Oct;94(2):406-10
17118338 - Biochem Biophys Res Commun. 2007 Jan 12;352(2):486-90
20728960 - J Plant Physiol. 2011 Mar 1;168(4):317-28
17140566 - FEBS Lett. 2006 Dec 22;580(30):6783-8
9874686 - J Gen Physiol. 1999 Jan;113(1):35-43
17563365 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10726-31
10470372 - Adv Enzyme Regul. 1999;39:157-71
20375061 - J Cell Sci. 2010 May 1;123(Pt 9):1468-79
24506225 - Physiol Plant. 2014 Jul;151(3):257-79
15341627 - Plant J. 2004 Sep;39(6):834-46
11297783 - Plant Sci. 2001 Apr;160(5):869-875
11500563 - Plant Physiol. 2001 Aug;126(4):1646-67
22011340 - OMICS. 2011 Nov;15(11):775-81
17624796 - Plant Physiol Biochem. 2007 Aug;45(8):560-6
11337417 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:817-845
19356940 - Plant Physiol Biochem. 2009 Aug;47(8):710-6
19234674 - Plant Mol Biol. 2009 Jun;70(3):253-64
12456718 - J Cell Sci. 2003 Jan 1;116(Pt 1):81-8
16316973 - J Gen Physiol. 2005 Dec;126(6):541-9
20462936 - Tree Physiol. 2010 Jul;30(7):914-22
16879897 - J Plant Physiol. 2007 Jul;164(7):895-903
24723394 - J Exp Bot. 2014 Jun;65(9):2463-72
10963598 - Nature. 2000 Aug 17;406(6797):731-4
18309082 - Science. 2008 Feb 29;319(5867):1241-4
18594857 - Planta. 2008 Aug;228(3):367-81
19712065 - Plant Cell Environ. 2010 Apr;33(4):453-67
18029350 - J Biol Chem. 2008 Jan 25;283(4):1911-20
11222290 - Biophys J. 2001 Mar;80(3):1262-79
21871871 - Biochem Biophys Res Commun. 2011 Sep 16;413(1):10-6
18724408 - Physiol Plant. 2008 Aug;133(4):651-69
11331938 - J Membr Biol. 2001 May 1;181(1):55-65
16473655 - J Plant Physiol. 2006 Mar;163(5):506-16
20421374 - J Gen Physiol. 2010 May;135(5):495-508
12554709 - J Exp Bot. 2003 Feb;54(383):663-7
12242406 - Plant Cell. 1995 Aug;7(8):1333-1342
17635215 - New Phytol. 2007;175(3):387-404
21893256 - Plant Sci. 2011 Nov;181(5):593-603
23339191 - Tree Physiol. 2013 Jan;33(1):69-80
7969496 - Nature. 1994 Nov 24;372(6504):366-9
10828251 - J Gen Physiol. 2000 Jun;115(6):783-98
8019678 - Eur J Neurosci. 1994 Mar 1;6(3):412-9
23080295 - Transgenic Res. 2013 Jun;22(3):595-605
12244253 - Plant Cell. 1994 May;6(5):669-683
22523205 - Plant Cell. 2012 Apr;24(4):1522-33
22492932 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6343-7
22057326 - Plant Signal Behav. 2011 Nov;6(11):1844-7
23577102 - PLoS One. 2013;8(4):e60325
12481097 - Plant Physiol. 2002 Dec;130(4):2129-41
23031843 - Plant Physiol Biochem. 2012 Dec;61:18-23
24560436 - J Plant Physiol. 2014 May 15;171(9):732-42
19960214 - Amino Acids. 2010 Feb;38(2):623-31
9592086 - J Neurosci. 1998 Jun 1;18(11):4050-62
14706842 - FEBS Lett. 2004 Jan 2;556(1-3):148-52
9916144 - J Membr Biol. 1999 Jan 15;167(2):127-40
20188732 - FEBS Lett. 2010 May 17;584(10):1982-8
22118615 - Plant Sci. 2012 Jan;182:49-58
16667132 - Plant Physiol. 1989 Nov;91(3):1197-201
References_xml – volume: 33
  start-page: 453
  year: 2010
  ident: B98
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.02041.x
– volume: 65
  start-page: 1285
  year: 2014
  ident: B100
  article-title: Polyamines and programmed cell death
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/ert373
– volume: 27
  start-page: 1
  year: 2003
  ident: B183
  article-title: Thellungiella halophila, a salt tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2003.01116.x
– volume: 3
  start-page: 1061
  year: 2008
  ident: B99
  article-title: Plant polyamine catabolism: the state of the art
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.3.12.7172
– volume: 105
  start-page: 1081
  year: 2010
  ident: B26
  article-title: Comparative physiology of elemental distributions in plants
  publication-title: Ann. Bot
  doi: 10.1093/aob/mcq027
– volume: 48
  start-page: 53
  year: 2012
  ident: B121
  article-title: Modulation of polyamine catabolism in pea seedlings by calcium during salinity stress
  publication-title: Plant Protect. Sci
  doi: 10.17221/62/2011-PPS
– volume: 130
  start-page: 2129
  year: 2002
  ident: B80
  article-title: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.008532
– volume: 385
  start-page: 289
  year: 1997
  ident: B188
  article-title: Interactions of polyamines with ion channels
  publication-title: Biochem. J
  doi: 10.1042/bj3250289
– volume: 141
  start-page: 1653
  year: 2006
  ident: B155
  article-title: Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.082388
– year: 2014
  ident: B122
  article-title: Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2013.11.013
– volume: 100
  start-page: 11116
  year: 2003
  ident: B48
  article-title: Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1434381100
– volume: 157
  start-page: 2167
  year: 2011
  ident: B205
  article-title: Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.179671
– volume: 39
  start-page: 157
  year: 1999
  ident: B67
  article-title: Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo
  publication-title: Adv. Enzyme Regul
  doi: 10.1016/S0065-2571(98)00010-7
– volume: 168
  start-page: 583
  year: 2005
  ident: B143
  article-title: Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2004.08.014
– volume: 147
  start-page: 593
  year: 1996
  ident: B147
  article-title: Growth, potassium and polyamine concentrations of Scots pine seedlings in relation to potassium availability under controlled growth conditions
  publication-title: J. Plant Physiol
  doi: 10.1016/S0176-1617(96)80051-4
– volume: 104
  start-page: 10726
  year: 2007
  ident: B53
  article-title: The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0702595104
– volume: 236
  start-page: 1261
  year: 2012a
  ident: B101
  article-title: Kinetic and phylogenetic analysis of plant polyamine uptake transporters
  publication-title: Planta
  doi: 10.1007/s00425-012-1668-0
– year: 2010
  ident: B203
  publication-title: Mecanismos De Intercambio De K+ y Ca2+ Em Epidermis De Raíces Bajo Estrés Salino
– volume: 109
  start-page: 6343
  year: 2012
  ident: B46
  article-title: Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1121406109
– volume: 329
  start-page: 833
  year: 1987
  ident: B63
  article-title: Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles
  publication-title: Nature
  doi: 10.1038/329833a0
– volume: 126
  start-page: 541
  year: 2005
  ident: B191
  article-title: Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels
  publication-title: J. Gen. Physiol
  doi: 10.1085/jgp.200509380
– volume: 39
  start-page: 1097
  year: 2007
  ident: B104
  article-title: Salinity-induced changes of free and bound polyamine levels in sunflower (Helianthus annuus L.) roots differing in salt tolerance
  publication-title: Pakistan J. Bot
– volume: 32
  start-page: 22
  year: 2013
  ident: B132
  article-title: Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean
  publication-title: J. Plant Growth Regul
  doi: 10.1007/s00344-012-9274-8
– volume: 53
  start-page: 1237
  year: 2002
  ident: B108
  article-title: Hydrogen peroxide and nitric oxide as signaling molecules in plants
  publication-title: J. Exp. Bot
  doi: 10.1093/jexbot/53.372.1237
– volume: 44
  start-page: 1167
  year: 2002
  ident: B168
  article-title: Mechanism of the effect of polyamines on the activity of tonoplasts of barley roots under salt stress
  publication-title: Acta Bot. Sin
– volume: 100
  start-page: 16
  year: 1997
  ident: B97
  article-title: Calcium ions as second messengers in guard cell signal transduction
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.1997.tb03451.x
– volume: 6
  start-page: 1844
  year: 2011
  ident: B174
  article-title: Does polyamine catabolism influence root development and xylem differentiation under stress conditions?
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.6.11.17640
– volume: 56
  start-page: 167
  year: 2008
  ident: B201
  article-title: Changes in free polyamine concentration induced by salt stress in seedlings of different species
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-008-9298-z
– volume: 116
  start-page: 81
  year: 2003
  ident: B32
  article-title: Free oxygen radicals regulate plasma membrane Ca2+- and K+- permeable channels in plant root cells
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.00201
– year: 2014b
  ident: B124
  article-title: Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/eru133
– volume: 92
  start-page: 19
  year: 2013
  ident: B60
  article-title: Sodium homeostasis and salt tolerance of plants
  publication-title: Env. Exp. Bot
  doi: 10.1016/j.envexpbot.2013.03.001
– volume: 48
  start-page: 506
  year: 2010
  ident: B69
  article-title: Characteristics of cellular polyamine transport in prokaryotes and eukaryotes
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2010.01.017
– volume: 54
  start-page: 145
  year: 2010
  ident: B23
  article-title: Effects of exogenous spermine on sweet sorghum during germination under salinity
  publication-title: Biol. Plant
  doi: 10.1007/s10535-010-0023-1
– volume: 182
  start-page: 49
  year: 2012
  ident: B27
  article-title: Effect of heat stress on polyannine metabolism in proline-over-producing tobacco plants
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2011.01.016
– volume: 163
  start-page: 506
  year: 2006
  ident: B106
  article-title: Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl?
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2005.04.034
– volume: 40
  start-page: 89
  year: 2003
  ident: B113
  article-title: Effects of putrescine and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves
  publication-title: Plant Growth Regul
  doi: 10.1023/A:1023078819935
– volume: 142
  start-page: 94
  year: 1993
  ident: B135
  article-title: Effect of K+ ions on polyamine levels in wheat seedlings under anoxia
  publication-title: J. Plant Physiol
  doi: 10.1016/S0176-1617(11)80113-6
– volume: 181
  start-page: 55
  year: 2001
  ident: B126
  article-title: Conduction of monovalent and divalent cations in the slow vacuolar channel
  publication-title: J. Membr. Biol
  doi: 10.1007/s002320010007
– volume: 352
  start-page: 486
  year: 2007
  ident: B194
  article-title: A protective role for the polyamine spermine against drought stress in Arabidopsis
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1016/j.bbrc.2006.11.041
– volume: 29
  start-page: 295
  year: 2010
  ident: B169
  article-title: Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0822-z
– volume: 235
  start-page: 1
  year: 2012b
  ident: B102
  article-title: Functional analysis of OsPUT1, a rice polyamine uptake transporter
  publication-title: Planta
  doi: 10.1007/s00425-011-1486-9
– volume: 6
  start-page: 669
  year: 1994
  ident: B186
  article-title: Calcium-activated K+ channels and calcium-induced calcium-release by slow vacuolar ion channels in guard-cell vacuoles implicated in the control of stomatal closure
  publication-title: Plant Cell
  doi: 10.2307/3869871
– volume: 164
  start-page: 727
  year: 2003
  ident: B184
  article-title: Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(03)00030-X
– volume: 95
  start-page: 11140
  year: 1998
  ident: B57
  article-title: The natural polyamine spermine functions directly as a free radical scavenger
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.95.19.11140
– volume: 291
  start-page: 225
  year: 2007
  ident: B107
  article-title: Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9188-y
– volume: 113
  start-page: 35
  year: 1999
  ident: B93
  article-title: Blockade of a retinal cGMP-gated channel by polyamines
  publication-title: J. Gen. Physiol
  doi: 10.1085/jgp.113.1.35
– volume: 80
  start-page: 1262
  year: 2001
  ident: B66
  article-title: Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(01)76102-4
– volume: 213
  start-page: 457
  year: 2001
  ident: B21
  article-title: Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris
  publication-title: Planta
  doi: 10.1007/s004250100519
– volume: 123
  start-page: 1468
  year: 2010
  ident: B30
  article-title: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.064352
– volume: 167
  start-page: 127
  year: 1999a
  ident: B37
  article-title: Inhibition of vacuolar ion channels by polyamines
  publication-title: J. Membr. Biol
  doi: 10.1007/s002329900477
– volume: 60
  start-page: 13
  year: 2010
  ident: B54
  article-title: Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-009-9414-8
– volume: 46
  start-page: 119
  year: 2005
  ident: B88
  article-title: The protective effects of cobalt on potato seedling leaves during osmotic stress
  publication-title: Bot. Bull. Acad. Sinica
– volume: 262
  start-page: 127
  year: 2004
  ident: B28
  article-title: Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines
  publication-title: Mol. Cell. Biochem
  doi: 10.1023/B:MCBI.0000038227.91813.79
– volume: 99
  start-page: 529
  year: 1997
  ident: B45
  article-title: Growth, membrane potential and endogenous ion currents of willow (Salix viminalis) roots are all affected by abscisic acid and spermine
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.1997.tb05353.x
– volume: 60
  start-page: 4249
  year: 2009
  ident: B140
  article-title: Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erp256
– volume: 132
  start-page: 452
  year: 2008
  ident: B7
  article-title: Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2007.01029.x
– volume-title: Mineral Nutrition of Higher Plants
  year: 1995
  ident: B95
– volume: 17
  start-page: 119
  year: 1997
  ident: B197
  article-title: Tolerance to salt stress in maize callus lines with different polyamine content
  publication-title: Plant Cell Rep
  doi: 10.1007/s002990050363
– volume: 372
  start-page: 366
  year: 1994
  ident: B92
  article-title: Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification
  publication-title: Nature
  doi: 10.1038/372366a0
– year: 2013
  ident: B180
  publication-title: Remodelación del Transporte Membranal por Especies Reactivas de Oxígeno y Poliaminas en Tejido Radicular
– volume: 65
  start-page: 1271
  year: 2014a
  ident: B123
  article-title: Cross-talk between ROS and polyamines in regulation of ion transport across plasma membrane: implications for plant adaptive responses
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/ert423
– volume: 33
  start-page: 69
  year: 2013
  ident: B29
  article-title: Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tps125
– volume: 57
  start-page: 648
  year: 2010
  ident: B74
  article-title: Effect of root-applied spermidine on growth and respiratory metabolism in roots of cucumber (Cucumis sativus) seedlings under hypoxia
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S1021443710050079
– volume: 49
  start-page: 377
  year: 2007
  ident: B33
  article-title: Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02971.x
– volume: 5
  start-page: 26
  year: 2010
  ident: B51
  article-title: Polyamines and abiotic stress tolerance in plants
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.5.1.10291
– volume: 447
  start-page: 455
  year: 1997
  ident: B75
  article-title: Studies of non-ionic osmotic stress on bean (Phaseolus vulgaris L) callus and seedlings cultures
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.1997.447.90
– volume: 145
  start-page: 1061
  year: 2007
  ident: B206
  article-title: Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.105882
– volume: 145
  start-page: 83
  year: 1999
  ident: B9
  article-title: Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(99)00071-0
– volume: 105
  start-page: 1
  year: 2010
  ident: B170
  article-title: Polyamines: ubiquitous polycations with unique roles in growth and stress responses
  publication-title: Ann. Bot
  doi: 10.1093/aob/mcp259
– volume: 58
  start-page: 1559
  year: 2007
  ident: B129
  article-title: Vacuolar calcium channels
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erm035
– volume: 60
  start-page: 200
  year: 2013
  ident: B160
  article-title: Effects of abscisic acid on the contents of polyamines and proline in common bean plants under salt stress
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S102144371301007X
– volume: 16
  start-page: 221
  year: 2000
  ident: B13
  article-title: Cellular signaling and volume control in stomatal movements in plants
  publication-title: Annu. Rev. Cell Dev. Biol
  doi: 10.1146/annurev.cellbio.16.1.221
– volume: 36
  start-page: 1765
  year: 2013b
  ident: B159
  article-title: Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress
  publication-title: J. Plant Nutr
  doi: 10.1080/01904167.2013.807823
– volume: 283
  start-page: 1911
  year: 2008
  ident: B59
  article-title: Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M708213200
– volume: 57
  start-page: 422
  year: 2010
  ident: B134
  article-title: Proline controls the level of polyamines in common sage plants under normal conditions and at UV-B irradiation
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S1021443710030155
– volume: 133
  start-page: 651
  year: 2008
  ident: B152
  article-title: Potassium transport and plant salt tolerance
  publication-title: Physiol. Plantar
  doi: 10.1111/j.1399-3054.2007.01008.x
– volume: 105
  start-page: 999
  year: 1994
  ident: B5
  article-title: A cationic channel in the guard cell tonoplast of Allium cepa
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.3.999
– volume: 8
  start-page: 1
  year: 2013
  ident: B41
  article-title: Polyamines: potent modulators of plant responses to stress
  publication-title: J. Plant Int
  doi: 10.1080/17429145.2012.716455
– volume: 151
  start-page: 109
  year: 2001
  ident: B111
  article-title: Calcium-based signalling systems in guard cells
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2001.00152.x
– volume: 580
  start-page: 6783
  year: 2006
  ident: B193
  article-title: The polyamine spermine protects against high salt stress in Arabidopsis thaliana
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2006.10.078
– volume: 76
  start-page: 295
  year: 1989
  ident: B44
  article-title: The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.1989.tb06194.x
– volume: 15
  start-page: 775
  year: 2011
  ident: B94
  article-title: Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers
  publication-title: OMICS
  doi: 10.1089/omi.2011.0084
– volume: 60
  start-page: 37
  year: 2002
  ident: B128
  article-title: Higher plant vacuolar ionic transport in the cellular context
  publication-title: Acta Bot. Mex
  doi: 10.21829/abm60.2002.902
– volume: 46
  start-page: 31
  year: 2005
  ident: B172
  article-title: Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-005-6395-0
– volume: 56
  start-page: 808
  year: 2009
  ident: B165
  article-title: Organ-specific changes in the content of free and conjugated polyamines in Mesembryanthemum crystallinum plants under salinity
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S1021443709060107
– volume: 28
  start-page: 1867
  year: 2006
  ident: B2
  article-title: Involvement of polyamines in plant response to abiotic stress
  publication-title: Biotech. Lett
  doi: 10.1007/s10529-006-9179-3
– volume: 8
  start-page: e23425
  year: 2013
  ident: B139
  article-title: Transition metals: a double edge sword in ROS generation and signaling
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.23425
– volume: 8
  start-page: e60325
  year: 2013
  ident: B36
  article-title: Dissecting rice polyamine metabolism under controlled long-term drought stress
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0060325
– volume: 90
  start-page: 988
  year: 1989
  ident: B35
  article-title: Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seedlings
  publication-title: Plant Physiol
  doi: 10.1104/pp.90.3.988
– volume: 6
  start-page: 412
  year: 1994
  ident: B39
  article-title: Intracellular action of spermine on neuronal Ca2+ and K+ currents
  publication-title: Eur. J. Neurosci
  doi: 10.1111/j.1460-9568.1994.tb00284.x
– volume: 25
  start-page: 337
  year: 2003
  ident: B81
  article-title: Polyamines and scavenging system: influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamine level in barley leaves under water deficit
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-003-0014-3
– volume: 253
  start-page: 1
  year: 2003
  ident: B148
  article-title: Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats
  publication-title: Plant Soil
  doi: 10.1023/A:1024573305997
– volume: 13
  start-page: 489
  year: 2010
  ident: B10
  article-title: Life in the balance: a signaling network controlling survival of flooding
  publication-title: Curr. Opin. Plant Biol
  doi: 10.1016/j.pbi.2010.08.002
– volume: 162
  start-page: 662
  year: 2005
  ident: B87
  article-title: Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2004.08.009
– volume: 164
  start-page: 557
  year: 2003
  ident: B200
  article-title: Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(03)00005-0
– volume: 24
  start-page: 1522
  year: 2012
  ident: B86
  article-title: Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.097881
– volume: 228
  start-page: 367
  year: 2008
  ident: B85
  article-title: Polyamines: essential factors for growth and survival
  publication-title: Planta
  doi: 10.1007/s00425-008-0772-7
– volume: 190
  start-page: 289
  year: 2011
  ident: B149
  article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03575.x
– volume: 44
  start-page: 543
  year: 1997
  ident: B12
  article-title: Elongation growth in the absence of oxygen: the rice coleoptile
  publication-title: Russ. J. Plant Physiol
– volume: 556
  start-page: 148
  year: 2004
  ident: B70
  article-title: Spermine is not essential for survival of Arabidopsis
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(03)01395-4
– volume: 7
  start-page: 1333
  year: 1995
  ident: B78
  article-title: Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.8.1333
– volume: 47
  start-page: 346
  year: 2006
  ident: B176
  article-title: Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci252
– volume: 168
  start-page: 317
  year: 2011
  ident: B144
  article-title: Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2010.07.009
– volume: 49
  start-page: 119
  year: 2006
  ident: B90
  article-title: Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-006-9001-1
– volume: 52
  start-page: 29
  year: 2005
  ident: B103
  article-title: Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance
  publication-title: Russ. J. Plant Physiol
  doi: 10.1007/s11183-005-0005-x
– volume: 56
  start-page: 757
  year: 2012
  ident: B8
  article-title: Putrescine modulates antioxidant defense response in wheat under high temperature stress
  publication-title: Biol. Plant
  doi: 10.1007/s10535-012-0209-1
– volume: 22
  start-page: 595
  year: 2013
  ident: B146
  article-title: The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes
  publication-title: Transgenic Res
  doi: 10.1007/s11248-012-9666-3
– volume: 182
  start-page: 94
  year: 2012
  ident: B4
  article-title: New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2011.03.013
– volume: 31
  start-page: 417
  year: 1992
  ident: B138
  article-title: Plasmalemma ATPase in rice coleoptiles: stimulation by putrescine and polyamines
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(92)90009-F
– volume: 319
  start-page: 1241
  year: 2008
  ident: B171
  article-title: Local positive feedback regulation determines cell shape in root hair cells
  publication-title: Science
  doi: 10.1126/science.1152505
– volume: 167
  start-page: 261
  year: 2010
  ident: B73
  article-title: The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2009.09.010
– volume: 32
  start-page: 263
  year: 2010
  ident: B131
  article-title: Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-009-0403-3
– volume: 584
  start-page: 1982
  year: 2010
  ident: B72
  article-title: Vacuolar ion channels: role in plant nutrition and signaling
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2010.02.050
– volume: 126
  start-page: 1646
  year: 2001
  ident: B96
  article-title: Phylogenetic relationships within cation transporter families of Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.4.1646
– volume: 45
  start-page: 560
  year: 2007
  ident: B192
  article-title: Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diarnine oxidases in Glycine max (L.) Merr. roots
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2007.05.007
– volume: 124
  start-page: 1315
  year: 2000
  ident: B91
  article-title: Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements
  publication-title: Plant Physiol
  doi: 10.1104/pp.124.3.1315
– volume: 2
  start-page: 168
  year: 2000
  ident: B11
  article-title: H+ fluxes at plasmalemma level: in vivo evidence for a significant contribution of the Ca2+-ATPase and for the involvements of its activity in the abscisic acid-induced changes in Egeria densa leaves
  publication-title: Plant Boil
  doi: 10.1055/s-2000-9158
– volume: 135
  start-page: 495
  year: 2010
  ident: B84
  article-title: Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1
  publication-title: J. Gen. Physiol
  doi: 10.1085/jgp.200910253
– volume: 281
  start-page: 8991
  year: 2006
  ident: B1
  article-title: Polyamines are potent ligands for the capsaicin receptor TRPV1
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M513429200
– volume: 50
  start-page: 1547
  year: 1999b
  ident: B20
  article-title: Cytoplasmic magnesium regulates the fast activating vacuolar cation channel
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/50.339.1547
– year: 2014
  ident: B157
  article-title: Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance
  publication-title: Physiol. Plantar
  doi: 10.1111/ppl.12165
– volume: 12
  start-page: 1387
  year: 1997
  ident: B130
  article-title: Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1997.12061387.x
– volume: 42
  start-page: 97
  year: 2004
  ident: B207
  article-title: Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings
  publication-title: Plant Growth Regul
  doi: 10.1023/B:GROW.0000017478.40445.bc
– start-page: 59
  volume-title: Plant Stress Physiology
  year: 2012
  ident: B156
  article-title: Salinity stress: physiological constraints and adaptive mechanisms
  doi: 10.1079/9781845939953.0059
– volume: 100
  start-page: 5549
  year: 2003
  ident: B65
  article-title: The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0733970100
– volume: 128
  start-page: 379
  year: 2002
  ident: B34
  article-title: Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots
  publication-title: Plant Physiol
  doi: 10.1104/pp.010524
– volume: 59
  start-page: 757
  year: 2012
  ident: B116
  article-title: Modulation of polyamine levels in ginseng hairy root cultures subjected to salt stress
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S102144371206012X
– volume: 160
  start-page: 869
  year: 2001
  ident: B142
  article-title: Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(01)00337-5
– volume: 175
  start-page: 387
  year: 2007
  ident: B31
  article-title: Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02128.x
– volume: 52
  start-page: 215
  year: 2010
  ident: B64
  article-title: Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain
  publication-title: J. Cereal Sci
  doi: 10.1016/j.jcs.2010.05.009
– volume: 35
  start-page: 337
  year: 2008
  ident: B163
  article-title: Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction
  publication-title: Funct. Plant Biol
  doi: 10.1071/FP08029
– volume: 49
  start-page: 1342
  year: 2008
  ident: B76
  article-title: Thermospermine is required for stem elongation in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcn109
– volume: 406
  start-page: 731
  year: 2000
  ident: B117a
  article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells
  publication-title: Nature
  doi: 10.1038/35021067
– volume: 121
  start-page: 977
  year: 1999
  ident: B117
  article-title: Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles
  publication-title: Plant Physiol
  doi: 10.1104/pp.121.3.977
– volume: 35
  start-page: 2015
  year: 2013
  ident: B56
  article-title: Plant polyamines in abiotic stress responses
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-013-1239-4
– volume: 4
  start-page: 428
  year: 2011
  ident: B62
  article-title: TPC1-SV channels gain shape
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr017
– volume: 165
  start-page: 397
  year: 2008
  ident: B83
  article-title: Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2007.02.005
– volume: 38
  start-page: 623
  year: 2010
  ident: B79
  article-title: Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat
  publication-title: Amino Acids
  doi: 10.1007/s00726-009-0423-8
– volume: 53
  start-page: 739
  year: 2006
  ident: B161
  article-title: Stress-dependent accumulation of spermidine and spermine in the halophyte Mesembryanthemum crystallinum under salinity conditions
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S1021443706060021
– volume: 168
  start-page: 1599
  year: 2005
  ident: B89
  article-title: Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.01.024
– volume: 54
  start-page: 730
  year: 2010
  ident: B178
  article-title: Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid
  publication-title: Biol. Plant
  doi: 10.1007/s10535-010-0130-z
– volume: 50
  start-page: 873
  year: 1999a
  ident: B19
  article-title: Selectivity of the fast activating vacuolar cation channel
  publication-title: J. Exp. Bot
– volume: 413
  start-page: 10
  year: 2011
  ident: B185
  article-title: Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1016/j.bbrc.2011.08.015
– volume: 87
  start-page: 514
  year: 1988
  ident: B120
  article-title: Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles
  publication-title: Plant Physiol
  doi: 10.1104/pp.87.2.514
– volume: 162
  start-page: 569
  year: 2002
  ident: B110
  article-title: Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(01)00593-3
– volume: 122
  start-page: 835
  year: 2000
  ident: B77
  article-title: Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley
  publication-title: Plant Physiol
  doi: 10.1104/pp.122.3.835
– volume-title: Plant Stress Physiology
  year: 2012
  ident: B150
  doi: 10.1079/9781845939953.0000
– volume: 145
  start-page: 1714
  year: 2007
  ident: B25
  article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.110262
– volume: 4
  start-page: 746
  year: 2002
  ident: B50
  article-title: Physiological comparisons among four related Bromus species with varying ecological amplitude: polyamine and aromatic amine composition in response to salt spray and drought
  publication-title: Plant Biol
  doi: 10.1055/s-2002-37401
– volume: 86
  start-page: 52
  year: 2013
  ident: B40
  article-title: Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content
  publication-title: Env. Exp. Bot
  doi: 10.1016/j.envexpbot.2010.09.007
– volume: 62
  start-page: 28
  year: 2008
  ident: B88a
  article-title: Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots
  publication-title: Environ. Exp. Bot
  doi: 10.1016/j.envexpbot.2007.07.002
– volume: 58
  start-page: 1545
  year: 2007
  ident: B195
  article-title: Involvement of polyamines in the drought resistance of rice
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erm032
– volume: 2
  issue: 85
  year: 2011
  ident: B15
  article-title: Calcium efflux systems in stress signalling and adaptation in plants
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2011.00085
– volume: 112
  start-page: 1209
  year: 2013
  ident: B151
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Ann. Bot
  doi: 10.1093/aob/mct205
– volume: 47
  start-page: 710
  year: 2009
  ident: B196
  article-title: Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2009.03.007
– volume: 53
  start-page: 97
  year: 2007
  ident: B199
  article-title: Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-007-9207-x
– volume: 25
  start-page: 69
  year: 2003
  ident: B167
  article-title: Influence of putrescine on anthocyanin production in callus cultures of Daucus carota mediated through calcium ATPase
  publication-title: Acta Physiol. Plantar
  doi: 10.1007/s11738-003-0038-8
– volume: 135
  start-page: 231
  year: 2004
  ident: B17
  article-title: Plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells involves reduction of proton pumping in addition to anion channel activation which are both Ca2+ dependent
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.039255
– volume: 136
  start-page: 4275
  year: 2004
  ident: B164
  article-title: Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.050344
– volume: 4
  issue: 313
  year: 2013
  ident: B202
  article-title: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2013.00313
– volume: 167
  start-page: 519
  year: 2010
  ident: B175
  article-title: Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2009.10.022
– volume: 5
  start-page: 308
  year: 2010
  ident: B112
  article-title: Polyamines and jasmonic acid induce plasma membrane potential variations in Lima bean
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.5.3.10848
– volume: 49
  start-page: 1333
  year: 2011
  ident: B145
  article-title: Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2011.08.005
– volume: 181
  start-page: 593
  year: 2011
  ident: B189
  article-title: Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2011.04.002
– volume: 94
  start-page: 406
  year: 1990
  ident: B47
  article-title: Polyamines in plant physiology
  publication-title: Plant Physiol
  doi: 10.1104/pp.94.2.406
– volume: 71
  start-page: 769
  year: 1996
  ident: B177
  article-title: Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(96)79276-7
– volume: 231
  start-page: 1025
  year: 2010
  ident: B198
  article-title: Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation
  publication-title: Planta
  doi: 10.1007/s00425-010-1106-0
– volume: 30
  start-page: 914
  year: 2010
  ident: B162
  article-title: Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpq030
– volume: 83
  start-page: 145
  year: 2012
  ident: B6
  article-title: Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress
  publication-title: S. Afr. J. Bot
  doi: 10.1016/j.sajb.2012.08.009
– volume: 56
  start-page: 323
  year: 2009
  ident: B133
  article-title: Homeostasis of polyamines and antioxidant systems in roots and leaves of Plantago major under salt stress
  publication-title: Russ. J. Plant Physiol
  doi: 10.1134/S1021443709030042
– volume: 52
  start-page: 817
  year: 2001
  ident: B114
  article-title: Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol
  doi: 10.1146/annurev.arplant.52.1.817
– volume: 52
  start-page: 796
  year: 2008
  ident: B166
  article-title: Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity
  publication-title: Biol. Plant
  doi: 10.1007/s10535-008-0156-7
– volume: 1757
  start-page: 821
  year: 2006
  ident: B71
  article-title: Putrescine stimulates chemiosmotic ATP synthesis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2006.05.034
– volume: 581
  start-page: 1993
  year: 2007a
  ident: B153
  article-title: Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.04.032
– volume: 49
  start-page: 147
  year: 2006
  ident: B209
  article-title: New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-006-9004-y
– volume: 45
  start-page: 295
  year: 2003
  ident: B208
  article-title: Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings
  publication-title: Acta Bot. Sin
– volume: 28
  start-page: 27
  year: 2006
  ident: B82
  article-title: Exogenous spermidine alters in different way membrane permeability and lipid peroxidation in water stressed barley leaves
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-006-0065-3
– volume: 115
  start-page: 783
  year: 2000
  ident: B55a
  article-title: Mechanism of cGMP-gated channel block by intracellular polyamines
  publication-title: J. Gen. Physiol
  doi: 10.1085/jgp.115.6.783
– volume: 48
  start-page: 434
  year: 2007
  ident: B49
  article-title: Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcm010
– volume: 102
  start-page: 121
  year: 1994
  ident: B136
  article-title: Changes in polyamine metabolism in seedlings of 3 wheat (Triticum aestivum L) cultivars differing in salt sensitivity
  publication-title: Plant Sci
  doi: 10.1016/0168-9452(94)90028-0
– volume: 3
  start-page: 401
  year: 2008
  ident: B204
  article-title: Na+-K+ transport in roots under salt stress
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.3.6.5429
– volume: 196
  start-page: 336
  year: 2010
  ident: B43
  article-title: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice
  publication-title: J. Agron. Crop Sci. Z. Acker Pflanzenbau
  doi: 10.1111/j.1439-037X.2010.00422.x
– volume: 94
  start-page: 347
  year: 1998
  ident: B179
  article-title: Changes in free proline concentrations and polyamine levels in potato leaves during drought stress
  publication-title: S. Afr. J. Sci
– volume: 143
  start-page: 102
  year: 1994
  ident: B68
  article-title: Role of abscisic acid, ethylene and polyamines in flooding-promoted senescence of tobacco-leaves
  publication-title: J. Plant Physiol
  doi: 10.1016/S0176-1617(11)82104-8
– volume: 162
  start-page: 940
  year: 2013
  ident: B14
  article-title: Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.216572
– volume: 31
  start-page: 937
  year: 2009
  ident: B42
  article-title: Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-009-0307-2
– volume: 11
  start-page: 1059
  year: 1997
  ident: B173
  article-title: Fast-activating cation channel in barley mesophyll vacuoles: inhibition by calcium
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1997.11051059.x
– volume: 48
  start-page: 547
  year: 2010
  ident: B3
  article-title: Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2010.02.002
– volume: 164
  start-page: 895
  year: 2007
  ident: B141
  article-title: Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2006.05.003
– volume: 51
  start-page: 422
  year: 2010
  ident: B115
  article-title: Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcq007
– volume: 54
  start-page: 663
  year: 2003
  ident: B127
  article-title: Potassium-selective channel in the red beet vacuolar membrane
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erg067
– volume: 227
  start-page: 189
  year: 2007b
  ident: B154
  article-title: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress
  publication-title: Planta
  doi: 10.1007/s00425-007-0606-z
– volume: 116
  start-page: 192
  year: 2002
  ident: B24
  article-title: Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants
  publication-title: Physiol. Plant
  doi: 10.1034/j.1399-3054.2002.1160208.x
– volume: 18
  start-page: 4050
  year: 1998
  ident: B58
  article-title: Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.18-11-04050.1998
– volume: 111
  start-page: 1077
  year: 1996
  ident: B187
  article-title: Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.4.1077
– volume: 16
  start-page: 101
  year: 1998
  ident: B18
  article-title: Cytoplasmic polyamines block the fast activating vacuolar cation channel
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00274.x
– volume: 101
  start-page: 7
  year: 1988
  ident: B61
  article-title: General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps
  publication-title: Bot. Acta
  doi: 10.1111/j.1438-8677.1988.tb00003.x
– volume: 168
  start-page: 541
  year: 2005
  ident: B65a
  article-title: Drought and salinity: a comparison of their effects on the mineral nutrition in plants
  publication-title: J. Plant Nutr. Soil. Sci
  doi: 10.1002/jpln.200420516
– volume: 434
  start-page: 404
  year: 2005
  ident: B118
  article-title: The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement
  publication-title: Nature
  doi: 10.1038/nature03381
– volume: 15
  start-page: 426
  year: 2013
  ident: B182
  article-title: Ethylene - and oxygen signalling - drive plant survival during flooding
  publication-title: Plant Biol
  doi: 10.1111/plb.12014
– volume: 100
  start-page: 782
  year: 2000
  ident: B87a
  article-title: Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses
  publication-title: Theor. Appl. Genet
  doi: 10.1007/s001220051352
– volume: 28
  start-page: 33
  year: 2011
  ident: B109
  article-title: Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants
  publication-title: Plant Biotech
  doi: 10.5511/plantbiotechnology.10.1013a
– volume: 91
  start-page: 1197
  year: 1989
  ident: B137
  article-title: Polyamines in rice seedlings under oxygen-deficit stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.91.3.1197
– volume: 36
  start-page: 254
  year: 2010
  ident: B190
  article-title: Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings
  publication-title: Science Asia
  doi: 10.2306/scienceasia1513-1874.2010.36.254
– volume: 6
  start-page: 1656
  year: 2011
  ident: B52
  article-title: Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity—another role for TPC1?
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.6.11.17797
– volume: 7
  start-page: 1084
  year: 2012
  ident: B125
  article-title: Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots
  publication-title: Plant Signal. Behav
  doi: 10.4161/psb.21185
– volume: 69
  start-page: 177
  year: 2013
  ident: B55
  article-title: Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after short-term PEG- and NaCl-induced stresses
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-012-9760-9
– volume: 28
  start-page: 552
  year: 1999b
  ident: B38
  article-title: Asymmetric block of the plant vacuolar Ca2+ permeable channel by organic cations
  publication-title: Eur. Biophys. J
  doi: 10.1007/s002490050237
– volume: 70
  start-page: 253
  year: 2009
  ident: B119
  article-title: Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase
  publication-title: Plant Mol. Biol
  doi: 10.1007/s11103-009-9470-5
– volume: 61
  start-page: 18
  year: 2012
  ident: B181
  article-title: Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2012.09.002
– volume: 191
  start-page: 450
  year: 2005
  ident: B105
  article-title: Water stress-induced injury to reproductive phase in chickpea: Evaluation of stress sensitivity in wild and cultivated species in relation to abscisic acid and polyamines
  publication-title: J. Agron. Crop Sci. Z. Acker Pflanzenbau
  doi: 10.1111/j.1439-037X.2005.00184.x
– volume: 39
  start-page: 834
  year: 2004
  ident: B22
  article-title: Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02177.x
– volume: 4
  issue: 224
  year: 2013a
  ident: B158
  article-title: The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2013.00224
– volume: 109
  start-page: 428
  year: 2000
  ident: B16
  article-title: Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity
  publication-title: Physiol. Plant
  doi: 10.1034/j.1399-3054.2000.100409.x
– reference: 17355948 - J Exp Bot. 2007;58(7):1559-69
– reference: 12949257 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11116-21
– reference: 10963598 - Nature. 2000 Aug 17;406(6797):731-4
– reference: 19704579 - Plant Signal Behav. 2008 Jun;3(6):401-3
– reference: 22118620 - Plant Sci. 2012 Jan;182:94-100
– reference: 20421374 - J Gen Physiol. 2010 May;135(5):495-508
– reference: 16473655 - J Plant Physiol. 2006 Mar;163(5):506-16
– reference: 17658660 - J Plant Physiol. 2008 Mar 13;165(4):397-406
– reference: 11331938 - J Membr Biol. 2001 May 1;181(1):55-65
– reference: 9736703 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5
– reference: 10557247 - Plant Physiol. 1999 Nov;121(3):977-986
– reference: 12554709 - J Exp Bot. 2003 Feb;54(383):663-7
– reference: 23577102 - PLoS One. 2013;8(4):e60325
– reference: 17965172 - Plant Physiol. 2007 Dec;145(4):1714-25
– reference: 22000057 - Plant Physiol Biochem. 2011 Nov;49(11):1333-41
– reference: 24506225 - Physiol Plant. 2014 Jul;151(3):257-79
– reference: 20410048 - Ann Bot. 2010 Jun;105(7):1081-102
– reference: 20061303 - Plant Cell Physiol. 2010 Mar;51(3):422-34
– reference: 23333964 - Plant Signal Behav. 2013 Mar;8(3):e23425
– reference: 12456718 - J Cell Sci. 2003 Jan 1;116(Pt 1):81-8
– reference: 10712547 - Plant Physiol. 2000 Mar;122(3):835-44
– reference: 10470372 - Adv Enzyme Regul. 1999;39:157-71
– reference: 16879897 - J Plant Physiol. 2007 Jul;164(7):895-903
– reference: 12232260 - Plant Physiol. 1994 Jul;105(3):999-1006
– reference: 17635215 - New Phytol. 2007;175(3):387-404
– reference: 18333999 - Physiol Plant. 2008 Apr;132(4):452-66
– reference: 23031843 - Plant Physiol Biochem. 2012 Dec;61:18-23
– reference: 20206537 - Plant Physiol Biochem. 2010 Jul;48(7):547-52
– reference: 9916144 - J Membr Biol. 1999 Jan 15;167(2):127-40
– reference: 21563365 - New Phytol. 2011 Apr;190(2):289-98
– reference: 9230104 - Biochem J. 1997 Jul 15;325 ( Pt 2):289-97
– reference: 24560436 - J Plant Physiol. 2014 May 15;171(9):732-42
– reference: 22492932 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6343-7
– reference: 20087595 - Plant Cell Rep. 2010 Mar;29(3):295-305
– reference: 20813578 - Curr Opin Plant Biol. 2010 Oct;13(5):489-94
– reference: 11031236 - Annu Rev Cell Dev Biol. 2000;16:221-41
– reference: 18669523 - Plant Cell Physiol. 2008 Sep;49(9):1342-9
– reference: 16666910 - Plant Physiol. 1989 Jul;90(3):988-95
– reference: 19960214 - Amino Acids. 2010 Feb;38(2):623-31
– reference: 22523205 - Plant Cell. 2012 Apr;24(4):1522-33
– reference: 22899073 - Plant Signal Behav. 2012 Sep 1;7(9):1084-7
– reference: 24723394 - J Exp Bot. 2014 Jun;65(9):2463-72
– reference: 18594857 - Planta. 2008 Aug;228(3):367-81
– reference: 12242406 - Plant Cell. 1995 Aug;7(8):1333-1342
– reference: 19717530 - J Exp Bot. 2009;60(15):4249-62
– reference: 11222290 - Biophys J. 2001 Mar;80(3):1262-79
– reference: 21871871 - Biochem Biophys Res Commun. 2011 Sep 16;413(1):10-6
– reference: 12354195 - Physiol Plant. 2002 Oct;116(2):192-199
– reference: 20728960 - J Plant Physiol. 2011 Mar 1;168(4):317-28
– reference: 19234674 - Plant Mol Biol. 2009 Jun;70(3):253-64
– reference: 20200489 - Plant Signal Behav. 2010 Mar;5(3):308-10
– reference: 20462936 - Tree Physiol. 2010 Jul;30(7):914-22
– reference: 23339191 - Tree Physiol. 2013 Jan;33(1):69-80
– reference: 17028780 - Biotechnol Lett. 2006 Dec;28(23):1867-76
– reference: 12671068 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5549-54
– reference: 16798942 - Plant Physiol. 2006 Aug;141(4):1653-65
– reference: 23574304 - Plant Biol (Stuttg). 2013 May;15(3):426-35
– reference: 7969496 - Nature. 1994 Nov 24;372(6504):366-9
– reference: 17181775 - Plant J. 2007 Feb;49(3):377-86
– reference: 20188732 - FEBS Lett. 2010 May 17;584(10):1982-8
– reference: 16431906 - J Biol Chem. 2006 Mar 31;281(13):8991-5
– reference: 20592804 - Plant Signal Behav. 2010 Jan;5(1):26-33
– reference: 23967003 - Front Plant Sci. 2013 Aug 14;4:313
– reference: 17251201 - Plant Cell Physiol. 2007 Mar;48(3):434-40
– reference: 19857911 - J Plant Physiol. 2010 Mar 1;167(4):261-9
– reference: 21980172 - Plant Physiol. 2011 Dec;157(4):2167-80
– reference: 24218329 - J Exp Bot. 2014 Mar;65(5):1285-96
– reference: 24085482 - Ann Bot. 2013 Nov;112(7):1209-21
– reference: 9874686 - J Gen Physiol. 1999 Jan;113(1):35-43
– reference: 12481097 - Plant Physiol. 2002 Dec;130(4):2129-41
– reference: 15532717 - Mol Cell Biochem. 2004 Jul;262(1-2):127-33
– reference: 17467698 - FEBS Lett. 2007 May 15;581(10):1993-9
– reference: 20159658 - Plant Physiol Biochem. 2010 Jul;48(7):506-12
– reference: 17118338 - Biochem Biophys Res Commun. 2007 Jan 12;352(2):486-90
– reference: 17140566 - FEBS Lett. 2006 Dec 22;580(30):6783-8
– reference: 11500563 - Plant Physiol. 2001 Aug;126(4):1646-67
– reference: 17563365 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10726-31
– reference: 21796369 - Planta. 2012 Jan;235(1):1-11
– reference: 11537482 - Plant Physiol. 1990 Oct;94(2):406-10
– reference: 15772667 - Nature. 2005 Mar 17;434(7031):404-8
– reference: 22711282 - Planta. 2012 Oct;236(4):1261-73
– reference: 17624796 - Plant Physiol Biochem. 2007 Aug;45(8):560-6
– reference: 11297783 - Plant Sci. 2001 Apr;160(5):869-875
– reference: 23818893 - Front Plant Sci. 2013 Jun 27;4:224
– reference: 22067997 - Plant Signal Behav. 2011 Nov;6(11):1656-61
– reference: 8842215 - Biophys J. 1996 Aug;71(2):769-77
– reference: 17332417 - J Exp Bot. 2007;58(6):1545-55
– reference: 15341627 - Plant J. 2004 Sep;39(6):834-46
– reference: 20375061 - J Cell Sci. 2010 May 1;123(Pt 9):1468-79
– reference: 10541793 - Eur Biophys J. 1999;28(7):552-63
– reference: 19513239 - Plant Signal Behav. 2008 Dec;3(12):1061-6
– reference: 23624857 - Plant Physiol. 2013 Jun;162(2):940-52
– reference: 18309082 - Science. 2008 Feb 29;319(5867):1241-4
– reference: 16415068 - Plant Cell Physiol. 2006 Mar;47(3):346-54
– reference: 11842142 - Plant Physiol. 2002 Feb;128(2):379-87
– reference: 12244253 - Plant Cell. 1994 May;6(5):669-683
– reference: 8756495 - Plant Physiol. 1996 Aug;111(4):1077-83
– reference: 19356940 - Plant Physiol Biochem. 2009 Aug;47(8):710-6
– reference: 17905858 - Plant Physiol. 2007 Nov;145(3):1061-72
– reference: 16316973 - J Gen Physiol. 2005 Dec;126(6):541-9
– reference: 8019678 - Eur J Neurosci. 1994 Mar 1;6(3):412-9
– reference: 10828251 - J Gen Physiol. 2000 Jun;115(6):783-98
– reference: 15563619 - Plant Physiol. 2004 Dec;136(4):4275-84
– reference: 21893256 - Plant Sci. 2011 Nov;181(5):593-603
– reference: 17712568 - Planta. 2007 Dec;227(1):189-97
– reference: 22011340 - OMICS. 2011 Nov;15(11):775-81
– reference: 21459829 - Mol Plant. 2011 May;4(3):428-41
– reference: 16667132 - Plant Physiol. 1989 Nov;91(3):1197-201
– reference: 16008088 - J Plant Physiol. 2005 Jun;162(6):662-8
– reference: 11506369 - Planta. 2001 Jul;213(3):457-68
– reference: 18724408 - Physiol Plant. 2008 Aug;133(4):651-69
– reference: 16828052 - Biochim Biophys Acta. 2006 Jul;1757(7):821-8
– reference: 15141069 - Plant Physiol. 2004 May;135(1):231-43
– reference: 9592086 - J Neurosci. 1998 Jun 1;18(11):4050-62
– reference: 14706842 - FEBS Lett. 2004 Jan 2;556(1-3):148-52
– reference: 22057326 - Plant Signal Behav. 2011 Nov;6(11):1844-7
– reference: 22118615 - Plant Sci. 2012 Jan;182:49-58
– reference: 20145950 - Planta. 2010 Apr;231(5):1025-36
– reference: 11337417 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:817-845
– reference: 22639615 - Front Plant Sci. 2011 Dec 02;2:85
– reference: 11080307 - Plant Physiol. 2000 Nov;124(3):1315-26
– reference: 16666174 - Plant Physiol. 1988 Jun;87(2):514-8
– reference: 19712065 - Plant Cell Environ. 2010 Apr;33(4):453-67
– reference: 24465010 - J Exp Bot. 2014 Mar;65(5):1271-83
– reference: 20060616 - J Plant Physiol. 2010 May 1;167(7):519-25
– reference: 11997372 - J Exp Bot. 2002 May;53(372):1237-47
– reference: 23080295 - Transgenic Res. 2013 Jun;22(3):595-605
– reference: 19828463 - Ann Bot. 2010 Jan;105(1):1-6
– reference: 18029350 - J Biol Chem. 2008 Jan 25;283(4):1911-20
SSID ssj0000500997
Score 2.4410276
SecondaryResourceType review_article
Snippet Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 154
SubjectTerms Ion Channels
Ion Pumps
Plant Science
plasma membrane
Polyamines
Reactive Oxygen Species
stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iffBF2mrttVUi-NCXrSabH7t9U1FEUHyo4FuYXBI8uNs9eueD0D--M5u9465UfPF1NyHDzGTnm83MF8aOtMIgq0RVWLRwQYx0BdQGCpvbLks_jNScfHNrru7V9YN-WLnqi2rCMj1wVtxxVcVQlkljYPQqyRPAiJuUh1SbWBnVkW1jzFtJpjKrN0Efm7l8MAurj9N0TOzcgsiyhVZrYahj6_8fxPy3UnIl9Fy-Z9s9ZuSnWdYPbCM2H9m7sxZx3fMO-3PXjp9hQuXrvC88523i-Vccny_Iyzl0kvDpGHXJJ3GCaTJO-clHKzXlHCEsp2mP7SS2CBxnoxmHJnDwoxZX57m1hFPVB1Aj-y67v7z4dX5V9HcqFEMt9bzQFdD1wlIHCN6mGqqEOaoQNlUBovXKY_4VAUEK0cYklYxUPsg6yDKlEGX5iW02bRM_M24kfqGCCGBOhsoI4QGxZQpVSgK8UHHAfixU7IY94TjdezF2mHiQTRzZxJFNXGeTAfu-nDDNXBsvDz0jmy2HEUl29wBdx_Wu415znQE7XFjc4aaikxJUfPs0c7gCBW6rccxe9oDlUlLZWtuyHjC75htrsqy_aUaPHXG3IvYbU355C-G_si1SBx1syfIb25z_for7iI_m_qDbCn8BglsRDQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling
URI https://www.ncbi.nlm.nih.gov/pubmed/24795739
https://www.proquest.com/docview/1540128756
https://pubmed.ncbi.nlm.nih.gov/PMC4006063
https://doaj.org/article/88ed33f5635b4f20a172f4baf96e8646
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGxoHLBOOrsE1G4sAlY3b8kSChaUP7ENIQByr1Ztm1zSqlcdd2EpX443kvScuKirRLDokdO3523u_Z7_0eIe-lACUrWJFpkHCGjHSZLZXNdBt2mbthwODk62_qqi--DuTgbzqgbgBnG007zCfVn1ZHv24XJ7DgP6PFCfr2Y5xUSLzNkAcbEMEjsgNqSWM6g-sO67dE34iGmmQrSolMKD5oqX42vWNNSzVk_psQ6L-OlPc008VTsttBSnrazoFnZCvUe-TxWQLYt3hOfn9P1cKO0buddn7pNEXa7tTR-ZLbnNqmJ3RSwVDTcRiDFQ1VPtHRPZdzCgiXYrWbNA4JcOVsNKO29tS6UYLWaRt5QtEpxGKc-wvSvzj_8eUq61IuZEPJ5TyThcXsw1x6652OpS0imLCM6Vh4G7QTDsyzYAHDIKtMFFFx4TwvPc9j9IHnL8l2nerwmlDF4QfmmbfqeCgUY84C9Iy-iJFZx0TokaPlEJthx0eOaTEqA3YJysSgTAzKxDQy6ZEPqwqTlorj_0XPUGarYsih3dxI05-mW5KmKILP8ygBcjkR-bGFOROFs7FUoVBC9ci7pcQNrDk8SIGBT3czAy2gXtcSyrxqZ8CqKS50KXVe9ohemxtrfVl_Uo9uGl5vgeQ4Kn_zgHbfkif4tXisxfN9sj2f3oUDQEdzd9jsKsD1csAOmxXwB0sjEeI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamines+control+of+cation+transport+across+plant+membranes%3A+implications+for+ion+homeostasis+and+abiotic+stress+signaling&rft.jtitle=Frontiers+in+plant+science&rft.au=Pottosin%2C+Igor&rft.au=Shabala%2C+Sergey&rft.date=2014-04-23&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=5&rft.spage=154&rft_id=info:doi/10.3389%2Ffpls.2014.00154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon