Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transpor...
Saved in:
Published in | Frontiers in plant science Vol. 5; p. 154 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
23.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. |
---|---|
AbstractList | Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm4+>Spd3+ >Put2+. On the contrary, effects of polyamines on the plasma membrane cation and K+-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and plasma membrane H+ pumps and Ca2+ pump of the plasma membrane. On the other hand, catabolisation of polyamines generates H2O2 and other reactive oxygen species, including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca2+ influx across the plasma membrane. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm 4+ > Spd 3+ > Put 2+ . On the contrary, effects of polyamines on the plasma membrane (PM) cation and K + -selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H + pumps and Ca 2+ pump of the PM. On the other hand, catabolization of polyamines generates H 2 O 2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca 2+ influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. |
Author | Shabala, Sergey Pottosin, Igor |
AuthorAffiliation | 1 Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of Colima Colima, Mexico 2 School of Land and Food, University of Tasmania Hobart, TAS, Australia |
AuthorAffiliation_xml | – name: 1 Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of Colima Colima, Mexico – name: 2 School of Land and Food, University of Tasmania Hobart, TAS, Australia |
Author_xml | – sequence: 1 givenname: Igor surname: Pottosin fullname: Pottosin, Igor – sequence: 2 givenname: Sergey surname: Shabala fullname: Shabala, Sergey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24795739$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1rHSEUxYeS0qRp1t0Vl928F8ev0S4KJfQjEGgXLXQnd0Z9MTg6VV8g0D--vveSkhTqRvHe87viOS-7o5ii7brXPV5TKtW5W0JZE9yzNcY9Z8-6k14ItmKC_Dx6dD7uzkq5wW1xjJUaXnTHhA2KD1SddL-_pXAHs4-2oCnFmlNAyaEJqk8R1QyxLClXBFNOpaAlQKxotvPYKra8Q35egj90F-RSRjvZdZptKhWKLwiiQTD6VP2ESs22QYrfRAg-bl51zx2EYs_u99Pux6eP3y--rK6-fr68-HC1mjjhdcUlSEkp4QbMODgF0lFJ-35w0oAdRjYqJS2oQSgmuWNOEDYaogyhzhlL6Gl3eeCaBDd6yX6GfKcTeL2_SHmjIbcHBqultIZSxwXlI3MEQz8Qx0ZwSlgpmGis9wfWsh1naybb_gzCE-jTSvTXepNuNcNYYEEb4O09IKdfW1uqnn2ZbGg_a9O26OYk7okc-G7Wm8ez_g55sK818EPD3p1snZ583ZvRRvuge6x3SdG7pOhdUvQ-KU13_o_uAf0_xR_whcUm |
CitedBy_id | crossref_primary_10_1007_s42729_021_00479_z crossref_primary_10_1016_j_jpha_2021_09_011 crossref_primary_10_14720_aas_2016_107_1_09 crossref_primary_10_3390_antiox13020227 crossref_primary_10_1016_j_scienta_2023_112725 crossref_primary_10_1007_s10343_025_01121_z crossref_primary_10_1016_j_bbrc_2018_10_165 crossref_primary_10_1007_s11240_015_0805_4 crossref_primary_10_3390_ijms20030715 crossref_primary_10_1007_s13580_016_0113_x crossref_primary_10_1134_S1021443718020188 crossref_primary_10_3389_fpls_2022_819658 crossref_primary_10_3390_ijms23031874 crossref_primary_10_1016_j_plaphy_2019_09_021 crossref_primary_10_3390_ijms232113288 crossref_primary_10_1007_s00344_024_11447_z crossref_primary_10_1021_acs_jnatprod_2c01125 crossref_primary_10_1111_pce_13907 crossref_primary_10_3389_fpls_2016_00379 crossref_primary_10_1007_s11104_022_05395_4 crossref_primary_10_3389_fpls_2020_616077 crossref_primary_10_1071_FP21324 crossref_primary_10_3389_fpls_2023_1206246 crossref_primary_10_3390_plants10091872 crossref_primary_10_1007_s00344_018_9873_0 crossref_primary_10_1021_acs_jafc_4c00282 crossref_primary_10_1016_j_plaphy_2023_107654 crossref_primary_10_1371_journal_pone_0175848 crossref_primary_10_3390_agronomy13020285 crossref_primary_10_1016_j_envexpbot_2020_104226 crossref_primary_10_1007_s10725_017_0278_z crossref_primary_10_1016_j_plgene_2017_05_007 crossref_primary_10_1093_jxb_erw444 crossref_primary_10_1080_01904167_2019_1617307 crossref_primary_10_1007_s11738_020_03066_4 crossref_primary_10_1007_s11240_023_02639_8 crossref_primary_10_1007_s00344_022_10802_2 crossref_primary_10_1016_j_plaphy_2021_11_028 crossref_primary_10_3389_fpls_2019_00320 crossref_primary_10_1016_j_envexpbot_2018_12_009 crossref_primary_10_1016_j_plgene_2017_04_004 crossref_primary_10_3389_fpls_2021_812360 crossref_primary_10_3389_fpls_2017_01701 crossref_primary_10_1007_s13562_023_00830_8 crossref_primary_10_1016_j_plaphy_2021_02_024 crossref_primary_10_1016_j_jplph_2022_153618 crossref_primary_10_1093_aob_mcu264 crossref_primary_10_3389_fpls_2019_00439 crossref_primary_10_3390_agronomy11081515 crossref_primary_10_1007_s11738_018_2671_2 crossref_primary_10_1071_FP16187 crossref_primary_10_1111_jac_12560 crossref_primary_10_1007_s00253_021_11748_3 crossref_primary_10_1007_s40610_017_0052_z crossref_primary_10_3389_fpls_2015_00087 crossref_primary_10_1016_j_jplph_2017_05_018 crossref_primary_10_3389_fpls_2019_00555 crossref_primary_10_3389_fpls_2016_01343 crossref_primary_10_1016_j_envexpbot_2019_05_019 crossref_primary_10_1016_j_envexpbot_2020_104236 crossref_primary_10_1016_j_plaphy_2024_108379 crossref_primary_10_1007_s00726_014_1865_1 crossref_primary_10_1002_jpln_202400003 crossref_primary_10_1071_CP16311 crossref_primary_10_1134_S1021443722602993 crossref_primary_10_1016_j_molp_2021_07_020 crossref_primary_10_1007_s00344_023_11174_x crossref_primary_10_1007_s11104_018_03913_x crossref_primary_10_1007_s00344_022_10625_1 crossref_primary_10_1016_j_plantsci_2015_07_008 crossref_primary_10_1007_s11104_018_3793_4 crossref_primary_10_1016_j_scienta_2019_02_026 crossref_primary_10_1186_s40538_024_00537_5 crossref_primary_10_1111_pce_12521 crossref_primary_10_1016_j_ecoenv_2018_10_105 crossref_primary_10_1016_j_febslet_2014_09_003 crossref_primary_10_1111_ppl_12656 crossref_primary_10_1007_s11104_022_05823_5 crossref_primary_10_1007_s11240_021_02029_y crossref_primary_10_1093_jxb_erv493 crossref_primary_10_1093_pcp_pcv175 crossref_primary_10_3389_fpls_2019_00601 crossref_primary_10_3389_fpls_2019_01415 crossref_primary_10_1007_s00709_018_1227_z crossref_primary_10_1016_j_molp_2015_10_006 crossref_primary_10_1093_jxb_erac411 crossref_primary_10_1007_s12298_024_01462_5 crossref_primary_10_2478_s11756_020_00644_2 crossref_primary_10_3389_fpls_2015_00537 crossref_primary_10_1371_journal_pone_0174170 crossref_primary_10_3390_ijms25021306 crossref_primary_10_1071_FP16280 crossref_primary_10_1016_j_algal_2019_101504 crossref_primary_10_1016_j_aquatox_2016_09_007 crossref_primary_10_35550_vbio2019_01_006 crossref_primary_10_1016_j_heliyon_2019_e02631 crossref_primary_10_1042_BCJ20170900 crossref_primary_10_3389_fpls_2021_670369 crossref_primary_10_3103_S0095452721020079 crossref_primary_10_1111_tpj_14424 crossref_primary_10_3390_ijms20225746 crossref_primary_10_3390_agriculture12081270 crossref_primary_10_1186_s12870_018_1592_y crossref_primary_10_3389_fpls_2014_00319 crossref_primary_10_3389_fpls_2016_00350 crossref_primary_10_1021_acs_est_8b04909 crossref_primary_10_1093_jxb_erv465 crossref_primary_10_1007_s11105_021_01328_0 crossref_primary_10_3389_fpls_2022_986688 crossref_primary_10_3390_horticulturae9020285 crossref_primary_10_35550_vbio2018_03_085 crossref_primary_10_1007_s42535_021_00238_6 crossref_primary_10_1002_cbic_202400873 crossref_primary_10_1071_FP22059 crossref_primary_10_1016_j_plaphy_2020_10_008 crossref_primary_10_1016_j_plantsci_2015_05_003 crossref_primary_10_1007_s00709_018_1289_y crossref_primary_10_1007_s44154_022_00055_0 crossref_primary_10_1134_S0003683821030066 crossref_primary_10_1016_j_jplph_2016_12_012 crossref_primary_10_1111_nph_15758 crossref_primary_10_1016_j_ijbiomac_2025_141680 crossref_primary_10_1016_j_bcab_2024_103136 crossref_primary_10_1016_j_ecoenv_2015_03_023 crossref_primary_10_3389_fenvs_2015_00021 crossref_primary_10_3103_S0095452722020062 crossref_primary_10_3390_plants12030652 crossref_primary_10_1016_j_plaphy_2020_06_034 crossref_primary_10_1155_2023_5686484 crossref_primary_10_3389_fpls_2017_01346 crossref_primary_10_1007_s00468_016_1353_1 crossref_primary_10_3390_horticulturae10040401 crossref_primary_10_1016_j_envexpbot_2020_103989 crossref_primary_10_1111_pbr_12770 crossref_primary_10_1016_j_chroma_2019_460704 crossref_primary_10_1016_j_sajb_2024_01_069 crossref_primary_10_3390_ijms232314625 crossref_primary_10_1080_15592324_2020_1856546 crossref_primary_10_1016_j_chemosphere_2018_06_143 crossref_primary_10_3389_fpls_2015_00687 crossref_primary_10_3390_ijms21249476 crossref_primary_10_1016_j_chemosphere_2024_143438 crossref_primary_10_1016_j_flora_2020_151589 crossref_primary_10_1111_pce_12714 crossref_primary_10_1016_j_freeradbiomed_2018_01_011 crossref_primary_10_1080_15592324_2019_1665455 crossref_primary_10_1016_j_envexpbot_2017_05_003 crossref_primary_10_1007_s00344_023_11050_8 crossref_primary_10_1093_aob_mcy038 crossref_primary_10_1016_j_envexpbot_2019_103799 |
Cites_doi | 10.1111/j.1365-3040.2009.02041.x 10.1093/jxb/ert373 10.1046/j.0016-8025.2003.01116.x 10.4161/psb.3.12.7172 10.1093/aob/mcq027 10.17221/62/2011-PPS 10.1104/pp.008532 10.1042/bj3250289 10.1104/pp.106.082388 10.1016/j.jplph.2013.11.013 10.1073/pnas.1434381100 10.1104/pp.111.179671 10.1016/S0065-2571(98)00010-7 10.1016/j.plantsci.2004.08.014 10.1016/S0176-1617(96)80051-4 10.1073/pnas.0702595104 10.1007/s00425-012-1668-0 10.1073/pnas.1121406109 10.1038/329833a0 10.1085/jgp.200509380 10.1007/s00344-012-9274-8 10.1093/jexbot/53.372.1237 10.1111/j.1399-3054.1997.tb03451.x 10.4161/psb.6.11.17640 10.1007/s10725-008-9298-z 10.1242/jcs.00201 10.1093/jxb/eru133 10.1016/j.envexpbot.2013.03.001 10.1016/j.plaphy.2010.01.017 10.1007/s10535-010-0023-1 10.1016/j.plantsci.2011.01.016 10.1016/j.jplph.2005.04.034 10.1023/A:1023078819935 10.1016/S0176-1617(11)80113-6 10.1007/s002320010007 10.1016/j.bbrc.2006.11.041 10.1007/s00299-010-0822-z 10.1007/s00425-011-1486-9 10.2307/3869871 10.1016/S0168-9452(03)00030-X 10.1073/pnas.95.19.11140 10.1007/s11104-006-9188-y 10.1085/jgp.113.1.35 10.1016/S0006-3495(01)76102-4 10.1007/s004250100519 10.1242/jcs.064352 10.1007/s002329900477 10.1007/s10725-009-9414-8 10.1023/B:MCBI.0000038227.91813.79 10.1111/j.1399-3054.1997.tb05353.x 10.1093/jxb/erp256 10.1111/j.1399-3054.2007.01029.x 10.1007/s002990050363 10.1038/372366a0 10.1093/jxb/ert423 10.1093/treephys/tps125 10.1134/S1021443710050079 10.1111/j.1365-313X.2006.02971.x 10.4161/psb.5.1.10291 10.17660/ActaHortic.1997.447.90 10.1104/pp.107.105882 10.1016/S0168-9452(99)00071-0 10.1093/aob/mcp259 10.1093/jxb/erm035 10.1134/S102144371301007X 10.1146/annurev.cellbio.16.1.221 10.1080/01904167.2013.807823 10.1074/jbc.M708213200 10.1134/S1021443710030155 10.1111/j.1399-3054.2007.01008.x 10.1104/pp.105.3.999 10.1080/17429145.2012.716455 10.1046/j.1469-8137.2001.00152.x 10.1016/j.febslet.2006.10.078 10.1111/j.1399-3054.1989.tb06194.x 10.1089/omi.2011.0084 10.21829/abm60.2002.902 10.1007/s10725-005-6395-0 10.1134/S1021443709060107 10.1007/s10529-006-9179-3 10.4161/psb.23425 10.1371/journal.pone.0060325 10.1104/pp.90.3.988 10.1111/j.1460-9568.1994.tb00284.x 10.1007/s11738-003-0014-3 10.1023/A:1024573305997 10.1016/j.pbi.2010.08.002 10.1016/j.jplph.2004.08.009 10.1016/S0168-9452(03)00005-0 10.1105/tpc.112.097881 10.1007/s00425-008-0772-7 10.1111/j.1469-8137.2010.03575.x 10.1016/S0014-5793(03)01395-4 10.1105/tpc.7.8.1333 10.1093/pcp/pci252 10.1016/j.jplph.2010.07.009 10.1007/s10725-006-9001-1 10.1007/s11183-005-0005-x 10.1007/s10535-012-0209-1 10.1007/s11248-012-9666-3 10.1016/j.plantsci.2011.03.013 10.1016/0031-9422(92)90009-F 10.1126/science.1152505 10.1016/j.jplph.2009.09.010 10.1007/s11738-009-0403-3 10.1016/j.febslet.2010.02.050 10.1104/pp.126.4.1646 10.1016/j.plaphy.2007.05.007 10.1104/pp.124.3.1315 10.1055/s-2000-9158 10.1085/jgp.200910253 10.1074/jbc.M513429200 10.1093/jxb/50.339.1547 10.1111/ppl.12165 10.1046/j.1365-313x.1997.12061387.x 10.1023/B:GROW.0000017478.40445.bc 10.1079/9781845939953.0059 10.1073/pnas.0733970100 10.1104/pp.010524 10.1134/S102144371206012X 10.1016/S0168-9452(01)00337-5 10.1111/j.1469-8137.2007.02128.x 10.1016/j.jcs.2010.05.009 10.1071/FP08029 10.1093/pcp/pcn109 10.1038/35021067 10.1104/pp.121.3.977 10.1007/s11738-013-1239-4 10.1093/mp/ssr017 10.1016/j.jplph.2007.02.005 10.1007/s00726-009-0423-8 10.1134/S1021443706060021 10.1016/j.plantsci.2005.01.024 10.1007/s10535-010-0130-z 10.1016/j.bbrc.2011.08.015 10.1104/pp.87.2.514 10.1016/S0168-9452(01)00593-3 10.1104/pp.122.3.835 10.1079/9781845939953.0000 10.1104/pp.107.110262 10.1055/s-2002-37401 10.1016/j.envexpbot.2010.09.007 10.1016/j.envexpbot.2007.07.002 10.1093/jxb/erm032 10.3389/fpls.2011.00085 10.1093/aob/mct205 10.1016/j.plaphy.2009.03.007 10.1007/s10725-007-9207-x 10.1007/s11738-003-0038-8 10.1104/pp.104.039255 10.1104/pp.104.050344 10.3389/fpls.2013.00313 10.1016/j.jplph.2009.10.022 10.4161/psb.5.3.10848 10.1016/j.plaphy.2011.08.005 10.1016/j.plantsci.2011.04.002 10.1104/pp.94.2.406 10.1016/S0006-3495(96)79276-7 10.1007/s00425-010-1106-0 10.1093/treephys/tpq030 10.1016/j.sajb.2012.08.009 10.1134/S1021443709030042 10.1146/annurev.arplant.52.1.817 10.1007/s10535-008-0156-7 10.1016/j.bbabio.2006.05.034 10.1016/j.febslet.2007.04.032 10.1007/s10725-006-9004-y 10.1007/s11738-006-0065-3 10.1085/jgp.115.6.783 10.1093/pcp/pcm010 10.1016/0168-9452(94)90028-0 10.4161/psb.3.6.5429 10.1111/j.1439-037X.2010.00422.x 10.1016/S0176-1617(11)82104-8 10.1104/pp.113.216572 10.1007/s11738-009-0307-2 10.1046/j.1365-313X.1997.11051059.x 10.1016/j.plaphy.2010.02.002 10.1016/j.jplph.2006.05.003 10.1093/pcp/pcq007 10.1093/jxb/erg067 10.1007/s00425-007-0606-z 10.1034/j.1399-3054.2002.1160208.x 10.1523/JNEUROSCI.18-11-04050.1998 10.1104/pp.111.4.1077 10.1046/j.1365-313x.1998.00274.x 10.1111/j.1438-8677.1988.tb00003.x 10.1002/jpln.200420516 10.1038/nature03381 10.1111/plb.12014 10.1007/s001220051352 10.5511/plantbiotechnology.10.1013a 10.1104/pp.91.3.1197 10.2306/scienceasia1513-1874.2010.36.254 10.4161/psb.6.11.17797 10.4161/psb.21185 10.1007/s10725-012-9760-9 10.1007/s002490050237 10.1007/s11103-009-9470-5 10.1016/j.plaphy.2012.09.002 10.1111/j.1439-037X.2005.00184.x 10.1111/j.1365-313X.2004.02177.x 10.3389/fpls.2013.00224 10.1034/j.1399-3054.2000.100409.x |
ContentType | Journal Article |
Copyright | Copyright © 2014 Pottosin and Shabala. 2014 |
Copyright_xml | – notice: Copyright © 2014 Pottosin and Shabala. 2014 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2014.00154 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_88ed33f5635b4f20a172f4baf96e8646 PMC4006063 24795739 10_3389_fpls_2014_00154 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c525t-58a883325dadb7f9a8f383117f8dae7b4b998ea9769485f4f624bd29d23ffde23 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:18:34 EDT 2025 Thu Aug 21 18:31:13 EDT 2025 Thu Jul 10 23:51:39 EDT 2025 Thu Apr 03 07:04:22 EDT 2025 Tue Jul 01 02:44:31 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | stress vacuole plasma membrane cytosolic calcium reactive oxygen species polyamines ion channels ion pumps |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-58a883325dadb7f9a8f383117f8dae7b4b998ea9769485f4f624bd29d23ffde23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Antonio F. Tiburcio, Universitat de Barcelona, Spain Reviewed by: Taku Takahashi, Okayama University, Japan; Paul F. Morris, Biological Sciences Bowling Green State University, USA This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2014.00154 |
PMID | 24795739 |
PQID | 1540128756 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_88ed33f5635b4f20a172f4baf96e8646 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4006063 proquest_miscellaneous_1540128756 pubmed_primary_24795739 crossref_citationtrail_10_3389_fpls_2014_00154 crossref_primary_10_3389_fpls_2014_00154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-23 |
PublicationDateYYYYMMDD | 2014-04-23 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2014 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bose (B15) 2011; 2 Pottosin (B122) 2014 Zepeda Jazo (B203) 2010 Farooq (B43) 2010; 196 Kinoshita (B78) 1995; 7 Radhakrishnan (B132) 2013; 32 Garufi (B49) 2007; 48 Shabala (B153) 2007a; 581 Demidchik (B33) 2007; 49 Galston (B47) 1990; 94 Zepeda-Jazo (B204) 2008; 3 Demidchik (B31) 2007; 175 Sudha (B167) 2003; 25 Liu (B90) 2006; 49 Do (B36) 2013; 8 KubiÅ (B82) 2006; 28 Igarashi (B69) 2010; 48 Aziz (B9) 1999; 145 Alet (B4) 2012; 182 Watson (B187) 1996; 111 Pei (B117a) 2000; 406 Ahern (B1) 2006; 281 Yamaguchi (B193) 2006; 580 Pistocchi (B120) 1988; 87 Neily (B109) 2011; 28 Pottosin (B130) 1997; 12 Wimalasekera (B189) 2011; 181 Huang (B66) 2001; 80 van der Mescht (B179) 1998; 94 Shabala (B152) 2008; 133 Moschou (B100) 2014; 65 Liu (B88a) 2008; 62 Rodrigo-Moreno (B139) 2013; 8 Zepeda-Jazo (B205) 2011; 157 Radyukina (B134) 2010; 57 Neill (B108) 2002; 53 Sharma (B158) 2013a; 4 Xie (B191) 2005; 126 Voesenek (B182) 2013; 15 Pottosin (B128) 2002; 60 Kreps (B80) 2002; 130 Liu (B89) 2005; 168 Williams (B188) 1997; 385 Brault (B17) 2004; 135 Moschou (B99) 2008; 3 Ward (B186) 1994; 6 Yiu (B196) 2009; 47 Ioannidis (B71) 2006; 1757 Gobert (B53) 2007; 104 Ozawa (B112) 2010; 5 Peiter (B118) 2005; 434 Ndayiragije (B106) 2006; 163 Roychoudhury (B144) 2011; 168 Friedman (B44) 1989; 76 Shabala (B151) 2013; 112 Demidchik (B34) 2002; 128 Kovacs (B79) 2010; 38 Pottosin (B127) 2003; 54 KubiÅ (B83) 2008; 165 Juhasz (B75) 1997; 447 RodrÃguez (B140) 2009; 60 Toumi (B175) 2010; 167 De Diego (B29) 2013; 33 Shi (B163) 2008; 35 Su (B166) 2008; 52 Radyukina (B133) 2009; 56 Lu (B93) 1999; 113 Fromm (B45) 1997; 99 Parvin (B116) 2012; 59 Peremarti (B119) 2009; 70 Drouin (B39) 1994; 6 Nayyar (B105) 2005; 191 Demidchik (B30) 2010; 123 Kurata (B84) 2010; 135 Mulangi (B101) 2012a; 236 Wu (B190) 2010; 36 KubiÅ (B81) 2003; 25 Gilliham (B52) 2011; 6 Marco (B94) 2011; 15 Hedrich (B61) 1988; 101 Legocka (B87) 2005; 162 Mäser (B96) 2001; 126 Yang (B195) 2007; 58 Zhao (B206) 2007; 145 Chai (B23) 2010; 54 Arbona (B7) 2008; 132 Zandonadi (B198) 2010; 231 Upreti (B178) 2010; 54 Hurng (B68) 1994; 143 Shabala (B157) 2014 Ozturk (B113) 2003; 40 Carpaneto (B21) 2001; 213 Tikhonova (B173) 1997; 11 Piterkova (B121) 2012; 48 Cellier (B22) 2004; 39 Zhao (B207) 2004; 42 Fujita (B46) 2012; 109 Pei (B117) 1999; 121 Ng (B111) 2001; 151 Kakehi (B76) 2008; 49 Roy (B142) 2001; 160 Shevyakova (B160) 2013; 60 Hedrich (B63) 1987; 329 Chen (B25) 2007; 145 Velarde-BuendÃa (B181) 2012; 61 Dobrovinskaya (B37) 1999a; 167 Zhao (B208) 2003; 45 Gill (B51) 2010; 5 Xing (B192) 2007; 45 Farooq (B42) 2009; 31 Goyal (B54) 2010; 60 Palmgren (B114) 2001; 52 Pottosin (B124) 2014b Ruiz-Carrasco (B145) 2011; 49 Shevyakova (B161) 2006; 53 Alcázar (B3) 2010; 48 Lopatin (B92) 1994; 372 Shabala (B156) 2012 Hughes (B67) 1999; 39 Nemeth (B110) 2002; 162 Shabala (B154) 2007b; 227 Sokolovski (B164) 2004; 136 Takeda (B171) 2008; 319 Tang (B172) 2005; 46 Hamamoto (B59) 2008; 283 Tun (B176) 2006; 47 Pottosin (B123) 2014a; 65 Imai (B70) 2004; 556 Di Tomaso (B35) 1989; 90 Karley (B77) 2000; 122 Botella (B16) 2000; 109 Pandolfi (B115) 2010; 51 Pottosin (B125) 2012; 7 Sagor (B146) 2013; 22 Hu (B65a) 2005; 168 Bailey-Serres (B10) 2010; 13 Amodeo (B5) 1994; 105 Marschner (B95) 1995 Roussos (B141) 2007; 164 Shabala (B150) 2012 Shi (B162) 2010; 30 Isayenkov (B72) 2010; 584 Yamaguchi (B194) 2007; 352 Zapata (B199) 2007; 53 Qi (B131) 2010; 32 Reggiani (B136) 1994; 102 An (B6) 2012; 83 Roy (B143) 2005; 168 Zeng (B202) 2013; 4 Liu (B91) 2000; 124 Mutlu (B103) 2005; 52 Das (B28) 2004; 262 Li (B87a) 2000; 100 Volkov (B183) 2003; 27 Laohavisit (B86) 2012; 24 Demidchik (B32) 2003; 116 Bonales-Alatorre (B14) 2013; 162 Janicka-Russak (B73) 2010; 167 Brüggemann (B19) 1999a; 50 Kusano (B85) 2008; 228 Miller (B98) 2010; 33 Reggiani (B138) 1992; 31 Guo (B55a) 2000; 115 Conn (B26) 2010; 105 Velarde-BuendÃa (B180) 2013 Blatt (B13) 2000; 16 Brüggemann (B20) 1999b; 50 Zacchini (B197) 1997; 17 Chattopadhayay (B24) 2002; 116 Sharma (B159) 2013b; 36 Zhu (B209) 2006; 49 Bertani (B12) 1997; 44 Tisi (B174) 2011; 6 Haghighi (B58) 1998; 18 Beffagna (B11) 2000; 2 Uehara (B177) 1996; 71 GarcÃa-Mata (B48) 2003; 100 Fan (B40) 2013; 86 Sziderics (B169) 2010; 29 Shabala (B149) 2011; 190 Hasegawa (B60) 2013; 92 Cvikrova (B27) 2012; 182 Stetsenko (B165) 2009; 56 Hedrich (B62) 2011; 4 Takahashi (B170) 2010; 105 Asthir (B8) 2012; 56 Waie (B184) 2003; 164 Gicquiaud (B50) 2002; 4 Li (B88) 2005; 46 Gupta (B56) 2013; 35 Jia (B74) 2010; 57 Fariduddin (B41) 2013; 8 Dobrovinskaya (B38) 1999b; 28 Mulangi (B102) 2012b; 235 Reggiani (B137) 1989; 91 Shabala (B155) 2006; 141 Högy (B64) 2010; 52 Hosy (B65) 2003; 100 Mutlu (B104) 2007; 39 Ha (B57) 1998; 95 Reggiani (B135) 1993; 142 Zapata (B201) 2008; 56 Grzesiak (B55) 2013; 69 Brüggemann (B18) 1998; 16 McAinsh (B97) 1997; 100 Sun (B168) 2002; 44 Pottosin (B126) 2001; 181 Setter (B148) 2003; 253 Ndayiragije (B107) 2007; 291 Wang (B185) 2011; 413 Alcázar (B2) 2006; 28 Sarjala (B147) 1996; 147 Zapata (B200) 2003; 164 Pottosin (B129) 2007; 58 18333999 - Physiol Plant. 2008 Apr;132(4):452-66 16666174 - Plant Physiol. 1988 Jun;87(2):514-8 16415068 - Plant Cell Physiol. 2006 Mar;47(3):346-54 20060616 - J Plant Physiol. 2010 May 1;167(7):519-25 22067997 - Plant Signal Behav. 2011 Nov;6(11):1656-61 16828052 - Biochim Biophys Acta. 2006 Jul;1757(7):821-8 11842142 - Plant Physiol. 2002 Feb;128(2):379-87 20087595 - Plant Cell Rep. 2010 Mar;29(3):295-305 17355948 - J Exp Bot. 2007;58(7):1559-69 12232260 - Plant Physiol. 1994 Jul;105(3):999-1006 17658660 - J Plant Physiol. 2008 Mar 13;165(4):397-406 10541793 - Eur Biophys J. 1999;28(7):552-63 10557247 - Plant Physiol. 1999 Nov;121(3):977-986 20159658 - Plant Physiol Biochem. 2010 Jul;48(7):506-12 22899073 - Plant Signal Behav. 2012 Sep 1;7(9):1084-7 19704579 - Plant Signal Behav. 2008 Jun;3(6):401-3 24465010 - J Exp Bot. 2014 Mar;65(5):1271-83 17712568 - Planta. 2007 Dec;227(1):189-97 12354195 - Physiol Plant. 2002 Oct;116(2):192-199 8842215 - Biophys J. 1996 Aug;71(2):769-77 15772667 - Nature. 2005 Mar 17;434(7031):404-8 15532717 - Mol Cell Biochem. 2004 Jul;262(1-2):127-33 12949257 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11116-21 20206537 - Plant Physiol Biochem. 2010 Jul;48(7):547-52 9736703 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5 22711282 - Planta. 2012 Oct;236(4):1261-73 21980172 - Plant Physiol. 2011 Dec;157(4):2167-80 10712547 - Plant Physiol. 2000 Mar;122(3):835-44 20061303 - Plant Cell Physiol. 2010 Mar;51(3):422-34 17905858 - Plant Physiol. 2007 Nov;145(3):1061-72 23624857 - Plant Physiol. 2013 Jun;162(2):940-52 22118620 - Plant Sci. 2012 Jan;182:94-100 24085482 - Ann Bot. 2013 Nov;112(7):1209-21 16431906 - J Biol Chem. 2006 Mar 31;281(13):8991-5 15141069 - Plant Physiol. 2004 May;135(1):231-43 17332417 - J Exp Bot. 2007;58(6):1545-55 21459829 - Mol Plant. 2011 May;4(3):428-41 21796369 - Planta. 2012 Jan;235(1):1-11 19717530 - J Exp Bot. 2009;60(15):4249-62 23333964 - Plant Signal Behav. 2013 Mar;8(3):e23425 23818893 - Front Plant Sci. 2013 Jun 27;4:224 11031236 - Annu Rev Cell Dev Biol. 2000;16:221-41 17965172 - Plant Physiol. 2007 Dec;145(4):1714-25 23574304 - Plant Biol (Stuttg). 2013 May;15(3):426-35 20200489 - Plant Signal Behav. 2010 Mar;5(3):308-10 17467698 - FEBS Lett. 2007 May 15;581(10):1993-9 23967003 - Front Plant Sci. 2013 Aug 14;4:313 18669523 - Plant Cell Physiol. 2008 Sep;49(9):1342-9 16008088 - J Plant Physiol. 2005 Jun;162(6):662-8 19513239 - Plant Signal Behav. 2008 Dec;3(12):1061-6 17251201 - Plant Cell Physiol. 2007 Mar;48(3):434-40 21563365 - New Phytol. 2011 Apr;190(2):289-98 16798942 - Plant Physiol. 2006 Aug;141(4):1653-65 19828463 - Ann Bot. 2010 Jan;105(1):1-6 20410048 - Ann Bot. 2010 Jun;105(7):1081-102 22639615 - Front Plant Sci. 2011 Dec 02;2:85 15563619 - Plant Physiol. 2004 Dec;136(4):4275-84 22000057 - Plant Physiol Biochem. 2011 Nov;49(11):1333-41 11997372 - J Exp Bot. 2002 May;53(372):1237-47 12671068 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5549-54 24218329 - J Exp Bot. 2014 Mar;65(5):1285-96 20145950 - Planta. 2010 Apr;231(5):1025-36 17181775 - Plant J. 2007 Feb;49(3):377-86 19857911 - J Plant Physiol. 2010 Mar 1;167(4):261-9 16666910 - Plant Physiol. 1989 Jul;90(3):988-95 9230104 - Biochem J. 1997 Jul 15;325 ( Pt 2):289-97 17028780 - Biotechnol Lett. 2006 Dec;28(23):1867-76 8756495 - Plant Physiol. 1996 Aug;111(4):1077-83 20592804 - Plant Signal Behav. 2010 Jan;5(1):26-33 11506369 - Planta. 2001 Jul;213(3):457-68 20813578 - Curr Opin Plant Biol. 2010 Oct;13(5):489-94 11080307 - Plant Physiol. 2000 Nov;124(3):1315-26 11537482 - Plant Physiol. 1990 Oct;94(2):406-10 17118338 - Biochem Biophys Res Commun. 2007 Jan 12;352(2):486-90 20728960 - J Plant Physiol. 2011 Mar 1;168(4):317-28 17140566 - FEBS Lett. 2006 Dec 22;580(30):6783-8 9874686 - J Gen Physiol. 1999 Jan;113(1):35-43 17563365 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10726-31 10470372 - Adv Enzyme Regul. 1999;39:157-71 20375061 - J Cell Sci. 2010 May 1;123(Pt 9):1468-79 24506225 - Physiol Plant. 2014 Jul;151(3):257-79 15341627 - Plant J. 2004 Sep;39(6):834-46 11297783 - Plant Sci. 2001 Apr;160(5):869-875 11500563 - Plant Physiol. 2001 Aug;126(4):1646-67 22011340 - OMICS. 2011 Nov;15(11):775-81 17624796 - Plant Physiol Biochem. 2007 Aug;45(8):560-6 11337417 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:817-845 19356940 - Plant Physiol Biochem. 2009 Aug;47(8):710-6 19234674 - Plant Mol Biol. 2009 Jun;70(3):253-64 12456718 - J Cell Sci. 2003 Jan 1;116(Pt 1):81-8 16316973 - J Gen Physiol. 2005 Dec;126(6):541-9 20462936 - Tree Physiol. 2010 Jul;30(7):914-22 16879897 - J Plant Physiol. 2007 Jul;164(7):895-903 24723394 - J Exp Bot. 2014 Jun;65(9):2463-72 10963598 - Nature. 2000 Aug 17;406(6797):731-4 18309082 - Science. 2008 Feb 29;319(5867):1241-4 18594857 - Planta. 2008 Aug;228(3):367-81 19712065 - Plant Cell Environ. 2010 Apr;33(4):453-67 18029350 - J Biol Chem. 2008 Jan 25;283(4):1911-20 11222290 - Biophys J. 2001 Mar;80(3):1262-79 21871871 - Biochem Biophys Res Commun. 2011 Sep 16;413(1):10-6 18724408 - Physiol Plant. 2008 Aug;133(4):651-69 11331938 - J Membr Biol. 2001 May 1;181(1):55-65 16473655 - J Plant Physiol. 2006 Mar;163(5):506-16 20421374 - J Gen Physiol. 2010 May;135(5):495-508 12554709 - J Exp Bot. 2003 Feb;54(383):663-7 12242406 - Plant Cell. 1995 Aug;7(8):1333-1342 17635215 - New Phytol. 2007;175(3):387-404 21893256 - Plant Sci. 2011 Nov;181(5):593-603 23339191 - Tree Physiol. 2013 Jan;33(1):69-80 7969496 - Nature. 1994 Nov 24;372(6504):366-9 10828251 - J Gen Physiol. 2000 Jun;115(6):783-98 8019678 - Eur J Neurosci. 1994 Mar 1;6(3):412-9 23080295 - Transgenic Res. 2013 Jun;22(3):595-605 12244253 - Plant Cell. 1994 May;6(5):669-683 22523205 - Plant Cell. 2012 Apr;24(4):1522-33 22492932 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6343-7 22057326 - Plant Signal Behav. 2011 Nov;6(11):1844-7 23577102 - PLoS One. 2013;8(4):e60325 12481097 - Plant Physiol. 2002 Dec;130(4):2129-41 23031843 - Plant Physiol Biochem. 2012 Dec;61:18-23 24560436 - J Plant Physiol. 2014 May 15;171(9):732-42 19960214 - Amino Acids. 2010 Feb;38(2):623-31 9592086 - J Neurosci. 1998 Jun 1;18(11):4050-62 14706842 - FEBS Lett. 2004 Jan 2;556(1-3):148-52 9916144 - J Membr Biol. 1999 Jan 15;167(2):127-40 20188732 - FEBS Lett. 2010 May 17;584(10):1982-8 22118615 - Plant Sci. 2012 Jan;182:49-58 16667132 - Plant Physiol. 1989 Nov;91(3):1197-201 |
References_xml | – volume: 33 start-page: 453 year: 2010 ident: B98 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.02041.x – volume: 65 start-page: 1285 year: 2014 ident: B100 article-title: Polyamines and programmed cell death publication-title: J. Exp. Bot doi: 10.1093/jxb/ert373 – volume: 27 start-page: 1 year: 2003 ident: B183 article-title: Thellungiella halophila, a salt tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium publication-title: Plant Cell Environ doi: 10.1046/j.0016-8025.2003.01116.x – volume: 3 start-page: 1061 year: 2008 ident: B99 article-title: Plant polyamine catabolism: the state of the art publication-title: Plant Signal. Behav doi: 10.4161/psb.3.12.7172 – volume: 105 start-page: 1081 year: 2010 ident: B26 article-title: Comparative physiology of elemental distributions in plants publication-title: Ann. Bot doi: 10.1093/aob/mcq027 – volume: 48 start-page: 53 year: 2012 ident: B121 article-title: Modulation of polyamine catabolism in pea seedlings by calcium during salinity stress publication-title: Plant Protect. Sci doi: 10.17221/62/2011-PPS – volume: 130 start-page: 2129 year: 2002 ident: B80 article-title: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress publication-title: Plant Physiol doi: 10.1104/pp.008532 – volume: 385 start-page: 289 year: 1997 ident: B188 article-title: Interactions of polyamines with ion channels publication-title: Biochem. J doi: 10.1042/bj3250289 – volume: 141 start-page: 1653 year: 2006 ident: B155 article-title: Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels publication-title: Plant Physiol doi: 10.1104/pp.106.082388 – year: 2014 ident: B122 article-title: Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2013.11.013 – volume: 100 start-page: 11116 year: 2003 ident: B48 article-title: Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1434381100 – volume: 157 start-page: 2167 year: 2011 ident: B205 article-title: Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes publication-title: Plant Physiol doi: 10.1104/pp.111.179671 – volume: 39 start-page: 157 year: 1999 ident: B67 article-title: Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo publication-title: Adv. Enzyme Regul doi: 10.1016/S0065-2571(98)00010-7 – volume: 168 start-page: 583 year: 2005 ident: B143 article-title: Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars publication-title: Plant Sci doi: 10.1016/j.plantsci.2004.08.014 – volume: 147 start-page: 593 year: 1996 ident: B147 article-title: Growth, potassium and polyamine concentrations of Scots pine seedlings in relation to potassium availability under controlled growth conditions publication-title: J. Plant Physiol doi: 10.1016/S0176-1617(96)80051-4 – volume: 104 start-page: 10726 year: 2007 ident: B53 article-title: The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0702595104 – volume: 236 start-page: 1261 year: 2012a ident: B101 article-title: Kinetic and phylogenetic analysis of plant polyamine uptake transporters publication-title: Planta doi: 10.1007/s00425-012-1668-0 – year: 2010 ident: B203 publication-title: Mecanismos De Intercambio De K+ y Ca2+ Em Epidermis De RaÃces Bajo Estrés Salino – volume: 109 start-page: 6343 year: 2012 ident: B46 article-title: Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1121406109 – volume: 329 start-page: 833 year: 1987 ident: B63 article-title: Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles publication-title: Nature doi: 10.1038/329833a0 – volume: 126 start-page: 541 year: 2005 ident: B191 article-title: Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels publication-title: J. Gen. Physiol doi: 10.1085/jgp.200509380 – volume: 39 start-page: 1097 year: 2007 ident: B104 article-title: Salinity-induced changes of free and bound polyamine levels in sunflower (Helianthus annuus L.) roots differing in salt tolerance publication-title: Pakistan J. Bot – volume: 32 start-page: 22 year: 2013 ident: B132 article-title: Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean publication-title: J. Plant Growth Regul doi: 10.1007/s00344-012-9274-8 – volume: 53 start-page: 1237 year: 2002 ident: B108 article-title: Hydrogen peroxide and nitric oxide as signaling molecules in plants publication-title: J. Exp. Bot doi: 10.1093/jexbot/53.372.1237 – volume: 44 start-page: 1167 year: 2002 ident: B168 article-title: Mechanism of the effect of polyamines on the activity of tonoplasts of barley roots under salt stress publication-title: Acta Bot. Sin – volume: 100 start-page: 16 year: 1997 ident: B97 article-title: Calcium ions as second messengers in guard cell signal transduction publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.1997.tb03451.x – volume: 6 start-page: 1844 year: 2011 ident: B174 article-title: Does polyamine catabolism influence root development and xylem differentiation under stress conditions? publication-title: Plant Signal. Behav doi: 10.4161/psb.6.11.17640 – volume: 56 start-page: 167 year: 2008 ident: B201 article-title: Changes in free polyamine concentration induced by salt stress in seedlings of different species publication-title: Plant Growth Regul doi: 10.1007/s10725-008-9298-z – volume: 116 start-page: 81 year: 2003 ident: B32 article-title: Free oxygen radicals regulate plasma membrane Ca2+- and K+- permeable channels in plant root cells publication-title: J. Cell Sci doi: 10.1242/jcs.00201 – year: 2014b ident: B124 article-title: Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots publication-title: J. Exp. Bot doi: 10.1093/jxb/eru133 – volume: 92 start-page: 19 year: 2013 ident: B60 article-title: Sodium homeostasis and salt tolerance of plants publication-title: Env. Exp. Bot doi: 10.1016/j.envexpbot.2013.03.001 – volume: 48 start-page: 506 year: 2010 ident: B69 article-title: Characteristics of cellular polyamine transport in prokaryotes and eukaryotes publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2010.01.017 – volume: 54 start-page: 145 year: 2010 ident: B23 article-title: Effects of exogenous spermine on sweet sorghum during germination under salinity publication-title: Biol. Plant doi: 10.1007/s10535-010-0023-1 – volume: 182 start-page: 49 year: 2012 ident: B27 article-title: Effect of heat stress on polyannine metabolism in proline-over-producing tobacco plants publication-title: Plant Sci doi: 10.1016/j.plantsci.2011.01.016 – volume: 163 start-page: 506 year: 2006 ident: B106 article-title: Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2005.04.034 – volume: 40 start-page: 89 year: 2003 ident: B113 article-title: Effects of putrescine and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves publication-title: Plant Growth Regul doi: 10.1023/A:1023078819935 – volume: 142 start-page: 94 year: 1993 ident: B135 article-title: Effect of K+ ions on polyamine levels in wheat seedlings under anoxia publication-title: J. Plant Physiol doi: 10.1016/S0176-1617(11)80113-6 – volume: 181 start-page: 55 year: 2001 ident: B126 article-title: Conduction of monovalent and divalent cations in the slow vacuolar channel publication-title: J. Membr. Biol doi: 10.1007/s002320010007 – volume: 352 start-page: 486 year: 2007 ident: B194 article-title: A protective role for the polyamine spermine against drought stress in Arabidopsis publication-title: Biochem. Biophys. Res. Commun doi: 10.1016/j.bbrc.2006.11.041 – volume: 29 start-page: 295 year: 2010 ident: B169 article-title: Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0822-z – volume: 235 start-page: 1 year: 2012b ident: B102 article-title: Functional analysis of OsPUT1, a rice polyamine uptake transporter publication-title: Planta doi: 10.1007/s00425-011-1486-9 – volume: 6 start-page: 669 year: 1994 ident: B186 article-title: Calcium-activated K+ channels and calcium-induced calcium-release by slow vacuolar ion channels in guard-cell vacuoles implicated in the control of stomatal closure publication-title: Plant Cell doi: 10.2307/3869871 – volume: 164 start-page: 727 year: 2003 ident: B184 article-title: Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene publication-title: Plant Sci doi: 10.1016/S0168-9452(03)00030-X – volume: 95 start-page: 11140 year: 1998 ident: B57 article-title: The natural polyamine spermine functions directly as a free radical scavenger publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.95.19.11140 – volume: 291 start-page: 225 year: 2007 ident: B107 article-title: Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl publication-title: Plant Soil doi: 10.1007/s11104-006-9188-y – volume: 113 start-page: 35 year: 1999 ident: B93 article-title: Blockade of a retinal cGMP-gated channel by polyamines publication-title: J. Gen. Physiol doi: 10.1085/jgp.113.1.35 – volume: 80 start-page: 1262 year: 2001 ident: B66 article-title: Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel publication-title: Biophys. J doi: 10.1016/S0006-3495(01)76102-4 – volume: 213 start-page: 457 year: 2001 ident: B21 article-title: Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris publication-title: Planta doi: 10.1007/s004250100519 – volume: 123 start-page: 1468 year: 2010 ident: B30 article-title: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death publication-title: J. Cell Sci doi: 10.1242/jcs.064352 – volume: 167 start-page: 127 year: 1999a ident: B37 article-title: Inhibition of vacuolar ion channels by polyamines publication-title: J. Membr. Biol doi: 10.1007/s002329900477 – volume: 60 start-page: 13 year: 2010 ident: B54 article-title: Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress publication-title: Plant Growth Regul doi: 10.1007/s10725-009-9414-8 – volume: 46 start-page: 119 year: 2005 ident: B88 article-title: The protective effects of cobalt on potato seedling leaves during osmotic stress publication-title: Bot. Bull. Acad. Sinica – volume: 262 start-page: 127 year: 2004 ident: B28 article-title: Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines publication-title: Mol. Cell. Biochem doi: 10.1023/B:MCBI.0000038227.91813.79 – volume: 99 start-page: 529 year: 1997 ident: B45 article-title: Growth, membrane potential and endogenous ion currents of willow (Salix viminalis) roots are all affected by abscisic acid and spermine publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.1997.tb05353.x – volume: 60 start-page: 4249 year: 2009 ident: B140 article-title: Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress publication-title: J. Exp. Bot doi: 10.1093/jxb/erp256 – volume: 132 start-page: 452 year: 2008 ident: B7 article-title: Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.2007.01029.x – volume-title: Mineral Nutrition of Higher Plants year: 1995 ident: B95 – volume: 17 start-page: 119 year: 1997 ident: B197 article-title: Tolerance to salt stress in maize callus lines with different polyamine content publication-title: Plant Cell Rep doi: 10.1007/s002990050363 – volume: 372 start-page: 366 year: 1994 ident: B92 article-title: Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification publication-title: Nature doi: 10.1038/372366a0 – year: 2013 ident: B180 publication-title: Remodelación del Transporte Membranal por Especies Reactivas de OxÃgeno y Poliaminas en Tejido Radicular – volume: 65 start-page: 1271 year: 2014a ident: B123 article-title: Cross-talk between ROS and polyamines in regulation of ion transport across plasma membrane: implications for plant adaptive responses publication-title: J. Exp. Bot doi: 10.1093/jxb/ert423 – volume: 33 start-page: 69 year: 2013 ident: B29 article-title: Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought publication-title: Tree Physiol doi: 10.1093/treephys/tps125 – volume: 57 start-page: 648 year: 2010 ident: B74 article-title: Effect of root-applied spermidine on growth and respiratory metabolism in roots of cucumber (Cucumis sativus) seedlings under hypoxia publication-title: Russ. J. Plant Physiol doi: 10.1134/S1021443710050079 – volume: 49 start-page: 377 year: 2007 ident: B33 article-title: Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02971.x – volume: 5 start-page: 26 year: 2010 ident: B51 article-title: Polyamines and abiotic stress tolerance in plants publication-title: Plant Signal. Behav doi: 10.4161/psb.5.1.10291 – volume: 447 start-page: 455 year: 1997 ident: B75 article-title: Studies of non-ionic osmotic stress on bean (Phaseolus vulgaris L) callus and seedlings cultures publication-title: Acta Hortic doi: 10.17660/ActaHortic.1997.447.90 – volume: 145 start-page: 1061 year: 2007 ident: B206 article-title: Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities publication-title: Plant Physiol doi: 10.1104/pp.107.105882 – volume: 145 start-page: 83 year: 1999 ident: B9 article-title: Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs publication-title: Plant Sci doi: 10.1016/S0168-9452(99)00071-0 – volume: 105 start-page: 1 year: 2010 ident: B170 article-title: Polyamines: ubiquitous polycations with unique roles in growth and stress responses publication-title: Ann. Bot doi: 10.1093/aob/mcp259 – volume: 58 start-page: 1559 year: 2007 ident: B129 article-title: Vacuolar calcium channels publication-title: J. Exp. Bot doi: 10.1093/jxb/erm035 – volume: 60 start-page: 200 year: 2013 ident: B160 article-title: Effects of abscisic acid on the contents of polyamines and proline in common bean plants under salt stress publication-title: Russ. J. Plant Physiol doi: 10.1134/S102144371301007X – volume: 16 start-page: 221 year: 2000 ident: B13 article-title: Cellular signaling and volume control in stomatal movements in plants publication-title: Annu. Rev. Cell Dev. Biol doi: 10.1146/annurev.cellbio.16.1.221 – volume: 36 start-page: 1765 year: 2013b ident: B159 article-title: Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress publication-title: J. Plant Nutr doi: 10.1080/01904167.2013.807823 – volume: 283 start-page: 1911 year: 2008 ident: B59 article-title: Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts publication-title: J. Biol. Chem doi: 10.1074/jbc.M708213200 – volume: 57 start-page: 422 year: 2010 ident: B134 article-title: Proline controls the level of polyamines in common sage plants under normal conditions and at UV-B irradiation publication-title: Russ. J. Plant Physiol doi: 10.1134/S1021443710030155 – volume: 133 start-page: 651 year: 2008 ident: B152 article-title: Potassium transport and plant salt tolerance publication-title: Physiol. Plantar doi: 10.1111/j.1399-3054.2007.01008.x – volume: 105 start-page: 999 year: 1994 ident: B5 article-title: A cationic channel in the guard cell tonoplast of Allium cepa publication-title: Plant Physiol doi: 10.1104/pp.105.3.999 – volume: 8 start-page: 1 year: 2013 ident: B41 article-title: Polyamines: potent modulators of plant responses to stress publication-title: J. Plant Int doi: 10.1080/17429145.2012.716455 – volume: 151 start-page: 109 year: 2001 ident: B111 article-title: Calcium-based signalling systems in guard cells publication-title: New Phytol doi: 10.1046/j.1469-8137.2001.00152.x – volume: 580 start-page: 6783 year: 2006 ident: B193 article-title: The polyamine spermine protects against high salt stress in Arabidopsis thaliana publication-title: FEBS Lett doi: 10.1016/j.febslet.2006.10.078 – volume: 76 start-page: 295 year: 1989 ident: B44 article-title: The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.1989.tb06194.x – volume: 15 start-page: 775 year: 2011 ident: B94 article-title: Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers publication-title: OMICS doi: 10.1089/omi.2011.0084 – volume: 60 start-page: 37 year: 2002 ident: B128 article-title: Higher plant vacuolar ionic transport in the cellular context publication-title: Acta Bot. Mex doi: 10.21829/abm60.2002.902 – volume: 46 start-page: 31 year: 2005 ident: B172 article-title: Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine publication-title: Plant Growth Regul doi: 10.1007/s10725-005-6395-0 – volume: 56 start-page: 808 year: 2009 ident: B165 article-title: Organ-specific changes in the content of free and conjugated polyamines in Mesembryanthemum crystallinum plants under salinity publication-title: Russ. J. Plant Physiol doi: 10.1134/S1021443709060107 – volume: 28 start-page: 1867 year: 2006 ident: B2 article-title: Involvement of polyamines in plant response to abiotic stress publication-title: Biotech. Lett doi: 10.1007/s10529-006-9179-3 – volume: 8 start-page: e23425 year: 2013 ident: B139 article-title: Transition metals: a double edge sword in ROS generation and signaling publication-title: Plant Signal. Behav doi: 10.4161/psb.23425 – volume: 8 start-page: e60325 year: 2013 ident: B36 article-title: Dissecting rice polyamine metabolism under controlled long-term drought stress publication-title: PLoS ONE doi: 10.1371/journal.pone.0060325 – volume: 90 start-page: 988 year: 1989 ident: B35 article-title: Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seedlings publication-title: Plant Physiol doi: 10.1104/pp.90.3.988 – volume: 6 start-page: 412 year: 1994 ident: B39 article-title: Intracellular action of spermine on neuronal Ca2+ and K+ currents publication-title: Eur. J. Neurosci doi: 10.1111/j.1460-9568.1994.tb00284.x – volume: 25 start-page: 337 year: 2003 ident: B81 article-title: Polyamines and scavenging system: influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamine level in barley leaves under water deficit publication-title: Acta Physiol. Plant doi: 10.1007/s11738-003-0014-3 – volume: 253 start-page: 1 year: 2003 ident: B148 article-title: Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats publication-title: Plant Soil doi: 10.1023/A:1024573305997 – volume: 13 start-page: 489 year: 2010 ident: B10 article-title: Life in the balance: a signaling network controlling survival of flooding publication-title: Curr. Opin. Plant Biol doi: 10.1016/j.pbi.2010.08.002 – volume: 162 start-page: 662 year: 2005 ident: B87 article-title: Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2004.08.009 – volume: 164 start-page: 557 year: 2003 ident: B200 article-title: Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination publication-title: Plant Sci doi: 10.1016/S0168-9452(03)00005-0 – volume: 24 start-page: 1522 year: 2012 ident: B86 article-title: Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells publication-title: Plant Cell doi: 10.1105/tpc.112.097881 – volume: 228 start-page: 367 year: 2008 ident: B85 article-title: Polyamines: essential factors for growth and survival publication-title: Planta doi: 10.1007/s00425-008-0772-7 – volume: 190 start-page: 289 year: 2011 ident: B149 article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03575.x – volume: 44 start-page: 543 year: 1997 ident: B12 article-title: Elongation growth in the absence of oxygen: the rice coleoptile publication-title: Russ. J. Plant Physiol – volume: 556 start-page: 148 year: 2004 ident: B70 article-title: Spermine is not essential for survival of Arabidopsis publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)01395-4 – volume: 7 start-page: 1333 year: 1995 ident: B78 article-title: Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean publication-title: Plant Cell doi: 10.1105/tpc.7.8.1333 – volume: 47 start-page: 346 year: 2006 ident: B176 article-title: Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings publication-title: Plant Cell Physiol doi: 10.1093/pcp/pci252 – volume: 168 start-page: 317 year: 2011 ident: B144 article-title: Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2010.07.009 – volume: 49 start-page: 119 year: 2006 ident: B90 article-title: Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots publication-title: Plant Growth Regul doi: 10.1007/s10725-006-9001-1 – volume: 52 start-page: 29 year: 2005 ident: B103 article-title: Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance publication-title: Russ. J. Plant Physiol doi: 10.1007/s11183-005-0005-x – volume: 56 start-page: 757 year: 2012 ident: B8 article-title: Putrescine modulates antioxidant defense response in wheat under high temperature stress publication-title: Biol. Plant doi: 10.1007/s10535-012-0209-1 – volume: 22 start-page: 595 year: 2013 ident: B146 article-title: The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes publication-title: Transgenic Res doi: 10.1007/s11248-012-9666-3 – volume: 182 start-page: 94 year: 2012 ident: B4 article-title: New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress publication-title: Plant Sci doi: 10.1016/j.plantsci.2011.03.013 – volume: 31 start-page: 417 year: 1992 ident: B138 article-title: Plasmalemma ATPase in rice coleoptiles: stimulation by putrescine and polyamines publication-title: Phytochemistry doi: 10.1016/0031-9422(92)90009-F – volume: 319 start-page: 1241 year: 2008 ident: B171 article-title: Local positive feedback regulation determines cell shape in root hair cells publication-title: Science doi: 10.1126/science.1152505 – volume: 167 start-page: 261 year: 2010 ident: B73 article-title: The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2009.09.010 – volume: 32 start-page: 263 year: 2010 ident: B131 article-title: Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco publication-title: Acta Physiol. Plant doi: 10.1007/s11738-009-0403-3 – volume: 584 start-page: 1982 year: 2010 ident: B72 article-title: Vacuolar ion channels: role in plant nutrition and signaling publication-title: FEBS Lett doi: 10.1016/j.febslet.2010.02.050 – volume: 126 start-page: 1646 year: 2001 ident: B96 article-title: Phylogenetic relationships within cation transporter families of Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.126.4.1646 – volume: 45 start-page: 560 year: 2007 ident: B192 article-title: Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diarnine oxidases in Glycine max (L.) Merr. roots publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2007.05.007 – volume: 124 start-page: 1315 year: 2000 ident: B91 article-title: Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements publication-title: Plant Physiol doi: 10.1104/pp.124.3.1315 – volume: 2 start-page: 168 year: 2000 ident: B11 article-title: H+ fluxes at plasmalemma level: in vivo evidence for a significant contribution of the Ca2+-ATPase and for the involvements of its activity in the abscisic acid-induced changes in Egeria densa leaves publication-title: Plant Boil doi: 10.1055/s-2000-9158 – volume: 135 start-page: 495 year: 2010 ident: B84 article-title: Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1 publication-title: J. Gen. Physiol doi: 10.1085/jgp.200910253 – volume: 281 start-page: 8991 year: 2006 ident: B1 article-title: Polyamines are potent ligands for the capsaicin receptor TRPV1 publication-title: J. Biol. Chem doi: 10.1074/jbc.M513429200 – volume: 50 start-page: 1547 year: 1999b ident: B20 article-title: Cytoplasmic magnesium regulates the fast activating vacuolar cation channel publication-title: J. Exp. Bot doi: 10.1093/jxb/50.339.1547 – year: 2014 ident: B157 article-title: Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance publication-title: Physiol. Plantar doi: 10.1111/ppl.12165 – volume: 12 start-page: 1387 year: 1997 ident: B130 article-title: Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release publication-title: Plant J doi: 10.1046/j.1365-313x.1997.12061387.x – volume: 42 start-page: 97 year: 2004 ident: B207 article-title: Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings publication-title: Plant Growth Regul doi: 10.1023/B:GROW.0000017478.40445.bc – start-page: 59 volume-title: Plant Stress Physiology year: 2012 ident: B156 article-title: Salinity stress: physiological constraints and adaptive mechanisms doi: 10.1079/9781845939953.0059 – volume: 100 start-page: 5549 year: 2003 ident: B65 article-title: The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0733970100 – volume: 128 start-page: 379 year: 2002 ident: B34 article-title: Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots publication-title: Plant Physiol doi: 10.1104/pp.010524 – volume: 59 start-page: 757 year: 2012 ident: B116 article-title: Modulation of polyamine levels in ginseng hairy root cultures subjected to salt stress publication-title: Russ. J. Plant Physiol doi: 10.1134/S102144371206012X – volume: 160 start-page: 869 year: 2001 ident: B142 article-title: Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice publication-title: Plant Sci doi: 10.1016/S0168-9452(01)00337-5 – volume: 175 start-page: 387 year: 2007 ident: B31 article-title: Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02128.x – volume: 52 start-page: 215 year: 2010 ident: B64 article-title: Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain publication-title: J. Cereal Sci doi: 10.1016/j.jcs.2010.05.009 – volume: 35 start-page: 337 year: 2008 ident: B163 article-title: Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction publication-title: Funct. Plant Biol doi: 10.1071/FP08029 – volume: 49 start-page: 1342 year: 2008 ident: B76 article-title: Thermospermine is required for stem elongation in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcn109 – volume: 406 start-page: 731 year: 2000 ident: B117a article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells publication-title: Nature doi: 10.1038/35021067 – volume: 121 start-page: 977 year: 1999 ident: B117 article-title: Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles publication-title: Plant Physiol doi: 10.1104/pp.121.3.977 – volume: 35 start-page: 2015 year: 2013 ident: B56 article-title: Plant polyamines in abiotic stress responses publication-title: Acta Physiol. Plant doi: 10.1007/s11738-013-1239-4 – volume: 4 start-page: 428 year: 2011 ident: B62 article-title: TPC1-SV channels gain shape publication-title: Mol. Plant doi: 10.1093/mp/ssr017 – volume: 165 start-page: 397 year: 2008 ident: B83 article-title: Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2007.02.005 – volume: 38 start-page: 623 year: 2010 ident: B79 article-title: Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat publication-title: Amino Acids doi: 10.1007/s00726-009-0423-8 – volume: 53 start-page: 739 year: 2006 ident: B161 article-title: Stress-dependent accumulation of spermidine and spermine in the halophyte Mesembryanthemum crystallinum under salinity conditions publication-title: Russ. J. Plant Physiol doi: 10.1134/S1021443706060021 – volume: 168 start-page: 1599 year: 2005 ident: B89 article-title: Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.01.024 – volume: 54 start-page: 730 year: 2010 ident: B178 article-title: Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid publication-title: Biol. Plant doi: 10.1007/s10535-010-0130-z – volume: 50 start-page: 873 year: 1999a ident: B19 article-title: Selectivity of the fast activating vacuolar cation channel publication-title: J. Exp. Bot – volume: 413 start-page: 10 year: 2011 ident: B185 article-title: Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination publication-title: Biochem. Biophys. Res. Commun doi: 10.1016/j.bbrc.2011.08.015 – volume: 87 start-page: 514 year: 1988 ident: B120 article-title: Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles publication-title: Plant Physiol doi: 10.1104/pp.87.2.514 – volume: 162 start-page: 569 year: 2002 ident: B110 article-title: Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize publication-title: Plant Sci doi: 10.1016/S0168-9452(01)00593-3 – volume: 122 start-page: 835 year: 2000 ident: B77 article-title: Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley publication-title: Plant Physiol doi: 10.1104/pp.122.3.835 – volume-title: Plant Stress Physiology year: 2012 ident: B150 doi: 10.1079/9781845939953.0000 – volume: 145 start-page: 1714 year: 2007 ident: B25 article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley publication-title: Plant Physiol doi: 10.1104/pp.107.110262 – volume: 4 start-page: 746 year: 2002 ident: B50 article-title: Physiological comparisons among four related Bromus species with varying ecological amplitude: polyamine and aromatic amine composition in response to salt spray and drought publication-title: Plant Biol doi: 10.1055/s-2002-37401 – volume: 86 start-page: 52 year: 2013 ident: B40 article-title: Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content publication-title: Env. Exp. Bot doi: 10.1016/j.envexpbot.2010.09.007 – volume: 62 start-page: 28 year: 2008 ident: B88a article-title: Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots publication-title: Environ. Exp. Bot doi: 10.1016/j.envexpbot.2007.07.002 – volume: 58 start-page: 1545 year: 2007 ident: B195 article-title: Involvement of polyamines in the drought resistance of rice publication-title: J. Exp. Bot doi: 10.1093/jxb/erm032 – volume: 2 issue: 85 year: 2011 ident: B15 article-title: Calcium efflux systems in stress signalling and adaptation in plants publication-title: Front. Plant Sci doi: 10.3389/fpls.2011.00085 – volume: 112 start-page: 1209 year: 2013 ident: B151 article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops publication-title: Ann. Bot doi: 10.1093/aob/mct205 – volume: 47 start-page: 710 year: 2009 ident: B196 article-title: Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2009.03.007 – volume: 53 start-page: 97 year: 2007 ident: B199 article-title: Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species publication-title: Plant Growth Regul doi: 10.1007/s10725-007-9207-x – volume: 25 start-page: 69 year: 2003 ident: B167 article-title: Influence of putrescine on anthocyanin production in callus cultures of Daucus carota mediated through calcium ATPase publication-title: Acta Physiol. Plantar doi: 10.1007/s11738-003-0038-8 – volume: 135 start-page: 231 year: 2004 ident: B17 article-title: Plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells involves reduction of proton pumping in addition to anion channel activation which are both Ca2+ dependent publication-title: Plant Physiol doi: 10.1104/pp.104.039255 – volume: 136 start-page: 4275 year: 2004 ident: B164 article-title: Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells publication-title: Plant Physiol doi: 10.1104/pp.104.050344 – volume: 4 issue: 313 year: 2013 ident: B202 article-title: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity publication-title: Front. Plant Sci doi: 10.3389/fpls.2013.00313 – volume: 167 start-page: 519 year: 2010 ident: B175 article-title: Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2009.10.022 – volume: 5 start-page: 308 year: 2010 ident: B112 article-title: Polyamines and jasmonic acid induce plasma membrane potential variations in Lima bean publication-title: Plant Signal. Behav doi: 10.4161/psb.5.3.10848 – volume: 49 start-page: 1333 year: 2011 ident: B145 article-title: Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2011.08.005 – volume: 181 start-page: 593 year: 2011 ident: B189 article-title: Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses publication-title: Plant Sci doi: 10.1016/j.plantsci.2011.04.002 – volume: 94 start-page: 406 year: 1990 ident: B47 article-title: Polyamines in plant physiology publication-title: Plant Physiol doi: 10.1104/pp.94.2.406 – volume: 71 start-page: 769 year: 1996 ident: B177 article-title: Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines publication-title: Biophys. J doi: 10.1016/S0006-3495(96)79276-7 – volume: 231 start-page: 1025 year: 2010 ident: B198 article-title: Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation publication-title: Planta doi: 10.1007/s00425-010-1106-0 – volume: 30 start-page: 914 year: 2010 ident: B162 article-title: Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response publication-title: Tree Physiol doi: 10.1093/treephys/tpq030 – volume: 83 start-page: 145 year: 2012 ident: B6 article-title: Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress publication-title: S. Afr. J. Bot doi: 10.1016/j.sajb.2012.08.009 – volume: 56 start-page: 323 year: 2009 ident: B133 article-title: Homeostasis of polyamines and antioxidant systems in roots and leaves of Plantago major under salt stress publication-title: Russ. J. Plant Physiol doi: 10.1134/S1021443709030042 – volume: 52 start-page: 817 year: 2001 ident: B114 article-title: Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol doi: 10.1146/annurev.arplant.52.1.817 – volume: 52 start-page: 796 year: 2008 ident: B166 article-title: Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity publication-title: Biol. Plant doi: 10.1007/s10535-008-0156-7 – volume: 1757 start-page: 821 year: 2006 ident: B71 article-title: Putrescine stimulates chemiosmotic ATP synthesis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2006.05.034 – volume: 581 start-page: 1993 year: 2007a ident: B153 article-title: Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.04.032 – volume: 49 start-page: 147 year: 2006 ident: B209 article-title: New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings publication-title: Plant Growth Regul doi: 10.1007/s10725-006-9004-y – volume: 45 start-page: 295 year: 2003 ident: B208 article-title: Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings publication-title: Acta Bot. Sin – volume: 28 start-page: 27 year: 2006 ident: B82 article-title: Exogenous spermidine alters in different way membrane permeability and lipid peroxidation in water stressed barley leaves publication-title: Acta Physiol. Plant doi: 10.1007/s11738-006-0065-3 – volume: 115 start-page: 783 year: 2000 ident: B55a article-title: Mechanism of cGMP-gated channel block by intracellular polyamines publication-title: J. Gen. Physiol doi: 10.1085/jgp.115.6.783 – volume: 48 start-page: 434 year: 2007 ident: B49 article-title: Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcm010 – volume: 102 start-page: 121 year: 1994 ident: B136 article-title: Changes in polyamine metabolism in seedlings of 3 wheat (Triticum aestivum L) cultivars differing in salt sensitivity publication-title: Plant Sci doi: 10.1016/0168-9452(94)90028-0 – volume: 3 start-page: 401 year: 2008 ident: B204 article-title: Na+-K+ transport in roots under salt stress publication-title: Plant Signal. Behav doi: 10.4161/psb.3.6.5429 – volume: 196 start-page: 336 year: 2010 ident: B43 article-title: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice publication-title: J. Agron. Crop Sci. Z. Acker Pflanzenbau doi: 10.1111/j.1439-037X.2010.00422.x – volume: 94 start-page: 347 year: 1998 ident: B179 article-title: Changes in free proline concentrations and polyamine levels in potato leaves during drought stress publication-title: S. Afr. J. Sci – volume: 143 start-page: 102 year: 1994 ident: B68 article-title: Role of abscisic acid, ethylene and polyamines in flooding-promoted senescence of tobacco-leaves publication-title: J. Plant Physiol doi: 10.1016/S0176-1617(11)82104-8 – volume: 162 start-page: 940 year: 2013 ident: B14 article-title: Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa publication-title: Plant Physiol doi: 10.1104/pp.113.216572 – volume: 31 start-page: 937 year: 2009 ident: B42 article-title: Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties publication-title: Acta Physiol. Plant doi: 10.1007/s11738-009-0307-2 – volume: 11 start-page: 1059 year: 1997 ident: B173 article-title: Fast-activating cation channel in barley mesophyll vacuoles: inhibition by calcium publication-title: Plant J doi: 10.1046/j.1365-313X.1997.11051059.x – volume: 48 start-page: 547 year: 2010 ident: B3 article-title: Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2010.02.002 – volume: 164 start-page: 895 year: 2007 ident: B141 article-title: Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2006.05.003 – volume: 51 start-page: 422 year: 2010 ident: B115 article-title: Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcq007 – volume: 54 start-page: 663 year: 2003 ident: B127 article-title: Potassium-selective channel in the red beet vacuolar membrane publication-title: J. Exp. Bot doi: 10.1093/jxb/erg067 – volume: 227 start-page: 189 year: 2007b ident: B154 article-title: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress publication-title: Planta doi: 10.1007/s00425-007-0606-z – volume: 116 start-page: 192 year: 2002 ident: B24 article-title: Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants publication-title: Physiol. Plant doi: 10.1034/j.1399-3054.2002.1160208.x – volume: 18 start-page: 4050 year: 1998 ident: B58 article-title: Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.18-11-04050.1998 – volume: 111 start-page: 1077 year: 1996 ident: B187 article-title: Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress publication-title: Plant Physiol doi: 10.1104/pp.111.4.1077 – volume: 16 start-page: 101 year: 1998 ident: B18 article-title: Cytoplasmic polyamines block the fast activating vacuolar cation channel publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00274.x – volume: 101 start-page: 7 year: 1988 ident: B61 article-title: General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps publication-title: Bot. Acta doi: 10.1111/j.1438-8677.1988.tb00003.x – volume: 168 start-page: 541 year: 2005 ident: B65a article-title: Drought and salinity: a comparison of their effects on the mineral nutrition in plants publication-title: J. Plant Nutr. Soil. Sci doi: 10.1002/jpln.200420516 – volume: 434 start-page: 404 year: 2005 ident: B118 article-title: The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement publication-title: Nature doi: 10.1038/nature03381 – volume: 15 start-page: 426 year: 2013 ident: B182 article-title: Ethylene - and oxygen signalling - drive plant survival during flooding publication-title: Plant Biol doi: 10.1111/plb.12014 – volume: 100 start-page: 782 year: 2000 ident: B87a article-title: Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses publication-title: Theor. Appl. Genet doi: 10.1007/s001220051352 – volume: 28 start-page: 33 year: 2011 ident: B109 article-title: Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants publication-title: Plant Biotech doi: 10.5511/plantbiotechnology.10.1013a – volume: 91 start-page: 1197 year: 1989 ident: B137 article-title: Polyamines in rice seedlings under oxygen-deficit stress publication-title: Plant Physiol doi: 10.1104/pp.91.3.1197 – volume: 36 start-page: 254 year: 2010 ident: B190 article-title: Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings publication-title: Science Asia doi: 10.2306/scienceasia1513-1874.2010.36.254 – volume: 6 start-page: 1656 year: 2011 ident: B52 article-title: Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity—another role for TPC1? publication-title: Plant Signal. Behav doi: 10.4161/psb.6.11.17797 – volume: 7 start-page: 1084 year: 2012 ident: B125 article-title: Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots publication-title: Plant Signal. Behav doi: 10.4161/psb.21185 – volume: 69 start-page: 177 year: 2013 ident: B55 article-title: Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after short-term PEG- and NaCl-induced stresses publication-title: Plant Growth Regul doi: 10.1007/s10725-012-9760-9 – volume: 28 start-page: 552 year: 1999b ident: B38 article-title: Asymmetric block of the plant vacuolar Ca2+ permeable channel by organic cations publication-title: Eur. Biophys. J doi: 10.1007/s002490050237 – volume: 70 start-page: 253 year: 2009 ident: B119 article-title: Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase publication-title: Plant Mol. Biol doi: 10.1007/s11103-009-9470-5 – volume: 61 start-page: 18 year: 2012 ident: B181 article-title: Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2012.09.002 – volume: 191 start-page: 450 year: 2005 ident: B105 article-title: Water stress-induced injury to reproductive phase in chickpea: Evaluation of stress sensitivity in wild and cultivated species in relation to abscisic acid and polyamines publication-title: J. Agron. Crop Sci. Z. Acker Pflanzenbau doi: 10.1111/j.1439-037X.2005.00184.x – volume: 39 start-page: 834 year: 2004 ident: B22 article-title: Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02177.x – volume: 4 issue: 224 year: 2013a ident: B158 article-title: The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana publication-title: Front. Plant Sci doi: 10.3389/fpls.2013.00224 – volume: 109 start-page: 428 year: 2000 ident: B16 article-title: Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity publication-title: Physiol. Plant doi: 10.1034/j.1399-3054.2000.100409.x – reference: 17355948 - J Exp Bot. 2007;58(7):1559-69 – reference: 12949257 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11116-21 – reference: 10963598 - Nature. 2000 Aug 17;406(6797):731-4 – reference: 19704579 - Plant Signal Behav. 2008 Jun;3(6):401-3 – reference: 22118620 - Plant Sci. 2012 Jan;182:94-100 – reference: 20421374 - J Gen Physiol. 2010 May;135(5):495-508 – reference: 16473655 - J Plant Physiol. 2006 Mar;163(5):506-16 – reference: 17658660 - J Plant Physiol. 2008 Mar 13;165(4):397-406 – reference: 11331938 - J Membr Biol. 2001 May 1;181(1):55-65 – reference: 9736703 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5 – reference: 10557247 - Plant Physiol. 1999 Nov;121(3):977-986 – reference: 12554709 - J Exp Bot. 2003 Feb;54(383):663-7 – reference: 23577102 - PLoS One. 2013;8(4):e60325 – reference: 17965172 - Plant Physiol. 2007 Dec;145(4):1714-25 – reference: 22000057 - Plant Physiol Biochem. 2011 Nov;49(11):1333-41 – reference: 24506225 - Physiol Plant. 2014 Jul;151(3):257-79 – reference: 20410048 - Ann Bot. 2010 Jun;105(7):1081-102 – reference: 20061303 - Plant Cell Physiol. 2010 Mar;51(3):422-34 – reference: 23333964 - Plant Signal Behav. 2013 Mar;8(3):e23425 – reference: 12456718 - J Cell Sci. 2003 Jan 1;116(Pt 1):81-8 – reference: 10712547 - Plant Physiol. 2000 Mar;122(3):835-44 – reference: 10470372 - Adv Enzyme Regul. 1999;39:157-71 – reference: 16879897 - J Plant Physiol. 2007 Jul;164(7):895-903 – reference: 12232260 - Plant Physiol. 1994 Jul;105(3):999-1006 – reference: 17635215 - New Phytol. 2007;175(3):387-404 – reference: 18333999 - Physiol Plant. 2008 Apr;132(4):452-66 – reference: 23031843 - Plant Physiol Biochem. 2012 Dec;61:18-23 – reference: 20206537 - Plant Physiol Biochem. 2010 Jul;48(7):547-52 – reference: 9916144 - J Membr Biol. 1999 Jan 15;167(2):127-40 – reference: 21563365 - New Phytol. 2011 Apr;190(2):289-98 – reference: 9230104 - Biochem J. 1997 Jul 15;325 ( Pt 2):289-97 – reference: 24560436 - J Plant Physiol. 2014 May 15;171(9):732-42 – reference: 22492932 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6343-7 – reference: 20087595 - Plant Cell Rep. 2010 Mar;29(3):295-305 – reference: 20813578 - Curr Opin Plant Biol. 2010 Oct;13(5):489-94 – reference: 11031236 - Annu Rev Cell Dev Biol. 2000;16:221-41 – reference: 18669523 - Plant Cell Physiol. 2008 Sep;49(9):1342-9 – reference: 16666910 - Plant Physiol. 1989 Jul;90(3):988-95 – reference: 19960214 - Amino Acids. 2010 Feb;38(2):623-31 – reference: 22523205 - Plant Cell. 2012 Apr;24(4):1522-33 – reference: 22899073 - Plant Signal Behav. 2012 Sep 1;7(9):1084-7 – reference: 24723394 - J Exp Bot. 2014 Jun;65(9):2463-72 – reference: 18594857 - Planta. 2008 Aug;228(3):367-81 – reference: 12242406 - Plant Cell. 1995 Aug;7(8):1333-1342 – reference: 19717530 - J Exp Bot. 2009;60(15):4249-62 – reference: 11222290 - Biophys J. 2001 Mar;80(3):1262-79 – reference: 21871871 - Biochem Biophys Res Commun. 2011 Sep 16;413(1):10-6 – reference: 12354195 - Physiol Plant. 2002 Oct;116(2):192-199 – reference: 20728960 - J Plant Physiol. 2011 Mar 1;168(4):317-28 – reference: 19234674 - Plant Mol Biol. 2009 Jun;70(3):253-64 – reference: 20200489 - Plant Signal Behav. 2010 Mar;5(3):308-10 – reference: 20462936 - Tree Physiol. 2010 Jul;30(7):914-22 – reference: 23339191 - Tree Physiol. 2013 Jan;33(1):69-80 – reference: 17028780 - Biotechnol Lett. 2006 Dec;28(23):1867-76 – reference: 12671068 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5549-54 – reference: 16798942 - Plant Physiol. 2006 Aug;141(4):1653-65 – reference: 23574304 - Plant Biol (Stuttg). 2013 May;15(3):426-35 – reference: 7969496 - Nature. 1994 Nov 24;372(6504):366-9 – reference: 17181775 - Plant J. 2007 Feb;49(3):377-86 – reference: 20188732 - FEBS Lett. 2010 May 17;584(10):1982-8 – reference: 16431906 - J Biol Chem. 2006 Mar 31;281(13):8991-5 – reference: 20592804 - Plant Signal Behav. 2010 Jan;5(1):26-33 – reference: 23967003 - Front Plant Sci. 2013 Aug 14;4:313 – reference: 17251201 - Plant Cell Physiol. 2007 Mar;48(3):434-40 – reference: 19857911 - J Plant Physiol. 2010 Mar 1;167(4):261-9 – reference: 21980172 - Plant Physiol. 2011 Dec;157(4):2167-80 – reference: 24218329 - J Exp Bot. 2014 Mar;65(5):1285-96 – reference: 24085482 - Ann Bot. 2013 Nov;112(7):1209-21 – reference: 9874686 - J Gen Physiol. 1999 Jan;113(1):35-43 – reference: 12481097 - Plant Physiol. 2002 Dec;130(4):2129-41 – reference: 15532717 - Mol Cell Biochem. 2004 Jul;262(1-2):127-33 – reference: 17467698 - FEBS Lett. 2007 May 15;581(10):1993-9 – reference: 20159658 - Plant Physiol Biochem. 2010 Jul;48(7):506-12 – reference: 17118338 - Biochem Biophys Res Commun. 2007 Jan 12;352(2):486-90 – reference: 17140566 - FEBS Lett. 2006 Dec 22;580(30):6783-8 – reference: 11500563 - Plant Physiol. 2001 Aug;126(4):1646-67 – reference: 17563365 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10726-31 – reference: 21796369 - Planta. 2012 Jan;235(1):1-11 – reference: 11537482 - Plant Physiol. 1990 Oct;94(2):406-10 – reference: 15772667 - Nature. 2005 Mar 17;434(7031):404-8 – reference: 22711282 - Planta. 2012 Oct;236(4):1261-73 – reference: 17624796 - Plant Physiol Biochem. 2007 Aug;45(8):560-6 – reference: 11297783 - Plant Sci. 2001 Apr;160(5):869-875 – reference: 23818893 - Front Plant Sci. 2013 Jun 27;4:224 – reference: 22067997 - Plant Signal Behav. 2011 Nov;6(11):1656-61 – reference: 8842215 - Biophys J. 1996 Aug;71(2):769-77 – reference: 17332417 - J Exp Bot. 2007;58(6):1545-55 – reference: 15341627 - Plant J. 2004 Sep;39(6):834-46 – reference: 20375061 - J Cell Sci. 2010 May 1;123(Pt 9):1468-79 – reference: 10541793 - Eur Biophys J. 1999;28(7):552-63 – reference: 19513239 - Plant Signal Behav. 2008 Dec;3(12):1061-6 – reference: 23624857 - Plant Physiol. 2013 Jun;162(2):940-52 – reference: 18309082 - Science. 2008 Feb 29;319(5867):1241-4 – reference: 16415068 - Plant Cell Physiol. 2006 Mar;47(3):346-54 – reference: 11842142 - Plant Physiol. 2002 Feb;128(2):379-87 – reference: 12244253 - Plant Cell. 1994 May;6(5):669-683 – reference: 8756495 - Plant Physiol. 1996 Aug;111(4):1077-83 – reference: 19356940 - Plant Physiol Biochem. 2009 Aug;47(8):710-6 – reference: 17905858 - Plant Physiol. 2007 Nov;145(3):1061-72 – reference: 16316973 - J Gen Physiol. 2005 Dec;126(6):541-9 – reference: 8019678 - Eur J Neurosci. 1994 Mar 1;6(3):412-9 – reference: 10828251 - J Gen Physiol. 2000 Jun;115(6):783-98 – reference: 15563619 - Plant Physiol. 2004 Dec;136(4):4275-84 – reference: 21893256 - Plant Sci. 2011 Nov;181(5):593-603 – reference: 17712568 - Planta. 2007 Dec;227(1):189-97 – reference: 22011340 - OMICS. 2011 Nov;15(11):775-81 – reference: 21459829 - Mol Plant. 2011 May;4(3):428-41 – reference: 16667132 - Plant Physiol. 1989 Nov;91(3):1197-201 – reference: 16008088 - J Plant Physiol. 2005 Jun;162(6):662-8 – reference: 11506369 - Planta. 2001 Jul;213(3):457-68 – reference: 18724408 - Physiol Plant. 2008 Aug;133(4):651-69 – reference: 16828052 - Biochim Biophys Acta. 2006 Jul;1757(7):821-8 – reference: 15141069 - Plant Physiol. 2004 May;135(1):231-43 – reference: 9592086 - J Neurosci. 1998 Jun 1;18(11):4050-62 – reference: 14706842 - FEBS Lett. 2004 Jan 2;556(1-3):148-52 – reference: 22057326 - Plant Signal Behav. 2011 Nov;6(11):1844-7 – reference: 22118615 - Plant Sci. 2012 Jan;182:49-58 – reference: 20145950 - Planta. 2010 Apr;231(5):1025-36 – reference: 11337417 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:817-845 – reference: 22639615 - Front Plant Sci. 2011 Dec 02;2:85 – reference: 11080307 - Plant Physiol. 2000 Nov;124(3):1315-26 – reference: 16666174 - Plant Physiol. 1988 Jun;87(2):514-8 – reference: 19712065 - Plant Cell Environ. 2010 Apr;33(4):453-67 – reference: 24465010 - J Exp Bot. 2014 Mar;65(5):1271-83 – reference: 20060616 - J Plant Physiol. 2010 May 1;167(7):519-25 – reference: 11997372 - J Exp Bot. 2002 May;53(372):1237-47 – reference: 23080295 - Transgenic Res. 2013 Jun;22(3):595-605 – reference: 19828463 - Ann Bot. 2010 Jan;105(1):1-6 – reference: 18029350 - J Biol Chem. 2008 Jan 25;283(4):1911-20 |
SSID | ssj0000500997 |
Score | 2.4410276 |
SecondaryResourceType | review_article |
Snippet | Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 154 |
SubjectTerms | Ion Channels Ion Pumps Plant Science plasma membrane Polyamines Reactive Oxygen Species stress |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iffBF2mrttVUi-NCXrSabH7t9U1FEUHyo4FuYXBI8uNs9eueD0D--M5u9465UfPF1NyHDzGTnm83MF8aOtMIgq0RVWLRwQYx0BdQGCpvbLks_jNScfHNrru7V9YN-WLnqi2rCMj1wVtxxVcVQlkljYPQqyRPAiJuUh1SbWBnVkW1jzFtJpjKrN0Efm7l8MAurj9N0TOzcgsiyhVZrYahj6_8fxPy3UnIl9Fy-Z9s9ZuSnWdYPbCM2H9m7sxZx3fMO-3PXjp9hQuXrvC88523i-Vccny_Iyzl0kvDpGHXJJ3GCaTJO-clHKzXlHCEsp2mP7SS2CBxnoxmHJnDwoxZX57m1hFPVB1Aj-y67v7z4dX5V9HcqFEMt9bzQFdD1wlIHCN6mGqqEOaoQNlUBovXKY_4VAUEK0cYklYxUPsg6yDKlEGX5iW02bRM_M24kfqGCCGBOhsoI4QGxZQpVSgK8UHHAfixU7IY94TjdezF2mHiQTRzZxJFNXGeTAfu-nDDNXBsvDz0jmy2HEUl29wBdx_Wu415znQE7XFjc4aaikxJUfPs0c7gCBW6rccxe9oDlUlLZWtuyHjC75htrsqy_aUaPHXG3IvYbU355C-G_si1SBx1syfIb25z_for7iI_m_qDbCn8BglsRDQ priority: 102 providerName: Directory of Open Access Journals |
Title | Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24795739 https://www.proquest.com/docview/1540128756 https://pubmed.ncbi.nlm.nih.gov/PMC4006063 https://doaj.org/article/88ed33f5635b4f20a172f4baf96e8646 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGxoHLBOOrsE1G4sAlY3b8kSChaUP7ENIQByr1Ztm1zSqlcdd2EpX443kvScuKirRLDokdO3523u_Z7_0eIe-lACUrWJFpkHCGjHSZLZXNdBt2mbthwODk62_qqi--DuTgbzqgbgBnG007zCfVn1ZHv24XJ7DgP6PFCfr2Y5xUSLzNkAcbEMEjsgNqSWM6g-sO67dE34iGmmQrSolMKD5oqX42vWNNSzVk_psQ6L-OlPc008VTsttBSnrazoFnZCvUe-TxWQLYt3hOfn9P1cKO0buddn7pNEXa7tTR-ZLbnNqmJ3RSwVDTcRiDFQ1VPtHRPZdzCgiXYrWbNA4JcOVsNKO29tS6UYLWaRt5QtEpxGKc-wvSvzj_8eUq61IuZEPJ5TyThcXsw1x6652OpS0imLCM6Vh4G7QTDsyzYAHDIKtMFFFx4TwvPc9j9IHnL8l2nerwmlDF4QfmmbfqeCgUY84C9Iy-iJFZx0TokaPlEJthx0eOaTEqA3YJysSgTAzKxDQy6ZEPqwqTlorj_0XPUGarYsih3dxI05-mW5KmKILP8ygBcjkR-bGFOROFs7FUoVBC9ci7pcQNrDk8SIGBT3czAy2gXtcSyrxqZ8CqKS50KXVe9ohemxtrfVl_Uo9uGl5vgeQ4Kn_zgHbfkif4tXisxfN9sj2f3oUDQEdzd9jsKsD1csAOmxXwB0sjEeI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamines+control+of+cation+transport+across+plant+membranes%3A+implications+for+ion+homeostasis+and+abiotic+stress+signaling&rft.jtitle=Frontiers+in+plant+science&rft.au=Pottosin%2C+Igor&rft.au=Shabala%2C+Sergey&rft.date=2014-04-23&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=5&rft.spage=154&rft_id=info:doi/10.3389%2Ffpls.2014.00154&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |