Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interpl...
Saved in:
Published in | Frontiers in plant science Vol. 10; p. 230 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
07.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named
-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues. |
---|---|
AbstractList | Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues. Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues. Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N -methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues. Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named -methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues. |
Author | Dell’Aversana, Emilia Ciarmiello, Loredana Filomena Woodrow, Pasqualina Carillo, Petronia Annunziata, Maria Grazia |
AuthorAffiliation | 1 Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology , Potsdam , Germany 2 Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” , Caserta , Italy |
AuthorAffiliation_xml | – name: 1 Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology , Potsdam , Germany – name: 2 Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” , Caserta , Italy |
Author_xml | – sequence: 1 givenname: Maria Grazia surname: Annunziata fullname: Annunziata, Maria Grazia – sequence: 2 givenname: Loredana Filomena surname: Ciarmiello fullname: Ciarmiello, Loredana Filomena – sequence: 3 givenname: Pasqualina surname: Woodrow fullname: Woodrow, Pasqualina – sequence: 4 givenname: Emilia surname: Dell’Aversana fullname: Dell’Aversana, Emilia – sequence: 5 givenname: Petronia surname: Carillo fullname: Carillo, Petronia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30899269$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Us9LHDEUDsVSrfXcW8mxl10zmSQzuRS20qogVFChlxLy442NZJNpMiP43ze7q6KF5vKSl-_73uO97z3aiykCQh8bsmzbXh4PYyhLShq5JIS25A06aIRgCyboz70X9310VModqYcTImX3Du23pJeSCnmAfl2NevI6YB0dvob1mHJ9XOY0-AA4Dfg0PFgfAX-FSW_iytp5PYdKShH7iC-DjlPBN9FBxivj0-QtvpoylALlA3o76FDg6DEeopvv365PzhYXP07PT1YXC8spnxacG8atdsz1nBELAnrTtS04aYij3NGB1KxhnewkNYRxZlwvCWc9A8cltIfofKfrkr5TY_ZrnR9U0l5tEynfKp1rYwGUoMK5ru-Eafo6HWPIMDjpADrXcSJJ1fqy0xpnswZnIU51JK9EX_9E_1vdpnslWCMo4VXg86NATn9mKJNa-2Ih1EFBmouijRS84ZyJCv30stZzkaf9VMDxDmBzKiXD8AxpiNqYQG1MoDYmUFsTVAb_h2H9tN1WbdaH__L-AqCpt4w |
CitedBy_id | crossref_primary_10_3390_plants12081628 crossref_primary_10_1016_j_chemosphere_2024_141387 crossref_primary_10_1016_j_plaphy_2019_12_030 crossref_primary_10_1038_s41598_021_98753_8 crossref_primary_10_1071_CP19510 crossref_primary_10_1016_j_plaphy_2023_108198 crossref_primary_10_3390_plants12162951 crossref_primary_10_1016_j_envexpbot_2022_104905 crossref_primary_10_1016_j_ijfoodmicro_2021_109402 crossref_primary_10_3390_cells11071136 crossref_primary_10_3390_plants8110508 crossref_primary_10_1007_s44279_024_00070_x crossref_primary_10_3390_jof8080765 crossref_primary_10_3390_plants11091213 crossref_primary_10_3390_plants11233358 crossref_primary_10_1002_jsfa_12176 crossref_primary_10_3390_plants10061044 crossref_primary_10_1021_acssuschemeng_1c05181 crossref_primary_10_1016_j_scitotenv_2024_171335 crossref_primary_10_1016_j_scienta_2022_111368 crossref_primary_10_1007_s11240_021_02040_3 crossref_primary_10_1038_s41438_021_00513_2 crossref_primary_10_1371_journal_pone_0251389 crossref_primary_10_3390_ijms231810474 crossref_primary_10_1016_j_plantsci_2025_112479 crossref_primary_10_3389_fevo_2021_576122 crossref_primary_10_1016_j_plaphy_2023_107651 crossref_primary_10_3390_microorganisms9071419 crossref_primary_10_3390_plants10050927 crossref_primary_10_1007_s12298_021_01090_3 crossref_primary_10_2139_ssrn_4075929 crossref_primary_10_1007_s12298_021_01043_w crossref_primary_10_3390_plants12020256 crossref_primary_10_1016_j_algal_2024_103686 crossref_primary_10_1038_s41598_023_34509_w crossref_primary_10_1016_j_plaphy_2021_02_028 crossref_primary_10_1111_ppl_13297 crossref_primary_10_1007_s00468_022_02288_y crossref_primary_10_3390_agronomy10020194 crossref_primary_10_1038_s43705_022_00197_2 crossref_primary_10_3390_w15030418 crossref_primary_10_3390_ijms21155208 crossref_primary_10_3390_plants10091930 crossref_primary_10_1007_s11120_020_00810_2 crossref_primary_10_3390_ijms25105199 crossref_primary_10_1016_j_heliyon_2023_e22960 crossref_primary_10_3389_fpls_2023_1185440 crossref_primary_10_1016_j_stress_2024_100669 crossref_primary_10_1007_s44297_025_00044_5 crossref_primary_10_3390_plants12122253 crossref_primary_10_1007_s11356_024_31874_5 crossref_primary_10_1111_ppl_13507 crossref_primary_10_3390_v14030607 crossref_primary_10_3390_agriculture13030701 crossref_primary_10_1002_its2_162 crossref_primary_10_3389_fpls_2023_1268014 crossref_primary_10_3390_plants10061078 crossref_primary_10_3390_plants11233360 crossref_primary_10_1007_s11103_025_01566_w crossref_primary_10_1016_j_plaphy_2023_108276 crossref_primary_10_1371_journal_pone_0267126 crossref_primary_10_3390_biology11010041 crossref_primary_10_1111_pce_13657 crossref_primary_10_3390_biology9090253 crossref_primary_10_1007_s42977_023_00198_9 crossref_primary_10_3390_plants12193410 crossref_primary_10_1016_j_ecoenv_2020_110732 crossref_primary_10_1016_j_egg_2021_100080 crossref_primary_10_1111_plb_13719 crossref_primary_10_1016_j_envexpbot_2021_104376 crossref_primary_10_7717_peerj_11340 crossref_primary_10_1016_j_jplph_2023_154077 crossref_primary_10_1016_j_scienta_2021_110170 crossref_primary_10_3390_agronomy9100575 crossref_primary_10_1128_aem_00310_24 crossref_primary_10_1007_s00344_022_10679_1 crossref_primary_10_1038_s41598_023_43992_0 crossref_primary_10_1007_s11240_023_02560_0 crossref_primary_10_3390_ijms20133350 crossref_primary_10_3389_fpls_2022_978304 crossref_primary_10_32615_bp_2021_062 crossref_primary_10_3389_fpls_2019_00742 crossref_primary_10_3389_fpls_2023_1269286 crossref_primary_10_1007_s11103_020_01077_w crossref_primary_10_1111_ppl_13491 crossref_primary_10_3390_ijms24043388 crossref_primary_10_3390_ijms222111370 crossref_primary_10_1016_j_ecoenv_2022_113938 crossref_primary_10_3390_ijms232416048 crossref_primary_10_1016_j_indcrop_2021_113595 crossref_primary_10_1016_j_stress_2021_100015 crossref_primary_10_3390_agronomy10060911 crossref_primary_10_3390_agronomy11112299 crossref_primary_10_3390_agronomy13020458 crossref_primary_10_1371_journal_pone_0259520 crossref_primary_10_1111_jipb_13874 crossref_primary_10_1016_j_scienta_2024_113767 crossref_primary_10_3389_fmars_2022_853272 crossref_primary_10_3389_fpls_2023_1187260 crossref_primary_10_1016_j_scienta_2022_111300 crossref_primary_10_3389_fmars_2022_869739 crossref_primary_10_3390_plants12223907 crossref_primary_10_4081_ija_2020_1754 crossref_primary_10_3389_fpls_2020_618873 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_3390_plants13030354 crossref_primary_10_1007_s00344_022_10880_2 crossref_primary_10_3389_fmolb_2022_964624 crossref_primary_10_3390_agronomy14040843 crossref_primary_10_1002_its2_80 crossref_primary_10_3389_fpls_2022_1006617 crossref_primary_10_36899_APS_2024_3_0750 crossref_primary_10_32615_bp_2021_044 crossref_primary_10_3389_fpls_2022_881032 crossref_primary_10_3390_ijms241814316 crossref_primary_10_1007_s44279_024_00152_w crossref_primary_10_1111_ppl_70007 crossref_primary_10_3390_ijms24119714 crossref_primary_10_1016_j_sajb_2024_10_006 crossref_primary_10_1038_s41598_022_19399_8 crossref_primary_10_1016_j_ceramint_2022_08_151 crossref_primary_10_1007_s12633_024_03030_8 crossref_primary_10_3390_plants13192732 crossref_primary_10_1016_j_plaphy_2020_10_032 crossref_primary_10_3390_agronomy12102495 crossref_primary_10_3390_ijms232112913 crossref_primary_10_1016_j_plaphy_2024_108516 crossref_primary_10_1016_j_envexpbot_2021_104454 crossref_primary_10_3390_ijms24021360 crossref_primary_10_3390_agronomy9070355 crossref_primary_10_1039_D5NA00044K crossref_primary_10_1128_msystems_00140_25 crossref_primary_10_1016_j_plaphy_2023_107936 crossref_primary_10_1007_s42535_024_00844_0 crossref_primary_10_1080_09553002_2024_2398083 crossref_primary_10_1111_ppl_14097 crossref_primary_10_1186_s12870_021_03113_3 crossref_primary_10_1134_S0026261722601609 crossref_primary_10_3389_fpls_2019_00785 crossref_primary_10_3389_fpls_2019_00546 crossref_primary_10_3390_plants9060771 crossref_primary_10_1016_j_rhisph_2022_100603 crossref_primary_10_3390_life14020183 crossref_primary_10_3390_plants10020307 crossref_primary_10_1042_BCJ20210191 crossref_primary_10_3389_fpls_2021_625541 crossref_primary_10_1016_j_postharvbio_2024_113320 crossref_primary_10_3390_plants10122821 crossref_primary_10_1007_s43538_021_00006_9 crossref_primary_10_3390_agronomy10020210 crossref_primary_10_1134_S1067413623020042 crossref_primary_10_3390_agronomy11081469 crossref_primary_10_1007_s00299_020_02581_5 crossref_primary_10_1007_s10343_020_00515_5 crossref_primary_10_3389_fpls_2022_835414 crossref_primary_10_3390_agronomy12020276 crossref_primary_10_3390_su122410649 crossref_primary_10_1016_j_apsoil_2020_103582 crossref_primary_10_1007_s40502_021_00579_z crossref_primary_10_3390_biotech14010017 crossref_primary_10_1016_j_heliyon_2024_e30598 crossref_primary_10_15835_nbha49412501 crossref_primary_10_3390_plants10010043 crossref_primary_10_3389_fpls_2021_588847 crossref_primary_10_1080_15592324_2019_1666656 crossref_primary_10_1016_j_chemosphere_2024_142671 crossref_primary_10_3389_fpls_2021_672702 crossref_primary_10_3389_fpls_2021_678925 crossref_primary_10_1021_acsapm_3c00691 crossref_primary_10_1007_s00425_020_03550_8 crossref_primary_10_3390_plants11223180 crossref_primary_10_1016_j_jfca_2025_107301 crossref_primary_10_1016_j_ecoenv_2019_110152 crossref_primary_10_3390_plants11050700 crossref_primary_10_1134_S1021443724604737 crossref_primary_10_31857_S036705972302004X crossref_primary_10_1017_S0031182023000768 crossref_primary_10_3390_plants10050845 crossref_primary_10_7717_peerj_10888 crossref_primary_10_3389_fpls_2020_00512 crossref_primary_10_1093_pcp_pcaa116 crossref_primary_10_1007_s00122_025_04823_0 crossref_primary_10_18006_2021_9_Spl_3_NRMCSSA_2021__S321_S329 crossref_primary_10_1007_s00425_019_03293_1 crossref_primary_10_3389_fpls_2022_985900 crossref_primary_10_1007_s11274_023_03837_4 crossref_primary_10_3390_ijms24076429 crossref_primary_10_1371_journal_pone_0254906 crossref_primary_10_1134_S1021443724605354 crossref_primary_10_1016_j_jspr_2024_102445 crossref_primary_10_3390_agrochemicals3010001 crossref_primary_10_1016_j_plaphy_2024_108734 crossref_primary_10_1016_j_plaphy_2024_108976 crossref_primary_10_1007_s00344_024_11558_7 crossref_primary_10_3390_ijms241813998 crossref_primary_10_3389_fmars_2025_1549668 crossref_primary_10_1016_j_sajb_2024_06_012 crossref_primary_10_3390_foods10123067 crossref_primary_10_3390_plants13070979 crossref_primary_10_3389_fpls_2024_1467376 crossref_primary_10_3390_ijms251910630 crossref_primary_10_1080_07352689_2022_2065136 crossref_primary_10_1016_j_stress_2025_100802 crossref_primary_10_3390_agriculture12030350 |
Cites_doi | 10.1007/s10681-010-0316-7 10.1111/j.1365-3040.1994.tb00269.x 10.1021/ja044541q 10.1071/FP04184 10.1016/S0014-5793(99)00516-5 10.1016/j.tplants.2008.06.007 10.3389/fpls.2016.02035 10.1104/pp.107.2.631 10.1016/B978-0-444-82884-2.50011-X 10.1626/pps.16.117 10.1080/11263504.2012.697493 10.1007/s10535-007-0128-3 10.1007/s11120-015-0125-x 10.1007/s11032-007-9086-x 10.1111/j.1439-037X.1996.tb00467.x 10.1016/j.jplph.2011.03.007 10.1046/j.1365-3040.2000.00570.x 10.1111/ppl.12513 10.1016/j.jplph.2004.03.009 10.4161/psb.6.11.17801 10.17660/ActaHortic.1999.487.33 10.1002/iub.406 10.1046/j.1365-3040.2000.00527.x 10.1042/bj20061815 10.1093/oxfordjournals.pcp.a029026 10.1146/annurev.pp.28.060177.000513 10.1105/tpc.11.3.377 10.1155/2014/701596 10.1016/j.plaphy.2014.03.026 10.1023/a:1026513831290 10.1111/j.1365-3040.2010.02232.x 10.1016/j.jplph.2009.06.016 10.1016/S0176-1617(88)80223-2 10.1016/0031-9422(96)00312-3 10.1023/A:1006095015717 10.1111/j.1399-3054.2008.01122.x 10.1146/annurev.arplant.59.032607.092911 10.1073/pnas.171228998 10.1631/jzus.B1000137 10.1016/j.plantsci.2008.10.003 10.1073/pnas.94.7.3454 10.1093/jexbot/51.342.81 10.1104/pp.108.4.1715 10.5511/plantbiotechnology.26.135 10.1016/0167-7799(90)90225-M 10.1016/j.agwat.2018.08.037 10.1134/S1021443707040061 10.1007/s00122-002-1063-5 10.1071/PP98024 10.1016/j.aoas.2016.04.003 10.1016/j.jplph.2014.12.009 10.21273/JASHS.137.1.38 10.5511/plantbiotechnology.26.125 10.1007/s00425-006-0380-3 10.1104/pp.122.3.747 10.1007/s12298-015-0292-4 10.1007/s11738-009-0432-y 10.1107/S1399004713029283 10.1104/pp.124.1.153 10.1016/j.jplph.2005.04.023 10.1016/j.envexpbot.2005.12.006 10.1016/S0168-9452(02)00278-9 10.1046/j.1365-313X.1997.12010133.x 10.1093/oxfordjournals.pcp.a029320 10.1016/j.talanta.2008.11.008 10.1111/j.1438-8677.2008.00161.x 10.1104/pp.91.3.1112 10.1046/j.0016-8025.2001.00790.x 10.1023/a:1026542109965 10.1016/j.postharvbio.2015.12.005 10.1074/jbc.M112012200 10.1007/BF00345565 10.1104/pp.104.045187 10.1023/A:100726693 10.1080/14620316.2000.11511297 10.1093/pcp/pcj041 10.1071/FP08108 10.1093/oxfordjournals.jbchem.a131872 10.1006/mben.2000.0158 10.1093/jxb/erj073 10.1098/rstb.2000.0712 10.1007/BF00266155 10.1007/bf00391862 10.1007/bf00390825 10.1046/j.1365-3040.1998.00362.x 10.1078/0176-1617-00309 10.1104/pp.82.3.753 10.4067/S0718-95162014005000028 10.1111/j.1467-7652.2009.00420.x 10.1071/fp09051 10.1046/j.1365-3040.1997.d01-82.x 10.3389/fpls.2018.01995 10.3389/fpls.2018.01469 10.1071/PP9860659 10.1007/s11738-008-0166-2 10.1034/j.1399-3054.1999.105108.x 10.3389/fpls.2018.00318 10.1016/S0005-2728(05)80148-3 10.1016/j.plantsci.2017.01.012 10.3389/fpls.2018.00100 10.3390/agronomy8110270 10.1590/S1677-04202004000100006 10.1007/s10725-013-9853-0 10.1016/j.jplph.2009.04.002 10.1023/A:1006855816437 10.1046/j.1439-037X.2001.00469.x 10.1071/FP18046 10.1093/jexbot/51.343.177 10.9734/AJEA/2013/1730 10.1016/S0176-1617(11)80785-6 10.1007/bf02512197 10.1007/s10535-010-0012-4 10.3390/ijms13033176 10.4161/psb.4.3.7725 10.1002/pld3.40 10.1046/j.1365-313X.2003.01873.x 10.1111/j.1365-3040.2007.01694.x 10.1016/j.envexpbot.2006.12.009 10.1073/pnas.87.7.2745 10.2174/1389202911314030001 10.1093/jxb/erm278 10.1007/978-3-319-90318-7_11 10.1016/j.aoas.2015.10.004 10.1128/jb.173.2.472-478.1991 10.1071/FP10177 10.1016/S1002-0160(12)60060-5 10.1016/j.aoas.2016.05.001 10.1046/j.1365-313x.1998.00316.x 10.1074/jbc.M106038200 10.1105/tpc.8.8.1437 10.1016/j.plantsci.2003.08.018 10.1146/annurev.pp.44.060193.002041 10.1046/j.1469-8137.2003.00770.x 10.1271/bbb.100334 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo. 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo |
Copyright_xml | – notice: Copyright © 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo. 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.00230 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_626dd7876b18462bb0ffd9dee7d75090 PMC6416205 30899269 10_3389_fpls_2019_00230 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c525t-55b45cad4d8540ce6e8b733ed9b0d25d2f00ceb479792b0454bd8905484ed59e3 |
IEDL.DBID | DOA |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:27:30 EDT 2025 Thu Aug 21 18:21:43 EDT 2025 Thu Jul 10 22:51:33 EDT 2025 Thu Jan 02 23:02:18 EST 2025 Thu Apr 24 23:02:19 EDT 2025 Tue Jul 01 02:06:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | salinity osmotic adjustment compatible compound CMO glycine betaine (GB) ROS |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-55b45cad4d8540ce6e8b733ed9b0d25d2f00ceb479792b0454bd8905484ed59e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Xinghong Yang, Shandong Agricultural University, China Reviewed by: Asim Masood, Aligarh Muslim University, India; Jitender Giri, National Institute of Plant Genome Research (NIPGR), India This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science |
OpenAccessLink | https://doaj.org/article/626dd7876b18462bb0ffd9dee7d75090 |
PMID | 30899269 |
PQID | 2196515546 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_626dd7876b18462bb0ffd9dee7d75090 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416205 proquest_miscellaneous_2196515546 pubmed_primary_30899269 crossref_primary_10_3389_fpls_2019_00230 crossref_citationtrail_10_3389_fpls_2019_00230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-07 |
PublicationDateYYYYMMDD | 2019-03-07 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Agastian (B1) 2000; 38 Mäkelä (B70) 1999; 105 Wang (B123) 2010; 11 Weretilnyk (B129) 1990; 87 Igamberdiev (B46) 2018; 9 Park (B91) 2007; 30 Sairam (B106) 2002; 163 Waditee (B122) 2002; 277 Kleczkowski (B57) 1988; 132 Tsutsumi (B121) 2015; 176 Wei (B126) 2017; 257 Shan (B113) 2016; 114 Kishitani (B55) 2000; 23 Kwon (B61) 2012; 13 Robinson (B103) 1986; 13 Carillo (B13) 2008; 35 Woodrow (B131) 2017; 159 Rathinasabapathi (B95) 1997; 94 Takabe (B120) 1998 Demiral (B24) 2004; 161 Chen (B17) 2008; 13 Rajasekaran (B94) 1997; 34 Flowers (B32) 1977; 28 Ashraf (B4) 2007; 59 Sulpice (B119) 2003; 36 Lv (B65) 2007; 20 Khan (B53) 2012; 22 Zhao (B139) 2007; 51 Salvi (B110) 2014; 70 McNeil (B77) 2001; 98 Carillo (B10) 2018; 9 Hattori (B40) 2009; 176 Wingler (B130) 2000; 355 Chen (B16) 2011; 34 Mäkelä (B71) 1996; 176 Gorham (B37) 1996; 43 Park (B90) 2006; 47 Rhodes (B100) 1993; 44 Sulpice (B118) 1998; 21 Manaf (B74) 2016; 61 Mitsuya (B80) 2013; 16 Cuin (B22) 2009; 36 Raza (B97) 2007; 60 Maas (B69) 1989; 10 Munns (B82) 2008; 59 Xu (B132) 2018; 9 Castiglioni (B15) 2018; 2 Rhodes (B102) 1989; 91 Allard (B2) 1998; 39 Osman (B86) 2015; 60 Oukarroum (B88) 2012; 146 Hayashi (B42) 1998; 111 Sakamoto (B109) 2002; 25 Ma (B68) 2007; 54 Yang (B135) 2007; 225 Huang (B45) 2000; 122 Annunziata (B3) 2017; 7 Holmström (B43) 2000; 51 Di Martino (B25) 2003; 158 Yamada (B133) 2009; 166 Khan (B54) 2010; 62 Gupta (B39) 2014; 72 Mäkelä (B72) 1998; 25 Nakamura (B83) 1996; 37 Quan (B93) 2004; 166 Yao (B136) 2016; 10 Raza (B96) 2014; 14 Díaz-Zorita (B26) 2001; 186 Rentsch (B99) 1996; 8 Basu (B6) 2010; 32 Nuccio (B85) 1998; 16 Ma (B67) 2006; 32 Kathuria (B50) 2009; 7 Shimomura (B115) 2009; 78 Khan (B51) 2009; 26 Saneoka (B111) 1995; 107 Carillo (B11) 2019; 212 Prasad (B92) 2000; 6 Chen (B18) 2000; 23 Giri (B36) 2011; 6 Sakamoto (B107) 1998; 1998 Rozwadowski (B105) 1991; 173 Islam (B48) 2009; 166 Nuccio (B84) 2000; 2 Reddy (B98) 2013; 3 Banu (B5) 2010; 74 Hayashi (B41) 1997; 12 Meloni (B79) 2004; 16 Subbarao (B117) 2001; 158 Carillo (B14) 2011; 38 Ciarmiello (B20) 2018; 8 Carillo (B12) 2005; 32 Fariduddin (B29) 2013; 7 Brendza (B9) 2007; 404 Osman (B87) 2016; 61 Yu (B137) 2009; 26 Ferchichi (B30) 2018; 45 Gibon (B35) 1997; 20 Liu (B64) 2011; 178 Wani (B125) 2013; 14 McCue (B76) 1990; 8 Papageorgiou (B89) 1991; 1057 Jokinen (B49) 1999; 487 Yamada (B134) 2011; 168 Rhodes (B101) 2002 Kumar (B58) 2004; 136 Hu (B44) 2012; 137 Rontein (B104) 2001; 276 Sharma (B114) 2006; 57 Fitzgerald (B31) 2009; 11 Fujiwara (B33) 2008; 134 Li (B63) 2019; 9 Ladyman (B62) 1980; 150 Masood (B75) 2016 Colmer (B21) 1995; 108 Breitkreuz (B8) 1999; 450 D’Amelia (B23) 2018 Ma (B66) 2006; 163 Gupta (B38) 2014; 2014 Zhao (B140) 1992; 140 Kumar (B59) 2017 Storey (B116) 1977; 27 Zhang (B138) 2010; 54 Gao (B34) 2000; 6 Schwacke (B112) 1999; 11 Mohanty (B81) 2002; 106 Einset (B27) 2009; 4 Weretilnyk (B128) 1989; 178 McNeil (B78) 2000; 124 Kurepin (B60) 2015; 126 Malekzadeh (B73) 2015; 21 Bhuiyan (B7) 2007; 58 Khan (B52) 2014; 80 Chołuj (B19) 2008; 30 Weigel (B127) 1986; 82 Wang (B124) 2000; 75 Fan (B28) 2005; 127 Sakamoto (B108) 2000; 51 Ikuta (B47) 1977; 82 Kishitani (B56) 1994; 17 |
References_xml | – volume: 178 start-page: 363 year: 2011 ident: B64 article-title: Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. publication-title: Euphytica doi: 10.1007/s10681-010-0316-7 – volume: 17 start-page: 89 year: 1994 ident: B56 article-title: Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1994.tb00269.x – volume: 127 start-page: 2067 year: 2005 ident: B28 article-title: On the catalytic mechanism of choline oxidase. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044541q – volume: 32 start-page: 209 year: 2005 ident: B12 article-title: Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. publication-title: Funct. Plant Biol. doi: 10.1071/FP04184 – volume: 450 start-page: 280 year: 1999 ident: B8 article-title: Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00516-5 – volume: 13 start-page: 499 year: 2008 ident: B17 article-title: Glycinebetaine: an effective protectant against abiotic stress in plants. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.06.007 – volume: 7 year: 2017 ident: B3 article-title: Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.02035 – volume: 107 start-page: 631 year: 1995 ident: B111 article-title: Salt tolerance of glycinebetaine-deficient and -containing maize lines. publication-title: Plant Physiol. doi: 10.1104/pp.107.2.631 – start-page: 115 year: 1998 ident: B120 article-title: “8 - Glycinebetaine and the genetic engineering of salinity tolerance in plants,” in publication-title: Stress Responses of Photosynthetic Organisms doi: 10.1016/B978-0-444-82884-2.50011-X – volume: 16 start-page: 117 year: 2013 ident: B80 article-title: Tissue localization of the glycine betaine biosynthetic enzymes in barley leaves. publication-title: Plant Product. Sci. doi: 10.1626/pps.16.117 – volume: 146 start-page: 1037 year: 2012 ident: B88 article-title: Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. publication-title: Plant Biosyst. doi: 10.1080/11263504.2012.697493 – volume: 51 start-page: 584 year: 2007 ident: B139 article-title: Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress. publication-title: Biol. Plant. doi: 10.1007/s10535-007-0128-3 – volume: 126 start-page: 221 year: 2015 ident: B60 article-title: Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. publication-title: Photosynth. Res. doi: 10.1007/s11120-015-0125-x – volume: 20 start-page: 233 year: 2007 ident: B65 article-title: Increase of glycinebetaine synthesis improves drought tolerance in cotton. publication-title: Mol. Breed. doi: 10.1007/s11032-007-9086-x – volume: 176 start-page: 223 year: 1996 ident: B71 article-title: Effect of foliar applications of glycinebetaine on stress tolerance, growth, and yield of spring cereals and summer turnip rape in finland. publication-title: J. Agron. Crop Sci. doi: 10.1111/j.1439-037X.1996.tb00467.x – volume: 168 start-page: 1609 year: 2011 ident: B134 article-title: Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.03.007 – volume: 23 start-page: 609 year: 2000 ident: B18 article-title: Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2000.00570.x – volume: 159 start-page: 290 year: 2017 ident: B131 article-title: Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. publication-title: Physiol. Plant. doi: 10.1111/ppl.12513 – volume: 161 start-page: 1089 year: 2004 ident: B24 article-title: Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.03.009 – volume: 6 start-page: 1746 year: 2011 ident: B36 article-title: Glycinebetaine and abiotic stress tolerance in plants. publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.11.17801 – volume: 487 start-page: 233 year: 1999 ident: B49 article-title: Glycinebetaine from sugar beet enhances the yield of field-grown tomatoes. publication-title: Acta Hortic. doi: 10.17660/ActaHortic.1999.487.33 – volume: 62 start-page: 891 year: 2010 ident: B54 article-title: Naturally occurring organic osmolytes: from cell physiology to disease prevention. publication-title: IUBMB Life doi: 10.1002/iub.406 – volume: 23 start-page: 107 year: 2000 ident: B55 article-title: Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2000.00527.x – volume: 404 start-page: 439 year: 2007 ident: B9 article-title: Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans. publication-title: Biochem. J. doi: 10.1042/bj20061815 – volume: 37 start-page: 873 year: 1996 ident: B83 article-title: Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants. publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029026 – volume: 28 start-page: 89 year: 1977 ident: B32 article-title: The mechanism of salt tolerance in halophytes. publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.pp.28.060177.000513 – volume: 11 start-page: 377 year: 1999 ident: B112 article-title: LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. publication-title: Plant Cell doi: 10.1105/tpc.11.3.377 – volume: 2014 year: 2014 ident: B38 article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. publication-title: Int. J. Genom. doi: 10.1155/2014/701596 – volume: 80 start-page: 67 year: 2014 ident: B52 article-title: Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.03.026 – volume: 6 start-page: 501 year: 2000 ident: B34 article-title: Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. publication-title: Mol. Breed. doi: 10.1023/a:1026513831290 – volume: 34 start-page: 1 year: 2011 ident: B16 article-title: Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02232.x – volume: 166 start-page: 2058 year: 2009 ident: B133 article-title: Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet – Importance of long-distance translocation of betaine under normal and salt-stressed conditions. publication-title: J. Plant Physiol. Mol. Biol. doi: 10.1016/j.jplph.2009.06.016 – volume: 132 start-page: 641 year: 1988 ident: B57 article-title: Serine formation in leaves by mechanisms other than the glycolate pathway. publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(88)80223-2 – volume: 43 start-page: 367 year: 1996 ident: B37 article-title: Glycinebetaine is a major nitrogen-containing solute in the Malvaceae. publication-title: Phytochemistry doi: 10.1016/0031-9422(96)00312-3 – volume: 1998 start-page: 1011 year: 1998 ident: B107 article-title: Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. publication-title: Plant Mol. Biol. doi: 10.1023/A:1006095015717 – volume: 134 start-page: 22 year: 2008 ident: B33 article-title: Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01122.x – volume: 59 start-page: 651 year: 2008 ident: B82 article-title: Mechanisms of salinity tolerance. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 98 start-page: 10001 year: 2001 ident: B77 article-title: Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.171228998 – volume: 11 start-page: 851 year: 2010 ident: B123 article-title: Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. publication-title: J. Zhejiang Univers. Sci. B doi: 10.1631/jzus.B1000137 – volume: 176 start-page: 112 year: 2009 ident: B40 article-title: Tissue specificity of glycinebetaine synthesis in barley. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2008.10.003 – volume: 94 start-page: 3454 year: 1997 ident: B95 article-title: Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA?cloning. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.7.3454 – volume: 51 start-page: 81 year: 2000 ident: B108 article-title: Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. publication-title: J. Exp. Bot. doi: 10.1093/jexbot/51.342.81 – volume: 108 start-page: 1715 year: 1995 ident: B21 article-title: Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A, Love Amphiploid. publication-title: Plant Physiol. doi: 10.1104/pp.108.4.1715 – volume: 26 start-page: 135 year: 2009 ident: B137 article-title: Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.26.135 – volume: 8 start-page: 358 year: 1990 ident: B76 article-title: Drought and salt tolerance: towards understanding and application. publication-title: Trends Biotechnol. doi: 10.1016/0167-7799(90)90225-M – volume: 212 start-page: 12 year: 2019 ident: B11 article-title: Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2018.08.037 – volume: 54 start-page: 472 year: 2007 ident: B68 article-title: Glycinebetaine application ameliorates negative effects ofdrought stress in tobacco. publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443707040061 – volume: 106 start-page: 51 year: 2002 ident: B81 article-title: Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-002-1063-5 – volume: 25 start-page: 655 year: 1998 ident: B72 article-title: Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. publication-title: Funct. Plant Biol. doi: 10.1071/PP98024 – volume: 61 start-page: 41 year: 2016 ident: B74 article-title: Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. publication-title: Ann. Agric. Sci. doi: 10.1016/j.aoas.2016.04.003 – volume: 176 start-page: 101 year: 2015 ident: B121 article-title: Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.12.009 – volume: 137 start-page: 38 year: 2012 ident: B44 article-title: Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.137.1.38 – volume: 26 start-page: 125 year: 2009 ident: B51 article-title: Genetic engineering of Glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.26.125 – volume: 225 start-page: 719 year: 2007 ident: B135 article-title: Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. publication-title: Planta doi: 10.1007/s00425-006-0380-3 – volume: 122 start-page: 747 year: 2000 ident: B45 article-title: Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. publication-title: Plant Physiol. doi: 10.1104/pp.122.3.747 – volume: 21 start-page: 225 year: 2015 ident: B73 article-title: Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-015-0292-4 – volume: 32 start-page: 551 year: 2010 ident: B6 article-title: Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-009-0432-y – volume: 70 start-page: 405 year: 2014 ident: B110 article-title: Structure of choline oxidase in complex with the reaction product glycine betaine. publication-title: Acta Crystallograph. Sect. D doi: 10.1107/S1399004713029283 – volume: 124 start-page: 153 year: 2000 ident: B78 article-title: Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in Tobacco. publication-title: Plant Physiol. doi: 10.1104/pp.124.1.153 – volume: 163 start-page: 165 year: 2006 ident: B66 article-title: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2005.04.023 – volume: 59 start-page: 206 year: 2007 ident: B4 article-title: Roles of glycine betaine and proline in improving plant abiotic stress resistance. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2005.12.006 – start-page: 181 year: 2002 ident: B101 article-title: “Salinity, Osmolytes and compatible solutes,” in publication-title: Salinity: Environment – Plants – Molecules – volume: 163 start-page: 1037 year: 2002 ident: B106 article-title: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. publication-title: Plant Sci. doi: 10.1016/S0168-9452(02)00278-9 – volume: 12 start-page: 133 year: 1997 ident: B41 article-title: Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. publication-title: Plant J. doi: 10.1046/j.1365-313X.1997.12010133.x – volume: 39 start-page: 1194 year: 1998 ident: B2 article-title: Betaine improves freezing tolerance in wheat. publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029320 – volume: 78 start-page: 217 year: 2009 ident: B115 article-title: Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane. publication-title: Talanta doi: 10.1016/j.talanta.2008.11.008 – volume: 11 start-page: 119 year: 2009 ident: B31 article-title: Betaine aldehyde dehydrogenase in plants. publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2008.00161.x – volume: 91 start-page: 1112 year: 1989 ident: B102 article-title: Development of two isogenic sweet corn hybrids differing for glycinebetaine content. publication-title: Plant Physiol. doi: 10.1104/pp.91.3.1112 – volume: 25 start-page: 163 year: 2002 ident: B109 article-title: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00790.x – volume: 32 start-page: 465 year: 2006 ident: B67 article-title: Glycine betaine applied through roots protects the photosynthetic apparatus of tobacco seedlings under water stress. publication-title: J. Plant Physiol. Mol. Biol. – volume: 6 start-page: 489 year: 2000 ident: B92 article-title: Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. publication-title: Mol. Breed. doi: 10.1023/a:1026542109965 – volume: 114 start-page: 104 year: 2016 ident: B113 article-title: Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. publication-title: Postharv. Biol. Technol. doi: 10.1016/j.postharvbio.2015.12.005 – volume: 277 start-page: 18373 year: 2002 ident: B122 article-title: Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112012200 – volume: 27 start-page: 319 year: 1977 ident: B116 article-title: Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. publication-title: Oecologia doi: 10.1007/BF00345565 – volume: 136 start-page: 2843 year: 2004 ident: B58 article-title: Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. publication-title: Plant Physiol. doi: 10.1104/pp.104.045187 – volume: 38 start-page: 287 year: 2000 ident: B1 article-title: Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. publication-title: Photosynthetica doi: 10.1023/A:100726693 – volume: 75 start-page: 623 year: 2000 ident: B124 article-title: Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2000.11511297 – volume: 47 start-page: 706 year: 2006 ident: B90 article-title: Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcj041 – volume: 35 start-page: 412 year: 2008 ident: B13 article-title: Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. publication-title: Funct. Plant Biol. doi: 10.1071/FP08108 – volume: 82 start-page: 1741 year: 1977 ident: B47 article-title: Purification and characterization of Choline oxidase from Arthrobacter globiformis. publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a131872 – volume: 2 start-page: 300 year: 2000 ident: B84 article-title: Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. publication-title: Metab. Eng. doi: 10.1006/mben.2000.0158 – volume: 57 start-page: 711 year: 2006 ident: B114 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj073 – volume: 355 start-page: 1517 year: 2000 ident: B130 article-title: Photorespiration: metabolic pathways and their role in stress protection. publication-title: Philos. Trans. R. Soc. Lon. Ser. B Biol. Sci. doi: 10.1098/rstb.2000.0712 – volume: 10 start-page: 29 year: 1989 ident: B69 article-title: Salt sensitivity of wheat at various growth stages. publication-title: Irrigat. Sci. doi: 10.1007/BF00266155 – volume: 178 start-page: 342 year: 1989 ident: B128 article-title: Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. publication-title: Planta doi: 10.1007/bf00391862 – volume: 150 start-page: 191 year: 1980 ident: B62 article-title: Translocation and metabolism of glycine betaine by barley plants in relation to water stress. publication-title: Planta doi: 10.1007/bf00390825 – volume: 21 start-page: 1285 year: 1998 ident: B118 article-title: Exogenously supplied glycine betaine in spinach and rapeseed leaf discs: compatibility or non-compatibility? publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1998.00362.x – volume: 158 start-page: 767 year: 2001 ident: B117 article-title: Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00309 – volume: 82 start-page: 753 year: 1986 ident: B127 article-title: Betaine aldehyde oxidation by spinach chloroplasts. publication-title: Plant Physiol. doi: 10.1104/pp.82.3.753 – volume: 14 start-page: 348 year: 2014 ident: B96 article-title: Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. publication-title: J. Soil Sci. Plant Nutr. doi: 10.4067/S0718-95162014005000028 – volume: 7 start-page: 512 year: 2009 ident: B50 article-title: Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2009.00420.x – volume: 36 year: 2009 ident: B22 article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. publication-title: Funct. Plant Biol. doi: 10.1071/fp09051 – volume: 20 start-page: 329 year: 1997 ident: B35 article-title: Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1997.d01-82.x – volume: 9 year: 2019 ident: B63 article-title: Genetic engineering of the biosynthesis of glycine betaine modulates phosphate homeostasis by regulating phosphate acquisition in tomato. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01995 – volume: 9 year: 2018 ident: B132 article-title: Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01469 – start-page: 111 year: 2017 ident: B59 article-title: “Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms,” in publication-title: Stress Signaling in Plants: Genomics and Proteomics Perspective – volume: 13 start-page: 659 year: 1986 ident: B103 article-title: Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. publication-title: Funct. Plant Biol. doi: 10.1071/PP9860659 – volume: 30 start-page: 679 year: 2008 ident: B19 article-title: Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-008-0166-2 – volume: 105 start-page: 45 year: 1999 ident: B70 article-title: Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine. publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1999.105108.x – volume: 9 year: 2018 ident: B46 article-title: The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00318 – volume: 1057 start-page: 361 year: 1991 ident: B89 article-title: Protection of the oxygen-evolving photosystem II complex by glycinebetaine. publication-title: Biochim. Biophys. Acta (BBA) – Bioenerget. doi: 10.1016/S0005-2728(05)80148-3 – volume: 257 start-page: 74 year: 2017 ident: B126 article-title: Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.01.012 – volume: 9 year: 2018 ident: B10 article-title: GABA shunt in durum wheat. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00100 – volume: 8 start-page: 1 year: 2018 ident: B20 article-title: Unveiling the enigmatic structure of TdCMO transcripts in durum wheat. publication-title: Agronomy doi: 10.3390/agronomy8110270 – volume: 16 start-page: 39 year: 2004 ident: B79 article-title: The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202004000100006 – volume: 72 start-page: 221 year: 2014 ident: B39 article-title: Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. publication-title: Plant Growth Regul. doi: 10.1007/s10725-013-9853-0 – volume: 166 start-page: 1587 year: 2009 ident: B48 article-title: Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2009.04.002 – volume: 34 start-page: 357 year: 1997 ident: B94 article-title: Physiological significance of proline and glycinebetaine: maintaining photosynthesis during NaCl stress in wheat. publication-title: Photosynthetica doi: 10.1023/A:1006855816437 – volume: 186 start-page: 209 year: 2001 ident: B26 article-title: Applications of foliar fertilizers containing glycinebetaine improve wheat yields. publication-title: J. Agron. Crop Sci. doi: 10.1046/j.1439-037X.2001.00469.x – volume: 45 start-page: 1096 year: 2018 ident: B30 article-title: Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. publication-title: Funct. Plant Biol. doi: 10.1071/FP18046 – year: 2016 ident: B75 article-title: “Glycine betaine: role in shifting plants toward adaptation under extreme environments,” in publication-title: Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies – volume: 51 start-page: 177 year: 2000 ident: B43 article-title: Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. publication-title: J. Exp. Bot. doi: 10.1093/jexbot/51.343.177 – volume: 7 start-page: 8 year: 2013 ident: B29 article-title: Dissecting the role of glycine betaine in plants under abiotic stress. publication-title: Plant Stress – volume: 3 start-page: 1 year: 2013 ident: B98 article-title: Exogenous application of glycinebetaine facilitates maize (Zea mays L.) growth under water deficit conditions. publication-title: Am. J. Exp. Agric. doi: 10.9734/AJEA/2013/1730 – volume: 140 start-page: 541 year: 1992 ident: B140 article-title: Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)80785-6 – volume: 111 year: 1998 ident: B42 article-title: Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. publication-title: J. Plant Res. doi: 10.1007/bf02512197 – volume: 54 start-page: 83 year: 2010 ident: B138 article-title: The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. publication-title: Biol. Plant. doi: 10.1007/s10535-010-0012-4 – volume: 13 start-page: 3176 year: 2012 ident: B61 article-title: Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms13033176 – volume: 4 start-page: 197 year: 2009 ident: B27 article-title: Glycine betaine enhances extracellular processes blocking ROS signaling during stress. publication-title: Plant Signal. Behav. doi: 10.4161/psb.4.3.7725 – volume: 2 year: 2018 ident: B15 article-title: Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. publication-title: Plant Direct. doi: 10.1002/pld3.40 – volume: 36 start-page: 165 year: 2003 ident: B119 article-title: Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01873.x – volume: 30 start-page: 994 year: 2007 ident: B91 article-title: Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01694.x – volume: 60 start-page: 368 year: 2007 ident: B97 article-title: Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2006.12.009 – volume: 87 start-page: 2745 year: 1990 ident: B129 article-title: Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.87.7.2745 – volume: 14 start-page: 157 year: 2013 ident: B125 article-title: Compatible solute engineering in plants for abiotic stress tolerance – Role of glycine betaine. publication-title: Curr. Genom. doi: 10.2174/1389202911314030001 – volume: 58 start-page: 4203 year: 2007 ident: B7 article-title: Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm278 – year: 2018 ident: B23 article-title: “Metabolomics for crop improvement against salinity stress,” in publication-title: Salinity Responses and Tolerance in Plants doi: 10.1007/978-3-319-90318-7_11 – volume: 60 start-page: 389 year: 2015 ident: B86 article-title: Enhancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. publication-title: Ann. Agric. Sci. doi: 10.1016/j.aoas.2015.10.004 – volume: 173 start-page: 472 year: 1991 ident: B105 article-title: Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. publication-title: J. Bacteriol. doi: 10.1128/jb.173.2.472-478.1991 – volume: 10 start-page: 58 year: 2016 ident: B136 article-title: Application of glycine betaine alleviates salt induced damages more efficiently than ascorbic acid in in vitro rice shoots. publication-title: Austr. J. Basic Appl. Sci. – volume: 38 start-page: 139 year: 2011 ident: B14 article-title: Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. publication-title: Funct. Plant Biol. doi: 10.1071/FP10177 – volume: 22 start-page: 746 year: 2012 ident: B53 article-title: Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene. publication-title: Pedosphere doi: 10.1016/S1002-0160(12)60060-5 – volume: 61 start-page: 1 year: 2016 ident: B87 article-title: Influence of exogenous application of some phytoprotectants on growth, yield and pod quality of snap bean under NaCl salinity. publication-title: Ann. Agric. Sci. doi: 10.1016/j.aoas.2016.05.001 – volume: 16 start-page: 487 year: 1998 ident: B85 article-title: The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. publication-title: Plant J. doi: 10.1046/j.1365-313x.1998.00316.x – volume: 276 start-page: 35523 year: 2001 ident: B104 article-title: Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106038200 – volume: 8 start-page: 1437 year: 1996 ident: B99 article-title: Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. publication-title: Plant Cell doi: 10.1105/tpc.8.8.1437 – volume: 166 start-page: 141 year: 2004 ident: B93 article-title: Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2003.08.018 – volume: 44 start-page: 357 year: 1993 ident: B100 article-title: Quaternary ammonium and tertiary sulfonium compounds in higher plants. publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.pp.44.060193.002041 – volume: 158 start-page: 455 year: 2003 ident: B25 article-title: Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00770.x – volume: 74 start-page: 2043 year: 2010 ident: B5 article-title: Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100334 |
SSID | ssj0000500997 |
Score | 2.600779 |
SecondaryResourceType | review_article |
Snippet | Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 230 |
SubjectTerms | CMO compatible compound glycine betaine (GB) osmotic adjustment Plant Science ROS salinity |
SummonAdditionalLinks | – databaseName: Scholars Portal: Open Access Journals [open access] dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZp2kMvJX1mkzSo0EMvTr22HutDCbulaQikBJqFXIqxNON2wbHTfUD233dGdjbdsrn1ZJAlS8xInk-v7xPivUUKao6v_aLykUIPUaENL-Sz0guThIWli_Nv5nSszq701b0cUGfA2capHetJjafV0e3v5TEN-E8846R4-7G8qZh4u8_Mk4SoH4nHFJYsj9LzDuu3RN-MhmxL77Op3FpkCgT-m1Dnv4cn_4pGJzviWQcj5bD1-3OxhfUL8WTUENRbvhQ_WGiYOpYsapCXLflUJS9aeW7ZlPJrteQNdTniA6T0HHq_uO6EvOSklixlNJ_JIIokh27SUDXye7hWgrNXYnzy5fLzadTpKEReJ3oeae2U9gUoGBA-82hw4GyaImQuhkRDUsaU6pTNbJY45uRzMMgIyw0Ugs4wfS2266bGXSFNmipCfK7vbKGQxWIA-omPHfQLJKzYE0d3Nsx9RzLOWhdVTpMNNnrORs_Z6Hkwek98WBW4afk1Hs46YqessjExdkhopj_zbpzlND8DoJ-QcdQ2kzgXlyVkgGiBsRF95N2dS3MaSLw7UtTYLKgi5lZkdGV64k3r4lVVKW-OJibrCbvm_LW2rL-pJ78CWbchxJvEeu9_NH5fPGVzhCNw9kBsz6cLfEuYaO4OQ1__A-HSC3w priority: 102 providerName: Scholars Portal |
Title | Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30899269 https://www.proquest.com/docview/2196515546 https://pubmed.ncbi.nlm.nih.gov/PMC6416205 https://doaj.org/article/626dd7876b18462bb0ffd9dee7d75090 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBL6XfdpkWFHnpxY8v6sI-7pUkopBSawF6KsTRjurCxQ7N7yL_PjOQsu6Wll15ssGUkRmPmjTR6T4j3DimoeT72izrkGgPknbG8kM9KL0wSFpcuzr7a0wv9ZWEWO1JfXBOW6IGT4Y4IcAOQV1lPuYhV3hd9Dw0gOuBgF7N1ink7yVRi9Wbo4xKXD2VhzVF_tWJ27pLpKRXXPO-EocjW_yeI-Xul5E7oOX4kHk6YUc7SWB-Lezg8EffnI-G6m6fiB6sKkxfJbgB5npimVvJb0uKWYy9PVje8ey7nXC1K91kIm8tJtUsuB8m6RetrGRWQ5MwvR-pGfo9nSPD6mbg4_nz-6TSfRBPyYJRZ58Z4bUIHGmoCYwEt1t5VFULjC1AGVF_QU69d4xrlmYDPQ90QcKs1gmmwei4OhnHAl0LaqtIE73zpXaeRlWEAShUKD2WHBAwz8fHOhm2YGMVZ2GLVUmbBRm_Z6C0bvY1Gz8SH7QdXiUzj703nPCnbZsyCHR-Qb7STb7T_8o1MvLub0pb-Gt4K6QYcN9QREykylLKZeJGmeNtVxTuhyjaZcHuTvzeW_TfD8mdk5rYEb1VhXv2Pwb8WD9gcsd7NHYqD9a8NviEAtPZvo6_T9WRR0vVM17coIQWq |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+Temporal+Profile+of+Glycine+Betaine+Accumulation+in+Plants+Under+Abiotic+Stresses&rft.jtitle=Frontiers+in+plant+science&rft.au=Maria+Grazia+Annunziata&rft.au=Loredana+Filomena+Ciarmiello&rft.au=Pasqualina+Woodrow&rft.au=Emilia+Dell%E2%80%99Aversana&rft.date=2019-03-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.00230&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_626dd7876b18462bb0ffd9dee7d75090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |