Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses

Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interpl...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 10; p. 230
Main Authors Annunziata, Maria Grazia, Ciarmiello, Loredana Filomena, Woodrow, Pasqualina, Dell’Aversana, Emilia, Carillo, Petronia
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 07.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named -methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
AbstractList Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N -methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named -methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Author Dell’Aversana, Emilia
Ciarmiello, Loredana Filomena
Woodrow, Pasqualina
Carillo, Petronia
Annunziata, Maria Grazia
AuthorAffiliation 1 Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology , Potsdam , Germany
2 Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” , Caserta , Italy
AuthorAffiliation_xml – name: 1 Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology , Potsdam , Germany
– name: 2 Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” , Caserta , Italy
Author_xml – sequence: 1
  givenname: Maria Grazia
  surname: Annunziata
  fullname: Annunziata, Maria Grazia
– sequence: 2
  givenname: Loredana Filomena
  surname: Ciarmiello
  fullname: Ciarmiello, Loredana Filomena
– sequence: 3
  givenname: Pasqualina
  surname: Woodrow
  fullname: Woodrow, Pasqualina
– sequence: 4
  givenname: Emilia
  surname: Dell’Aversana
  fullname: Dell’Aversana, Emilia
– sequence: 5
  givenname: Petronia
  surname: Carillo
  fullname: Carillo, Petronia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30899269$$D View this record in MEDLINE/PubMed
BookMark eNp1Us9LHDEUDsVSrfXcW8mxl10zmSQzuRS20qogVFChlxLy442NZJNpMiP43ze7q6KF5vKSl-_73uO97z3aiykCQh8bsmzbXh4PYyhLShq5JIS25A06aIRgCyboz70X9310VModqYcTImX3Du23pJeSCnmAfl2NevI6YB0dvob1mHJ9XOY0-AA4Dfg0PFgfAX-FSW_iytp5PYdKShH7iC-DjlPBN9FBxivj0-QtvpoylALlA3o76FDg6DEeopvv365PzhYXP07PT1YXC8spnxacG8atdsz1nBELAnrTtS04aYij3NGB1KxhnewkNYRxZlwvCWc9A8cltIfofKfrkr5TY_ZrnR9U0l5tEynfKp1rYwGUoMK5ru-Eafo6HWPIMDjpADrXcSJJ1fqy0xpnswZnIU51JK9EX_9E_1vdpnslWCMo4VXg86NATn9mKJNa-2Ih1EFBmouijRS84ZyJCv30stZzkaf9VMDxDmBzKiXD8AxpiNqYQG1MoDYmUFsTVAb_h2H9tN1WbdaH__L-AqCpt4w
CitedBy_id crossref_primary_10_3390_plants12081628
crossref_primary_10_1016_j_chemosphere_2024_141387
crossref_primary_10_1016_j_plaphy_2019_12_030
crossref_primary_10_1038_s41598_021_98753_8
crossref_primary_10_1071_CP19510
crossref_primary_10_1016_j_plaphy_2023_108198
crossref_primary_10_3390_plants12162951
crossref_primary_10_1016_j_envexpbot_2022_104905
crossref_primary_10_1016_j_ijfoodmicro_2021_109402
crossref_primary_10_3390_cells11071136
crossref_primary_10_3390_plants8110508
crossref_primary_10_1007_s44279_024_00070_x
crossref_primary_10_3390_jof8080765
crossref_primary_10_3390_plants11091213
crossref_primary_10_3390_plants11233358
crossref_primary_10_1002_jsfa_12176
crossref_primary_10_3390_plants10061044
crossref_primary_10_1021_acssuschemeng_1c05181
crossref_primary_10_1016_j_scitotenv_2024_171335
crossref_primary_10_1016_j_scienta_2022_111368
crossref_primary_10_1007_s11240_021_02040_3
crossref_primary_10_1038_s41438_021_00513_2
crossref_primary_10_1371_journal_pone_0251389
crossref_primary_10_3390_ijms231810474
crossref_primary_10_1016_j_plantsci_2025_112479
crossref_primary_10_3389_fevo_2021_576122
crossref_primary_10_1016_j_plaphy_2023_107651
crossref_primary_10_3390_microorganisms9071419
crossref_primary_10_3390_plants10050927
crossref_primary_10_1007_s12298_021_01090_3
crossref_primary_10_2139_ssrn_4075929
crossref_primary_10_1007_s12298_021_01043_w
crossref_primary_10_3390_plants12020256
crossref_primary_10_1016_j_algal_2024_103686
crossref_primary_10_1038_s41598_023_34509_w
crossref_primary_10_1016_j_plaphy_2021_02_028
crossref_primary_10_1111_ppl_13297
crossref_primary_10_1007_s00468_022_02288_y
crossref_primary_10_3390_agronomy10020194
crossref_primary_10_1038_s43705_022_00197_2
crossref_primary_10_3390_w15030418
crossref_primary_10_3390_ijms21155208
crossref_primary_10_3390_plants10091930
crossref_primary_10_1007_s11120_020_00810_2
crossref_primary_10_3390_ijms25105199
crossref_primary_10_1016_j_heliyon_2023_e22960
crossref_primary_10_3389_fpls_2023_1185440
crossref_primary_10_1016_j_stress_2024_100669
crossref_primary_10_1007_s44297_025_00044_5
crossref_primary_10_3390_plants12122253
crossref_primary_10_1007_s11356_024_31874_5
crossref_primary_10_1111_ppl_13507
crossref_primary_10_3390_v14030607
crossref_primary_10_3390_agriculture13030701
crossref_primary_10_1002_its2_162
crossref_primary_10_3389_fpls_2023_1268014
crossref_primary_10_3390_plants10061078
crossref_primary_10_3390_plants11233360
crossref_primary_10_1007_s11103_025_01566_w
crossref_primary_10_1016_j_plaphy_2023_108276
crossref_primary_10_1371_journal_pone_0267126
crossref_primary_10_3390_biology11010041
crossref_primary_10_1111_pce_13657
crossref_primary_10_3390_biology9090253
crossref_primary_10_1007_s42977_023_00198_9
crossref_primary_10_3390_plants12193410
crossref_primary_10_1016_j_ecoenv_2020_110732
crossref_primary_10_1016_j_egg_2021_100080
crossref_primary_10_1111_plb_13719
crossref_primary_10_1016_j_envexpbot_2021_104376
crossref_primary_10_7717_peerj_11340
crossref_primary_10_1016_j_jplph_2023_154077
crossref_primary_10_1016_j_scienta_2021_110170
crossref_primary_10_3390_agronomy9100575
crossref_primary_10_1128_aem_00310_24
crossref_primary_10_1007_s00344_022_10679_1
crossref_primary_10_1038_s41598_023_43992_0
crossref_primary_10_1007_s11240_023_02560_0
crossref_primary_10_3390_ijms20133350
crossref_primary_10_3389_fpls_2022_978304
crossref_primary_10_32615_bp_2021_062
crossref_primary_10_3389_fpls_2019_00742
crossref_primary_10_3389_fpls_2023_1269286
crossref_primary_10_1007_s11103_020_01077_w
crossref_primary_10_1111_ppl_13491
crossref_primary_10_3390_ijms24043388
crossref_primary_10_3390_ijms222111370
crossref_primary_10_1016_j_ecoenv_2022_113938
crossref_primary_10_3390_ijms232416048
crossref_primary_10_1016_j_indcrop_2021_113595
crossref_primary_10_1016_j_stress_2021_100015
crossref_primary_10_3390_agronomy10060911
crossref_primary_10_3390_agronomy11112299
crossref_primary_10_3390_agronomy13020458
crossref_primary_10_1371_journal_pone_0259520
crossref_primary_10_1111_jipb_13874
crossref_primary_10_1016_j_scienta_2024_113767
crossref_primary_10_3389_fmars_2022_853272
crossref_primary_10_3389_fpls_2023_1187260
crossref_primary_10_1016_j_scienta_2022_111300
crossref_primary_10_3389_fmars_2022_869739
crossref_primary_10_3390_plants12223907
crossref_primary_10_4081_ija_2020_1754
crossref_primary_10_3389_fpls_2020_618873
crossref_primary_10_1002_pmic_202200104
crossref_primary_10_3390_plants13030354
crossref_primary_10_1007_s00344_022_10880_2
crossref_primary_10_3389_fmolb_2022_964624
crossref_primary_10_3390_agronomy14040843
crossref_primary_10_1002_its2_80
crossref_primary_10_3389_fpls_2022_1006617
crossref_primary_10_36899_APS_2024_3_0750
crossref_primary_10_32615_bp_2021_044
crossref_primary_10_3389_fpls_2022_881032
crossref_primary_10_3390_ijms241814316
crossref_primary_10_1007_s44279_024_00152_w
crossref_primary_10_1111_ppl_70007
crossref_primary_10_3390_ijms24119714
crossref_primary_10_1016_j_sajb_2024_10_006
crossref_primary_10_1038_s41598_022_19399_8
crossref_primary_10_1016_j_ceramint_2022_08_151
crossref_primary_10_1007_s12633_024_03030_8
crossref_primary_10_3390_plants13192732
crossref_primary_10_1016_j_plaphy_2020_10_032
crossref_primary_10_3390_agronomy12102495
crossref_primary_10_3390_ijms232112913
crossref_primary_10_1016_j_plaphy_2024_108516
crossref_primary_10_1016_j_envexpbot_2021_104454
crossref_primary_10_3390_ijms24021360
crossref_primary_10_3390_agronomy9070355
crossref_primary_10_1039_D5NA00044K
crossref_primary_10_1128_msystems_00140_25
crossref_primary_10_1016_j_plaphy_2023_107936
crossref_primary_10_1007_s42535_024_00844_0
crossref_primary_10_1080_09553002_2024_2398083
crossref_primary_10_1111_ppl_14097
crossref_primary_10_1186_s12870_021_03113_3
crossref_primary_10_1134_S0026261722601609
crossref_primary_10_3389_fpls_2019_00785
crossref_primary_10_3389_fpls_2019_00546
crossref_primary_10_3390_plants9060771
crossref_primary_10_1016_j_rhisph_2022_100603
crossref_primary_10_3390_life14020183
crossref_primary_10_3390_plants10020307
crossref_primary_10_1042_BCJ20210191
crossref_primary_10_3389_fpls_2021_625541
crossref_primary_10_1016_j_postharvbio_2024_113320
crossref_primary_10_3390_plants10122821
crossref_primary_10_1007_s43538_021_00006_9
crossref_primary_10_3390_agronomy10020210
crossref_primary_10_1134_S1067413623020042
crossref_primary_10_3390_agronomy11081469
crossref_primary_10_1007_s00299_020_02581_5
crossref_primary_10_1007_s10343_020_00515_5
crossref_primary_10_3389_fpls_2022_835414
crossref_primary_10_3390_agronomy12020276
crossref_primary_10_3390_su122410649
crossref_primary_10_1016_j_apsoil_2020_103582
crossref_primary_10_1007_s40502_021_00579_z
crossref_primary_10_3390_biotech14010017
crossref_primary_10_1016_j_heliyon_2024_e30598
crossref_primary_10_15835_nbha49412501
crossref_primary_10_3390_plants10010043
crossref_primary_10_3389_fpls_2021_588847
crossref_primary_10_1080_15592324_2019_1666656
crossref_primary_10_1016_j_chemosphere_2024_142671
crossref_primary_10_3389_fpls_2021_672702
crossref_primary_10_3389_fpls_2021_678925
crossref_primary_10_1021_acsapm_3c00691
crossref_primary_10_1007_s00425_020_03550_8
crossref_primary_10_3390_plants11223180
crossref_primary_10_1016_j_jfca_2025_107301
crossref_primary_10_1016_j_ecoenv_2019_110152
crossref_primary_10_3390_plants11050700
crossref_primary_10_1134_S1021443724604737
crossref_primary_10_31857_S036705972302004X
crossref_primary_10_1017_S0031182023000768
crossref_primary_10_3390_plants10050845
crossref_primary_10_7717_peerj_10888
crossref_primary_10_3389_fpls_2020_00512
crossref_primary_10_1093_pcp_pcaa116
crossref_primary_10_1007_s00122_025_04823_0
crossref_primary_10_18006_2021_9_Spl_3_NRMCSSA_2021__S321_S329
crossref_primary_10_1007_s00425_019_03293_1
crossref_primary_10_3389_fpls_2022_985900
crossref_primary_10_1007_s11274_023_03837_4
crossref_primary_10_3390_ijms24076429
crossref_primary_10_1371_journal_pone_0254906
crossref_primary_10_1134_S1021443724605354
crossref_primary_10_1016_j_jspr_2024_102445
crossref_primary_10_3390_agrochemicals3010001
crossref_primary_10_1016_j_plaphy_2024_108734
crossref_primary_10_1016_j_plaphy_2024_108976
crossref_primary_10_1007_s00344_024_11558_7
crossref_primary_10_3390_ijms241813998
crossref_primary_10_3389_fmars_2025_1549668
crossref_primary_10_1016_j_sajb_2024_06_012
crossref_primary_10_3390_foods10123067
crossref_primary_10_3390_plants13070979
crossref_primary_10_3389_fpls_2024_1467376
crossref_primary_10_3390_ijms251910630
crossref_primary_10_1080_07352689_2022_2065136
crossref_primary_10_1016_j_stress_2025_100802
crossref_primary_10_3390_agriculture12030350
Cites_doi 10.1007/s10681-010-0316-7
10.1111/j.1365-3040.1994.tb00269.x
10.1021/ja044541q
10.1071/FP04184
10.1016/S0014-5793(99)00516-5
10.1016/j.tplants.2008.06.007
10.3389/fpls.2016.02035
10.1104/pp.107.2.631
10.1016/B978-0-444-82884-2.50011-X
10.1626/pps.16.117
10.1080/11263504.2012.697493
10.1007/s10535-007-0128-3
10.1007/s11120-015-0125-x
10.1007/s11032-007-9086-x
10.1111/j.1439-037X.1996.tb00467.x
10.1016/j.jplph.2011.03.007
10.1046/j.1365-3040.2000.00570.x
10.1111/ppl.12513
10.1016/j.jplph.2004.03.009
10.4161/psb.6.11.17801
10.17660/ActaHortic.1999.487.33
10.1002/iub.406
10.1046/j.1365-3040.2000.00527.x
10.1042/bj20061815
10.1093/oxfordjournals.pcp.a029026
10.1146/annurev.pp.28.060177.000513
10.1105/tpc.11.3.377
10.1155/2014/701596
10.1016/j.plaphy.2014.03.026
10.1023/a:1026513831290
10.1111/j.1365-3040.2010.02232.x
10.1016/j.jplph.2009.06.016
10.1016/S0176-1617(88)80223-2
10.1016/0031-9422(96)00312-3
10.1023/A:1006095015717
10.1111/j.1399-3054.2008.01122.x
10.1146/annurev.arplant.59.032607.092911
10.1073/pnas.171228998
10.1631/jzus.B1000137
10.1016/j.plantsci.2008.10.003
10.1073/pnas.94.7.3454
10.1093/jexbot/51.342.81
10.1104/pp.108.4.1715
10.5511/plantbiotechnology.26.135
10.1016/0167-7799(90)90225-M
10.1016/j.agwat.2018.08.037
10.1134/S1021443707040061
10.1007/s00122-002-1063-5
10.1071/PP98024
10.1016/j.aoas.2016.04.003
10.1016/j.jplph.2014.12.009
10.21273/JASHS.137.1.38
10.5511/plantbiotechnology.26.125
10.1007/s00425-006-0380-3
10.1104/pp.122.3.747
10.1007/s12298-015-0292-4
10.1007/s11738-009-0432-y
10.1107/S1399004713029283
10.1104/pp.124.1.153
10.1016/j.jplph.2005.04.023
10.1016/j.envexpbot.2005.12.006
10.1016/S0168-9452(02)00278-9
10.1046/j.1365-313X.1997.12010133.x
10.1093/oxfordjournals.pcp.a029320
10.1016/j.talanta.2008.11.008
10.1111/j.1438-8677.2008.00161.x
10.1104/pp.91.3.1112
10.1046/j.0016-8025.2001.00790.x
10.1023/a:1026542109965
10.1016/j.postharvbio.2015.12.005
10.1074/jbc.M112012200
10.1007/BF00345565
10.1104/pp.104.045187
10.1023/A:100726693
10.1080/14620316.2000.11511297
10.1093/pcp/pcj041
10.1071/FP08108
10.1093/oxfordjournals.jbchem.a131872
10.1006/mben.2000.0158
10.1093/jxb/erj073
10.1098/rstb.2000.0712
10.1007/BF00266155
10.1007/bf00391862
10.1007/bf00390825
10.1046/j.1365-3040.1998.00362.x
10.1078/0176-1617-00309
10.1104/pp.82.3.753
10.4067/S0718-95162014005000028
10.1111/j.1467-7652.2009.00420.x
10.1071/fp09051
10.1046/j.1365-3040.1997.d01-82.x
10.3389/fpls.2018.01995
10.3389/fpls.2018.01469
10.1071/PP9860659
10.1007/s11738-008-0166-2
10.1034/j.1399-3054.1999.105108.x
10.3389/fpls.2018.00318
10.1016/S0005-2728(05)80148-3
10.1016/j.plantsci.2017.01.012
10.3389/fpls.2018.00100
10.3390/agronomy8110270
10.1590/S1677-04202004000100006
10.1007/s10725-013-9853-0
10.1016/j.jplph.2009.04.002
10.1023/A:1006855816437
10.1046/j.1439-037X.2001.00469.x
10.1071/FP18046
10.1093/jexbot/51.343.177
10.9734/AJEA/2013/1730
10.1016/S0176-1617(11)80785-6
10.1007/bf02512197
10.1007/s10535-010-0012-4
10.3390/ijms13033176
10.4161/psb.4.3.7725
10.1002/pld3.40
10.1046/j.1365-313X.2003.01873.x
10.1111/j.1365-3040.2007.01694.x
10.1016/j.envexpbot.2006.12.009
10.1073/pnas.87.7.2745
10.2174/1389202911314030001
10.1093/jxb/erm278
10.1007/978-3-319-90318-7_11
10.1016/j.aoas.2015.10.004
10.1128/jb.173.2.472-478.1991
10.1071/FP10177
10.1016/S1002-0160(12)60060-5
10.1016/j.aoas.2016.05.001
10.1046/j.1365-313x.1998.00316.x
10.1074/jbc.M106038200
10.1105/tpc.8.8.1437
10.1016/j.plantsci.2003.08.018
10.1146/annurev.pp.44.060193.002041
10.1046/j.1469-8137.2003.00770.x
10.1271/bbb.100334
ContentType Journal Article
Copyright Copyright © 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo. 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo
Copyright_xml – notice: Copyright © 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo. 2019 Annunziata, Ciarmiello, Woodrow, Dell’Aversana and Carillo
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2019.00230
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_626dd7876b18462bb0ffd9dee7d75090
PMC6416205
30899269
10_3389_fpls_2019_00230
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-55b45cad4d8540ce6e8b733ed9b0d25d2f00ceb479792b0454bd8905484ed59e3
IEDL.DBID DOA
ISSN 1664-462X
IngestDate Wed Aug 27 01:27:30 EDT 2025
Thu Aug 21 18:21:43 EDT 2025
Thu Jul 10 22:51:33 EDT 2025
Thu Jan 02 23:02:18 EST 2025
Thu Apr 24 23:02:19 EDT 2025
Tue Jul 01 02:06:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords salinity
osmotic adjustment
compatible compound
CMO
glycine betaine (GB)
ROS
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-55b45cad4d8540ce6e8b733ed9b0d25d2f00ceb479792b0454bd8905484ed59e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Xinghong Yang, Shandong Agricultural University, China
Reviewed by: Asim Masood, Aligarh Muslim University, India; Jitender Giri, National Institute of Plant Genome Research (NIPGR), India
This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science
OpenAccessLink https://doaj.org/article/626dd7876b18462bb0ffd9dee7d75090
PMID 30899269
PQID 2196515546
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_626dd7876b18462bb0ffd9dee7d75090
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416205
proquest_miscellaneous_2196515546
pubmed_primary_30899269
crossref_primary_10_3389_fpls_2019_00230
crossref_citationtrail_10_3389_fpls_2019_00230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-07
PublicationDateYYYYMMDD 2019-03-07
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-07
  day: 07
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Agastian (B1) 2000; 38
Mäkelä (B70) 1999; 105
Wang (B123) 2010; 11
Weretilnyk (B129) 1990; 87
Igamberdiev (B46) 2018; 9
Park (B91) 2007; 30
Sairam (B106) 2002; 163
Waditee (B122) 2002; 277
Kleczkowski (B57) 1988; 132
Tsutsumi (B121) 2015; 176
Wei (B126) 2017; 257
Shan (B113) 2016; 114
Kishitani (B55) 2000; 23
Kwon (B61) 2012; 13
Robinson (B103) 1986; 13
Carillo (B13) 2008; 35
Woodrow (B131) 2017; 159
Rathinasabapathi (B95) 1997; 94
Takabe (B120) 1998
Demiral (B24) 2004; 161
Chen (B17) 2008; 13
Rajasekaran (B94) 1997; 34
Flowers (B32) 1977; 28
Ashraf (B4) 2007; 59
Sulpice (B119) 2003; 36
Lv (B65) 2007; 20
Khan (B53) 2012; 22
Zhao (B139) 2007; 51
Salvi (B110) 2014; 70
McNeil (B77) 2001; 98
Carillo (B10) 2018; 9
Hattori (B40) 2009; 176
Wingler (B130) 2000; 355
Chen (B16) 2011; 34
Mäkelä (B71) 1996; 176
Gorham (B37) 1996; 43
Park (B90) 2006; 47
Rhodes (B100) 1993; 44
Sulpice (B118) 1998; 21
Manaf (B74) 2016; 61
Mitsuya (B80) 2013; 16
Cuin (B22) 2009; 36
Raza (B97) 2007; 60
Maas (B69) 1989; 10
Munns (B82) 2008; 59
Xu (B132) 2018; 9
Castiglioni (B15) 2018; 2
Rhodes (B102) 1989; 91
Allard (B2) 1998; 39
Osman (B86) 2015; 60
Oukarroum (B88) 2012; 146
Hayashi (B42) 1998; 111
Sakamoto (B109) 2002; 25
Ma (B68) 2007; 54
Yang (B135) 2007; 225
Huang (B45) 2000; 122
Annunziata (B3) 2017; 7
Holmström (B43) 2000; 51
Di Martino (B25) 2003; 158
Yamada (B133) 2009; 166
Khan (B54) 2010; 62
Gupta (B39) 2014; 72
Mäkelä (B72) 1998; 25
Nakamura (B83) 1996; 37
Quan (B93) 2004; 166
Yao (B136) 2016; 10
Raza (B96) 2014; 14
Díaz-Zorita (B26) 2001; 186
Rentsch (B99) 1996; 8
Basu (B6) 2010; 32
Nuccio (B85) 1998; 16
Ma (B67) 2006; 32
Kathuria (B50) 2009; 7
Shimomura (B115) 2009; 78
Khan (B51) 2009; 26
Saneoka (B111) 1995; 107
Carillo (B11) 2019; 212
Prasad (B92) 2000; 6
Chen (B18) 2000; 23
Giri (B36) 2011; 6
Sakamoto (B107) 1998; 1998
Rozwadowski (B105) 1991; 173
Islam (B48) 2009; 166
Nuccio (B84) 2000; 2
Reddy (B98) 2013; 3
Banu (B5) 2010; 74
Hayashi (B41) 1997; 12
Meloni (B79) 2004; 16
Subbarao (B117) 2001; 158
Carillo (B14) 2011; 38
Ciarmiello (B20) 2018; 8
Carillo (B12) 2005; 32
Fariduddin (B29) 2013; 7
Brendza (B9) 2007; 404
Osman (B87) 2016; 61
Yu (B137) 2009; 26
Ferchichi (B30) 2018; 45
Gibon (B35) 1997; 20
Liu (B64) 2011; 178
Wani (B125) 2013; 14
McCue (B76) 1990; 8
Papageorgiou (B89) 1991; 1057
Jokinen (B49) 1999; 487
Yamada (B134) 2011; 168
Rhodes (B101) 2002
Kumar (B58) 2004; 136
Hu (B44) 2012; 137
Rontein (B104) 2001; 276
Sharma (B114) 2006; 57
Fitzgerald (B31) 2009; 11
Fujiwara (B33) 2008; 134
Li (B63) 2019; 9
Ladyman (B62) 1980; 150
Masood (B75) 2016
Colmer (B21) 1995; 108
Breitkreuz (B8) 1999; 450
D’Amelia (B23) 2018
Ma (B66) 2006; 163
Gupta (B38) 2014; 2014
Zhao (B140) 1992; 140
Kumar (B59) 2017
Storey (B116) 1977; 27
Zhang (B138) 2010; 54
Gao (B34) 2000; 6
Schwacke (B112) 1999; 11
Mohanty (B81) 2002; 106
Einset (B27) 2009; 4
Weretilnyk (B128) 1989; 178
McNeil (B78) 2000; 124
Kurepin (B60) 2015; 126
Malekzadeh (B73) 2015; 21
Bhuiyan (B7) 2007; 58
Khan (B52) 2014; 80
Chołuj (B19) 2008; 30
Weigel (B127) 1986; 82
Wang (B124) 2000; 75
Fan (B28) 2005; 127
Sakamoto (B108) 2000; 51
Ikuta (B47) 1977; 82
Kishitani (B56) 1994; 17
References_xml – volume: 178
  start-page: 363
  year: 2011
  ident: B64
  article-title: Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase.
  publication-title: Euphytica
  doi: 10.1007/s10681-010-0316-7
– volume: 17
  start-page: 89
  year: 1994
  ident: B56
  article-title: Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1994.tb00269.x
– volume: 127
  start-page: 2067
  year: 2005
  ident: B28
  article-title: On the catalytic mechanism of choline oxidase.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044541q
– volume: 32
  start-page: 209
  year: 2005
  ident: B12
  article-title: Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP04184
– volume: 450
  start-page: 280
  year: 1999
  ident: B8
  article-title: Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana.
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00516-5
– volume: 13
  start-page: 499
  year: 2008
  ident: B17
  article-title: Glycinebetaine: an effective protectant against abiotic stress in plants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.06.007
– volume: 7
  year: 2017
  ident: B3
  article-title: Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.02035
– volume: 107
  start-page: 631
  year: 1995
  ident: B111
  article-title: Salt tolerance of glycinebetaine-deficient and -containing maize lines.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.2.631
– start-page: 115
  year: 1998
  ident: B120
  article-title: “8 - Glycinebetaine and the genetic engineering of salinity tolerance in plants,” in
  publication-title: Stress Responses of Photosynthetic Organisms
  doi: 10.1016/B978-0-444-82884-2.50011-X
– volume: 16
  start-page: 117
  year: 2013
  ident: B80
  article-title: Tissue localization of the glycine betaine biosynthetic enzymes in barley leaves.
  publication-title: Plant Product. Sci.
  doi: 10.1626/pps.16.117
– volume: 146
  start-page: 1037
  year: 2012
  ident: B88
  article-title: Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study.
  publication-title: Plant Biosyst.
  doi: 10.1080/11263504.2012.697493
– volume: 51
  start-page: 584
  year: 2007
  ident: B139
  article-title: Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress.
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-007-0128-3
– volume: 126
  start-page: 221
  year: 2015
  ident: B60
  article-title: Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions.
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-015-0125-x
– volume: 20
  start-page: 233
  year: 2007
  ident: B65
  article-title: Increase of glycinebetaine synthesis improves drought tolerance in cotton.
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-007-9086-x
– volume: 176
  start-page: 223
  year: 1996
  ident: B71
  article-title: Effect of foliar applications of glycinebetaine on stress tolerance, growth, and yield of spring cereals and summer turnip rape in finland.
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/j.1439-037X.1996.tb00467.x
– volume: 168
  start-page: 1609
  year: 2011
  ident: B134
  article-title: Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.03.007
– volume: 23
  start-page: 609
  year: 2000
  ident: B18
  article-title: Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L.
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2000.00570.x
– volume: 159
  start-page: 290
  year: 2017
  ident: B131
  article-title: Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12513
– volume: 161
  start-page: 1089
  year: 2004
  ident: B24
  article-title: Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment?
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2004.03.009
– volume: 6
  start-page: 1746
  year: 2011
  ident: B36
  article-title: Glycinebetaine and abiotic stress tolerance in plants.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.11.17801
– volume: 487
  start-page: 233
  year: 1999
  ident: B49
  article-title: Glycinebetaine from sugar beet enhances the yield of field-grown tomatoes.
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.1999.487.33
– volume: 62
  start-page: 891
  year: 2010
  ident: B54
  article-title: Naturally occurring organic osmolytes: from cell physiology to disease prevention.
  publication-title: IUBMB Life
  doi: 10.1002/iub.406
– volume: 23
  start-page: 107
  year: 2000
  ident: B55
  article-title: Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley.
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2000.00527.x
– volume: 404
  start-page: 439
  year: 2007
  ident: B9
  article-title: Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans.
  publication-title: Biochem. J.
  doi: 10.1042/bj20061815
– volume: 37
  start-page: 873
  year: 1996
  ident: B83
  article-title: Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029026
– volume: 28
  start-page: 89
  year: 1977
  ident: B32
  article-title: The mechanism of salt tolerance in halophytes.
  publication-title: Annu. Rev. Plant Physiol.
  doi: 10.1146/annurev.pp.28.060177.000513
– volume: 11
  start-page: 377
  year: 1999
  ident: B112
  article-title: LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen.
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.3.377
– volume: 2014
  year: 2014
  ident: B38
  article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.
  publication-title: Int. J. Genom.
  doi: 10.1155/2014/701596
– volume: 80
  start-page: 67
  year: 2014
  ident: B52
  article-title: Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.).
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.03.026
– volume: 6
  start-page: 501
  year: 2000
  ident: B34
  article-title: Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase.
  publication-title: Mol. Breed.
  doi: 10.1023/a:1026513831290
– volume: 34
  start-page: 1
  year: 2011
  ident: B16
  article-title: Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02232.x
– volume: 166
  start-page: 2058
  year: 2009
  ident: B133
  article-title: Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet – Importance of long-distance translocation of betaine under normal and salt-stressed conditions.
  publication-title: J. Plant Physiol. Mol. Biol.
  doi: 10.1016/j.jplph.2009.06.016
– volume: 132
  start-page: 641
  year: 1988
  ident: B57
  article-title: Serine formation in leaves by mechanisms other than the glycolate pathway.
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(88)80223-2
– volume: 43
  start-page: 367
  year: 1996
  ident: B37
  article-title: Glycinebetaine is a major nitrogen-containing solute in the Malvaceae.
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(96)00312-3
– volume: 1998
  start-page: 1011
  year: 1998
  ident: B107
  article-title: Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold.
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1006095015717
– volume: 134
  start-page: 22
  year: 2008
  ident: B33
  article-title: Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01122.x
– volume: 59
  start-page: 651
  year: 2008
  ident: B82
  article-title: Mechanisms of salinity tolerance.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 98
  start-page: 10001
  year: 2001
  ident: B77
  article-title: Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.171228998
– volume: 11
  start-page: 851
  year: 2010
  ident: B123
  article-title: Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity.
  publication-title: J. Zhejiang Univers. Sci. B
  doi: 10.1631/jzus.B1000137
– volume: 176
  start-page: 112
  year: 2009
  ident: B40
  article-title: Tissue specificity of glycinebetaine synthesis in barley.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2008.10.003
– volume: 94
  start-page: 3454
  year: 1997
  ident: B95
  article-title: Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA?cloning.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.7.3454
– volume: 51
  start-page: 81
  year: 2000
  ident: B108
  article-title: Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/51.342.81
– volume: 108
  start-page: 1715
  year: 1995
  ident: B21
  article-title: Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A, Love Amphiploid.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.4.1715
– volume: 26
  start-page: 135
  year: 2009
  ident: B137
  article-title: Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house.
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.26.135
– volume: 8
  start-page: 358
  year: 1990
  ident: B76
  article-title: Drought and salt tolerance: towards understanding and application.
  publication-title: Trends Biotechnol.
  doi: 10.1016/0167-7799(90)90225-M
– volume: 212
  start-page: 12
  year: 2019
  ident: B11
  article-title: Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes.
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2018.08.037
– volume: 54
  start-page: 472
  year: 2007
  ident: B68
  article-title: Glycinebetaine application ameliorates negative effects ofdrought stress in tobacco.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443707040061
– volume: 106
  start-page: 51
  year: 2002
  ident: B81
  article-title: Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-002-1063-5
– volume: 25
  start-page: 655
  year: 1998
  ident: B72
  article-title: Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP98024
– volume: 61
  start-page: 41
  year: 2016
  ident: B74
  article-title: Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant.
  publication-title: Ann. Agric. Sci.
  doi: 10.1016/j.aoas.2016.04.003
– volume: 176
  start-page: 101
  year: 2015
  ident: B121
  article-title: Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2014.12.009
– volume: 137
  start-page: 38
  year: 2012
  ident: B44
  article-title: Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass.
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.137.1.38
– volume: 26
  start-page: 125
  year: 2009
  ident: B51
  article-title: Genetic engineering of Glycine betaine biosynthesis to enhance abiotic stress tolerance in plants.
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.26.125
– volume: 225
  start-page: 719
  year: 2007
  ident: B135
  article-title: Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants.
  publication-title: Planta
  doi: 10.1007/s00425-006-0380-3
– volume: 122
  start-page: 747
  year: 2000
  ident: B45
  article-title: Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.3.747
– volume: 21
  start-page: 225
  year: 2015
  ident: B73
  article-title: Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.).
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-015-0292-4
– volume: 32
  start-page: 551
  year: 2010
  ident: B6
  article-title: Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-009-0432-y
– volume: 70
  start-page: 405
  year: 2014
  ident: B110
  article-title: Structure of choline oxidase in complex with the reaction product glycine betaine.
  publication-title: Acta Crystallograph. Sect. D
  doi: 10.1107/S1399004713029283
– volume: 124
  start-page: 153
  year: 2000
  ident: B78
  article-title: Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in Tobacco.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.1.153
– volume: 163
  start-page: 165
  year: 2006
  ident: B66
  article-title: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2005.04.023
– volume: 59
  start-page: 206
  year: 2007
  ident: B4
  article-title: Roles of glycine betaine and proline in improving plant abiotic stress resistance.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2005.12.006
– start-page: 181
  year: 2002
  ident: B101
  article-title: “Salinity, Osmolytes and compatible solutes,” in
  publication-title: Salinity: Environment – Plants – Molecules
– volume: 163
  start-page: 1037
  year: 2002
  ident: B106
  article-title: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(02)00278-9
– volume: 12
  start-page: 133
  year: 1997
  ident: B41
  article-title: Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1997.12010133.x
– volume: 39
  start-page: 1194
  year: 1998
  ident: B2
  article-title: Betaine improves freezing tolerance in wheat.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029320
– volume: 78
  start-page: 217
  year: 2009
  ident: B115
  article-title: Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane.
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.11.008
– volume: 11
  start-page: 119
  year: 2009
  ident: B31
  article-title: Betaine aldehyde dehydrogenase in plants.
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2008.00161.x
– volume: 91
  start-page: 1112
  year: 1989
  ident: B102
  article-title: Development of two isogenic sweet corn hybrids differing for glycinebetaine content.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.91.3.1112
– volume: 25
  start-page: 163
  year: 2002
  ident: B109
  article-title: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants.
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2001.00790.x
– volume: 32
  start-page: 465
  year: 2006
  ident: B67
  article-title: Glycine betaine applied through roots protects the photosynthetic apparatus of tobacco seedlings under water stress.
  publication-title: J. Plant Physiol. Mol. Biol.
– volume: 6
  start-page: 489
  year: 2000
  ident: B92
  article-title: Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress.
  publication-title: Mol. Breed.
  doi: 10.1023/a:1026542109965
– volume: 114
  start-page: 104
  year: 2016
  ident: B113
  article-title: Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage.
  publication-title: Postharv. Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.12.005
– volume: 277
  start-page: 18373
  year: 2002
  ident: B122
  article-title: Functional characterization of betaine/proline transporters in betaine-accumulating mangrove.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112012200
– volume: 27
  start-page: 319
  year: 1977
  ident: B116
  article-title: Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants.
  publication-title: Oecologia
  doi: 10.1007/BF00345565
– volume: 136
  start-page: 2843
  year: 2004
  ident: B58
  article-title: Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.045187
– volume: 38
  start-page: 287
  year: 2000
  ident: B1
  article-title: Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes.
  publication-title: Photosynthetica
  doi: 10.1023/A:100726693
– volume: 75
  start-page: 623
  year: 2000
  ident: B124
  article-title: Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress.
  publication-title: J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2000.11511297
– volume: 47
  start-page: 706
  year: 2006
  ident: B90
  article-title: Exogenous application of glycinebetaine increases chilling tolerance in tomato plants.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcj041
– volume: 35
  start-page: 412
  year: 2008
  ident: B13
  article-title: Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP08108
– volume: 82
  start-page: 1741
  year: 1977
  ident: B47
  article-title: Purification and characterization of Choline oxidase from Arthrobacter globiformis.
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a131872
– volume: 2
  start-page: 300
  year: 2000
  ident: B84
  article-title: Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway.
  publication-title: Metab. Eng.
  doi: 10.1006/mben.2000.0158
– volume: 57
  start-page: 711
  year: 2006
  ident: B114
  article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj073
– volume: 355
  start-page: 1517
  year: 2000
  ident: B130
  article-title: Photorespiration: metabolic pathways and their role in stress protection.
  publication-title: Philos. Trans. R. Soc. Lon. Ser. B Biol. Sci.
  doi: 10.1098/rstb.2000.0712
– volume: 10
  start-page: 29
  year: 1989
  ident: B69
  article-title: Salt sensitivity of wheat at various growth stages.
  publication-title: Irrigat. Sci.
  doi: 10.1007/BF00266155
– volume: 178
  start-page: 342
  year: 1989
  ident: B128
  article-title: Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons.
  publication-title: Planta
  doi: 10.1007/bf00391862
– volume: 150
  start-page: 191
  year: 1980
  ident: B62
  article-title: Translocation and metabolism of glycine betaine by barley plants in relation to water stress.
  publication-title: Planta
  doi: 10.1007/bf00390825
– volume: 21
  start-page: 1285
  year: 1998
  ident: B118
  article-title: Exogenously supplied glycine betaine in spinach and rapeseed leaf discs: compatibility or non-compatibility?
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1998.00362.x
– volume: 158
  start-page: 767
  year: 2001
  ident: B117
  article-title: Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply.
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00309
– volume: 82
  start-page: 753
  year: 1986
  ident: B127
  article-title: Betaine aldehyde oxidation by spinach chloroplasts.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.82.3.753
– volume: 14
  start-page: 348
  year: 2014
  ident: B96
  article-title: Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought.
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.4067/S0718-95162014005000028
– volume: 7
  start-page: 512
  year: 2009
  ident: B50
  article-title: Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2009.00420.x
– volume: 36
  year: 2009
  ident: B22
  article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/fp09051
– volume: 20
  start-page: 329
  year: 1997
  ident: B35
  article-title: Is glycine betaine a non-compatible solute in higher plants that do not accumulate it?
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1997.d01-82.x
– volume: 9
  year: 2019
  ident: B63
  article-title: Genetic engineering of the biosynthesis of glycine betaine modulates phosphate homeostasis by regulating phosphate acquisition in tomato.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01995
– volume: 9
  year: 2018
  ident: B132
  article-title: Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01469
– start-page: 111
  year: 2017
  ident: B59
  article-title: “Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms,” in
  publication-title: Stress Signaling in Plants: Genomics and Proteomics Perspective
– volume: 13
  start-page: 659
  year: 1986
  ident: B103
  article-title: Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP9860659
– volume: 30
  start-page: 679
  year: 2008
  ident: B19
  article-title: Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-008-0166-2
– volume: 105
  start-page: 45
  year: 1999
  ident: B70
  article-title: Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine.
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.1999.105108.x
– volume: 9
  year: 2018
  ident: B46
  article-title: The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00318
– volume: 1057
  start-page: 361
  year: 1991
  ident: B89
  article-title: Protection of the oxygen-evolving photosystem II complex by glycinebetaine.
  publication-title: Biochim. Biophys. Acta (BBA) – Bioenerget.
  doi: 10.1016/S0005-2728(05)80148-3
– volume: 257
  start-page: 74
  year: 2017
  ident: B126
  article-title: Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.01.012
– volume: 9
  year: 2018
  ident: B10
  article-title: GABA shunt in durum wheat.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00100
– volume: 8
  start-page: 1
  year: 2018
  ident: B20
  article-title: Unveiling the enigmatic structure of TdCMO transcripts in durum wheat.
  publication-title: Agronomy
  doi: 10.3390/agronomy8110270
– volume: 16
  start-page: 39
  year: 2004
  ident: B79
  article-title: The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba.
  publication-title: Braz. J. Plant Physiol.
  doi: 10.1590/S1677-04202004000100006
– volume: 72
  start-page: 221
  year: 2014
  ident: B39
  article-title: Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat.
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-013-9853-0
– volume: 166
  start-page: 1587
  year: 2009
  ident: B48
  article-title: Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2009.04.002
– volume: 34
  start-page: 357
  year: 1997
  ident: B94
  article-title: Physiological significance of proline and glycinebetaine: maintaining photosynthesis during NaCl stress in wheat.
  publication-title: Photosynthetica
  doi: 10.1023/A:1006855816437
– volume: 186
  start-page: 209
  year: 2001
  ident: B26
  article-title: Applications of foliar fertilizers containing glycinebetaine improve wheat yields.
  publication-title: J. Agron. Crop Sci.
  doi: 10.1046/j.1439-037X.2001.00469.x
– volume: 45
  start-page: 1096
  year: 2018
  ident: B30
  article-title: Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP18046
– year: 2016
  ident: B75
  article-title: “Glycine betaine: role in shifting plants toward adaptation under extreme environments,” in
  publication-title: Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies
– volume: 51
  start-page: 177
  year: 2000
  ident: B43
  article-title: Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/51.343.177
– volume: 7
  start-page: 8
  year: 2013
  ident: B29
  article-title: Dissecting the role of glycine betaine in plants under abiotic stress.
  publication-title: Plant Stress
– volume: 3
  start-page: 1
  year: 2013
  ident: B98
  article-title: Exogenous application of glycinebetaine facilitates maize (Zea mays L.) growth under water deficit conditions.
  publication-title: Am. J. Exp. Agric.
  doi: 10.9734/AJEA/2013/1730
– volume: 140
  start-page: 541
  year: 1992
  ident: B140
  article-title: Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing.
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(11)80785-6
– volume: 111
  year: 1998
  ident: B42
  article-title: Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase.
  publication-title: J. Plant Res.
  doi: 10.1007/bf02512197
– volume: 54
  start-page: 83
  year: 2010
  ident: B138
  article-title: The protection of wheat plasma membrane under cold stress by glycine betaine overproduction.
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-010-0012-4
– volume: 13
  start-page: 3176
  year: 2012
  ident: B61
  article-title: Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms13033176
– volume: 4
  start-page: 197
  year: 2009
  ident: B27
  article-title: Glycine betaine enhances extracellular processes blocking ROS signaling during stress.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.4.3.7725
– volume: 2
  year: 2018
  ident: B15
  article-title: Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean.
  publication-title: Plant Direct.
  doi: 10.1002/pld3.40
– volume: 36
  start-page: 165
  year: 2003
  ident: B119
  article-title: Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01873.x
– volume: 30
  start-page: 994
  year: 2007
  ident: B91
  article-title: Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01694.x
– volume: 60
  start-page: 368
  year: 2007
  ident: B97
  article-title: Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2006.12.009
– volume: 87
  start-page: 2745
  year: 1990
  ident: B129
  article-title: Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.87.7.2745
– volume: 14
  start-page: 157
  year: 2013
  ident: B125
  article-title: Compatible solute engineering in plants for abiotic stress tolerance – Role of glycine betaine.
  publication-title: Curr. Genom.
  doi: 10.2174/1389202911314030001
– volume: 58
  start-page: 4203
  year: 2007
  ident: B7
  article-title: Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm278
– year: 2018
  ident: B23
  article-title: “Metabolomics for crop improvement against salinity stress,” in
  publication-title: Salinity Responses and Tolerance in Plants
  doi: 10.1007/978-3-319-90318-7_11
– volume: 60
  start-page: 389
  year: 2015
  ident: B86
  article-title: Enhancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline.
  publication-title: Ann. Agric. Sci.
  doi: 10.1016/j.aoas.2015.10.004
– volume: 173
  start-page: 472
  year: 1991
  ident: B105
  article-title: Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.2.472-478.1991
– volume: 10
  start-page: 58
  year: 2016
  ident: B136
  article-title: Application of glycine betaine alleviates salt induced damages more efficiently than ascorbic acid in in vitro rice shoots.
  publication-title: Austr. J. Basic Appl. Sci.
– volume: 38
  start-page: 139
  year: 2011
  ident: B14
  article-title: Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP10177
– volume: 22
  start-page: 746
  year: 2012
  ident: B53
  article-title: Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene.
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(12)60060-5
– volume: 61
  start-page: 1
  year: 2016
  ident: B87
  article-title: Influence of exogenous application of some phytoprotectants on growth, yield and pod quality of snap bean under NaCl salinity.
  publication-title: Ann. Agric. Sci.
  doi: 10.1016/j.aoas.2016.05.001
– volume: 16
  start-page: 487
  year: 1998
  ident: B85
  article-title: The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00316.x
– volume: 276
  start-page: 35523
  year: 2001
  ident: B104
  article-title: Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106038200
– volume: 8
  start-page: 1437
  year: 1996
  ident: B99
  article-title: Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant.
  publication-title: Plant Cell
  doi: 10.1105/tpc.8.8.1437
– volume: 166
  start-page: 141
  year: 2004
  ident: B93
  article-title: Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2003.08.018
– volume: 44
  start-page: 357
  year: 1993
  ident: B100
  article-title: Quaternary ammonium and tertiary sulfonium compounds in higher plants.
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.pp.44.060193.002041
– volume: 158
  start-page: 455
  year: 2003
  ident: B25
  article-title: Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress.
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00770.x
– volume: 74
  start-page: 2043
  year: 2010
  ident: B5
  article-title: Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells.
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100334
SSID ssj0000500997
Score 2.600779
SecondaryResourceType review_article
Snippet Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 230
SubjectTerms CMO
compatible compound
glycine betaine (GB)
osmotic adjustment
Plant Science
ROS
salinity
SummonAdditionalLinks – databaseName: Scholars Portal: Open Access Journals [open access]
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZp2kMvJX1mkzSo0EMvTr22HutDCbulaQikBJqFXIqxNON2wbHTfUD233dGdjbdsrn1ZJAlS8xInk-v7xPivUUKao6v_aLykUIPUaENL-Sz0guThIWli_Nv5nSszq701b0cUGfA2capHetJjafV0e3v5TEN-E8846R4-7G8qZh4u8_Mk4SoH4nHFJYsj9LzDuu3RN-MhmxL77Op3FpkCgT-m1Dnv4cn_4pGJzviWQcj5bD1-3OxhfUL8WTUENRbvhQ_WGiYOpYsapCXLflUJS9aeW7ZlPJrteQNdTniA6T0HHq_uO6EvOSklixlNJ_JIIokh27SUDXye7hWgrNXYnzy5fLzadTpKEReJ3oeae2U9gUoGBA-82hw4GyaImQuhkRDUsaU6pTNbJY45uRzMMgIyw0Ugs4wfS2266bGXSFNmipCfK7vbKGQxWIA-omPHfQLJKzYE0d3Nsx9RzLOWhdVTpMNNnrORs_Z6Hkwek98WBW4afk1Hs46YqessjExdkhopj_zbpzlND8DoJ-QcdQ2kzgXlyVkgGiBsRF95N2dS3MaSLw7UtTYLKgi5lZkdGV64k3r4lVVKW-OJibrCbvm_LW2rL-pJ78CWbchxJvEeu9_NH5fPGVzhCNw9kBsz6cLfEuYaO4OQ1__A-HSC3w
  priority: 102
  providerName: Scholars Portal
Title Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses
URI https://www.ncbi.nlm.nih.gov/pubmed/30899269
https://www.proquest.com/docview/2196515546
https://pubmed.ncbi.nlm.nih.gov/PMC6416205
https://doaj.org/article/626dd7876b18462bb0ffd9dee7d75090
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBL6XfdpkWFHnpxY8v6sI-7pUkopBSawF6KsTRjurCxQ7N7yL_PjOQsu6Wll15ssGUkRmPmjTR6T4j3DimoeT72izrkGgPknbG8kM9KL0wSFpcuzr7a0wv9ZWEWO1JfXBOW6IGT4Y4IcAOQV1lPuYhV3hd9Dw0gOuBgF7N1ink7yVRi9Wbo4xKXD2VhzVF_tWJ27pLpKRXXPO-EocjW_yeI-Xul5E7oOX4kHk6YUc7SWB-Lezg8EffnI-G6m6fiB6sKkxfJbgB5npimVvJb0uKWYy9PVje8ey7nXC1K91kIm8tJtUsuB8m6RetrGRWQ5MwvR-pGfo9nSPD6mbg4_nz-6TSfRBPyYJRZ58Z4bUIHGmoCYwEt1t5VFULjC1AGVF_QU69d4xrlmYDPQ90QcKs1gmmwei4OhnHAl0LaqtIE73zpXaeRlWEAShUKD2WHBAwz8fHOhm2YGMVZ2GLVUmbBRm_Z6C0bvY1Gz8SH7QdXiUzj703nPCnbZsyCHR-Qb7STb7T_8o1MvLub0pb-Gt4K6QYcN9QREykylLKZeJGmeNtVxTuhyjaZcHuTvzeW_TfD8mdk5rYEb1VhXv2Pwb8WD9gcsd7NHYqD9a8NviEAtPZvo6_T9WRR0vVM17coIQWq
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+Temporal+Profile+of+Glycine+Betaine+Accumulation+in+Plants+Under+Abiotic+Stresses&rft.jtitle=Frontiers+in+plant+science&rft.au=Maria+Grazia+Annunziata&rft.au=Loredana+Filomena+Ciarmiello&rft.au=Pasqualina+Woodrow&rft.au=Emilia+Dell%E2%80%99Aversana&rft.date=2019-03-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.00230&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_626dd7876b18462bb0ffd9dee7d75090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon