Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation

The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 36; p. 101627
Main Authors Gallego-Selles, Angel, Martin-Rincon, Marcos, Martinez-Canton, Miriam, Perez-Valera, Mario, Martín-Rodríguez, Saúl, Gelabert-Rebato, Miriam, Santana, Alfredo, Morales-Alamo, David, Dorado, Cecilia, Calbet, Jose A.L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2213-2317
2213-2317
DOI10.1016/j.redox.2020.101627

Cover

Loading…
Abstract The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.
AbstractList The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (P O : 143 mmHg) and severe acute hypoxia (P O : 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O -dependent.
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (P I O 2 : 143 mmHg) and severe acute hypoxia (P I O 2 : 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser 40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser 349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O 2 -dependent.
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.
ArticleNumber 101627
Author Gallego-Selles, Angel
Calbet, Jose A.L.
Dorado, Cecilia
Morales-Alamo, David
Perez-Valera, Mario
Martín-Rodríguez, Saúl
Santana, Alfredo
Martin-Rincon, Marcos
Martinez-Canton, Miriam
Gelabert-Rebato, Miriam
Author_xml – sequence: 1
  givenname: Angel
  surname: Gallego-Selles
  fullname: Gallego-Selles, Angel
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 2
  givenname: Marcos
  surname: Martin-Rincon
  fullname: Martin-Rincon, Marcos
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 3
  givenname: Miriam
  surname: Martinez-Canton
  fullname: Martinez-Canton, Miriam
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 4
  givenname: Mario
  orcidid: 0000-0002-8332-729X
  surname: Perez-Valera
  fullname: Perez-Valera, Mario
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 5
  givenname: Saúl
  surname: Martín-Rodríguez
  fullname: Martín-Rodríguez, Saúl
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 6
  givenname: Miriam
  surname: Gelabert-Rebato
  fullname: Gelabert-Rebato, Miriam
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 7
  givenname: Alfredo
  surname: Santana
  fullname: Santana, Alfredo
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 8
  givenname: David
  surname: Morales-Alamo
  fullname: Morales-Alamo, David
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 9
  givenname: Cecilia
  orcidid: 0000-0001-6616-6810
  surname: Dorado
  fullname: Dorado, Cecilia
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
– sequence: 10
  givenname: Jose A.L.
  surname: Calbet
  fullname: Calbet, Jose A.L.
  email: lopezcalbet@gmail.com
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32863217$$D View this record in MEDLINE/PubMed
BookMark eNqFkttu1DAQhiNUREvpEyAhX3LBbn3IEQkkVHFYUYGEem9NnEnWi2MvdrLafUmeCWfTVi0XkJvY4_m_Gc38z5MT6ywmyUtGl4yy_HKz9Ni4_ZJTPkd48SQ545yJBResOHlwPk0uQtjQ-JVlyhl9lpwKXuaCs-Is-f0Du9HAoJ0lriXffMsvvyJsGQm6s2CMth3RlqzHHiwJP9HgAIb0Y1AGSTP66R336JUOSAYXz2sYw5EXZdb53u01vCEBd-iRgBoHJOvDdooSsA3ZujAs7gk6qDVgr-EtWdnWjGgVTo31sWztjB4mhBr7u54ngtsfOrTH-4vkaQsm4MXt_zy5-fTx5urL4vr759XVh-uFyng2LFJo8ixTWVsD1G3BaJvXWY15WglV5gXUKeMqSzEXjVAtRUUzbArG2gqKVClxnqxmbONgI7de9-AP0oGWx4DznQQ_6DgiKYqyLKo8L7JapIrHynVLKeR5RkugRRlZ72fWdqx7bBTawYN5BH38YvVadm4nC5GVopwAr28B3v0aMQyyj1NEY8CiG4PkqSirKmO0iqmvHta6L3Lnh5gg5gTlXQge2_sURuVkM7mRR-PJyXhyNl5UVX-plB6O-4gNa_Mf7btZi3FdO41eBqWnrTfaoxriQPU_9X8A0Az7AQ
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2024_08_011
crossref_primary_10_1007_s00210_020_01972_5
crossref_primary_10_1016_j_freeradbiomed_2024_08_030
crossref_primary_10_1249_JES_0000000000000277
crossref_primary_10_5812_gct_138980
crossref_primary_10_1016_j_scitotenv_2021_148646
crossref_primary_10_1016_j_freeradbiomed_2021_05_039
crossref_primary_10_5812_gct_131964
crossref_primary_10_1111_sms_13828
crossref_primary_10_1016_j_freeradbiomed_2021_07_020
crossref_primary_10_1016_j_freeradbiomed_2024_07_041
crossref_primary_10_1016_j_freeradbiomed_2024_09_032
crossref_primary_10_1126_sciadv_adn5993
crossref_primary_10_3390_antiox12020501
crossref_primary_10_4252_wjsc_v16_i1_33
crossref_primary_10_3390_antiox10111712
crossref_primary_10_1016_j_yhbeh_2022_105180
crossref_primary_10_1016_j_redox_2025_103535
crossref_primary_10_1016_j_job_2024_100611
crossref_primary_10_3389_fcvm_2021_752640
crossref_primary_10_1016_j_phymed_2023_154931
crossref_primary_10_1177_17534666231208633
crossref_primary_10_1016_j_cmet_2021_02_017
crossref_primary_10_3390_nu15132848
crossref_primary_10_1016_j_jshs_2024_05_001
crossref_primary_10_7759_cureus_23503
crossref_primary_10_1016_j_freeradbiomed_2024_07_012
crossref_primary_10_1016_j_pharmthera_2023_108524
crossref_primary_10_1111_sms_14545
crossref_primary_10_1155_2022_8973509
crossref_primary_10_1089_wound_2023_0136
crossref_primary_10_1080_10715762_2021_1923705
crossref_primary_10_3390_life11121339
crossref_primary_10_1016_j_freeradbiomed_2021_11_030
Cites_doi 10.1371/journal.pone.0208474
10.1016/j.redox.2020.101473
10.1007/BF00585149
10.1016/j.freeradbiomed.2016.01.012
10.1113/JP270646
10.1016/0003-2697(85)90442-7
10.1113/JP275972
10.1038/onc.2012.388
10.1016/j.yjmcc.2014.02.004
10.1128/MCB.24.16.7130-7139.2004
10.1016/B978-0-12-394309-5.00006-7
10.1007/s00421-019-04259-7
10.1111/sms.13495
10.1074/jbc.M110.118976
10.1128/MCB.01204-10
10.1016/j.freeradbiomed.2005.03.024
10.1016/j.cryobiol.2019.08.007
10.1152/japplphysiol.00654.2018
10.1111/j.1432-1033.1997.00259.x
10.1007/s00018-009-0146-8
10.1089/ars.2012.4615
10.1177/0271678X17691986
10.1016/j.freeradbiomed.2017.06.010
10.1016/j.redox.2016.12.035
10.1038/ncb2021
10.1073/pnas.1121572109
10.1038/s41598-018-28074-w
10.1152/physrev.1994.74.1.49
10.1152/japplphysiol.00347.2019
10.1042/bj20031049
10.1042/BJ20042006
10.1089/ars.2012.4818
10.1016/S0006-291X(03)01308-1
10.1007/s00421-013-2806-5
10.1016/j.redox.2016.10.003
10.1113/JP270487
10.1074/jbc.M109.051714
10.1016/S0021-9258(18)54740-2
10.1016/j.freeradbiomed.2009.05.018
10.3389/fphys.2015.00085
10.1074/jbc.M206911200
10.3109/10715762.2015.1066784
10.1016/j.freeradbiomed.2013.05.045
10.1113/JP271957
10.1007/s00421-010-1581-9
10.1152/japplphysiol.00091.2011
10.1096/fj.06-5097fje
10.1113/jphysiol.2008.155382
10.1016/j.cell.2008.02.048
10.1016/j.redox.2020.101478
10.1152/ajpcell.1994.266.4.C1028
10.14814/phy2.12512
10.1016/j.bbagrm.2015.11.009
10.1038/nrm2039
10.1074/jbc.M300931200
10.1016/j.freeradbiomed.2015.10.412
10.1152/japplphysiol.01246.2012
10.1073/pnas.94.21.11233
10.1046/j.1365-2443.2003.00640.x
10.1074/jbc.M706517200
10.1113/jphysiol.1986.sp016093
10.1089/ham.2008.1099
10.1152/ajpcell.00426.2019
10.1055/s-2003-39086
10.1113/JP270408
10.1002/j.2040-4603.2011.tb00348.x
10.3109/10715762.2013.825043
10.1016/j.redox.2020.101484
10.1152/japplphysiol.00415.2012
10.1016/j.freeradbiomed.2014.02.004
10.1042/CS20180157
10.1089/ham.2014.1027
10.1152/ajpcell.00313.2009
10.1152/japplphysiol.00289.2016
10.3389/fphys.2018.00188
10.1016/j.freeradbiomed.2015.06.021
10.1113/EP085493
10.1242/jcs.058537
10.1023/A:1020600509965
10.3389/fphys.2018.01764
10.1038/ncomms4446
10.1113/expphysiol.2011.060178
10.1186/s12967-016-0839-3
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2020.101627
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
ExternalDocumentID oai_doaj_org_article_3788796675b34c24adbf00a66508a078
PMC7358388
32863217
10_1016_j_redox_2020_101627
S2213231720308326
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADUVX
ADVLN
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
0SF
AACTN
NCXOZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c525t-4ad655c5fbaabf710f6b5be6493c867ab412c54e63d3cf0ec05ed711f9a74cc3
IEDL.DBID M48
ISSN 2213-2317
IngestDate Wed Aug 27 01:08:47 EDT 2025
Thu Aug 21 13:34:51 EDT 2025
Fri Jul 11 00:51:41 EDT 2025
Thu Jan 02 22:57:41 EST 2025
Tue Jul 01 05:06:09 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Sat Jun 07 17:02:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ischaemia
Fatigue
AMPK
High-intensity exercise
CaMKII
Performance
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-4ad655c5fbaabf710f6b5be6493c867ab412c54e63d3cf0ec05ed711f9a74cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6616-6810
0000-0002-8332-729X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.redox.2020.101627
PMID 32863217
PQID 2438995109
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3788796675b34c24adbf00a66508a078
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7358388
proquest_miscellaneous_2438995109
pubmed_primary_32863217
crossref_primary_10_1016_j_redox_2020_101627
crossref_citationtrail_10_1016_j_redox_2020_101627
elsevier_sciencedirect_doi_10_1016_j_redox_2020_101627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rada, Rojo, Chowdhry, McMahon, Hayes, Cuadrado (bib57) 2011; 31
Kumar, Narasimhan, Shanmugam, Hong, Devarajan, Palaniappan (bib34) 2016; 14
Morales-Alamo, Ponce-Gonzalez, Guadalupe-Grau, Rodriguez-Garcia, Santana, Cusso (bib19) 2012; 113
Losa-Reyna, Torres-Peralta, González-Henriquez, Calbet (bib44) 2015; 3
Powers, Ji, Kavazis, Jackson (bib1) 2011; 1
Sies (bib84) 2017; 11
Niture, Jain, Jaiswal (bib61) 2009; 122
Henriquez-Olguin, Meneses-Valdes, Jensen (bib71) 2020
Calbet, Martin-Rodriguez, Martin-Rincon, Morales-Alamo (bib2) 2020
Jain, Lamark, Sjottem, Larsen, Awuh, Overvatn (bib55) 2010; 285
Leonard, Kieran, Howell, Burne, Varadarajan, Dhakshinamoorthy (bib79) 2006; 20
Itoh, Wakabayashi, Katoh, Ishii, O'Connor, Yamamoto (bib48) 2003; 8
Wafi, Hong, Rudebush, Yu, Hackfort, Wang (bib15) 2019; 126
Fiorenza, Gunnarsson, Hostrup, Iaia, Schena, Pilegaard (bib17) 2018; 596
Cobley, Sakellariou, Owens, Murray, Waldron, Gregson (bib64) 2014; 70
Hardie, Carling (bib35) 1997; 246
Calbet, Lundby (bib60) 2009; 10
Erickson, Joiner, Guan, Kutschke, Yang, Oddis (bib28) 2008; 133
Buckley, Marshall, Whorton (bib53) 2003; 307
Taguchi, Fujikawa, Komatsu, Ishii, Unno, Akaike (bib59) 2012; 109
Morales-Alamo, Calbet (bib37) 2016; 98
Harris, Edwards, Hultman, Nordesjo, Nylind, Sahlin (bib80) 1976; 367
Dell'Orco, Milani, Arrigoni, Pansarasa, Sardone, Maffioli (bib72) 2016; 1859
Aquilano, Baldelli, Pagliei, Cannata, Rotilio, Ciriolo (bib33) 2013; 18
Wagner, Rokita, Anderson, Maier (bib83) 2013; 18
Forman, Davies, Ursini (bib82) 2014; 66
Lundby, Calbet, Robach (bib20) 2009; 66
Rapti, Diokmetzidou, Kloukina, Milner, Varela, Davos (bib67) 2017; 110
Torres-Peralta, Losa-Reyna, Gonzalez-Izal, Perez-Suarez, Calle-Herrero, Izquierdo (bib39) 2014; 15
Perez-Suarez, Martin-Rincon, Gonzalez-Henriquez, Fezzardi, Perez-Regalado, Galvan-Alvarez (bib43) 2018; 9
Oliveira, Laurindo (bib69) 2018; 132
Miao, St Clair (bib70) 2009; 47
McMahon, Itoh, Yamamoto, Hayes (bib49) 2003; 278
Morrison, Hughes, Della Gatta, Mason, Lamon, Russell (bib68) 2015; 89
Tonks (bib29) 2006; 7
Jackson, Stretton, McArdle (bib66) 2020
Martin-Rincon, Gonzalez-Henriquez, Losa-Reyna, Perez-Suarez, Ponce-Gonzalez, de La Calle-Herrero (bib45) 2019; 29
Wang, Yang, Yan, Wei, Wang, Yu (bib23) 2019; 127
Kobayashi, Kang, Okawa, Ohtsuji, Zenke, Chiba (bib50) 2004; 24
Ballmann, McGinnis, Peters, Slivka, Cuddy, Hailes (bib21) 2014; 114
Morales-Alamo, Calbet (bib3) 2014; 48
Li, He, Liu, Kong, Wang, Zhang (bib10) 2015; 49
Morales-Alamo, Guerra, Santana, Martin-Rincon, Gelabert-Rebato, Dorado (bib18) 2018; 9
Powers, Radak, Ji (bib26) 2016; 594
Morales-Alamo, Ponce-Gonzalez, Guadalupe-Grau, Rodriguez-Garcia, Santana, Cusso (bib5) 2013; 114
Kalogeris, Baines, Krenz, Korthuis (bib76) 2012; 298
Fitts (bib16) 1994; 74
Morales-Alamo, Losa-Reyna, Torres-Peralta, Martin-Rincon, Perez-Valera, Curtelin (bib42) 2015; 593
Konishi, Tanaka, Takemura, Matsuzaki, Ono, Kikkawa (bib27) 1997; 94
Done, Traustadottir (bib8) 2016; 10
Luczak, Anderson (bib31) 2014; 73
Parise, Phillips, Kaczor, Tarnopolsky (bib63) 2005; 39
Tsang, Liu, Thomas, Zhang, Zheng (bib73) 2014; 5
Bailey, Evans, McEneny, Young, Hullin, James (bib38) 2011; 96
Hultman, Spriet (bib81) 1986; 374
Merry, MacRae, Pham, Hedges, Ristow (bib7) 2020; 318
Endo, Owada, Inagaki, Shida, Tatemichi (bib56) 2018; 8
Psilander, Wang, Westergren, Tonkonogi, Sahlin (bib14) 2010; 110
Levonen, Landar, Ramachandran, Ceaser, Dickinson, Zanoni (bib51) 2004; 378
Curtelin, Morales-Alamo, Torres-Peralta, Rasmussen, Martin-Rincon, Perez-Valera (bib41) 2018; 38
Radi, Turrens, Chang, Bush, Crapo, Freeman (bib65) 1991; 266
Calbet, Losa-Reyna, Torres-Peralta, Rasmussen, Ponce-Gonzalez, Sheel (bib40) 2015; 593
Tebay, Robertson, Durant, Vitale, Penning, Dinkova-Kostova (bib25) 2015; 88
Solaini, Harris (bib74) 2005; 390
Opichka, Shute, Marshall, Slivka (bib12) 2019; 90
Wang, Li, Qi, Cui, Ding (bib9) 2016; 101
Merry, Ristow (bib6) 2016; 594
Ji, Wang, He, Yan, Li, Wang (bib24) 2018; 13
Park, Rho (bib32) 2002; 240
Lee, Jain, Papusha, Jaiswal (bib78) 2007; 282
Ventura, Hoppeler, Seiler, Binggeli, Mullis, Vogt (bib22) 2003; 24
Fourquet, Guerois, Biard, Toledano (bib52) 2010; 285
Smith, Krohn, Hermanson, Mallia, Gartner, Provenzano (bib47) 1985; 150
Yin, Yang, Li, Renshaw, Li, Schultz (bib30) 2010; 298
Huang, Nguyen, Pickett (bib62) 2002; 277
Land, Hochachka (bib77) 1994; 266
Brooks, Vasilaki, Larkin, McArdle, Jackson (bib4) 2008; 586
Islam, Bonafiglia, Turnbull, Simpson, Perry, Gurd (bib11) 2020; 120
Mendham, Duffield, Coutts, Marino, Boyko, McAinch (bib13) 2016; 121
Komatsu, Kurokawa, Waguri, Taguchi, Kobayashi, Ichimura (bib54) 2010; 12
Becker, vanden Hoek, Shao, Li, Schumacker (bib75) 1999; 277
Guerra, Gomez-Cabrera, Ponce-Gonzalez, Martinez-Bello, Guadalupe-Grau, Santana (bib46) 2011; 110
Brandauer, Andersen, Kellezi, Risis, Frosig, Vienberg (bib36) 2015; 6
Chowdhry, Zhang, McMahon, Sutherland, Cuadrado, Hayes (bib58) 2013; 32
Curtelin (10.1016/j.redox.2020.101627_bib41) 2018; 38
Jain (10.1016/j.redox.2020.101627_bib55) 2010; 285
Perez-Suarez (10.1016/j.redox.2020.101627_bib43) 2018; 9
Brooks (10.1016/j.redox.2020.101627_bib4) 2008; 586
Lee (10.1016/j.redox.2020.101627_bib78) 2007; 282
Solaini (10.1016/j.redox.2020.101627_bib74) 2005; 390
Powers (10.1016/j.redox.2020.101627_bib1) 2011; 1
Dell'Orco (10.1016/j.redox.2020.101627_bib72) 2016; 1859
Opichka (10.1016/j.redox.2020.101627_bib12) 2019; 90
Aquilano (10.1016/j.redox.2020.101627_bib33) 2013; 18
Calbet (10.1016/j.redox.2020.101627_bib40) 2015; 593
Tebay (10.1016/j.redox.2020.101627_bib25) 2015; 88
Rapti (10.1016/j.redox.2020.101627_bib67) 2017; 110
Becker (10.1016/j.redox.2020.101627_bib75) 1999; 277
Ji (10.1016/j.redox.2020.101627_bib24) 2018; 13
Morales-Alamo (10.1016/j.redox.2020.101627_bib3) 2014; 48
Tonks (10.1016/j.redox.2020.101627_bib29) 2006; 7
Henriquez-Olguin (10.1016/j.redox.2020.101627_bib71) 2020
Li (10.1016/j.redox.2020.101627_bib10) 2015; 49
Kobayashi (10.1016/j.redox.2020.101627_bib50) 2004; 24
Merry (10.1016/j.redox.2020.101627_bib6) 2016; 594
Yin (10.1016/j.redox.2020.101627_bib30) 2010; 298
Fitts (10.1016/j.redox.2020.101627_bib16) 1994; 74
Erickson (10.1016/j.redox.2020.101627_bib28) 2008; 133
Morales-Alamo (10.1016/j.redox.2020.101627_bib37) 2016; 98
Torres-Peralta (10.1016/j.redox.2020.101627_bib39) 2014; 15
Merry (10.1016/j.redox.2020.101627_bib7) 2020; 318
Kalogeris (10.1016/j.redox.2020.101627_bib76) 2012; 298
Park (10.1016/j.redox.2020.101627_bib32) 2002; 240
Morales-Alamo (10.1016/j.redox.2020.101627_bib42) 2015; 593
Konishi (10.1016/j.redox.2020.101627_bib27) 1997; 94
Parise (10.1016/j.redox.2020.101627_bib63) 2005; 39
Hardie (10.1016/j.redox.2020.101627_bib35) 1997; 246
Hultman (10.1016/j.redox.2020.101627_bib81) 1986; 374
Guerra (10.1016/j.redox.2020.101627_bib46) 2011; 110
Wang (10.1016/j.redox.2020.101627_bib9) 2016; 101
Niture (10.1016/j.redox.2020.101627_bib61) 2009; 122
Harris (10.1016/j.redox.2020.101627_bib80) 1976; 367
Powers (10.1016/j.redox.2020.101627_bib26) 2016; 594
Calbet (10.1016/j.redox.2020.101627_bib2) 2020
Brandauer (10.1016/j.redox.2020.101627_bib36) 2015; 6
Ventura (10.1016/j.redox.2020.101627_bib22) 2003; 24
Chowdhry (10.1016/j.redox.2020.101627_bib58) 2013; 32
Bailey (10.1016/j.redox.2020.101627_bib38) 2011; 96
Martin-Rincon (10.1016/j.redox.2020.101627_bib45) 2019; 29
Morales-Alamo (10.1016/j.redox.2020.101627_bib5) 2013; 114
Komatsu (10.1016/j.redox.2020.101627_bib54) 2010; 12
Mendham (10.1016/j.redox.2020.101627_bib13) 2016; 121
Jackson (10.1016/j.redox.2020.101627_bib66) 2020
Levonen (10.1016/j.redox.2020.101627_bib51) 2004; 378
Taguchi (10.1016/j.redox.2020.101627_bib59) 2012; 109
Forman (10.1016/j.redox.2020.101627_bib82) 2014; 66
Endo (10.1016/j.redox.2020.101627_bib56) 2018; 8
Ballmann (10.1016/j.redox.2020.101627_bib21) 2014; 114
Wang (10.1016/j.redox.2020.101627_bib23) 2019; 127
Buckley (10.1016/j.redox.2020.101627_bib53) 2003; 307
Wagner (10.1016/j.redox.2020.101627_bib83) 2013; 18
Morales-Alamo (10.1016/j.redox.2020.101627_bib19) 2012; 113
Wafi (10.1016/j.redox.2020.101627_bib15) 2019; 126
Lundby (10.1016/j.redox.2020.101627_bib20) 2009; 66
Fourquet (10.1016/j.redox.2020.101627_bib52) 2010; 285
Calbet (10.1016/j.redox.2020.101627_bib60) 2009; 10
Done (10.1016/j.redox.2020.101627_bib8) 2016; 10
Sies (10.1016/j.redox.2020.101627_bib84) 2017; 11
McMahon (10.1016/j.redox.2020.101627_bib49) 2003; 278
Huang (10.1016/j.redox.2020.101627_bib62) 2002; 277
Fiorenza (10.1016/j.redox.2020.101627_bib17) 2018; 596
Miao (10.1016/j.redox.2020.101627_bib70) 2009; 47
Radi (10.1016/j.redox.2020.101627_bib65) 1991; 266
Losa-Reyna (10.1016/j.redox.2020.101627_bib44) 2015; 3
Luczak (10.1016/j.redox.2020.101627_bib31) 2014; 73
Land (10.1016/j.redox.2020.101627_bib77) 1994; 266
Islam (10.1016/j.redox.2020.101627_bib11) 2020; 120
Smith (10.1016/j.redox.2020.101627_bib47) 1985; 150
Rada (10.1016/j.redox.2020.101627_bib57) 2011; 31
Morales-Alamo (10.1016/j.redox.2020.101627_bib18) 2018; 9
Oliveira (10.1016/j.redox.2020.101627_bib69) 2018; 132
Morrison (10.1016/j.redox.2020.101627_bib68) 2015; 89
Psilander (10.1016/j.redox.2020.101627_bib14) 2010; 110
Cobley (10.1016/j.redox.2020.101627_bib64) 2014; 70
Tsang (10.1016/j.redox.2020.101627_bib73) 2014; 5
Leonard (10.1016/j.redox.2020.101627_bib79) 2006; 20
Itoh (10.1016/j.redox.2020.101627_bib48) 2003; 8
Kumar (10.1016/j.redox.2020.101627_bib34) 2016; 14
References_xml – volume: 11
  start-page: 613
  year: 2017
  end-page: 619
  ident: bib84
  article-title: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress
  publication-title: Redox Biol
– volume: 113
  start-page: 917
  year: 2012
  end-page: 928
  ident: bib19
  article-title: Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKalpha phosphorylation, in response to sprint exercise in severe acute hypoxia in humans
  publication-title: J. Appl. Physiol.
– start-page: 101478
  year: 2020
  ident: bib2
  article-title: An integrative approach to the regulation of mitochondrial respiration during exercise: focus on high-intensity exercise
  publication-title: Redox Biol
– volume: 110
  start-page: 597
  year: 2010
  end-page: 606
  ident: bib14
  article-title: Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise
  publication-title: Eur. J. Appl. Physiol.
– volume: 39
  start-page: 289
  year: 2005
  end-page: 295
  ident: bib63
  article-title: Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults
  publication-title: Free Radic. Biol. Med.
– volume: 150
  start-page: 76
  year: 1985
  end-page: 85
  ident: bib47
  article-title: Measurement of protein using bicinchoninic acid
  publication-title: Anal. Biochem.
– volume: 90
  start-page: 47
  year: 2019
  end-page: 53
  ident: bib12
  article-title: Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy
  publication-title: Cryobiology
– volume: 374
  start-page: 493
  year: 1986
  end-page: 501
  ident: bib81
  article-title: Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans
  publication-title: J. Physiol.
– volume: 66
  start-page: 24
  year: 2014
  end-page: 35
  ident: bib82
  article-title: How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo
  publication-title: Free Radic. Biol. Med.
– volume: 133
  start-page: 462
  year: 2008
  end-page: 474
  ident: bib28
  article-title: A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation
  publication-title: Cell
– volume: 285
  start-page: 22576
  year: 2010
  end-page: 22591
  ident: bib55
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 86
  year: 2016
  ident: bib34
  article-title: Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress
  publication-title: J. Transl. Med.
– volume: 122
  start-page: 4452
  year: 2009
  end-page: 4464
  ident: bib61
  article-title: Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance
  publication-title: J. Cell Sci.
– volume: 5
  start-page: 3446
  year: 2014
  ident: bib73
  article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance
  publication-title: Nat. Commun.
– volume: 126
  start-page: 477
  year: 2019
  end-page: 486
  ident: bib15
  article-title: Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle
  publication-title: J. Appl. Physiol.
– volume: 6
  start-page: 85
  year: 2015
  ident: bib36
  article-title: AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD
  publication-title: Front. Physiol.
– volume: 10
  start-page: 191
  year: 2016
  end-page: 199
  ident: bib8
  article-title: Nrf2 mediates redox adaptations to exercise
  publication-title: Redox Biol
– volume: 114
  start-page: 566
  year: 2013
  end-page: 577
  ident: bib5
  article-title: Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle
  publication-title: J. Appl. Physiol.
– volume: 8
  start-page: 10122
  year: 2018
  ident: bib56
  article-title: Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells
  publication-title: Sci. Rep.
– volume: 13
  year: 2018
  ident: bib24
  article-title: Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle
  publication-title: PloS One
– volume: 66
  start-page: 3615
  year: 2009
  end-page: 3623
  ident: bib20
  article-title: The response of human skeletal muscle tissue to hypoxia
  publication-title: Cell. Mol. Life Sci.
– volume: 101
  start-page: 410
  year: 2016
  end-page: 420
  ident: bib9
  article-title: Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle
  publication-title: Exp. Physiol.
– volume: 298
  start-page: C857
  year: 2010
  end-page: C865
  ident: bib30
  article-title: Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 18
  start-page: 1063
  year: 2013
  end-page: 1077
  ident: bib83
  article-title: Redox regulation of sodium and calcium handling
  publication-title: Antioxidants Redox Signal.
– volume: 367
  start-page: 137
  year: 1976
  end-page: 142
  ident: bib80
  article-title: The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man
  publication-title: Pflügers Archiv
– volume: 596
  start-page: 2823
  year: 2018
  end-page: 2840
  ident: bib17
  article-title: Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle
  publication-title: J. Physiol.
– volume: 9
  start-page: 188
  year: 2018
  ident: bib18
  article-title: Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during sprint exercise in normoxia and severe acute hypoxia: effects of antioxidants
  publication-title: Front. Physiol.
– volume: 1859
  start-page: 315
  year: 2016
  end-page: 323
  ident: bib72
  article-title: Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration
  publication-title: Biochim. Biophys. Acta
– volume: 110
  start-page: 1708
  year: 2011
  end-page: 1715
  ident: bib46
  article-title: Repeated muscle biopsies through a single skin incision do not elicit muscle signaling, but IL-6 mRNA and STAT3 phosphorylation increase in injured muscle
  publication-title: J. Appl. Physiol.
– volume: 109
  start-page: 13561
  year: 2012
  end-page: 13566
  ident: bib59
  article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 246
  start-page: 259
  year: 1997
  end-page: 273
  ident: bib35
  article-title: The AMP-activated protein kinase--fuel gauge of the mammalian cell?
  publication-title: Eur. J. Biochem.
– volume: 285
  start-page: 8463
  year: 2010
  end-page: 8471
  ident: bib52
  article-title: Activation of NRF2 by nitrosative agents and H
  publication-title: J. Biol. Chem.
– volume: 70
  start-page: 23
  year: 2014
  end-page: 32
  ident: bib64
  article-title: Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle
  publication-title: Free Radic. Biol. Med.
– volume: 32
  start-page: 3765
  year: 2013
  end-page: 3781
  ident: bib58
  article-title: Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
  publication-title: Oncogene
– volume: 594
  start-page: 5195
  year: 2016
  end-page: 5207
  ident: bib6
  article-title: Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice
  publication-title: J. Physiol.
– volume: 277
  start-page: H2240
  year: 1999
  end-page: H2246
  ident: bib75
  article-title: Generation of superoxide in cardiomyocytes during ischemia before reperfusion
  publication-title: Am. J. Physiol.
– volume: 88
  start-page: 108
  year: 2015
  end-page: 146
  ident: bib25
  article-title: Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease
  publication-title: Free Radic. Biol. Med.
– volume: 24
  start-page: 7130
  year: 2004
  end-page: 7139
  ident: bib50
  article-title: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
  publication-title: Mol. Cell Biol.
– volume: 12
  start-page: 213
  year: 2010
  end-page: 223
  ident: bib54
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
– volume: 96
  start-page: 1196
  year: 2011
  end-page: 1207
  ident: bib38
  article-title: Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage
  publication-title: Exp. Physiol.
– volume: 29
  start-page: 1473
  year: 2019
  end-page: 1488
  ident: bib45
  article-title: Impact of data averaging strategies on VO
  publication-title: Scand. J. Med. Sci. Sports
– volume: 73
  start-page: 112
  year: 2014
  end-page: 116
  ident: bib31
  article-title: CaMKII oxidative activation and the pathogenesis of cardiac disease
  publication-title: J. Mol. Cell. Cardiol.
– volume: 31
  start-page: 1121
  year: 2011
  end-page: 1133
  ident: bib57
  article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
  publication-title: Mol. Cell Biol.
– volume: 3
  start-page: e12512
  year: 2015
  ident: bib44
  article-title: Arterial to end-tidal PCO
  publication-title: Physiol. Rep.
– volume: 593
  start-page: 4649
  year: 2015
  end-page: 4664
  ident: bib40
  article-title: Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O
  publication-title: J. Physiol.
– volume: 89
  start-page: 852
  year: 2015
  end-page: 862
  ident: bib68
  article-title: Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans
  publication-title: Free Radic. Biol. Med.
– volume: 24
  start-page: 166
  year: 2003
  end-page: 172
  ident: bib22
  article-title: The response of trained athletes to six weeks of endurance training in hypoxia or normoxia
  publication-title: Int. J. Sports Med.
– volume: 266
  start-page: C1028
  year: 1994
  end-page: C1036
  ident: bib77
  article-title: Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis
  publication-title: Am. J. Physiol.
– volume: 586
  start-page: 3979
  year: 2008
  end-page: 3990
  ident: bib4
  article-title: Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation
  publication-title: J. Physiol.
– volume: 277
  start-page: 42769
  year: 2002
  end-page: 42774
  ident: bib62
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 1764
  year: 2018
  ident: bib43
  article-title: Accuracy and precision of the COSMED K5 portable analyser
  publication-title: Front. Physiol.
– volume: 121
  start-page: 1326
  year: 2016
  end-page: 1334
  ident: bib13
  article-title: Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men
  publication-title: J. Appl. Physiol.
– volume: 378
  start-page: 373
  year: 2004
  end-page: 382
  ident: bib51
  article-title: Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products
  publication-title: Biochem. J.
– volume: 298
  start-page: 229
  year: 2012
  end-page: 317
  ident: bib76
  article-title: Cell biology of ischemia/reperfusion injury
  publication-title: Int. Rev. Cell Mol. Biol.
– volume: 318
  start-page: C337
  year: 2020
  end-page: C345
  ident: bib7
  article-title: Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 240
  start-page: 47
  year: 2002
  end-page: 55
  ident: bib32
  article-title: The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element
  publication-title: Mol. Cell. Biochem.
– volume: 38
  start-page: 136
  year: 2018
  end-page: 150
  ident: bib41
  article-title: Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 307
  start-page: 973
  year: 2003
  end-page: 979
  ident: bib53
  article-title: Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 18
  start-page: 386
  year: 2013
  end-page: 399
  ident: bib33
  article-title: p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance
  publication-title: Antioxidants Redox Signal.
– volume: 98
  start-page: 68
  year: 2016
  end-page: 77
  ident: bib37
  article-title: AMPK signaling in skeletal muscle during exercise: role of reactive oxygen and nitrogen species
  publication-title: Free Radic. Biol. Med.
– start-page: 101484
  year: 2020
  ident: bib66
  article-title: Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: what do concentrations tell us about potential mechanisms?
  publication-title: Redox Biol
– volume: 593
  start-page: 4631
  year: 2015
  end-page: 4648
  ident: bib42
  article-title: What limits performance during whole-body incremental exercise to exhaustion in humans?
  publication-title: J. Physiol.
– start-page: 101473
  year: 2020
  ident: bib71
  article-title: Compartmentalized muscle redox signals controlling exercise metabolism - current state, future challenges
  publication-title: Redox Biol
– volume: 74
  start-page: 49
  year: 1994
  end-page: 94
  ident: bib16
  article-title: Cellular mechanisms of muscle fatigue
  publication-title: Physiol. Rev.
– volume: 278
  start-page: 21592
  year: 2003
  end-page: 21600
  ident: bib49
  article-title: Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 379
  year: 2003
  end-page: 391
  ident: bib48
  article-title: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles
  publication-title: Gene Cell.
– volume: 48
  start-page: 30
  year: 2014
  end-page: 42
  ident: bib3
  article-title: Free radicals and sprint exercise in humans
  publication-title: Free Radic. Res.
– volume: 49
  start-page: 1269
  year: 2015
  end-page: 1274
  ident: bib10
  article-title: Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle
  publication-title: Free Radic. Res.
– volume: 94
  start-page: 11233
  year: 1997
  end-page: 11237
  ident: bib27
  article-title: Activation of protein kinase C by tyrosine phosphorylation in response to H
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 594
  start-page: 5081
  year: 2016
  end-page: 5092
  ident: bib26
  article-title: Exercise-induced oxidative stress: past, present and future
  publication-title: J. Physiol.
– volume: 1
  start-page: 941
  year: 2011
  end-page: 969
  ident: bib1
  article-title: Reactive oxygen species: impact on skeletal muscle
  publication-title: Comp. Physiol.
– volume: 266
  start-page: 22028
  year: 1991
  end-page: 22034
  ident: bib65
  article-title: Detection of catalase in rat heart mitochondria
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: 344
  year: 2009
  end-page: 356
  ident: bib70
  article-title: Regulation of superoxide dismutase genes: implications in disease
  publication-title: Free Radic. Biol. Med.
– volume: 20
  start-page: 2624
  year: 2006
  end-page: 2626
  ident: bib79
  article-title: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury
  publication-title: Faseb. J.
– volume: 127
  start-page: 1267
  year: 2019
  end-page: 1277
  ident: bib23
  article-title: Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2
  publication-title: J. Appl. Physiol.
– volume: 282
  start-page: 36412
  year: 2007
  end-page: 36420
  ident: bib78
  article-title: An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance
  publication-title: J. Biol. Chem.
– volume: 110
  start-page: 206
  year: 2017
  end-page: 218
  ident: bib67
  article-title: Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model
  publication-title: Free Radic. Biol. Med.
– volume: 7
  start-page: 833
  year: 2006
  end-page: 846
  ident: bib29
  article-title: Protein tyrosine phosphatases: from genes, to function, to disease
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 120
  start-page: 149
  year: 2020
  end-page: 160
  ident: bib11
  article-title: The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle
  publication-title: Eur. J. Appl. Physiol.
– volume: 114
  start-page: 725
  year: 2014
  end-page: 733
  ident: bib21
  article-title: Exercise-induced oxidative stress and hypoxic exercise recovery
  publication-title: Eur. J. Appl. Physiol.
– volume: 15
  start-page: 472
  year: 2014
  end-page: 482
  ident: bib39
  article-title: Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity
  publication-title: High Alt. Med. Biol.
– volume: 10
  start-page: 123
  year: 2009
  end-page: 134
  ident: bib60
  article-title: Air to muscle O
  publication-title: High Alt. Med. Biol.
– volume: 132
  start-page: 1257
  year: 2018
  end-page: 1280
  ident: bib69
  article-title: Implications of plasma thiol redox in disease
  publication-title: Clin. Sci. (Lond.)
– volume: 390
  start-page: 377
  year: 2005
  end-page: 394
  ident: bib74
  article-title: Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion
  publication-title: Biochem. J.
– volume: 13
  issue: 12
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib24
  article-title: Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle
  publication-title: PloS One
  doi: 10.1371/journal.pone.0208474
– start-page: 101473
  year: 2020
  ident: 10.1016/j.redox.2020.101627_bib71
  article-title: Compartmentalized muscle redox signals controlling exercise metabolism - current state, future challenges
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2020.101473
– volume: 367
  start-page: 137
  issue: 2
  year: 1976
  ident: 10.1016/j.redox.2020.101627_bib80
  article-title: The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man
  publication-title: Pflügers Archiv
  doi: 10.1007/BF00585149
– volume: 98
  start-page: 68
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib37
  article-title: AMPK signaling in skeletal muscle during exercise: role of reactive oxygen and nitrogen species
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.01.012
– volume: 594
  start-page: 5081
  issue: 18
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib26
  article-title: Exercise-induced oxidative stress: past, present and future
  publication-title: J. Physiol.
  doi: 10.1113/JP270646
– volume: 150
  start-page: 76
  issue: 1
  year: 1985
  ident: 10.1016/j.redox.2020.101627_bib47
  article-title: Measurement of protein using bicinchoninic acid
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(85)90442-7
– volume: 596
  start-page: 2823
  issue: 14
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib17
  article-title: Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/JP275972
– volume: 32
  start-page: 3765
  issue: 32
  year: 2013
  ident: 10.1016/j.redox.2020.101627_bib58
  article-title: Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
  publication-title: Oncogene
  doi: 10.1038/onc.2012.388
– volume: 73
  start-page: 112
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib31
  article-title: CaMKII oxidative activation and the pathogenesis of cardiac disease
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2014.02.004
– volume: 24
  start-page: 7130
  issue: 16
  year: 2004
  ident: 10.1016/j.redox.2020.101627_bib50
  article-title: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.24.16.7130-7139.2004
– volume: 298
  start-page: 229
  year: 2012
  ident: 10.1016/j.redox.2020.101627_bib76
  article-title: Cell biology of ischemia/reperfusion injury
  publication-title: Int. Rev. Cell Mol. Biol.
  doi: 10.1016/B978-0-12-394309-5.00006-7
– volume: 120
  start-page: 149
  issue: 1
  year: 2020
  ident: 10.1016/j.redox.2020.101627_bib11
  article-title: The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-019-04259-7
– volume: 29
  start-page: 1473
  issue: 10
  year: 2019
  ident: 10.1016/j.redox.2020.101627_bib45
  article-title: Impact of data averaging strategies on VO2max assessment: mathematical modeling and reliability
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.13495
– volume: 285
  start-page: 22576
  issue: 29
  year: 2010
  ident: 10.1016/j.redox.2020.101627_bib55
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118976
– volume: 31
  start-page: 1121
  issue: 6
  year: 2011
  ident: 10.1016/j.redox.2020.101627_bib57
  article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01204-10
– volume: 39
  start-page: 289
  issue: 2
  year: 2005
  ident: 10.1016/j.redox.2020.101627_bib63
  article-title: Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2005.03.024
– volume: 90
  start-page: 47
  year: 2019
  ident: 10.1016/j.redox.2020.101627_bib12
  article-title: Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2019.08.007
– volume: 126
  start-page: 477
  issue: 2
  year: 2019
  ident: 10.1016/j.redox.2020.101627_bib15
  article-title: Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00654.2018
– volume: 246
  start-page: 259
  issue: 2
  year: 1997
  ident: 10.1016/j.redox.2020.101627_bib35
  article-title: The AMP-activated protein kinase--fuel gauge of the mammalian cell?
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.00259.x
– volume: 66
  start-page: 3615
  issue: 22
  year: 2009
  ident: 10.1016/j.redox.2020.101627_bib20
  article-title: The response of human skeletal muscle tissue to hypoxia
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-009-0146-8
– volume: 18
  start-page: 386
  issue: 4
  year: 2013
  ident: 10.1016/j.redox.2020.101627_bib33
  article-title: p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.4615
– volume: 38
  start-page: 136
  issue: 1
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib41
  article-title: Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1177/0271678X17691986
– volume: 110
  start-page: 206
  year: 2017
  ident: 10.1016/j.redox.2020.101627_bib67
  article-title: Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.06.010
– volume: 11
  start-page: 613
  year: 2017
  ident: 10.1016/j.redox.2020.101627_bib84
  article-title: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2016.12.035
– volume: 12
  start-page: 213
  issue: 3
  year: 2010
  ident: 10.1016/j.redox.2020.101627_bib54
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2021
– volume: 109
  start-page: 13561
  issue: 34
  year: 2012
  ident: 10.1016/j.redox.2020.101627_bib59
  article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1121572109
– volume: 8
  start-page: 10122
  issue: 1
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib56
  article-title: Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28074-w
– volume: 74
  start-page: 49
  issue: 1
  year: 1994
  ident: 10.1016/j.redox.2020.101627_bib16
  article-title: Cellular mechanisms of muscle fatigue
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1994.74.1.49
– volume: 127
  start-page: 1267
  issue: 5
  year: 2019
  ident: 10.1016/j.redox.2020.101627_bib23
  article-title: Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00347.2019
– volume: 378
  start-page: 373
  issue: Pt 2
  year: 2004
  ident: 10.1016/j.redox.2020.101627_bib51
  article-title: Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products
  publication-title: Biochem. J.
  doi: 10.1042/bj20031049
– volume: 390
  start-page: 377
  issue: Pt 2
  year: 2005
  ident: 10.1016/j.redox.2020.101627_bib74
  article-title: Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion
  publication-title: Biochem. J.
  doi: 10.1042/BJ20042006
– volume: 18
  start-page: 1063
  issue: 9
  year: 2013
  ident: 10.1016/j.redox.2020.101627_bib83
  article-title: Redox regulation of sodium and calcium handling
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.4818
– volume: 307
  start-page: 973
  issue: 4
  year: 2003
  ident: 10.1016/j.redox.2020.101627_bib53
  article-title: Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)01308-1
– volume: 114
  start-page: 725
  issue: 4
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib21
  article-title: Exercise-induced oxidative stress and hypoxic exercise recovery
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-013-2806-5
– volume: 10
  start-page: 191
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib8
  article-title: Nrf2 mediates redox adaptations to exercise
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2016.10.003
– volume: 593
  start-page: 4631
  issue: 20
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib42
  article-title: What limits performance during whole-body incremental exercise to exhaustion in humans?
  publication-title: J. Physiol.
  doi: 10.1113/JP270487
– volume: 285
  start-page: 8463
  issue: 11
  year: 2010
  ident: 10.1016/j.redox.2020.101627_bib52
  article-title: Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.051714
– volume: 266
  start-page: 22028
  issue: 32
  year: 1991
  ident: 10.1016/j.redox.2020.101627_bib65
  article-title: Detection of catalase in rat heart mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54740-2
– volume: 47
  start-page: 344
  issue: 4
  year: 2009
  ident: 10.1016/j.redox.2020.101627_bib70
  article-title: Regulation of superoxide dismutase genes: implications in disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.05.018
– volume: 6
  start-page: 85
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib36
  article-title: AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2015.00085
– volume: 277
  start-page: 42769
  issue: 45
  year: 2002
  ident: 10.1016/j.redox.2020.101627_bib62
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206911200
– volume: 49
  start-page: 1269
  issue: 10
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib10
  article-title: Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2015.1066784
– volume: 66
  start-page: 24
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib82
  article-title: How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.05.045
– volume: 594
  start-page: 5195
  issue: 18
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib6
  article-title: Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice
  publication-title: J. Physiol.
  doi: 10.1113/JP271957
– volume: 110
  start-page: 597
  issue: 3
  year: 2010
  ident: 10.1016/j.redox.2020.101627_bib14
  article-title: Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-010-1581-9
– volume: 110
  start-page: 1708
  issue: 6
  year: 2011
  ident: 10.1016/j.redox.2020.101627_bib46
  article-title: Repeated muscle biopsies through a single skin incision do not elicit muscle signaling, but IL-6 mRNA and STAT3 phosphorylation increase in injured muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00091.2011
– volume: 20
  start-page: 2624
  issue: 14
  year: 2006
  ident: 10.1016/j.redox.2020.101627_bib79
  article-title: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury
  publication-title: Faseb. J.
  doi: 10.1096/fj.06-5097fje
– volume: 586
  start-page: 3979
  issue: 16
  year: 2008
  ident: 10.1016/j.redox.2020.101627_bib4
  article-title: Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.155382
– volume: 133
  start-page: 462
  issue: 3
  year: 2008
  ident: 10.1016/j.redox.2020.101627_bib28
  article-title: A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.048
– start-page: 101478
  year: 2020
  ident: 10.1016/j.redox.2020.101627_bib2
  article-title: An integrative approach to the regulation of mitochondrial respiration during exercise: focus on high-intensity exercise
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2020.101478
– volume: 266
  start-page: C1028
  issue: 4 Pt 1
  year: 1994
  ident: 10.1016/j.redox.2020.101627_bib77
  article-title: Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1994.266.4.C1028
– volume: 3
  start-page: e12512
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib44
  article-title: Arterial to end-tidal PCO2 difference during exercise in normoxia and severe acute hypoxia: importance of blood temperature correction
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.12512
– volume: 1859
  start-page: 315
  issue: 2
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib72
  article-title: Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2015.11.009
– volume: 277
  start-page: H2240
  issue: 6
  year: 1999
  ident: 10.1016/j.redox.2020.101627_bib75
  article-title: Generation of superoxide in cardiomyocytes during ischemia before reperfusion
  publication-title: Am. J. Physiol.
– volume: 7
  start-page: 833
  issue: 11
  year: 2006
  ident: 10.1016/j.redox.2020.101627_bib29
  article-title: Protein tyrosine phosphatases: from genes, to function, to disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2039
– volume: 278
  start-page: 21592
  issue: 24
  year: 2003
  ident: 10.1016/j.redox.2020.101627_bib49
  article-title: Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300931200
– volume: 89
  start-page: 852
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib68
  article-title: Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.10.412
– volume: 114
  start-page: 566
  issue: 5
  year: 2013
  ident: 10.1016/j.redox.2020.101627_bib5
  article-title: Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01246.2012
– volume: 94
  start-page: 11233
  issue: 21
  year: 1997
  ident: 10.1016/j.redox.2020.101627_bib27
  article-title: Activation of protein kinase C by tyrosine phosphorylation in response to H2O2
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.94.21.11233
– volume: 8
  start-page: 379
  issue: 4
  year: 2003
  ident: 10.1016/j.redox.2020.101627_bib48
  article-title: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles
  publication-title: Gene Cell.
  doi: 10.1046/j.1365-2443.2003.00640.x
– volume: 282
  start-page: 36412
  issue: 50
  year: 2007
  ident: 10.1016/j.redox.2020.101627_bib78
  article-title: An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706517200
– volume: 374
  start-page: 493
  year: 1986
  ident: 10.1016/j.redox.2020.101627_bib81
  article-title: Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1986.sp016093
– volume: 10
  start-page: 123
  issue: 2
  year: 2009
  ident: 10.1016/j.redox.2020.101627_bib60
  article-title: Air to muscle O2 delivery during exercise at altitude
  publication-title: High Alt. Med. Biol.
  doi: 10.1089/ham.2008.1099
– volume: 318
  start-page: C337
  issue: 2
  year: 2020
  ident: 10.1016/j.redox.2020.101627_bib7
  article-title: Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00426.2019
– volume: 24
  start-page: 166
  issue: 3
  year: 2003
  ident: 10.1016/j.redox.2020.101627_bib22
  article-title: The response of trained athletes to six weeks of endurance training in hypoxia or normoxia
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2003-39086
– volume: 593
  start-page: 4649
  issue: 20
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib40
  article-title: Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O2 diffusing capacity
  publication-title: J. Physiol.
  doi: 10.1113/JP270408
– volume: 1
  start-page: 941
  issue: 2
  year: 2011
  ident: 10.1016/j.redox.2020.101627_bib1
  article-title: Reactive oxygen species: impact on skeletal muscle
  publication-title: Comp. Physiol.
  doi: 10.1002/j.2040-4603.2011.tb00348.x
– volume: 48
  start-page: 30
  issue: 1
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib3
  article-title: Free radicals and sprint exercise in humans
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2013.825043
– start-page: 101484
  year: 2020
  ident: 10.1016/j.redox.2020.101627_bib66
  article-title: Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: what do concentrations tell us about potential mechanisms?
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2020.101484
– volume: 113
  start-page: 917
  issue: 6
  year: 2012
  ident: 10.1016/j.redox.2020.101627_bib19
  article-title: Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKalpha phosphorylation, in response to sprint exercise in severe acute hypoxia in humans
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00415.2012
– volume: 70
  start-page: 23
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib64
  article-title: Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.02.004
– volume: 132
  start-page: 1257
  issue: 12
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib69
  article-title: Implications of plasma thiol redox in disease
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS20180157
– volume: 15
  start-page: 472
  issue: 4
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib39
  article-title: Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity
  publication-title: High Alt. Med. Biol.
  doi: 10.1089/ham.2014.1027
– volume: 298
  start-page: C857
  issue: 4
  year: 2010
  ident: 10.1016/j.redox.2020.101627_bib30
  article-title: Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00313.2009
– volume: 121
  start-page: 1326
  issue: 6
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib13
  article-title: Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00289.2016
– volume: 9
  start-page: 188
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib18
  article-title: Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during sprint exercise in normoxia and severe acute hypoxia: effects of antioxidants
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00188
– volume: 88
  start-page: 108
  issue: Pt B
  year: 2015
  ident: 10.1016/j.redox.2020.101627_bib25
  article-title: Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.06.021
– volume: 101
  start-page: 410
  issue: 3
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib9
  article-title: Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle
  publication-title: Exp. Physiol.
  doi: 10.1113/EP085493
– volume: 122
  start-page: 4452
  issue: Pt 24
  year: 2009
  ident: 10.1016/j.redox.2020.101627_bib61
  article-title: Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.058537
– volume: 240
  start-page: 47
  issue: 1-2
  year: 2002
  ident: 10.1016/j.redox.2020.101627_bib32
  article-title: The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1020600509965
– volume: 9
  start-page: 1764
  year: 2018
  ident: 10.1016/j.redox.2020.101627_bib43
  article-title: Accuracy and precision of the COSMED K5 portable analyser
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01764
– volume: 5
  start-page: 3446
  year: 2014
  ident: 10.1016/j.redox.2020.101627_bib73
  article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4446
– volume: 96
  start-page: 1196
  issue: 11
  year: 2011
  ident: 10.1016/j.redox.2020.101627_bib38
  article-title: Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2011.060178
– volume: 14
  start-page: 86
  year: 2016
  ident: 10.1016/j.redox.2020.101627_bib34
  article-title: Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-0839-3
SSID ssj0000884210
Score 2.400735
Snippet The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101627
SubjectTerms AMPK
CaMKII
Fatigue
High-intensity exercise
Ischaemia
Research Paper
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSkhcEN8EFmQkjhtt4vgj2RsgVguIPaBF2pvlOI4a2CZVk0jtn-Q3MWMnVQvScuHWusnEjl89z830PULeJkmZCfzRXfHKxjxHmxeuRFxUpjZpXSjmPSO_XsqL7_zztbjes_rCmrAgDxxu3CnqnSvg5EqUGbeMm6qsk8RIZBYG8huuvpDz9jZTfg3Oc868FAFjaRYDiVGz5JAv7kIxzg3sDlloQU-ZvbTk1fsPstPf7PPPIsq9rHT-gNyf6CR9F4bxkNxx7SNyNxhMbh-TX9-C1TzcfNrV9HJds9MvzqxSinUbxutx06al3qmP9j8hBwEZp8uxh2g0_IWRzq5MdOjg9QKFgjAenNYC4e02jTmhMAK3dtTYcXB0sV1hKzVtRVddP8S7CE2PRfrLxpzRT7M7CnZsCZctsRIPQ9hxOfcZI3SbLYDcv39Crs4_Xn24iCcHh9gKJoYYZksKYUVdGlPWQGZqWYrSSV5kNpfKlDxlVnAnsyqzdeJsIlylUsCIUdza7Ck5arvWPSe0thyoTZHLglvOjCwAFEXFeF4V1imXRITN86ftpG6OJhs3ei5j-6H9pGucdB0mPSInu5NWQdzj9sPfIzB2h6Iyt28AvOoJr_pfeI2InGGlJ5ITyAuEam6_-psZhBqWAHyuY1rXjb1m6GCPTLmIyLMAyl0fM5bLDLadEVEHcD0YxOEnbbPwMuMqw0fq-Yv_MeqX5B4OJRTnHZOjYT26V8DmhvK1_-L-BnPcSg8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-Wl4zEsdFm_Uy40YqqgOgBirS3yHEcNoVNok0i7f5JfhMzzkMNSD1w23jtiRNPPJ-T8fcR8jYMUy7xpbsWmQ1EhDIvQssgzkxuVnmsmdeM_HKpLr6LT2u5PiJn414YTKsc5v5-Tvez9VCyHO7msi6K5TfGYCUF4Y8h5QqgEJiHuYj8Jr716fSeBZ4iwTwpAdYPsMFIPuTTvJCWcw_rRNaXoLrMjQDlefxncepfHPp3OuWN-HR-n9wbgCV93_f9ATly5UNyp5eaPDwiv7_2ovMwDLTK6eUuZ8vPztQrihkcxjNz06KkXrOPNj8hGgEsp9uuAWu038xIR30m2lbwe4OUQWgPmpUAfat9YU4oXIHbOWps1zq6OdRYSk2Z0bpq2mCyUDSYrr8tzDv6cdRJwY5t4bQp5uShCdttxz6jhWp_AHf3x4_J1fmHq7OLYNByCKxksg2EyZSUVuapMWkOsCZXqUydEjG3kdImFStmpXCKZ9zmobOhdJlegbcYLazlT8hxWZXuGaG5FQBy4kjFwgpmVBzpOM6YiLLYOu3CBWHj-CV24DlHuY1fyZjQdp34QU9w0JN-0BfkZGpU9zQft1c_RceYqiJHty-odj-SwUkTZOrXsJrUMuXCMrgDaR6GRiEmNoDMFkSNbpXMXB5MFbef_c3ohAlMBviFx5Su6pqEoZY9YuZ4QZ72Tjn1kbNIcViALoieuevsIub_lMXGE45rjh_Xo-f_2-EX5C4e9al5L8lxu-vcK8BybfraP6x_AE2DTAk
  priority: 102
  providerName: Elsevier
Title Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation
URI https://dx.doi.org/10.1016/j.redox.2020.101627
https://www.ncbi.nlm.nih.gov/pubmed/32863217
https://www.proquest.com/docview/2438995109
https://pubmed.ncbi.nlm.nih.gov/PMC7358388
https://doaj.org/article/3788796675b34c24adbf00a66508a078
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELVKEagviHvDpTISjw1kHV8SJIQoompB7QNqpX2LHMdhA91km4u0-5N8EzNOsmWh9GWVdeKJ4xnHx8nkHEJeB0EaCnzornhmfB6hzAtXwo8znetJHivmNCNPTuXROf8yFdMtMqqiDh3YXLu0Qz2p8_rizfJy9QEG_PurXC3k1lzCYo_1JUzdIrdhalI4Uk8GvO9uzVHEYY0zsg9dX3eH3A1ZJEPmRMyuJivH6b8xZ_2LSf9Orfxjrjq8T-4NIJN-7KPiAdmy5UNyp5edXD0iv771AvTgElrl9LTO2duvVi8mFLM5tGPppkVJnX4fbX7CzAS9Q-ddA9Zo_2EjHbWaaFvB9gzpg9AeVCsBBlfLQu9TuAJbW6pN11o6Wy2wlOoyo4uqaf21haLB1P15od_R41EzBRs2h9OmmJ-HJkw3H9uMFqrlCkLf_X9Mzg4_n3068gddB98IJlqf60wKYUSeap3mAHFymYrUSh6HJpJKp3zCjOBWhllo8sCaQNhMTSBytOLGhE_IdlmVdpfQ3HAAPHEkY2440zKOVBxnjEdZbKyygUfY6L_EDJznKL1xkYzJbT8S5_8E_Z_0_vfI_rrSoqf8uPnwAwyM9aHI1-0Kqvp7Mgz_BFn7FawslUhDbhj0QJoHgZaIjzWgNI_IMaySAfr0kAZMFTef_dUYhAncGPBtjy5t1TUJQ117xM-xR572Qblu4xjfHlEb4bpxEZt7ymLmyMdViC_ao2f_tfmc7GD7-jy8F2S7rTv7EoBbm-65Bx7wezw92HMD8zeTgkdH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDfhaSSOGzV1_Ei4sStWLbvbAxSpN8txHBqgSdWmUvsn-U3MOEm1BWkP3FonnkziiedzMvk-Qt5HURYLfOiueG5DnqDMC1ciTHNTmGGRKuY1I68mcvSNf56J2RE567-FwbLKbu5v53Q_W3ctg-5qDpZlOfjKGKykIP0xpFwBFHKL3AY0oFC_YTw73T9ogduIM89KgB1C7NGzD_k6L-Tl3MJCkbUtKC9zLUN5Iv-DRPUvEP27nvJagjp_QO53yJJ-bJ1_SI5c9YjcabUmd4_J7y-t6jyMA60LOlkVbHDhzHJIsYTDeGpuWlbUi_bR9U9IR4DL6WKzBmu0_ZqR9gJNtKnh9xw5g9AedKsA-9bb0pxQOAO3ctTYTePofLfEVmqqnC7rdRPuLZRrrNdflOYDHfdCKejYAg6bYVEemrCbRe8zWqi3O4h3__8JmZ5_mp6Nwk7MIbSCiSbkJpdCWFFkxmQF4JpCZiJzkqexTaQyGR8yK7iTcR7bInI2Ei5XQwgXo7i18VNyXNWVe05oYTmgnDSRKbecGZkmKk1zxpM8tU65KCCsHz9tO6Jz1Nv4pfuKth_aD7rGQdftoAfkZN9p2fJ83Lz7KQbGflck6fYN9eq77qJUI1W_guWkElnMLYMrkBVRZCSCYgPQLCCyDyt9EPNgqrz56O_6INQwG-ArHlO5erPWDMXsETSnAXnWBuXex5glMoYVaEDUQbgenMThlqqce8ZxFePb9eTF_zr8ltwdTa8u9eV4cvGS3MMtbZ3eK3LcrDbuNQC7Jnvjb9w_6OpPKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Nrf2%2FKeap1+signalling+in+human+skeletal+muscle+during+exercise+to+exhaustion+in+normoxia%2C+severe+acute+hypoxia+and+post-exercise+ischaemia%3A+Influence+of+metabolite+accumulation+and+oxygenation&rft.jtitle=Redox+biology&rft.au=Gallego-Selles%2C+Angel&rft.au=Martin-Rincon%2C+Marcos&rft.au=Martinez-Canton%2C+Miriam&rft.au=Perez-Valera%2C+Mario&rft.date=2020-09-01&rft.eissn=2213-2317&rft.volume=36&rft.spage=101627&rft_id=info:doi/10.1016%2Fj.redox.2020.101627&rft_id=info%3Apmid%2F32863217&rft.externalDocID=32863217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon