Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to...
Saved in:
| Published in | Redox biology Vol. 36; p. 101627 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.09.2020
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2213-2317 2213-2317 |
| DOI | 10.1016/j.redox.2020.101627 |
Cover
Loading…
| Abstract | The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent. |
|---|---|
| AbstractList | The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent. The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (P O : 143 mmHg) and severe acute hypoxia (P O : 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O -dependent. The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (P I O 2 : 143 mmHg) and severe acute hypoxia (P I O 2 : 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser 40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser 349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O 2 -dependent. The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent. |
| ArticleNumber | 101627 |
| Author | Gallego-Selles, Angel Calbet, Jose A.L. Dorado, Cecilia Morales-Alamo, David Perez-Valera, Mario Martín-Rodríguez, Saúl Santana, Alfredo Martin-Rincon, Marcos Martinez-Canton, Miriam Gelabert-Rebato, Miriam |
| Author_xml | – sequence: 1 givenname: Angel surname: Gallego-Selles fullname: Gallego-Selles, Angel organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 2 givenname: Marcos surname: Martin-Rincon fullname: Martin-Rincon, Marcos organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 3 givenname: Miriam surname: Martinez-Canton fullname: Martinez-Canton, Miriam organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 4 givenname: Mario orcidid: 0000-0002-8332-729X surname: Perez-Valera fullname: Perez-Valera, Mario organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 5 givenname: Saúl surname: Martín-Rodríguez fullname: Martín-Rodríguez, Saúl organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 6 givenname: Miriam surname: Gelabert-Rebato fullname: Gelabert-Rebato, Miriam organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 7 givenname: Alfredo surname: Santana fullname: Santana, Alfredo organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 8 givenname: David surname: Morales-Alamo fullname: Morales-Alamo, David organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 9 givenname: Cecilia orcidid: 0000-0001-6616-6810 surname: Dorado fullname: Dorado, Cecilia organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain – sequence: 10 givenname: Jose A.L. surname: Calbet fullname: Calbet, Jose A.L. email: lopezcalbet@gmail.com organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32863217$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkttu1DAQhiNUREvpEyAhX3LBbn3IEQkkVHFYUYGEem9NnEnWi2MvdrLafUmeCWfTVi0XkJvY4_m_Gc38z5MT6ywmyUtGl4yy_HKz9Ni4_ZJTPkd48SQ545yJBResOHlwPk0uQtjQ-JVlyhl9lpwKXuaCs-Is-f0Du9HAoJ0lriXffMsvvyJsGQm6s2CMth3RlqzHHiwJP9HgAIb0Y1AGSTP66R336JUOSAYXz2sYw5EXZdb53u01vCEBd-iRgBoHJOvDdooSsA3ZujAs7gk6qDVgr-EtWdnWjGgVTo31sWztjB4mhBr7u54ngtsfOrTH-4vkaQsm4MXt_zy5-fTx5urL4vr759XVh-uFyng2LFJo8ixTWVsD1G3BaJvXWY15WglV5gXUKeMqSzEXjVAtRUUzbArG2gqKVClxnqxmbONgI7de9-AP0oGWx4DznQQ_6DgiKYqyLKo8L7JapIrHynVLKeR5RkugRRlZ72fWdqx7bBTawYN5BH38YvVadm4nC5GVopwAr28B3v0aMQyyj1NEY8CiG4PkqSirKmO0iqmvHta6L3Lnh5gg5gTlXQge2_sURuVkM7mRR-PJyXhyNl5UVX-plB6O-4gNa_Mf7btZi3FdO41eBqWnrTfaoxriQPU_9X8A0Az7AQ |
| CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2024_08_011 crossref_primary_10_1007_s00210_020_01972_5 crossref_primary_10_1016_j_freeradbiomed_2024_08_030 crossref_primary_10_1249_JES_0000000000000277 crossref_primary_10_5812_gct_138980 crossref_primary_10_1016_j_scitotenv_2021_148646 crossref_primary_10_1016_j_freeradbiomed_2021_05_039 crossref_primary_10_5812_gct_131964 crossref_primary_10_1111_sms_13828 crossref_primary_10_1016_j_freeradbiomed_2021_07_020 crossref_primary_10_1016_j_freeradbiomed_2024_07_041 crossref_primary_10_1016_j_freeradbiomed_2024_09_032 crossref_primary_10_1126_sciadv_adn5993 crossref_primary_10_3390_antiox12020501 crossref_primary_10_4252_wjsc_v16_i1_33 crossref_primary_10_3390_antiox10111712 crossref_primary_10_1016_j_yhbeh_2022_105180 crossref_primary_10_1016_j_redox_2025_103535 crossref_primary_10_1016_j_job_2024_100611 crossref_primary_10_3389_fcvm_2021_752640 crossref_primary_10_1016_j_phymed_2023_154931 crossref_primary_10_1177_17534666231208633 crossref_primary_10_1016_j_cmet_2021_02_017 crossref_primary_10_3390_nu15132848 crossref_primary_10_1016_j_jshs_2024_05_001 crossref_primary_10_7759_cureus_23503 crossref_primary_10_1016_j_freeradbiomed_2024_07_012 crossref_primary_10_1016_j_pharmthera_2023_108524 crossref_primary_10_1111_sms_14545 crossref_primary_10_1155_2022_8973509 crossref_primary_10_1089_wound_2023_0136 crossref_primary_10_1080_10715762_2021_1923705 crossref_primary_10_3390_life11121339 crossref_primary_10_1016_j_freeradbiomed_2021_11_030 |
| Cites_doi | 10.1371/journal.pone.0208474 10.1016/j.redox.2020.101473 10.1007/BF00585149 10.1016/j.freeradbiomed.2016.01.012 10.1113/JP270646 10.1016/0003-2697(85)90442-7 10.1113/JP275972 10.1038/onc.2012.388 10.1016/j.yjmcc.2014.02.004 10.1128/MCB.24.16.7130-7139.2004 10.1016/B978-0-12-394309-5.00006-7 10.1007/s00421-019-04259-7 10.1111/sms.13495 10.1074/jbc.M110.118976 10.1128/MCB.01204-10 10.1016/j.freeradbiomed.2005.03.024 10.1016/j.cryobiol.2019.08.007 10.1152/japplphysiol.00654.2018 10.1111/j.1432-1033.1997.00259.x 10.1007/s00018-009-0146-8 10.1089/ars.2012.4615 10.1177/0271678X17691986 10.1016/j.freeradbiomed.2017.06.010 10.1016/j.redox.2016.12.035 10.1038/ncb2021 10.1073/pnas.1121572109 10.1038/s41598-018-28074-w 10.1152/physrev.1994.74.1.49 10.1152/japplphysiol.00347.2019 10.1042/bj20031049 10.1042/BJ20042006 10.1089/ars.2012.4818 10.1016/S0006-291X(03)01308-1 10.1007/s00421-013-2806-5 10.1016/j.redox.2016.10.003 10.1113/JP270487 10.1074/jbc.M109.051714 10.1016/S0021-9258(18)54740-2 10.1016/j.freeradbiomed.2009.05.018 10.3389/fphys.2015.00085 10.1074/jbc.M206911200 10.3109/10715762.2015.1066784 10.1016/j.freeradbiomed.2013.05.045 10.1113/JP271957 10.1007/s00421-010-1581-9 10.1152/japplphysiol.00091.2011 10.1096/fj.06-5097fje 10.1113/jphysiol.2008.155382 10.1016/j.cell.2008.02.048 10.1016/j.redox.2020.101478 10.1152/ajpcell.1994.266.4.C1028 10.14814/phy2.12512 10.1016/j.bbagrm.2015.11.009 10.1038/nrm2039 10.1074/jbc.M300931200 10.1016/j.freeradbiomed.2015.10.412 10.1152/japplphysiol.01246.2012 10.1073/pnas.94.21.11233 10.1046/j.1365-2443.2003.00640.x 10.1074/jbc.M706517200 10.1113/jphysiol.1986.sp016093 10.1089/ham.2008.1099 10.1152/ajpcell.00426.2019 10.1055/s-2003-39086 10.1113/JP270408 10.1002/j.2040-4603.2011.tb00348.x 10.3109/10715762.2013.825043 10.1016/j.redox.2020.101484 10.1152/japplphysiol.00415.2012 10.1016/j.freeradbiomed.2014.02.004 10.1042/CS20180157 10.1089/ham.2014.1027 10.1152/ajpcell.00313.2009 10.1152/japplphysiol.00289.2016 10.3389/fphys.2018.00188 10.1016/j.freeradbiomed.2015.06.021 10.1113/EP085493 10.1242/jcs.058537 10.1023/A:1020600509965 10.3389/fphys.2018.01764 10.1038/ncomms4446 10.1113/expphysiol.2011.060178 10.1186/s12967-016-0839-3 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. 2020 The Authors 2020 |
| Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2020 The Authors 2020 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.redox.2020.101627 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2213-2317 |
| ExternalDocumentID | oai_doaj_org_article_3788796675b34c24adbf00a66508a078 PMC7358388 32863217 10_1016_j_redox_2020_101627 S2213231720308326 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX ADVLN AENEX AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E O-L O9- OK1 RIG ROL RPM SSZ AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 0SF AACTN NCXOZ NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c525t-4ad655c5fbaabf710f6b5be6493c867ab412c54e63d3cf0ec05ed711f9a74cc3 |
| IEDL.DBID | M48 |
| ISSN | 2213-2317 |
| IngestDate | Wed Aug 27 01:08:47 EDT 2025 Thu Aug 21 13:34:51 EDT 2025 Fri Jul 11 00:51:41 EDT 2025 Thu Jan 02 22:57:41 EST 2025 Tue Jul 01 05:06:09 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Sat Jun 07 17:02:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ischaemia Fatigue AMPK High-intensity exercise CaMKII Performance |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-4ad655c5fbaabf710f6b5be6493c867ab412c54e63d3cf0ec05ed711f9a74cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6616-6810 0000-0002-8332-729X |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.redox.2020.101627 |
| PMID | 32863217 |
| PQID | 2438995109 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3788796675b34c24adbf00a66508a078 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7358388 proquest_miscellaneous_2438995109 pubmed_primary_32863217 crossref_primary_10_1016_j_redox_2020_101627 crossref_citationtrail_10_1016_j_redox_2020_101627 elsevier_sciencedirect_doi_10_1016_j_redox_2020_101627 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Redox biology |
| PublicationTitleAlternate | Redox Biol |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Rada, Rojo, Chowdhry, McMahon, Hayes, Cuadrado (bib57) 2011; 31 Kumar, Narasimhan, Shanmugam, Hong, Devarajan, Palaniappan (bib34) 2016; 14 Morales-Alamo, Ponce-Gonzalez, Guadalupe-Grau, Rodriguez-Garcia, Santana, Cusso (bib19) 2012; 113 Losa-Reyna, Torres-Peralta, González-Henriquez, Calbet (bib44) 2015; 3 Powers, Ji, Kavazis, Jackson (bib1) 2011; 1 Sies (bib84) 2017; 11 Niture, Jain, Jaiswal (bib61) 2009; 122 Henriquez-Olguin, Meneses-Valdes, Jensen (bib71) 2020 Calbet, Martin-Rodriguez, Martin-Rincon, Morales-Alamo (bib2) 2020 Jain, Lamark, Sjottem, Larsen, Awuh, Overvatn (bib55) 2010; 285 Leonard, Kieran, Howell, Burne, Varadarajan, Dhakshinamoorthy (bib79) 2006; 20 Itoh, Wakabayashi, Katoh, Ishii, O'Connor, Yamamoto (bib48) 2003; 8 Wafi, Hong, Rudebush, Yu, Hackfort, Wang (bib15) 2019; 126 Fiorenza, Gunnarsson, Hostrup, Iaia, Schena, Pilegaard (bib17) 2018; 596 Cobley, Sakellariou, Owens, Murray, Waldron, Gregson (bib64) 2014; 70 Hardie, Carling (bib35) 1997; 246 Calbet, Lundby (bib60) 2009; 10 Erickson, Joiner, Guan, Kutschke, Yang, Oddis (bib28) 2008; 133 Buckley, Marshall, Whorton (bib53) 2003; 307 Taguchi, Fujikawa, Komatsu, Ishii, Unno, Akaike (bib59) 2012; 109 Morales-Alamo, Calbet (bib37) 2016; 98 Harris, Edwards, Hultman, Nordesjo, Nylind, Sahlin (bib80) 1976; 367 Dell'Orco, Milani, Arrigoni, Pansarasa, Sardone, Maffioli (bib72) 2016; 1859 Aquilano, Baldelli, Pagliei, Cannata, Rotilio, Ciriolo (bib33) 2013; 18 Wagner, Rokita, Anderson, Maier (bib83) 2013; 18 Forman, Davies, Ursini (bib82) 2014; 66 Lundby, Calbet, Robach (bib20) 2009; 66 Rapti, Diokmetzidou, Kloukina, Milner, Varela, Davos (bib67) 2017; 110 Torres-Peralta, Losa-Reyna, Gonzalez-Izal, Perez-Suarez, Calle-Herrero, Izquierdo (bib39) 2014; 15 Perez-Suarez, Martin-Rincon, Gonzalez-Henriquez, Fezzardi, Perez-Regalado, Galvan-Alvarez (bib43) 2018; 9 Oliveira, Laurindo (bib69) 2018; 132 Miao, St Clair (bib70) 2009; 47 McMahon, Itoh, Yamamoto, Hayes (bib49) 2003; 278 Morrison, Hughes, Della Gatta, Mason, Lamon, Russell (bib68) 2015; 89 Tonks (bib29) 2006; 7 Jackson, Stretton, McArdle (bib66) 2020 Martin-Rincon, Gonzalez-Henriquez, Losa-Reyna, Perez-Suarez, Ponce-Gonzalez, de La Calle-Herrero (bib45) 2019; 29 Wang, Yang, Yan, Wei, Wang, Yu (bib23) 2019; 127 Kobayashi, Kang, Okawa, Ohtsuji, Zenke, Chiba (bib50) 2004; 24 Ballmann, McGinnis, Peters, Slivka, Cuddy, Hailes (bib21) 2014; 114 Morales-Alamo, Calbet (bib3) 2014; 48 Li, He, Liu, Kong, Wang, Zhang (bib10) 2015; 49 Morales-Alamo, Guerra, Santana, Martin-Rincon, Gelabert-Rebato, Dorado (bib18) 2018; 9 Powers, Radak, Ji (bib26) 2016; 594 Morales-Alamo, Ponce-Gonzalez, Guadalupe-Grau, Rodriguez-Garcia, Santana, Cusso (bib5) 2013; 114 Kalogeris, Baines, Krenz, Korthuis (bib76) 2012; 298 Fitts (bib16) 1994; 74 Morales-Alamo, Losa-Reyna, Torres-Peralta, Martin-Rincon, Perez-Valera, Curtelin (bib42) 2015; 593 Konishi, Tanaka, Takemura, Matsuzaki, Ono, Kikkawa (bib27) 1997; 94 Done, Traustadottir (bib8) 2016; 10 Luczak, Anderson (bib31) 2014; 73 Parise, Phillips, Kaczor, Tarnopolsky (bib63) 2005; 39 Tsang, Liu, Thomas, Zhang, Zheng (bib73) 2014; 5 Bailey, Evans, McEneny, Young, Hullin, James (bib38) 2011; 96 Hultman, Spriet (bib81) 1986; 374 Merry, MacRae, Pham, Hedges, Ristow (bib7) 2020; 318 Endo, Owada, Inagaki, Shida, Tatemichi (bib56) 2018; 8 Psilander, Wang, Westergren, Tonkonogi, Sahlin (bib14) 2010; 110 Levonen, Landar, Ramachandran, Ceaser, Dickinson, Zanoni (bib51) 2004; 378 Curtelin, Morales-Alamo, Torres-Peralta, Rasmussen, Martin-Rincon, Perez-Valera (bib41) 2018; 38 Radi, Turrens, Chang, Bush, Crapo, Freeman (bib65) 1991; 266 Calbet, Losa-Reyna, Torres-Peralta, Rasmussen, Ponce-Gonzalez, Sheel (bib40) 2015; 593 Tebay, Robertson, Durant, Vitale, Penning, Dinkova-Kostova (bib25) 2015; 88 Solaini, Harris (bib74) 2005; 390 Opichka, Shute, Marshall, Slivka (bib12) 2019; 90 Wang, Li, Qi, Cui, Ding (bib9) 2016; 101 Merry, Ristow (bib6) 2016; 594 Ji, Wang, He, Yan, Li, Wang (bib24) 2018; 13 Park, Rho (bib32) 2002; 240 Lee, Jain, Papusha, Jaiswal (bib78) 2007; 282 Ventura, Hoppeler, Seiler, Binggeli, Mullis, Vogt (bib22) 2003; 24 Fourquet, Guerois, Biard, Toledano (bib52) 2010; 285 Smith, Krohn, Hermanson, Mallia, Gartner, Provenzano (bib47) 1985; 150 Yin, Yang, Li, Renshaw, Li, Schultz (bib30) 2010; 298 Huang, Nguyen, Pickett (bib62) 2002; 277 Land, Hochachka (bib77) 1994; 266 Brooks, Vasilaki, Larkin, McArdle, Jackson (bib4) 2008; 586 Islam, Bonafiglia, Turnbull, Simpson, Perry, Gurd (bib11) 2020; 120 Mendham, Duffield, Coutts, Marino, Boyko, McAinch (bib13) 2016; 121 Komatsu, Kurokawa, Waguri, Taguchi, Kobayashi, Ichimura (bib54) 2010; 12 Becker, vanden Hoek, Shao, Li, Schumacker (bib75) 1999; 277 Guerra, Gomez-Cabrera, Ponce-Gonzalez, Martinez-Bello, Guadalupe-Grau, Santana (bib46) 2011; 110 Brandauer, Andersen, Kellezi, Risis, Frosig, Vienberg (bib36) 2015; 6 Chowdhry, Zhang, McMahon, Sutherland, Cuadrado, Hayes (bib58) 2013; 32 Curtelin (10.1016/j.redox.2020.101627_bib41) 2018; 38 Jain (10.1016/j.redox.2020.101627_bib55) 2010; 285 Perez-Suarez (10.1016/j.redox.2020.101627_bib43) 2018; 9 Brooks (10.1016/j.redox.2020.101627_bib4) 2008; 586 Lee (10.1016/j.redox.2020.101627_bib78) 2007; 282 Solaini (10.1016/j.redox.2020.101627_bib74) 2005; 390 Powers (10.1016/j.redox.2020.101627_bib1) 2011; 1 Dell'Orco (10.1016/j.redox.2020.101627_bib72) 2016; 1859 Opichka (10.1016/j.redox.2020.101627_bib12) 2019; 90 Aquilano (10.1016/j.redox.2020.101627_bib33) 2013; 18 Calbet (10.1016/j.redox.2020.101627_bib40) 2015; 593 Tebay (10.1016/j.redox.2020.101627_bib25) 2015; 88 Rapti (10.1016/j.redox.2020.101627_bib67) 2017; 110 Becker (10.1016/j.redox.2020.101627_bib75) 1999; 277 Ji (10.1016/j.redox.2020.101627_bib24) 2018; 13 Morales-Alamo (10.1016/j.redox.2020.101627_bib3) 2014; 48 Tonks (10.1016/j.redox.2020.101627_bib29) 2006; 7 Henriquez-Olguin (10.1016/j.redox.2020.101627_bib71) 2020 Li (10.1016/j.redox.2020.101627_bib10) 2015; 49 Kobayashi (10.1016/j.redox.2020.101627_bib50) 2004; 24 Merry (10.1016/j.redox.2020.101627_bib6) 2016; 594 Yin (10.1016/j.redox.2020.101627_bib30) 2010; 298 Fitts (10.1016/j.redox.2020.101627_bib16) 1994; 74 Erickson (10.1016/j.redox.2020.101627_bib28) 2008; 133 Morales-Alamo (10.1016/j.redox.2020.101627_bib37) 2016; 98 Torres-Peralta (10.1016/j.redox.2020.101627_bib39) 2014; 15 Merry (10.1016/j.redox.2020.101627_bib7) 2020; 318 Kalogeris (10.1016/j.redox.2020.101627_bib76) 2012; 298 Park (10.1016/j.redox.2020.101627_bib32) 2002; 240 Morales-Alamo (10.1016/j.redox.2020.101627_bib42) 2015; 593 Konishi (10.1016/j.redox.2020.101627_bib27) 1997; 94 Parise (10.1016/j.redox.2020.101627_bib63) 2005; 39 Hardie (10.1016/j.redox.2020.101627_bib35) 1997; 246 Hultman (10.1016/j.redox.2020.101627_bib81) 1986; 374 Guerra (10.1016/j.redox.2020.101627_bib46) 2011; 110 Wang (10.1016/j.redox.2020.101627_bib9) 2016; 101 Niture (10.1016/j.redox.2020.101627_bib61) 2009; 122 Harris (10.1016/j.redox.2020.101627_bib80) 1976; 367 Powers (10.1016/j.redox.2020.101627_bib26) 2016; 594 Calbet (10.1016/j.redox.2020.101627_bib2) 2020 Brandauer (10.1016/j.redox.2020.101627_bib36) 2015; 6 Ventura (10.1016/j.redox.2020.101627_bib22) 2003; 24 Chowdhry (10.1016/j.redox.2020.101627_bib58) 2013; 32 Bailey (10.1016/j.redox.2020.101627_bib38) 2011; 96 Martin-Rincon (10.1016/j.redox.2020.101627_bib45) 2019; 29 Morales-Alamo (10.1016/j.redox.2020.101627_bib5) 2013; 114 Komatsu (10.1016/j.redox.2020.101627_bib54) 2010; 12 Mendham (10.1016/j.redox.2020.101627_bib13) 2016; 121 Jackson (10.1016/j.redox.2020.101627_bib66) 2020 Levonen (10.1016/j.redox.2020.101627_bib51) 2004; 378 Taguchi (10.1016/j.redox.2020.101627_bib59) 2012; 109 Forman (10.1016/j.redox.2020.101627_bib82) 2014; 66 Endo (10.1016/j.redox.2020.101627_bib56) 2018; 8 Ballmann (10.1016/j.redox.2020.101627_bib21) 2014; 114 Wang (10.1016/j.redox.2020.101627_bib23) 2019; 127 Buckley (10.1016/j.redox.2020.101627_bib53) 2003; 307 Wagner (10.1016/j.redox.2020.101627_bib83) 2013; 18 Morales-Alamo (10.1016/j.redox.2020.101627_bib19) 2012; 113 Wafi (10.1016/j.redox.2020.101627_bib15) 2019; 126 Lundby (10.1016/j.redox.2020.101627_bib20) 2009; 66 Fourquet (10.1016/j.redox.2020.101627_bib52) 2010; 285 Calbet (10.1016/j.redox.2020.101627_bib60) 2009; 10 Done (10.1016/j.redox.2020.101627_bib8) 2016; 10 Sies (10.1016/j.redox.2020.101627_bib84) 2017; 11 McMahon (10.1016/j.redox.2020.101627_bib49) 2003; 278 Huang (10.1016/j.redox.2020.101627_bib62) 2002; 277 Fiorenza (10.1016/j.redox.2020.101627_bib17) 2018; 596 Miao (10.1016/j.redox.2020.101627_bib70) 2009; 47 Radi (10.1016/j.redox.2020.101627_bib65) 1991; 266 Losa-Reyna (10.1016/j.redox.2020.101627_bib44) 2015; 3 Luczak (10.1016/j.redox.2020.101627_bib31) 2014; 73 Land (10.1016/j.redox.2020.101627_bib77) 1994; 266 Islam (10.1016/j.redox.2020.101627_bib11) 2020; 120 Smith (10.1016/j.redox.2020.101627_bib47) 1985; 150 Rada (10.1016/j.redox.2020.101627_bib57) 2011; 31 Morales-Alamo (10.1016/j.redox.2020.101627_bib18) 2018; 9 Oliveira (10.1016/j.redox.2020.101627_bib69) 2018; 132 Morrison (10.1016/j.redox.2020.101627_bib68) 2015; 89 Psilander (10.1016/j.redox.2020.101627_bib14) 2010; 110 Cobley (10.1016/j.redox.2020.101627_bib64) 2014; 70 Tsang (10.1016/j.redox.2020.101627_bib73) 2014; 5 Leonard (10.1016/j.redox.2020.101627_bib79) 2006; 20 Itoh (10.1016/j.redox.2020.101627_bib48) 2003; 8 Kumar (10.1016/j.redox.2020.101627_bib34) 2016; 14 |
| References_xml | – volume: 11 start-page: 613 year: 2017 end-page: 619 ident: bib84 article-title: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress publication-title: Redox Biol – volume: 113 start-page: 917 year: 2012 end-page: 928 ident: bib19 article-title: Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKalpha phosphorylation, in response to sprint exercise in severe acute hypoxia in humans publication-title: J. Appl. Physiol. – start-page: 101478 year: 2020 ident: bib2 article-title: An integrative approach to the regulation of mitochondrial respiration during exercise: focus on high-intensity exercise publication-title: Redox Biol – volume: 110 start-page: 597 year: 2010 end-page: 606 ident: bib14 article-title: Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise publication-title: Eur. J. Appl. Physiol. – volume: 39 start-page: 289 year: 2005 end-page: 295 ident: bib63 article-title: Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults publication-title: Free Radic. Biol. Med. – volume: 150 start-page: 76 year: 1985 end-page: 85 ident: bib47 article-title: Measurement of protein using bicinchoninic acid publication-title: Anal. Biochem. – volume: 90 start-page: 47 year: 2019 end-page: 53 ident: bib12 article-title: Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy publication-title: Cryobiology – volume: 374 start-page: 493 year: 1986 end-page: 501 ident: bib81 article-title: Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans publication-title: J. Physiol. – volume: 66 start-page: 24 year: 2014 end-page: 35 ident: bib82 article-title: How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo publication-title: Free Radic. Biol. Med. – volume: 133 start-page: 462 year: 2008 end-page: 474 ident: bib28 article-title: A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation publication-title: Cell – volume: 285 start-page: 22576 year: 2010 end-page: 22591 ident: bib55 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. – volume: 14 start-page: 86 year: 2016 ident: bib34 article-title: Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress publication-title: J. Transl. Med. – volume: 122 start-page: 4452 year: 2009 end-page: 4464 ident: bib61 article-title: Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance publication-title: J. Cell Sci. – volume: 5 start-page: 3446 year: 2014 ident: bib73 article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance publication-title: Nat. Commun. – volume: 126 start-page: 477 year: 2019 end-page: 486 ident: bib15 article-title: Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle publication-title: J. Appl. Physiol. – volume: 6 start-page: 85 year: 2015 ident: bib36 article-title: AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD publication-title: Front. Physiol. – volume: 10 start-page: 191 year: 2016 end-page: 199 ident: bib8 article-title: Nrf2 mediates redox adaptations to exercise publication-title: Redox Biol – volume: 114 start-page: 566 year: 2013 end-page: 577 ident: bib5 article-title: Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle publication-title: J. Appl. Physiol. – volume: 8 start-page: 10122 year: 2018 ident: bib56 article-title: Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells publication-title: Sci. Rep. – volume: 13 year: 2018 ident: bib24 article-title: Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle publication-title: PloS One – volume: 66 start-page: 3615 year: 2009 end-page: 3623 ident: bib20 article-title: The response of human skeletal muscle tissue to hypoxia publication-title: Cell. Mol. Life Sci. – volume: 101 start-page: 410 year: 2016 end-page: 420 ident: bib9 article-title: Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle publication-title: Exp. Physiol. – volume: 298 start-page: C857 year: 2010 end-page: C865 ident: bib30 article-title: Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current publication-title: Am. J. Physiol. Cell Physiol. – volume: 18 start-page: 1063 year: 2013 end-page: 1077 ident: bib83 article-title: Redox regulation of sodium and calcium handling publication-title: Antioxidants Redox Signal. – volume: 367 start-page: 137 year: 1976 end-page: 142 ident: bib80 article-title: The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man publication-title: Pflügers Archiv – volume: 596 start-page: 2823 year: 2018 end-page: 2840 ident: bib17 article-title: Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle publication-title: J. Physiol. – volume: 9 start-page: 188 year: 2018 ident: bib18 article-title: Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during sprint exercise in normoxia and severe acute hypoxia: effects of antioxidants publication-title: Front. Physiol. – volume: 1859 start-page: 315 year: 2016 end-page: 323 ident: bib72 article-title: Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration publication-title: Biochim. Biophys. Acta – volume: 110 start-page: 1708 year: 2011 end-page: 1715 ident: bib46 article-title: Repeated muscle biopsies through a single skin incision do not elicit muscle signaling, but IL-6 mRNA and STAT3 phosphorylation increase in injured muscle publication-title: J. Appl. Physiol. – volume: 109 start-page: 13561 year: 2012 end-page: 13566 ident: bib59 article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 246 start-page: 259 year: 1997 end-page: 273 ident: bib35 article-title: The AMP-activated protein kinase--fuel gauge of the mammalian cell? publication-title: Eur. J. Biochem. – volume: 285 start-page: 8463 year: 2010 end-page: 8471 ident: bib52 article-title: Activation of NRF2 by nitrosative agents and H publication-title: J. Biol. Chem. – volume: 70 start-page: 23 year: 2014 end-page: 32 ident: bib64 article-title: Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle publication-title: Free Radic. Biol. Med. – volume: 32 start-page: 3765 year: 2013 end-page: 3781 ident: bib58 article-title: Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity publication-title: Oncogene – volume: 594 start-page: 5195 year: 2016 end-page: 5207 ident: bib6 article-title: Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice publication-title: J. Physiol. – volume: 277 start-page: H2240 year: 1999 end-page: H2246 ident: bib75 article-title: Generation of superoxide in cardiomyocytes during ischemia before reperfusion publication-title: Am. J. Physiol. – volume: 88 start-page: 108 year: 2015 end-page: 146 ident: bib25 article-title: Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease publication-title: Free Radic. Biol. Med. – volume: 24 start-page: 7130 year: 2004 end-page: 7139 ident: bib50 article-title: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2 publication-title: Mol. Cell Biol. – volume: 12 start-page: 213 year: 2010 end-page: 223 ident: bib54 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. – volume: 96 start-page: 1196 year: 2011 end-page: 1207 ident: bib38 article-title: Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage publication-title: Exp. Physiol. – volume: 29 start-page: 1473 year: 2019 end-page: 1488 ident: bib45 article-title: Impact of data averaging strategies on VO publication-title: Scand. J. Med. Sci. Sports – volume: 73 start-page: 112 year: 2014 end-page: 116 ident: bib31 article-title: CaMKII oxidative activation and the pathogenesis of cardiac disease publication-title: J. Mol. Cell. Cardiol. – volume: 31 start-page: 1121 year: 2011 end-page: 1133 ident: bib57 article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner publication-title: Mol. Cell Biol. – volume: 3 start-page: e12512 year: 2015 ident: bib44 article-title: Arterial to end-tidal PCO publication-title: Physiol. Rep. – volume: 593 start-page: 4649 year: 2015 end-page: 4664 ident: bib40 article-title: Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O publication-title: J. Physiol. – volume: 89 start-page: 852 year: 2015 end-page: 862 ident: bib68 article-title: Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans publication-title: Free Radic. Biol. Med. – volume: 24 start-page: 166 year: 2003 end-page: 172 ident: bib22 article-title: The response of trained athletes to six weeks of endurance training in hypoxia or normoxia publication-title: Int. J. Sports Med. – volume: 266 start-page: C1028 year: 1994 end-page: C1036 ident: bib77 article-title: Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis publication-title: Am. J. Physiol. – volume: 586 start-page: 3979 year: 2008 end-page: 3990 ident: bib4 article-title: Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation publication-title: J. Physiol. – volume: 277 start-page: 42769 year: 2002 end-page: 42774 ident: bib62 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. – volume: 9 start-page: 1764 year: 2018 ident: bib43 article-title: Accuracy and precision of the COSMED K5 portable analyser publication-title: Front. Physiol. – volume: 121 start-page: 1326 year: 2016 end-page: 1334 ident: bib13 article-title: Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men publication-title: J. Appl. Physiol. – volume: 378 start-page: 373 year: 2004 end-page: 382 ident: bib51 article-title: Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products publication-title: Biochem. J. – volume: 298 start-page: 229 year: 2012 end-page: 317 ident: bib76 article-title: Cell biology of ischemia/reperfusion injury publication-title: Int. Rev. Cell Mol. Biol. – volume: 318 start-page: C337 year: 2020 end-page: C345 ident: bib7 article-title: Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training publication-title: Am. J. Physiol. Cell Physiol. – volume: 240 start-page: 47 year: 2002 end-page: 55 ident: bib32 article-title: The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element publication-title: Mol. Cell. Biochem. – volume: 38 start-page: 136 year: 2018 end-page: 150 ident: bib41 article-title: Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans publication-title: J. Cerebr. Blood Flow Metabol. – volume: 307 start-page: 973 year: 2003 end-page: 979 ident: bib53 article-title: Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium publication-title: Biochem. Biophys. Res. Commun. – volume: 18 start-page: 386 year: 2013 end-page: 399 ident: bib33 article-title: p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance publication-title: Antioxidants Redox Signal. – volume: 98 start-page: 68 year: 2016 end-page: 77 ident: bib37 article-title: AMPK signaling in skeletal muscle during exercise: role of reactive oxygen and nitrogen species publication-title: Free Radic. Biol. Med. – start-page: 101484 year: 2020 ident: bib66 article-title: Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: what do concentrations tell us about potential mechanisms? publication-title: Redox Biol – volume: 593 start-page: 4631 year: 2015 end-page: 4648 ident: bib42 article-title: What limits performance during whole-body incremental exercise to exhaustion in humans? publication-title: J. Physiol. – start-page: 101473 year: 2020 ident: bib71 article-title: Compartmentalized muscle redox signals controlling exercise metabolism - current state, future challenges publication-title: Redox Biol – volume: 74 start-page: 49 year: 1994 end-page: 94 ident: bib16 article-title: Cellular mechanisms of muscle fatigue publication-title: Physiol. Rev. – volume: 278 start-page: 21592 year: 2003 end-page: 21600 ident: bib49 article-title: Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression publication-title: J. Biol. Chem. – volume: 8 start-page: 379 year: 2003 end-page: 391 ident: bib48 article-title: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles publication-title: Gene Cell. – volume: 48 start-page: 30 year: 2014 end-page: 42 ident: bib3 article-title: Free radicals and sprint exercise in humans publication-title: Free Radic. Res. – volume: 49 start-page: 1269 year: 2015 end-page: 1274 ident: bib10 article-title: Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle publication-title: Free Radic. Res. – volume: 94 start-page: 11233 year: 1997 end-page: 11237 ident: bib27 article-title: Activation of protein kinase C by tyrosine phosphorylation in response to H publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 594 start-page: 5081 year: 2016 end-page: 5092 ident: bib26 article-title: Exercise-induced oxidative stress: past, present and future publication-title: J. Physiol. – volume: 1 start-page: 941 year: 2011 end-page: 969 ident: bib1 article-title: Reactive oxygen species: impact on skeletal muscle publication-title: Comp. Physiol. – volume: 266 start-page: 22028 year: 1991 end-page: 22034 ident: bib65 article-title: Detection of catalase in rat heart mitochondria publication-title: J. Biol. Chem. – volume: 47 start-page: 344 year: 2009 end-page: 356 ident: bib70 article-title: Regulation of superoxide dismutase genes: implications in disease publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 2624 year: 2006 end-page: 2626 ident: bib79 article-title: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury publication-title: Faseb. J. – volume: 127 start-page: 1267 year: 2019 end-page: 1277 ident: bib23 article-title: Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2 publication-title: J. Appl. Physiol. – volume: 282 start-page: 36412 year: 2007 end-page: 36420 ident: bib78 article-title: An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance publication-title: J. Biol. Chem. – volume: 110 start-page: 206 year: 2017 end-page: 218 ident: bib67 article-title: Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model publication-title: Free Radic. Biol. Med. – volume: 7 start-page: 833 year: 2006 end-page: 846 ident: bib29 article-title: Protein tyrosine phosphatases: from genes, to function, to disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 120 start-page: 149 year: 2020 end-page: 160 ident: bib11 article-title: The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle publication-title: Eur. J. Appl. Physiol. – volume: 114 start-page: 725 year: 2014 end-page: 733 ident: bib21 article-title: Exercise-induced oxidative stress and hypoxic exercise recovery publication-title: Eur. J. Appl. Physiol. – volume: 15 start-page: 472 year: 2014 end-page: 482 ident: bib39 article-title: Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity publication-title: High Alt. Med. Biol. – volume: 10 start-page: 123 year: 2009 end-page: 134 ident: bib60 article-title: Air to muscle O publication-title: High Alt. Med. Biol. – volume: 132 start-page: 1257 year: 2018 end-page: 1280 ident: bib69 article-title: Implications of plasma thiol redox in disease publication-title: Clin. Sci. (Lond.) – volume: 390 start-page: 377 year: 2005 end-page: 394 ident: bib74 article-title: Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion publication-title: Biochem. J. – volume: 13 issue: 12 year: 2018 ident: 10.1016/j.redox.2020.101627_bib24 article-title: Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle publication-title: PloS One doi: 10.1371/journal.pone.0208474 – start-page: 101473 year: 2020 ident: 10.1016/j.redox.2020.101627_bib71 article-title: Compartmentalized muscle redox signals controlling exercise metabolism - current state, future challenges publication-title: Redox Biol doi: 10.1016/j.redox.2020.101473 – volume: 367 start-page: 137 issue: 2 year: 1976 ident: 10.1016/j.redox.2020.101627_bib80 article-title: The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man publication-title: Pflügers Archiv doi: 10.1007/BF00585149 – volume: 98 start-page: 68 year: 2016 ident: 10.1016/j.redox.2020.101627_bib37 article-title: AMPK signaling in skeletal muscle during exercise: role of reactive oxygen and nitrogen species publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.01.012 – volume: 594 start-page: 5081 issue: 18 year: 2016 ident: 10.1016/j.redox.2020.101627_bib26 article-title: Exercise-induced oxidative stress: past, present and future publication-title: J. Physiol. doi: 10.1113/JP270646 – volume: 150 start-page: 76 issue: 1 year: 1985 ident: 10.1016/j.redox.2020.101627_bib47 article-title: Measurement of protein using bicinchoninic acid publication-title: Anal. Biochem. doi: 10.1016/0003-2697(85)90442-7 – volume: 596 start-page: 2823 issue: 14 year: 2018 ident: 10.1016/j.redox.2020.101627_bib17 article-title: Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle publication-title: J. Physiol. doi: 10.1113/JP275972 – volume: 32 start-page: 3765 issue: 32 year: 2013 ident: 10.1016/j.redox.2020.101627_bib58 article-title: Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity publication-title: Oncogene doi: 10.1038/onc.2012.388 – volume: 73 start-page: 112 year: 2014 ident: 10.1016/j.redox.2020.101627_bib31 article-title: CaMKII oxidative activation and the pathogenesis of cardiac disease publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2014.02.004 – volume: 24 start-page: 7130 issue: 16 year: 2004 ident: 10.1016/j.redox.2020.101627_bib50 article-title: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.24.16.7130-7139.2004 – volume: 298 start-page: 229 year: 2012 ident: 10.1016/j.redox.2020.101627_bib76 article-title: Cell biology of ischemia/reperfusion injury publication-title: Int. Rev. Cell Mol. Biol. doi: 10.1016/B978-0-12-394309-5.00006-7 – volume: 120 start-page: 149 issue: 1 year: 2020 ident: 10.1016/j.redox.2020.101627_bib11 article-title: The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-019-04259-7 – volume: 29 start-page: 1473 issue: 10 year: 2019 ident: 10.1016/j.redox.2020.101627_bib45 article-title: Impact of data averaging strategies on VO2max assessment: mathematical modeling and reliability publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.13495 – volume: 285 start-page: 22576 issue: 29 year: 2010 ident: 10.1016/j.redox.2020.101627_bib55 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118976 – volume: 31 start-page: 1121 issue: 6 year: 2011 ident: 10.1016/j.redox.2020.101627_bib57 article-title: SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01204-10 – volume: 39 start-page: 289 issue: 2 year: 2005 ident: 10.1016/j.redox.2020.101627_bib63 article-title: Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.03.024 – volume: 90 start-page: 47 year: 2019 ident: 10.1016/j.redox.2020.101627_bib12 article-title: Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy publication-title: Cryobiology doi: 10.1016/j.cryobiol.2019.08.007 – volume: 126 start-page: 477 issue: 2 year: 2019 ident: 10.1016/j.redox.2020.101627_bib15 article-title: Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00654.2018 – volume: 246 start-page: 259 issue: 2 year: 1997 ident: 10.1016/j.redox.2020.101627_bib35 article-title: The AMP-activated protein kinase--fuel gauge of the mammalian cell? publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.00259.x – volume: 66 start-page: 3615 issue: 22 year: 2009 ident: 10.1016/j.redox.2020.101627_bib20 article-title: The response of human skeletal muscle tissue to hypoxia publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-009-0146-8 – volume: 18 start-page: 386 issue: 4 year: 2013 ident: 10.1016/j.redox.2020.101627_bib33 article-title: p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.4615 – volume: 38 start-page: 136 issue: 1 year: 2018 ident: 10.1016/j.redox.2020.101627_bib41 article-title: Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans publication-title: J. Cerebr. Blood Flow Metabol. doi: 10.1177/0271678X17691986 – volume: 110 start-page: 206 year: 2017 ident: 10.1016/j.redox.2020.101627_bib67 article-title: Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.06.010 – volume: 11 start-page: 613 year: 2017 ident: 10.1016/j.redox.2020.101627_bib84 article-title: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress publication-title: Redox Biol doi: 10.1016/j.redox.2016.12.035 – volume: 12 start-page: 213 issue: 3 year: 2010 ident: 10.1016/j.redox.2020.101627_bib54 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2021 – volume: 109 start-page: 13561 issue: 34 year: 2012 ident: 10.1016/j.redox.2020.101627_bib59 article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1121572109 – volume: 8 start-page: 10122 issue: 1 year: 2018 ident: 10.1016/j.redox.2020.101627_bib56 article-title: Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells publication-title: Sci. Rep. doi: 10.1038/s41598-018-28074-w – volume: 74 start-page: 49 issue: 1 year: 1994 ident: 10.1016/j.redox.2020.101627_bib16 article-title: Cellular mechanisms of muscle fatigue publication-title: Physiol. Rev. doi: 10.1152/physrev.1994.74.1.49 – volume: 127 start-page: 1267 issue: 5 year: 2019 ident: 10.1016/j.redox.2020.101627_bib23 article-title: Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00347.2019 – volume: 378 start-page: 373 issue: Pt 2 year: 2004 ident: 10.1016/j.redox.2020.101627_bib51 article-title: Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products publication-title: Biochem. J. doi: 10.1042/bj20031049 – volume: 390 start-page: 377 issue: Pt 2 year: 2005 ident: 10.1016/j.redox.2020.101627_bib74 article-title: Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion publication-title: Biochem. J. doi: 10.1042/BJ20042006 – volume: 18 start-page: 1063 issue: 9 year: 2013 ident: 10.1016/j.redox.2020.101627_bib83 article-title: Redox regulation of sodium and calcium handling publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.4818 – volume: 307 start-page: 973 issue: 4 year: 2003 ident: 10.1016/j.redox.2020.101627_bib53 article-title: Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)01308-1 – volume: 114 start-page: 725 issue: 4 year: 2014 ident: 10.1016/j.redox.2020.101627_bib21 article-title: Exercise-induced oxidative stress and hypoxic exercise recovery publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-013-2806-5 – volume: 10 start-page: 191 year: 2016 ident: 10.1016/j.redox.2020.101627_bib8 article-title: Nrf2 mediates redox adaptations to exercise publication-title: Redox Biol doi: 10.1016/j.redox.2016.10.003 – volume: 593 start-page: 4631 issue: 20 year: 2015 ident: 10.1016/j.redox.2020.101627_bib42 article-title: What limits performance during whole-body incremental exercise to exhaustion in humans? publication-title: J. Physiol. doi: 10.1113/JP270487 – volume: 285 start-page: 8463 issue: 11 year: 2010 ident: 10.1016/j.redox.2020.101627_bib52 article-title: Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.051714 – volume: 266 start-page: 22028 issue: 32 year: 1991 ident: 10.1016/j.redox.2020.101627_bib65 article-title: Detection of catalase in rat heart mitochondria publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54740-2 – volume: 47 start-page: 344 issue: 4 year: 2009 ident: 10.1016/j.redox.2020.101627_bib70 article-title: Regulation of superoxide dismutase genes: implications in disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.05.018 – volume: 6 start-page: 85 year: 2015 ident: 10.1016/j.redox.2020.101627_bib36 article-title: AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD publication-title: Front. Physiol. doi: 10.3389/fphys.2015.00085 – volume: 277 start-page: 42769 issue: 45 year: 2002 ident: 10.1016/j.redox.2020.101627_bib62 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206911200 – volume: 49 start-page: 1269 issue: 10 year: 2015 ident: 10.1016/j.redox.2020.101627_bib10 article-title: Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1066784 – volume: 66 start-page: 24 year: 2014 ident: 10.1016/j.redox.2020.101627_bib82 article-title: How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.05.045 – volume: 594 start-page: 5195 issue: 18 year: 2016 ident: 10.1016/j.redox.2020.101627_bib6 article-title: Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice publication-title: J. Physiol. doi: 10.1113/JP271957 – volume: 110 start-page: 597 issue: 3 year: 2010 ident: 10.1016/j.redox.2020.101627_bib14 article-title: Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-010-1581-9 – volume: 110 start-page: 1708 issue: 6 year: 2011 ident: 10.1016/j.redox.2020.101627_bib46 article-title: Repeated muscle biopsies through a single skin incision do not elicit muscle signaling, but IL-6 mRNA and STAT3 phosphorylation increase in injured muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00091.2011 – volume: 20 start-page: 2624 issue: 14 year: 2006 ident: 10.1016/j.redox.2020.101627_bib79 article-title: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury publication-title: Faseb. J. doi: 10.1096/fj.06-5097fje – volume: 586 start-page: 3979 issue: 16 year: 2008 ident: 10.1016/j.redox.2020.101627_bib4 article-title: Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.155382 – volume: 133 start-page: 462 issue: 3 year: 2008 ident: 10.1016/j.redox.2020.101627_bib28 article-title: A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation publication-title: Cell doi: 10.1016/j.cell.2008.02.048 – start-page: 101478 year: 2020 ident: 10.1016/j.redox.2020.101627_bib2 article-title: An integrative approach to the regulation of mitochondrial respiration during exercise: focus on high-intensity exercise publication-title: Redox Biol doi: 10.1016/j.redox.2020.101478 – volume: 266 start-page: C1028 issue: 4 Pt 1 year: 1994 ident: 10.1016/j.redox.2020.101627_bib77 article-title: Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1994.266.4.C1028 – volume: 3 start-page: e12512 year: 2015 ident: 10.1016/j.redox.2020.101627_bib44 article-title: Arterial to end-tidal PCO2 difference during exercise in normoxia and severe acute hypoxia: importance of blood temperature correction publication-title: Physiol. Rep. doi: 10.14814/phy2.12512 – volume: 1859 start-page: 315 issue: 2 year: 2016 ident: 10.1016/j.redox.2020.101627_bib72 article-title: Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2015.11.009 – volume: 277 start-page: H2240 issue: 6 year: 1999 ident: 10.1016/j.redox.2020.101627_bib75 article-title: Generation of superoxide in cardiomyocytes during ischemia before reperfusion publication-title: Am. J. Physiol. – volume: 7 start-page: 833 issue: 11 year: 2006 ident: 10.1016/j.redox.2020.101627_bib29 article-title: Protein tyrosine phosphatases: from genes, to function, to disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2039 – volume: 278 start-page: 21592 issue: 24 year: 2003 ident: 10.1016/j.redox.2020.101627_bib49 article-title: Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300931200 – volume: 89 start-page: 852 year: 2015 ident: 10.1016/j.redox.2020.101627_bib68 article-title: Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.10.412 – volume: 114 start-page: 566 issue: 5 year: 2013 ident: 10.1016/j.redox.2020.101627_bib5 article-title: Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01246.2012 – volume: 94 start-page: 11233 issue: 21 year: 1997 ident: 10.1016/j.redox.2020.101627_bib27 article-title: Activation of protein kinase C by tyrosine phosphorylation in response to H2O2 publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.94.21.11233 – volume: 8 start-page: 379 issue: 4 year: 2003 ident: 10.1016/j.redox.2020.101627_bib48 article-title: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles publication-title: Gene Cell. doi: 10.1046/j.1365-2443.2003.00640.x – volume: 282 start-page: 36412 issue: 50 year: 2007 ident: 10.1016/j.redox.2020.101627_bib78 article-title: An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706517200 – volume: 374 start-page: 493 year: 1986 ident: 10.1016/j.redox.2020.101627_bib81 article-title: Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans publication-title: J. Physiol. doi: 10.1113/jphysiol.1986.sp016093 – volume: 10 start-page: 123 issue: 2 year: 2009 ident: 10.1016/j.redox.2020.101627_bib60 article-title: Air to muscle O2 delivery during exercise at altitude publication-title: High Alt. Med. Biol. doi: 10.1089/ham.2008.1099 – volume: 318 start-page: C337 issue: 2 year: 2020 ident: 10.1016/j.redox.2020.101627_bib7 article-title: Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00426.2019 – volume: 24 start-page: 166 issue: 3 year: 2003 ident: 10.1016/j.redox.2020.101627_bib22 article-title: The response of trained athletes to six weeks of endurance training in hypoxia or normoxia publication-title: Int. J. Sports Med. doi: 10.1055/s-2003-39086 – volume: 593 start-page: 4649 issue: 20 year: 2015 ident: 10.1016/j.redox.2020.101627_bib40 article-title: Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O2 diffusing capacity publication-title: J. Physiol. doi: 10.1113/JP270408 – volume: 1 start-page: 941 issue: 2 year: 2011 ident: 10.1016/j.redox.2020.101627_bib1 article-title: Reactive oxygen species: impact on skeletal muscle publication-title: Comp. Physiol. doi: 10.1002/j.2040-4603.2011.tb00348.x – volume: 48 start-page: 30 issue: 1 year: 2014 ident: 10.1016/j.redox.2020.101627_bib3 article-title: Free radicals and sprint exercise in humans publication-title: Free Radic. Res. doi: 10.3109/10715762.2013.825043 – start-page: 101484 year: 2020 ident: 10.1016/j.redox.2020.101627_bib66 article-title: Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: what do concentrations tell us about potential mechanisms? publication-title: Redox Biol doi: 10.1016/j.redox.2020.101484 – volume: 113 start-page: 917 issue: 6 year: 2012 ident: 10.1016/j.redox.2020.101627_bib19 article-title: Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKalpha phosphorylation, in response to sprint exercise in severe acute hypoxia in humans publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00415.2012 – volume: 70 start-page: 23 year: 2014 ident: 10.1016/j.redox.2020.101627_bib64 article-title: Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.02.004 – volume: 132 start-page: 1257 issue: 12 year: 2018 ident: 10.1016/j.redox.2020.101627_bib69 article-title: Implications of plasma thiol redox in disease publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20180157 – volume: 15 start-page: 472 issue: 4 year: 2014 ident: 10.1016/j.redox.2020.101627_bib39 article-title: Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity publication-title: High Alt. Med. Biol. doi: 10.1089/ham.2014.1027 – volume: 298 start-page: C857 issue: 4 year: 2010 ident: 10.1016/j.redox.2020.101627_bib30 article-title: Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00313.2009 – volume: 121 start-page: 1326 issue: 6 year: 2016 ident: 10.1016/j.redox.2020.101627_bib13 article-title: Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00289.2016 – volume: 9 start-page: 188 year: 2018 ident: 10.1016/j.redox.2020.101627_bib18 article-title: Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during sprint exercise in normoxia and severe acute hypoxia: effects of antioxidants publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00188 – volume: 88 start-page: 108 issue: Pt B year: 2015 ident: 10.1016/j.redox.2020.101627_bib25 article-title: Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.06.021 – volume: 101 start-page: 410 issue: 3 year: 2016 ident: 10.1016/j.redox.2020.101627_bib9 article-title: Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle publication-title: Exp. Physiol. doi: 10.1113/EP085493 – volume: 122 start-page: 4452 issue: Pt 24 year: 2009 ident: 10.1016/j.redox.2020.101627_bib61 article-title: Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance publication-title: J. Cell Sci. doi: 10.1242/jcs.058537 – volume: 240 start-page: 47 issue: 1-2 year: 2002 ident: 10.1016/j.redox.2020.101627_bib32 article-title: The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element publication-title: Mol. Cell. Biochem. doi: 10.1023/A:1020600509965 – volume: 9 start-page: 1764 year: 2018 ident: 10.1016/j.redox.2020.101627_bib43 article-title: Accuracy and precision of the COSMED K5 portable analyser publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01764 – volume: 5 start-page: 3446 year: 2014 ident: 10.1016/j.redox.2020.101627_bib73 article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance publication-title: Nat. Commun. doi: 10.1038/ncomms4446 – volume: 96 start-page: 1196 issue: 11 year: 2011 ident: 10.1016/j.redox.2020.101627_bib38 article-title: Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2011.060178 – volume: 14 start-page: 86 year: 2016 ident: 10.1016/j.redox.2020.101627_bib34 article-title: Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress publication-title: J. Transl. Med. doi: 10.1186/s12967-016-0839-3 |
| SSID | ssj0000884210 |
| Score | 2.400735 |
| Snippet | The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101627 |
| SubjectTerms | AMPK CaMKII Fatigue High-intensity exercise Ischaemia Research Paper |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSkhcEN8EFmQkjhtt4vgj2RsgVguIPaBF2pvlOI4a2CZVk0jtn-Q3MWMnVQvScuHWusnEjl89z830PULeJkmZCfzRXfHKxjxHmxeuRFxUpjZpXSjmPSO_XsqL7_zztbjes_rCmrAgDxxu3CnqnSvg5EqUGbeMm6qsk8RIZBYG8huuvpDz9jZTfg3Oc868FAFjaRYDiVGz5JAv7kIxzg3sDlloQU-ZvbTk1fsPstPf7PPPIsq9rHT-gNyf6CR9F4bxkNxx7SNyNxhMbh-TX9-C1TzcfNrV9HJds9MvzqxSinUbxutx06al3qmP9j8hBwEZp8uxh2g0_IWRzq5MdOjg9QKFgjAenNYC4e02jTmhMAK3dtTYcXB0sV1hKzVtRVddP8S7CE2PRfrLxpzRT7M7CnZsCZctsRIPQ9hxOfcZI3SbLYDcv39Crs4_Xn24iCcHh9gKJoYYZksKYUVdGlPWQGZqWYrSSV5kNpfKlDxlVnAnsyqzdeJsIlylUsCIUdza7Ck5arvWPSe0thyoTZHLglvOjCwAFEXFeF4V1imXRITN86ftpG6OJhs3ei5j-6H9pGucdB0mPSInu5NWQdzj9sPfIzB2h6Iyt28AvOoJr_pfeI2InGGlJ5ITyAuEam6_-psZhBqWAHyuY1rXjb1m6GCPTLmIyLMAyl0fM5bLDLadEVEHcD0YxOEnbbPwMuMqw0fq-Yv_MeqX5B4OJRTnHZOjYT26V8DmhvK1_-L-BnPcSg8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-Wl4zEsdFm_Uy40YqqgOgBirS3yHEcNoVNok0i7f5JfhMzzkMNSD1w23jtiRNPPJ-T8fcR8jYMUy7xpbsWmQ1EhDIvQssgzkxuVnmsmdeM_HKpLr6LT2u5PiJn414YTKsc5v5-Tvez9VCyHO7msi6K5TfGYCUF4Y8h5QqgEJiHuYj8Jr716fSeBZ4iwTwpAdYPsMFIPuTTvJCWcw_rRNaXoLrMjQDlefxncepfHPp3OuWN-HR-n9wbgCV93_f9ATly5UNyp5eaPDwiv7_2ovMwDLTK6eUuZ8vPztQrihkcxjNz06KkXrOPNj8hGgEsp9uuAWu038xIR30m2lbwe4OUQWgPmpUAfat9YU4oXIHbOWps1zq6OdRYSk2Z0bpq2mCyUDSYrr8tzDv6cdRJwY5t4bQp5uShCdttxz6jhWp_AHf3x4_J1fmHq7OLYNByCKxksg2EyZSUVuapMWkOsCZXqUydEjG3kdImFStmpXCKZ9zmobOhdJlegbcYLazlT8hxWZXuGaG5FQBy4kjFwgpmVBzpOM6YiLLYOu3CBWHj-CV24DlHuY1fyZjQdp34QU9w0JN-0BfkZGpU9zQft1c_RceYqiJHty-odj-SwUkTZOrXsJrUMuXCMrgDaR6GRiEmNoDMFkSNbpXMXB5MFbef_c3ohAlMBviFx5Su6pqEoZY9YuZ4QZ72Tjn1kbNIcViALoieuevsIub_lMXGE45rjh_Xo-f_2-EX5C4e9al5L8lxu-vcK8BybfraP6x_AE2DTAk priority: 102 providerName: Elsevier |
| Title | Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation |
| URI | https://dx.doi.org/10.1016/j.redox.2020.101627 https://www.ncbi.nlm.nih.gov/pubmed/32863217 https://www.proquest.com/docview/2438995109 https://pubmed.ncbi.nlm.nih.gov/PMC7358388 https://doaj.org/article/3788796675b34c24adbf00a66508a078 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELVKEagviHvDpTISjw1kHV8SJIQoompB7QNqpX2LHMdhA91km4u0-5N8EzNOsmWh9GWVdeKJ4xnHx8nkHEJeB0EaCnzornhmfB6hzAtXwo8znetJHivmNCNPTuXROf8yFdMtMqqiDh3YXLu0Qz2p8_rizfJy9QEG_PurXC3k1lzCYo_1JUzdIrdhalI4Uk8GvO9uzVHEYY0zsg9dX3eH3A1ZJEPmRMyuJivH6b8xZ_2LSf9Orfxjrjq8T-4NIJN-7KPiAdmy5UNyp5edXD0iv771AvTgElrl9LTO2duvVi8mFLM5tGPppkVJnX4fbX7CzAS9Q-ddA9Zo_2EjHbWaaFvB9gzpg9AeVCsBBlfLQu9TuAJbW6pN11o6Wy2wlOoyo4uqaf21haLB1P15od_R41EzBRs2h9OmmJ-HJkw3H9uMFqrlCkLf_X9Mzg4_n3068gddB98IJlqf60wKYUSeap3mAHFymYrUSh6HJpJKp3zCjOBWhllo8sCaQNhMTSBytOLGhE_IdlmVdpfQ3HAAPHEkY2440zKOVBxnjEdZbKyygUfY6L_EDJznKL1xkYzJbT8S5_8E_Z_0_vfI_rrSoqf8uPnwAwyM9aHI1-0Kqvp7Mgz_BFn7FawslUhDbhj0QJoHgZaIjzWgNI_IMaySAfr0kAZMFTef_dUYhAncGPBtjy5t1TUJQ117xM-xR572Qblu4xjfHlEb4bpxEZt7ymLmyMdViC_ao2f_tfmc7GD7-jy8F2S7rTv7EoBbm-65Bx7wezw92HMD8zeTgkdH |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDfhaSSOGzV1_Ei4sStWLbvbAxSpN8txHBqgSdWmUvsn-U3MOEm1BWkP3FonnkziiedzMvk-Qt5HURYLfOiueG5DnqDMC1ciTHNTmGGRKuY1I68mcvSNf56J2RE567-FwbLKbu5v53Q_W3ctg-5qDpZlOfjKGKykIP0xpFwBFHKL3AY0oFC_YTw73T9ogduIM89KgB1C7NGzD_k6L-Tl3MJCkbUtKC9zLUN5Iv-DRPUvEP27nvJagjp_QO53yJJ-bJ1_SI5c9YjcabUmd4_J7y-t6jyMA60LOlkVbHDhzHJIsYTDeGpuWlbUi_bR9U9IR4DL6WKzBmu0_ZqR9gJNtKnh9xw5g9AedKsA-9bb0pxQOAO3ctTYTePofLfEVmqqnC7rdRPuLZRrrNdflOYDHfdCKejYAg6bYVEemrCbRe8zWqi3O4h3__8JmZ5_mp6Nwk7MIbSCiSbkJpdCWFFkxmQF4JpCZiJzkqexTaQyGR8yK7iTcR7bInI2Ei5XQwgXo7i18VNyXNWVe05oYTmgnDSRKbecGZkmKk1zxpM8tU65KCCsHz9tO6Jz1Nv4pfuKth_aD7rGQdftoAfkZN9p2fJ83Lz7KQbGflck6fYN9eq77qJUI1W_guWkElnMLYMrkBVRZCSCYgPQLCCyDyt9EPNgqrz56O_6INQwG-ArHlO5erPWDMXsETSnAXnWBuXex5glMoYVaEDUQbgenMThlqqce8ZxFePb9eTF_zr8ltwdTa8u9eV4cvGS3MMtbZ3eK3LcrDbuNQC7Jnvjb9w_6OpPKA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Nrf2%2FKeap1+signalling+in+human+skeletal+muscle+during+exercise+to+exhaustion+in+normoxia%2C+severe+acute+hypoxia+and+post-exercise+ischaemia%3A+Influence+of+metabolite+accumulation+and+oxygenation&rft.jtitle=Redox+biology&rft.au=Gallego-Selles%2C+Angel&rft.au=Martin-Rincon%2C+Marcos&rft.au=Martinez-Canton%2C+Miriam&rft.au=Perez-Valera%2C+Mario&rft.date=2020-09-01&rft.eissn=2213-2317&rft.volume=36&rft.spage=101627&rft_id=info:doi/10.1016%2Fj.redox.2020.101627&rft_id=info%3Apmid%2F32863217&rft.externalDocID=32863217 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |