Identification of a Novel selD Homolog from Eukaryotes, Bacteria, and Archaea: Is there an Autoregulatory Mechanism in Selenocysteine Metabolism?

Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designa...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 93; no. 26; pp. 15086 - 15091
Main Authors Guimaraes, M. Jorge, Peterson, David, Vicari, Alain, Cocks, Benjamin G., Copeland, Neal G., Gilbert, Debra J., Jenkins, Nancy A., Ferrick, David A., Kastelein, Robert A., Bazan, J. Fernando, Zlotnik, Albert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 24.12.1996
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences of the USA
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
AbstractList Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Scientists report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA dondon at a site corresponding to the enzyme's putative active site.
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2 , which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii , which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75 Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2 , which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii , which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75 Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of super(75)Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Author Guimaraes, M. Jorge
Gilbert, Debra J.
Vicari, Alain
Jenkins, Nancy A.
Ferrick, David A.
Kastelein, Robert A.
Peterson, David
Copeland, Neal G.
Zlotnik, Albert
Cocks, Benjamin G.
Bazan, J. Fernando
AuthorAffiliation Departments of Molecular Biology and † Immunology, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304; ‡ Advanced Bioscience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, MD 21702; and § Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
AuthorAffiliation_xml – name: Departments of Molecular Biology and † Immunology, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304; ‡ Advanced Bioscience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, MD 21702; and § Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
Author_xml – sequence: 1
  givenname: M. Jorge
  surname: Guimaraes
  fullname: Guimaraes, M. Jorge
– sequence: 2
  givenname: David
  surname: Peterson
  fullname: Peterson, David
– sequence: 3
  givenname: Alain
  surname: Vicari
  fullname: Vicari, Alain
– sequence: 4
  givenname: Benjamin G.
  surname: Cocks
  fullname: Cocks, Benjamin G.
– sequence: 5
  givenname: Neal G.
  surname: Copeland
  fullname: Copeland, Neal G.
– sequence: 6
  givenname: Debra J.
  surname: Gilbert
  fullname: Gilbert, Debra J.
– sequence: 7
  givenname: Nancy A.
  surname: Jenkins
  fullname: Jenkins, Nancy A.
– sequence: 8
  givenname: David A.
  surname: Ferrick
  fullname: Ferrick, David A.
– sequence: 9
  givenname: Robert A.
  surname: Kastelein
  fullname: Kastelein, Robert A.
– sequence: 10
  givenname: J. Fernando
  surname: Bazan
  fullname: Bazan, J. Fernando
– sequence: 11
  givenname: Albert
  surname: Zlotnik
  fullname: Zlotnik, Albert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8986768$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vEzEQxVeoqKSFO0JCWBwQhyb4z67Xi5BQKIVGKnAAzpbXGSebeu1geyvyMfjGOCRElAOcRvL7vdHM-J0UR847KIqHBE8IrtmLtVNx0rAJ5RNSYcHvFCOCGzLmZYOPihHGtB6Lkpb3ipMYVxjjphL4uDgWjeA1F6Pix2wOLnWm0yp13iFvkEIf_Q1YFMG-RZe-99YvkAm-RxfDtQobnyCeoTdKJwidOkPKzdE06KUC9RLNIkpLCJBf0XRIPsBisCrXDfoAmXFd7FHn0Gew4LzexASdg6wl1Xqbxdf3i7tG2QgP9vW0-Pru4sv55fjq0_vZ-fRqrCtapXFeUGFjRFsqovici9poauqKa2ZUPae4hZYqQUilS8ahxgwzYfScKspqjFt2Wrza9V0PbQ9znc8QlJXr0PV5SelVJ28rrlvKhb-RlDOOs_3Z3h78twFikn0XNVirHPghylrwkpdM_BcklahILaoMPv0LXPkhuHwDSTFhpKSiyRDeQTr4GAOYw8AEy20k5DYSsmF5TPkrEtny-M9FD4Z9BrL-ZK9vnb_V2x2e_5uQZrA2wfeU0Uc7dBXzpx_YEgtG2U-4StgI
CitedBy_id crossref_primary_10_1097_00042560_199804150_00003
crossref_primary_10_1074_jbc_275_9_6195
crossref_primary_10_1007_BF02255899
crossref_primary_10_1007_s12011_011_8995_z
crossref_primary_10_1007_s00726_018_2595_6
crossref_primary_10_1515_BC_2000_107
crossref_primary_10_1093_mtomcs_mfab024
crossref_primary_10_1210_er_2001_0034
crossref_primary_10_1073_pnas_96_1_44
crossref_primary_10_1126_science_1083516
crossref_primary_10_1042_BJ20040328
crossref_primary_10_1146_annurev_nutr_24_012003_132241
crossref_primary_10_1007_s12011_007_8003_9
crossref_primary_10_1074_jbc_M100422200
crossref_primary_10_3390_molecules26237120
crossref_primary_10_1007_s11033_007_9120_4
crossref_primary_10_1007_s12011_012_9346_4
crossref_primary_10_1073_pnas_94_2_418
crossref_primary_10_1038_sj_emboj_7600642
crossref_primary_10_1006_prep_2000_1262
crossref_primary_10_1093_molbev_msi007
crossref_primary_10_1590_S1415_47572010000400014
crossref_primary_10_1007_s10695_015_0040_2
crossref_primary_10_3390_ijms25010223
crossref_primary_10_1016_j_jtemb_2012_03_003
crossref_primary_10_1097_00001574_200103000_00011
crossref_primary_10_1177_0884533608314532
crossref_primary_10_1002__SICI_1521_1878_199903_21_3_231__AID_BIES7_3_0_CO_2_D
crossref_primary_10_1074_jbc_273_43_28533
crossref_primary_10_1186_1471_2164_12_426
crossref_primary_10_1046_j_1365_2443_2000_00392_x
crossref_primary_10_1002_biof_5520140105
crossref_primary_10_1080_10409238_2020_1717430
crossref_primary_10_1016_j_freeradbiomed_2018_03_037
crossref_primary_10_1007_s00018_009_0032_4
crossref_primary_10_1006_jmbi_1997_1371
crossref_primary_10_1080_10426509808545963
crossref_primary_10_1073_pnas_95_5_2180
crossref_primary_10_1016_S0014_5793_99_00221_5
crossref_primary_10_1134_S0026893313040134
crossref_primary_10_1002_iub_38
crossref_primary_10_1016_S0300_9084_99_80105_9
crossref_primary_10_1111_j_1365_2958_2011_07850_x
crossref_primary_10_1007_s11434_006_2206_x
crossref_primary_10_1002_biof_5520070402
crossref_primary_10_1016_j_bbagen_2009_03_022
crossref_primary_10_1146_annurev_nutr_23_011702_073318
crossref_primary_10_1093_embo_reports_kvd087
crossref_primary_10_1016_j_abb_2022_109426
crossref_primary_10_51350_zdravkg_2023_59_80_001
crossref_primary_10_1016_j_bbrc_2021_12_091
crossref_primary_10_1079_PNS2002153
crossref_primary_10_1016_j_tcm_2004_08_003
crossref_primary_10_1515_bmc_2013_0007
crossref_primary_10_1074_jbc_M611403200
crossref_primary_10_1038_nchembio847
crossref_primary_10_1074_jbc_274_48_33888
crossref_primary_10_1093_ajcn_87_1_181
crossref_primary_10_1074_jbc_274_53_38147
crossref_primary_10_3945_an_110_000265
crossref_primary_10_1016_j_bbagen_2018_04_008
crossref_primary_10_1515_REVNEURO_2004_15_1_19
crossref_primary_10_1016_S0002_8223_99_00198_4
crossref_primary_10_1134_S0006297922140139
crossref_primary_10_1016_j_jtemb_2016_04_010
crossref_primary_10_1046_j_1432_1033_2002_03298_x
crossref_primary_10_1242_jcs_112_17_2875
crossref_primary_10_1002_biof_5520100222
crossref_primary_10_1002_biof_5520100224
crossref_primary_10_4103_0972_5229_35086
crossref_primary_10_1111_j_1527_5299_2007_06410_x
crossref_primary_10_1016_j_aquatox_2012_12_020
crossref_primary_10_1016_j_biochi_2006_04_015
crossref_primary_10_1016_j_tet_2017_09_004
crossref_primary_10_1007_s00394_008_2005_z
crossref_primary_10_1016_j_tibs_2013_12_007
crossref_primary_10_1016_j_jmb_2009_05_032
crossref_primary_10_1111_j_1747_0080_2008_00260_x
crossref_primary_10_1128_ecosalplus_3_6_1_1_2
crossref_primary_10_1074_jbc_M709342200
crossref_primary_10_1146_annurev_nutr_21_1_453
crossref_primary_10_1089_thy_2005_15_769
crossref_primary_10_1080_10425170310001623653
crossref_primary_10_1016_S0300_9084_99_80054_6
crossref_primary_10_1515_BC_2003_002
crossref_primary_10_3390_ijms19092665
crossref_primary_10_1016_j_bbagen_2018_03_029
crossref_primary_10_1016_j_bbagen_2009_03_003
crossref_primary_10_1021_acs_biochem_6b01116
crossref_primary_10_1242_jcs_00783
crossref_primary_10_1016_j_freeradbiomed_2018_04_577
crossref_primary_10_1128_AEM_66_11_4849_4853_2000
crossref_primary_10_1093_molbev_msv043
crossref_primary_10_1089_ars_2010_3586
crossref_primary_10_1128_MCB_23_23_8495_8504_2003
crossref_primary_10_3390_nu7053536
crossref_primary_10_1006_dbio_2001_0389
crossref_primary_10_1042_BCJ20160393
crossref_primary_10_1042_BJ20070165
crossref_primary_10_1261_rna_079658_123
crossref_primary_10_1002_biof_5520090105
crossref_primary_10_1074_jbc_M109_026492
crossref_primary_10_1039_D0FO02236E
crossref_primary_10_1016_j_bbagen_2018_03_030
crossref_primary_10_1016_S1016_8478_23_13563_1
crossref_primary_10_1016_j_bbagen_2018_05_020
crossref_primary_10_1074_jbc_273_15_8910
crossref_primary_10_1016_j_bbagen_2018_05_023
crossref_primary_10_1016_j_bbrc_2010_05_055
crossref_primary_10_1111_j_1439_0434_2010_01780_x
crossref_primary_10_1097_00042560_200010001_00009
crossref_primary_10_1152_physrev_00039_2013
crossref_primary_10_1006_bbrc_1998_8393
crossref_primary_10_1089_ars_2009_2878
crossref_primary_10_1073_pnas_0406313101
crossref_primary_10_1002_jbt_23195
crossref_primary_10_1016_j_pnpbp_2022_110694
crossref_primary_10_1002_0471140864_ps0308s20
crossref_primary_10_1210_er_2008_0019
crossref_primary_10_1096_fasebj_12_13_1359
crossref_primary_10_1515_labm_1998_22_10_539
crossref_primary_10_1002_biof_5520140119
crossref_primary_10_1248_bpb_24_754
crossref_primary_10_1016_j_tox_2004_03_026
crossref_primary_10_3390_ijms222111647
crossref_primary_10_1111_j_1365_2958_2009_06970_x
crossref_primary_10_1016_j_bbagen_2015_07_009
crossref_primary_10_1016_S1567_133X_03_00054_1
crossref_primary_10_1006_bbrc_1998_9495
crossref_primary_10_1515_CCLM_2003_156
crossref_primary_10_1007_s12011_014_0139_9
crossref_primary_10_1039_C5MT00134J
crossref_primary_10_1089_ars_2012_5081
crossref_primary_10_1158_0008_5472_CAN_03_2672
crossref_primary_10_1074_jbc_M506696200
crossref_primary_10_1074_jbc_M112_421404
crossref_primary_10_1074_jbc_M116_756155
crossref_primary_10_1016_S0891_5849_99_00173_2
crossref_primary_10_1242_bio_059295
crossref_primary_10_3109_0886022X_2014_890012
crossref_primary_10_1016_j_freeradbiomed_2022_09_007
crossref_primary_10_1042_BST0331493
crossref_primary_10_1016_j_crci_2007_02_010
crossref_primary_10_1089_ars_2007_1528
crossref_primary_10_1016_j_brainresrev_2004_03_004
crossref_primary_10_1039_B205802M
crossref_primary_10_1097_00126334_200010001_00009
crossref_primary_10_1128_MCB_22_11_3565_3576_2002
crossref_primary_10_1016_S0140_6736_00_02490_9
crossref_primary_10_1080_15592294_2022_2044126
crossref_primary_10_1016_j_dci_2011_05_012
Cites_doi 10.1146/annurev.bi.65.070196.000503
10.1126/science.273.5278.1058
10.1016/0168-9525(91)90085-5
10.1038/353273a0
10.1146/annurev.nu.13.070193.000433
10.1093/intimm/5.6.657
10.1093/nar/22.22.4673
10.1006/jmbi.1993.1413
10.1016/0968-0004(90)90281-F
10.1038/nbt1088-1204
10.1146/annurev.bi.59.070190.000551
10.1093/nar/19.4.939
10.1016/S0021-9258(18)55285-6
10.1016/0968-0004(91)90180-4
10.1038/331723a0
10.1007/978-1-349-04904-2_4
10.1006/geno.1994.1330
10.1126/science.8456298
10.1111/j.1365-2958.1991.tb00722.x
10.1038/nm0595-433
10.1038/349438a0
10.1073/pnas.87.2.543
10.1089/dna.1992.11.693
10.1093/protein/2.2.127
10.1073/pnas.89.7.2975
10.1126/science.270.5235.397
10.1016/0076-6879(90)83019-6
10.1016/S0021-9258(18)41824-8
10.1074/jbc.270.37.21659
10.1016/0168-9525(96)30057-7
10.1093/nar/23.10.1832
10.1126/science.7542800
10.1093/nar/22.18.3753
10.1128/MCB.15.11.6430
10.1021/jm00043a004
10.1016/0008-8749(91)90341-8
10.1073/pnas.90.9.4181
10.1021/bi00210a001
10.1242/dev.121.10.3335
10.1073/pnas.90.2.537
ContentType Journal Article
Copyright Copyright 1996 National Academy of Sciences
Copyright National Academy of Sciences Dec 24, 1996
Copyright © 1996, The National Academy of Sciences of the USA 1996
Copyright_xml – notice: Copyright 1996 National Academy of Sciences
– notice: Copyright National Academy of Sciences Dec 24, 1996
– notice: Copyright © 1996, The National Academy of Sciences of the USA 1996
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.93.26.15086
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

CrossRef
Genetics Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 15091
ExternalDocumentID 10949217
10_1073_pnas_93_26_15086
8986768
93_26_15086
40832
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AJYGW
AS
ASUFR
DNJUQ
DWIUU
DZ
F20
GJ
KM
OHM
PQEST
X
XFK
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c525t-490a0ff8b4a1a6d687fc2f756c3fa7d20beb2a8115c436e703038fcd2a23700b3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:17 EDT 2024
Fri Oct 25 23:02:47 EDT 2024
Fri Oct 25 21:54:38 EDT 2024
Wed Nov 06 08:41:47 EST 2024
Fri Dec 06 05:38:18 EST 2024
Sat Sep 28 08:34:42 EDT 2024
Wed May 29 08:07:27 EDT 2019
Wed Nov 11 00:29:12 EST 2020
Tue Dec 10 23:05:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-490a0ff8b4a1a6d687fc2f756c3fa7d20beb2a8115c436e703038fcd2a23700b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Thressa C. Stadtman, National Institutes of Health, Bethesda, MD
To whom reprints requests should be addressed. e-mail: bazan@dnax.org.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26360
PMID 8986768
PQID 201314289
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_26360
proquest_miscellaneous_78646438
proquest_miscellaneous_15851785
pubmed_primary_8986768
pnas_primary_93_26_15086
proquest_journals_201314289
jstor_primary_40832
crossref_primary_10_1073_pnas_93_26_15086
pnas_primary_93_26_15086_fulltext
ProviderPackageCode RNA
PNE
PublicationCentury 1900
PublicationDate 1996-12-24
PublicationDateYYYYMMDD 1996-12-24
PublicationDate_xml – month: 12
  year: 1996
  text: 1996-12-24
  day: 24
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 1996
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences of the USA
Publisher_xml – sequence: 0
  name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
– name: National Academy of Sciences
– name: The National Academy of Sciences of the USA
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Sambrook J (e_1_3_2_17_2) 1989
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
Stadtman T C (e_1_3_2_30_2) 1989; 2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_1_2
  doi: 10.1146/annurev.bi.65.070196.000503
– ident: e_1_3_2_29_2
  doi: 10.1126/science.273.5278.1058
– ident: e_1_3_2_23_2
  doi: 10.1016/0168-9525(91)90085-5
– ident: e_1_3_2_6_2
  doi: 10.1038/353273a0
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev.nu.13.070193.000433
– ident: e_1_3_2_16_2
  doi: 10.1093/intimm/5.6.657
– ident: e_1_3_2_18_2
  doi: 10.1093/nar/22.22.4673
– ident: e_1_3_2_19_2
  doi: 10.1006/jmbi.1993.1413
– ident: e_1_3_2_33_2
  doi: 10.1016/0968-0004(90)90281-F
– ident: e_1_3_2_26_2
  doi: 10.1038/nbt1088-1204
– ident: e_1_3_2_11_2
  doi: 10.1146/annurev.bi.59.070190.000551
– ident: e_1_3_2_39_2
  doi: 10.1093/nar/19.4.939
– ident: e_1_3_2_2_2
  doi: 10.1016/S0021-9258(18)55285-6
– ident: e_1_3_2_5_2
  doi: 10.1016/0968-0004(91)90180-4
– ident: e_1_3_2_8_2
  doi: 10.1038/331723a0
– ident: e_1_3_2_25_2
  doi: 10.1007/978-1-349-04904-2_4
– ident: e_1_3_2_24_2
  doi: 10.1006/geno.1994.1330
– ident: e_1_3_2_40_2
  doi: 10.1126/science.8456298
– ident: e_1_3_2_4_2
  doi: 10.1111/j.1365-2958.1991.tb00722.x
– ident: e_1_3_2_41_2
  doi: 10.1038/nm0595-433
– ident: e_1_3_2_35_2
  doi: 10.1038/349438a0
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.87.2.543
– ident: e_1_3_2_36_2
  doi: 10.1089/dna.1992.11.693
– ident: e_1_3_2_34_2
  doi: 10.1093/protein/2.2.127
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.89.7.2975
– ident: e_1_3_2_32_2
  doi: 10.1126/science.270.5235.397
– ident: e_1_3_2_20_2
  doi: 10.1016/0076-6879(90)83019-6
– ident: e_1_3_2_27_2
  doi: 10.1016/S0021-9258(18)41824-8
– ident: e_1_3_2_13_2
  doi: 10.1074/jbc.270.37.21659
– ident: e_1_3_2_31_2
  doi: 10.1016/0168-9525(96)30057-7
– ident: e_1_3_2_14_2
  doi: 10.1093/nar/23.10.1832
– volume: 2
  start-page: 35
  year: 1989
  ident: e_1_3_2_30_2
  publication-title: Biofactors
  contributor:
    fullname: Stadtman T C
– ident: e_1_3_2_28_2
  doi: 10.1126/science.7542800
– ident: e_1_3_2_38_2
  doi: 10.1093/nar/22.18.3753
– ident: e_1_3_2_21_2
  doi: 10.1128/MCB.15.11.6430
– ident: e_1_3_2_42_2
  doi: 10.1021/jm00043a004
– ident: e_1_3_2_22_2
  doi: 10.1016/0008-8749(91)90341-8
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.90.9.4181
– ident: e_1_3_2_10_2
  doi: 10.1021/bi00210a001
– ident: e_1_3_2_15_2
  doi: 10.1242/dev.121.10.3335
– ident: e_1_3_2_37_2
  doi: 10.1073/pnas.90.2.537
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: e_1_3_2_17_2
  contributor:
    fullname: Sambrook J
SSID ssj0009580
Score 2.0228896
Snippet Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required...
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required...
Scientists report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA dondon at a site...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15086
SubjectTerms Amino Acid Sequence
Animals
Archaea - genetics
Archaea - metabolism
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Biochemistry
Biological Sciences
Chromosome Mapping
Chromosomes
Cloning, Molecular
Codons
Complementary DNA
COS Cells
Drosophila Proteins
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Female
Genes
Genetic loci
Genetic Markers
Haemophilus influenzae
Humans
Metabolism
Mice
Mice, Inbred BALB C
Molecular Sequence Data
Molecules
Phosphotransferases
Phylogeny
Polymerase Chain Reaction
Proteins
Selenium - metabolism
Selenocysteine - metabolism
Selenoproteins
Sequence Homology, Amino Acid
T lymphocytes
Transfection
Untranslated regions
Title Identification of a Novel selD Homolog from Eukaryotes, Bacteria, and Archaea: Is there an Autoregulatory Mechanism in Selenocysteine Metabolism?
URI https://www.jstor.org/stable/40832
http://www.pnas.org/content/93/26/15086.abstract
https://www.ncbi.nlm.nih.gov/pubmed/8986768
https://www.proquest.com/docview/201314289
https://search.proquest.com/docview/15851785
https://search.proquest.com/docview/78646438
https://pubmed.ncbi.nlm.nih.gov/PMC26360
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RSki9IFqoGgrFSByo1Oxmbcd2uCD6pYJUxIFKvUWOY6urbpzVZhepN66c-Yf8EuzEibqIXrh6bMvRzHie45lngLfGHSMUYZPY-LIeqjmJRWGKuEyY4ZliRdFyd15-YRdX9PN1eh3quJuQVmlVMR3ZWTWy05s2t3JeqXGfJzb-enmCPcnVeAM2XPDtD-gDz67oqk6w23wppuFm0hnyeG5lM8rICLORJ0FnW_BYZIJxz7J6LyZ1aYme69T1_xfu_Dt98l48On8KTwKQRB-7BW_DI213YDu4aoPeBT7pw2fwqyvGNeHvHKoNksjW3_UMNXp2im7qyu-AyFeaoLPVrVzc1Q6AHqHjjslZHiFpS-Q5aqWW79GnBnnUqF0rkp4CoXvOvl7coUr7QuJpU6Gp9ZNrWytPFe2g7O8fPyu9dCY3c-IPz-Hq_OzbyUUc3mKIVYrTZUyzRCbGiILKiWQlE9wobHjKFDGSlzgp3BFdCocvFSVM-32ECKNKLDHhSVKQXdi0tdV7gGiZYF1yIqmW1NPjpCQriSw5ZVRMlI7gsNdGPu8oN_L2qpyT3Oskz0iOWd7qMIKdVl1DR-ogJY5gr-3YN64NePOQKDch3SaC_V7pefDoJseemMid1bIIXg9S54r-fkVaXa8aN4uDr1ykD_fggrmPJCKC3c6EhnUES4wgXbOtQe5ZwNclzjlaNvDWGV7857h92GrT0Cc4xvQlbC4XK_3KoaxlceBjXHrQetcfLYkrNw
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH6CIcQuiA2mhQEzEgcmLW1qO7bDBcHY1ME6cdik3SLHsbWKxqmaFmk3rpz5h_wS7MStVsQuXP1sy9F7z_5e_N5ngDfGhRGKsEFsfFkP1ZzEojBFXCbM8Eyxomi5O0fnbHhJP1-lV6GOuwlplVYV456dVD07vm5zK6eV6i_zxPpfR0fYk1z178ODlPBssAzRV0y7oqs7wW77pZiGu0lnyv2plU0vIz3Mep4GnW3CQ5EJxj3P6q1TqUtM9Gynrv-_kOffCZS3TqSTJ_A4QEn0oVvyFtzTdhu2grM26G1glD54Cr-6clwT_s-h2iCJbP1dT1CjJ5_QdV35PRD5WhN0vPgmZze1g6CH6GPH5SwPkbQl8iy1Ust36LRBHjdq14qkJ0HoHrSvZzeo0r6UeNxUaGz95NrWypNFOzD7-8fPSs-d0U2c-P0zuDw5vjgaxuE1hlilOJ3HNEtkYowoqBxIVjLBjcKGp0wRI3mJk8IF6VI4hKkoYdrvJEQYVWKJCU-SguzAhq2t3gVEywTrkhNJtaSeICclWUlkySmjYqB0BAdLbeTTjnQjby_LOcm9TvKM5JjlrQ4j2G7VtepIHajEEey2HZeNawNe3yXKTUi4iWBvqfQ8-HSTY09N5KK1LIL9ldQ5o79hkVbXi8bN4gAsF-ndPbhg7iOJiGCnM6HVOoIlRpCu2dZK7nnA1yXOPVo-8NYdnv_nuH14NLwYneVnp-df9mCzTUof4BjTF7Axny30S4e55sWr1sf-APTzLaY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH6CIdAuExtMCwNmJA5MWtrUdmyHC4Jt1QZs2oFJu0WOY2sVjVM17aTduHLmH_JLsBO3WhG7cM2zLUfvPft79nufAd4aF0Yowgax8WU9VHMSi8IUcZkwwzPFiqLl7jw7ZyeX9PNVehWOLpqQVmlVMerZcdWzo-s2t3JSqf4iT6x_cXaIPclVf1Ka_kN4lBJnYoswfcm2K7raE-yWYIppuJ905tyfWNn0MtLDrOep0Nk6PBaZYNxzrd7ZmbrkRM946tr_C33-nUR5Z1caPoWNACfRx27am_BA2y3YDA7boHeBVXr_GfzqSnJNOKNDtUES2fpGj1Gjx0fouq78Ooh8vQk6nn-X09vawdAD9Knjc5YHSNoSeaZaqeV7dNogjx21-4qkJ0LoHrWvp7eo0r6ceNRUaGT94NrWyhNGO0D7-8fPSs-c4Y2d-MNzuBwefzs8icOLDLFKcTqLaZbIxBhRUDmQrGSCG4UNT5kiRvISJ4UL1KVwKFNRwrRfTYgwqsQSE54kBdmGNVtbvQOIlgnWJSeSakk9SU5KspLIklNGxUDpCPYX2sgnHfFG3l6Yc5J7neQZyTHLWx1GsNWqa9mQOmCJI9hpGy4-rnR4c58oNyHpJoLdhdLz4NdNjj09kYvYsgj2llLnkP6WRVpdzxs3igOxXKT3t-CCuZ8kIoLtzoSW8wiWGEG6YltLuecCX5U4F2k5wVuXePGf_fbgycXRMP96ev5lF9bbvPQBjjF9CWuz6Vy_crBrVrxuXewPLuUuuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+novel+selD+homolog+from+Eukaryotes%2C+bacteria%2C+and+Archaea%3A+Is+there+an+autoregulatory+mechanism+in+selenocysteine+metabolism%3F&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Guimaraes%2C+M+Jorge&rft.au=Peterson%2C+David&rft.au=Vicari%2C+Alain&rft.au=Cocks%2C+Benjamin+G&rft.date=1996-12-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=93&rft.issue=26&rft.spage=15086&rft_id=info:doi/10.1073%2Fpnas.93.26.15086&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=10949217
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F93%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F93%2F26.cover.gif