Identification of a Novel selD Homolog from Eukaryotes, Bacteria, and Archaea: Is there an Autoregulatory Mechanism in Selenocysteine Metabolism?
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designa...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 93; no. 26; pp. 15086 - 15091 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences of the United States of America
24.12.1996
National Acad Sciences National Academy of Sciences The National Academy of Sciences of the USA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. |
---|---|
AbstractList | Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. Scientists report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA dondon at a site corresponding to the enzyme's putative active site. Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2 , which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii , which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75 Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2 , which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii , which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75 Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of super(75)Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme's putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life. |
Author | Guimaraes, M. Jorge Gilbert, Debra J. Vicari, Alain Jenkins, Nancy A. Ferrick, David A. Kastelein, Robert A. Peterson, David Copeland, Neal G. Zlotnik, Albert Cocks, Benjamin G. Bazan, J. Fernando |
AuthorAffiliation | Departments of Molecular Biology and † Immunology, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304; ‡ Advanced Bioscience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, MD 21702; and § Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616 |
AuthorAffiliation_xml | – name: Departments of Molecular Biology and † Immunology, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304; ‡ Advanced Bioscience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, MD 21702; and § Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616 |
Author_xml | – sequence: 1 givenname: M. Jorge surname: Guimaraes fullname: Guimaraes, M. Jorge – sequence: 2 givenname: David surname: Peterson fullname: Peterson, David – sequence: 3 givenname: Alain surname: Vicari fullname: Vicari, Alain – sequence: 4 givenname: Benjamin G. surname: Cocks fullname: Cocks, Benjamin G. – sequence: 5 givenname: Neal G. surname: Copeland fullname: Copeland, Neal G. – sequence: 6 givenname: Debra J. surname: Gilbert fullname: Gilbert, Debra J. – sequence: 7 givenname: Nancy A. surname: Jenkins fullname: Jenkins, Nancy A. – sequence: 8 givenname: David A. surname: Ferrick fullname: Ferrick, David A. – sequence: 9 givenname: Robert A. surname: Kastelein fullname: Kastelein, Robert A. – sequence: 10 givenname: J. Fernando surname: Bazan fullname: Bazan, J. Fernando – sequence: 11 givenname: Albert surname: Zlotnik fullname: Zlotnik, Albert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8986768$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9vEzEQxVeoqKSFO0JCWBwQhyb4z67Xi5BQKIVGKnAAzpbXGSebeu1geyvyMfjGOCRElAOcRvL7vdHM-J0UR847KIqHBE8IrtmLtVNx0rAJ5RNSYcHvFCOCGzLmZYOPihHGtB6Lkpb3ipMYVxjjphL4uDgWjeA1F6Pix2wOLnWm0yp13iFvkEIf_Q1YFMG-RZe-99YvkAm-RxfDtQobnyCeoTdKJwidOkPKzdE06KUC9RLNIkpLCJBf0XRIPsBisCrXDfoAmXFd7FHn0Gew4LzexASdg6wl1Xqbxdf3i7tG2QgP9vW0-Pru4sv55fjq0_vZ-fRqrCtapXFeUGFjRFsqovici9poauqKa2ZUPae4hZYqQUilS8ahxgwzYfScKspqjFt2Wrza9V0PbQ9znc8QlJXr0PV5SelVJ28rrlvKhb-RlDOOs_3Z3h78twFikn0XNVirHPghylrwkpdM_BcklahILaoMPv0LXPkhuHwDSTFhpKSiyRDeQTr4GAOYw8AEy20k5DYSsmF5TPkrEtny-M9FD4Z9BrL-ZK9vnb_V2x2e_5uQZrA2wfeU0Uc7dBXzpx_YEgtG2U-4StgI |
CitedBy_id | crossref_primary_10_1097_00042560_199804150_00003 crossref_primary_10_1074_jbc_275_9_6195 crossref_primary_10_1007_BF02255899 crossref_primary_10_1007_s12011_011_8995_z crossref_primary_10_1007_s00726_018_2595_6 crossref_primary_10_1515_BC_2000_107 crossref_primary_10_1093_mtomcs_mfab024 crossref_primary_10_1210_er_2001_0034 crossref_primary_10_1073_pnas_96_1_44 crossref_primary_10_1126_science_1083516 crossref_primary_10_1042_BJ20040328 crossref_primary_10_1146_annurev_nutr_24_012003_132241 crossref_primary_10_1007_s12011_007_8003_9 crossref_primary_10_1074_jbc_M100422200 crossref_primary_10_3390_molecules26237120 crossref_primary_10_1007_s11033_007_9120_4 crossref_primary_10_1007_s12011_012_9346_4 crossref_primary_10_1073_pnas_94_2_418 crossref_primary_10_1038_sj_emboj_7600642 crossref_primary_10_1006_prep_2000_1262 crossref_primary_10_1093_molbev_msi007 crossref_primary_10_1590_S1415_47572010000400014 crossref_primary_10_1007_s10695_015_0040_2 crossref_primary_10_3390_ijms25010223 crossref_primary_10_1016_j_jtemb_2012_03_003 crossref_primary_10_1097_00001574_200103000_00011 crossref_primary_10_1177_0884533608314532 crossref_primary_10_1002__SICI_1521_1878_199903_21_3_231__AID_BIES7_3_0_CO_2_D crossref_primary_10_1074_jbc_273_43_28533 crossref_primary_10_1186_1471_2164_12_426 crossref_primary_10_1046_j_1365_2443_2000_00392_x crossref_primary_10_1002_biof_5520140105 crossref_primary_10_1080_10409238_2020_1717430 crossref_primary_10_1016_j_freeradbiomed_2018_03_037 crossref_primary_10_1007_s00018_009_0032_4 crossref_primary_10_1006_jmbi_1997_1371 crossref_primary_10_1080_10426509808545963 crossref_primary_10_1073_pnas_95_5_2180 crossref_primary_10_1016_S0014_5793_99_00221_5 crossref_primary_10_1134_S0026893313040134 crossref_primary_10_1002_iub_38 crossref_primary_10_1016_S0300_9084_99_80105_9 crossref_primary_10_1111_j_1365_2958_2011_07850_x crossref_primary_10_1007_s11434_006_2206_x crossref_primary_10_1002_biof_5520070402 crossref_primary_10_1016_j_bbagen_2009_03_022 crossref_primary_10_1146_annurev_nutr_23_011702_073318 crossref_primary_10_1093_embo_reports_kvd087 crossref_primary_10_1016_j_abb_2022_109426 crossref_primary_10_51350_zdravkg_2023_59_80_001 crossref_primary_10_1016_j_bbrc_2021_12_091 crossref_primary_10_1079_PNS2002153 crossref_primary_10_1016_j_tcm_2004_08_003 crossref_primary_10_1515_bmc_2013_0007 crossref_primary_10_1074_jbc_M611403200 crossref_primary_10_1038_nchembio847 crossref_primary_10_1074_jbc_274_48_33888 crossref_primary_10_1093_ajcn_87_1_181 crossref_primary_10_1074_jbc_274_53_38147 crossref_primary_10_3945_an_110_000265 crossref_primary_10_1016_j_bbagen_2018_04_008 crossref_primary_10_1515_REVNEURO_2004_15_1_19 crossref_primary_10_1016_S0002_8223_99_00198_4 crossref_primary_10_1134_S0006297922140139 crossref_primary_10_1016_j_jtemb_2016_04_010 crossref_primary_10_1046_j_1432_1033_2002_03298_x crossref_primary_10_1242_jcs_112_17_2875 crossref_primary_10_1002_biof_5520100222 crossref_primary_10_1002_biof_5520100224 crossref_primary_10_4103_0972_5229_35086 crossref_primary_10_1111_j_1527_5299_2007_06410_x crossref_primary_10_1016_j_aquatox_2012_12_020 crossref_primary_10_1016_j_biochi_2006_04_015 crossref_primary_10_1016_j_tet_2017_09_004 crossref_primary_10_1007_s00394_008_2005_z crossref_primary_10_1016_j_tibs_2013_12_007 crossref_primary_10_1016_j_jmb_2009_05_032 crossref_primary_10_1111_j_1747_0080_2008_00260_x crossref_primary_10_1128_ecosalplus_3_6_1_1_2 crossref_primary_10_1074_jbc_M709342200 crossref_primary_10_1146_annurev_nutr_21_1_453 crossref_primary_10_1089_thy_2005_15_769 crossref_primary_10_1080_10425170310001623653 crossref_primary_10_1016_S0300_9084_99_80054_6 crossref_primary_10_1515_BC_2003_002 crossref_primary_10_3390_ijms19092665 crossref_primary_10_1016_j_bbagen_2018_03_029 crossref_primary_10_1016_j_bbagen_2009_03_003 crossref_primary_10_1021_acs_biochem_6b01116 crossref_primary_10_1242_jcs_00783 crossref_primary_10_1016_j_freeradbiomed_2018_04_577 crossref_primary_10_1128_AEM_66_11_4849_4853_2000 crossref_primary_10_1093_molbev_msv043 crossref_primary_10_1089_ars_2010_3586 crossref_primary_10_1128_MCB_23_23_8495_8504_2003 crossref_primary_10_3390_nu7053536 crossref_primary_10_1006_dbio_2001_0389 crossref_primary_10_1042_BCJ20160393 crossref_primary_10_1042_BJ20070165 crossref_primary_10_1261_rna_079658_123 crossref_primary_10_1002_biof_5520090105 crossref_primary_10_1074_jbc_M109_026492 crossref_primary_10_1039_D0FO02236E crossref_primary_10_1016_j_bbagen_2018_03_030 crossref_primary_10_1016_S1016_8478_23_13563_1 crossref_primary_10_1016_j_bbagen_2018_05_020 crossref_primary_10_1074_jbc_273_15_8910 crossref_primary_10_1016_j_bbagen_2018_05_023 crossref_primary_10_1016_j_bbrc_2010_05_055 crossref_primary_10_1111_j_1439_0434_2010_01780_x crossref_primary_10_1097_00042560_200010001_00009 crossref_primary_10_1152_physrev_00039_2013 crossref_primary_10_1006_bbrc_1998_8393 crossref_primary_10_1089_ars_2009_2878 crossref_primary_10_1073_pnas_0406313101 crossref_primary_10_1002_jbt_23195 crossref_primary_10_1016_j_pnpbp_2022_110694 crossref_primary_10_1002_0471140864_ps0308s20 crossref_primary_10_1210_er_2008_0019 crossref_primary_10_1096_fasebj_12_13_1359 crossref_primary_10_1515_labm_1998_22_10_539 crossref_primary_10_1002_biof_5520140119 crossref_primary_10_1248_bpb_24_754 crossref_primary_10_1016_j_tox_2004_03_026 crossref_primary_10_3390_ijms222111647 crossref_primary_10_1111_j_1365_2958_2009_06970_x crossref_primary_10_1016_j_bbagen_2015_07_009 crossref_primary_10_1016_S1567_133X_03_00054_1 crossref_primary_10_1006_bbrc_1998_9495 crossref_primary_10_1515_CCLM_2003_156 crossref_primary_10_1007_s12011_014_0139_9 crossref_primary_10_1039_C5MT00134J crossref_primary_10_1089_ars_2012_5081 crossref_primary_10_1158_0008_5472_CAN_03_2672 crossref_primary_10_1074_jbc_M506696200 crossref_primary_10_1074_jbc_M112_421404 crossref_primary_10_1074_jbc_M116_756155 crossref_primary_10_1016_S0891_5849_99_00173_2 crossref_primary_10_1242_bio_059295 crossref_primary_10_3109_0886022X_2014_890012 crossref_primary_10_1016_j_freeradbiomed_2022_09_007 crossref_primary_10_1042_BST0331493 crossref_primary_10_1016_j_crci_2007_02_010 crossref_primary_10_1089_ars_2007_1528 crossref_primary_10_1016_j_brainresrev_2004_03_004 crossref_primary_10_1039_B205802M crossref_primary_10_1097_00126334_200010001_00009 crossref_primary_10_1128_MCB_22_11_3565_3576_2002 crossref_primary_10_1016_S0140_6736_00_02490_9 crossref_primary_10_1080_15592294_2022_2044126 crossref_primary_10_1016_j_dci_2011_05_012 |
Cites_doi | 10.1146/annurev.bi.65.070196.000503 10.1126/science.273.5278.1058 10.1016/0168-9525(91)90085-5 10.1038/353273a0 10.1146/annurev.nu.13.070193.000433 10.1093/intimm/5.6.657 10.1093/nar/22.22.4673 10.1006/jmbi.1993.1413 10.1016/0968-0004(90)90281-F 10.1038/nbt1088-1204 10.1146/annurev.bi.59.070190.000551 10.1093/nar/19.4.939 10.1016/S0021-9258(18)55285-6 10.1016/0968-0004(91)90180-4 10.1038/331723a0 10.1007/978-1-349-04904-2_4 10.1006/geno.1994.1330 10.1126/science.8456298 10.1111/j.1365-2958.1991.tb00722.x 10.1038/nm0595-433 10.1038/349438a0 10.1073/pnas.87.2.543 10.1089/dna.1992.11.693 10.1093/protein/2.2.127 10.1073/pnas.89.7.2975 10.1126/science.270.5235.397 10.1016/0076-6879(90)83019-6 10.1016/S0021-9258(18)41824-8 10.1074/jbc.270.37.21659 10.1016/0168-9525(96)30057-7 10.1093/nar/23.10.1832 10.1126/science.7542800 10.1093/nar/22.18.3753 10.1128/MCB.15.11.6430 10.1021/jm00043a004 10.1016/0008-8749(91)90341-8 10.1073/pnas.90.9.4181 10.1021/bi00210a001 10.1242/dev.121.10.3335 10.1073/pnas.90.2.537 |
ContentType | Journal Article |
Copyright | Copyright 1996 National Academy of Sciences Copyright National Academy of Sciences Dec 24, 1996 Copyright © 1996, The National Academy of Sciences of the USA 1996 |
Copyright_xml | – notice: Copyright 1996 National Academy of Sciences – notice: Copyright National Academy of Sciences Dec 24, 1996 – notice: Copyright © 1996, The National Academy of Sciences of the USA 1996 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.93.26.15086 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 15091 |
ExternalDocumentID | 10949217 10_1073_pnas_93_26_15086 8986768 93_26_15086 40832 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AJYGW AS ASUFR DNJUQ DWIUU DZ F20 GJ KM OHM PQEST X XFK XHC ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c525t-490a0ff8b4a1a6d687fc2f756c3fa7d20beb2a8115c436e703038fcd2a23700b3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:25:17 EDT 2024 Fri Oct 25 23:02:47 EDT 2024 Fri Oct 25 21:54:38 EDT 2024 Wed Nov 06 08:41:47 EST 2024 Fri Dec 06 05:38:18 EST 2024 Sat Sep 28 08:34:42 EDT 2024 Wed May 29 08:07:27 EDT 2019 Wed Nov 11 00:29:12 EST 2020 Tue Dec 10 23:05:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-490a0ff8b4a1a6d687fc2f756c3fa7d20beb2a8115c436e703038fcd2a23700b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Thressa C. Stadtman, National Institutes of Health, Bethesda, MD To whom reprints requests should be addressed. e-mail: bazan@dnax.org. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26360 |
PMID | 8986768 |
PQID | 201314289 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_26360 proquest_miscellaneous_78646438 proquest_miscellaneous_15851785 pubmed_primary_8986768 pnas_primary_93_26_15086 proquest_journals_201314289 jstor_primary_40832 crossref_primary_10_1073_pnas_93_26_15086 pnas_primary_93_26_15086_fulltext |
ProviderPackageCode | RNA PNE |
PublicationCentury | 1900 |
PublicationDate | 1996-12-24 |
PublicationDateYYYYMMDD | 1996-12-24 |
PublicationDate_xml | – month: 12 year: 1996 text: 1996-12-24 day: 24 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 1996 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences National Academy of Sciences The National Academy of Sciences of the USA |
Publisher_xml | – sequence: 0 name: National Academy of Sciences of the United States of America – name: National Acad Sciences – name: National Academy of Sciences – name: The National Academy of Sciences of the USA |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Sambrook J (e_1_3_2_17_2) 1989 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 Stadtman T C (e_1_3_2_30_2) 1989; 2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_1_2 doi: 10.1146/annurev.bi.65.070196.000503 – ident: e_1_3_2_29_2 doi: 10.1126/science.273.5278.1058 – ident: e_1_3_2_23_2 doi: 10.1016/0168-9525(91)90085-5 – ident: e_1_3_2_6_2 doi: 10.1038/353273a0 – ident: e_1_3_2_3_2 doi: 10.1146/annurev.nu.13.070193.000433 – ident: e_1_3_2_16_2 doi: 10.1093/intimm/5.6.657 – ident: e_1_3_2_18_2 doi: 10.1093/nar/22.22.4673 – ident: e_1_3_2_19_2 doi: 10.1006/jmbi.1993.1413 – ident: e_1_3_2_33_2 doi: 10.1016/0968-0004(90)90281-F – ident: e_1_3_2_26_2 doi: 10.1038/nbt1088-1204 – ident: e_1_3_2_11_2 doi: 10.1146/annurev.bi.59.070190.000551 – ident: e_1_3_2_39_2 doi: 10.1093/nar/19.4.939 – ident: e_1_3_2_2_2 doi: 10.1016/S0021-9258(18)55285-6 – ident: e_1_3_2_5_2 doi: 10.1016/0968-0004(91)90180-4 – ident: e_1_3_2_8_2 doi: 10.1038/331723a0 – ident: e_1_3_2_25_2 doi: 10.1007/978-1-349-04904-2_4 – ident: e_1_3_2_24_2 doi: 10.1006/geno.1994.1330 – ident: e_1_3_2_40_2 doi: 10.1126/science.8456298 – ident: e_1_3_2_4_2 doi: 10.1111/j.1365-2958.1991.tb00722.x – ident: e_1_3_2_41_2 doi: 10.1038/nm0595-433 – ident: e_1_3_2_35_2 doi: 10.1038/349438a0 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.87.2.543 – ident: e_1_3_2_36_2 doi: 10.1089/dna.1992.11.693 – ident: e_1_3_2_34_2 doi: 10.1093/protein/2.2.127 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.89.7.2975 – ident: e_1_3_2_32_2 doi: 10.1126/science.270.5235.397 – ident: e_1_3_2_20_2 doi: 10.1016/0076-6879(90)83019-6 – ident: e_1_3_2_27_2 doi: 10.1016/S0021-9258(18)41824-8 – ident: e_1_3_2_13_2 doi: 10.1074/jbc.270.37.21659 – ident: e_1_3_2_31_2 doi: 10.1016/0168-9525(96)30057-7 – ident: e_1_3_2_14_2 doi: 10.1093/nar/23.10.1832 – volume: 2 start-page: 35 year: 1989 ident: e_1_3_2_30_2 publication-title: Biofactors contributor: fullname: Stadtman T C – ident: e_1_3_2_28_2 doi: 10.1126/science.7542800 – ident: e_1_3_2_38_2 doi: 10.1093/nar/22.18.3753 – ident: e_1_3_2_21_2 doi: 10.1128/MCB.15.11.6430 – ident: e_1_3_2_42_2 doi: 10.1021/jm00043a004 – ident: e_1_3_2_22_2 doi: 10.1016/0008-8749(91)90341-8 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.90.9.4181 – ident: e_1_3_2_10_2 doi: 10.1021/bi00210a001 – ident: e_1_3_2_15_2 doi: 10.1242/dev.121.10.3335 – ident: e_1_3_2_37_2 doi: 10.1073/pnas.90.2.537 – volume-title: Molecular Cloning: A Laboratory Manual year: 1989 ident: e_1_3_2_17_2 contributor: fullname: Sambrook J |
SSID | ssj0009580 |
Score | 2.0228896 |
Snippet | Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required... Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required... Scientists report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA dondon at a site... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15086 |
SubjectTerms | Amino Acid Sequence Animals Archaea - genetics Archaea - metabolism Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Base Sequence Biochemistry Biological Sciences Chromosome Mapping Chromosomes Cloning, Molecular Codons Complementary DNA COS Cells Drosophila Proteins Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Female Genes Genetic loci Genetic Markers Haemophilus influenzae Humans Metabolism Mice Mice, Inbred BALB C Molecular Sequence Data Molecules Phosphotransferases Phylogeny Polymerase Chain Reaction Proteins Selenium - metabolism Selenocysteine - metabolism Selenoproteins Sequence Homology, Amino Acid T lymphocytes Transfection Untranslated regions |
Title | Identification of a Novel selD Homolog from Eukaryotes, Bacteria, and Archaea: Is there an Autoregulatory Mechanism in Selenocysteine Metabolism? |
URI | https://www.jstor.org/stable/40832 http://www.pnas.org/content/93/26/15086.abstract https://www.ncbi.nlm.nih.gov/pubmed/8986768 https://www.proquest.com/docview/201314289 https://search.proquest.com/docview/15851785 https://search.proquest.com/docview/78646438 https://pubmed.ncbi.nlm.nih.gov/PMC26360 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RSki9IFqoGgrFSByo1Oxmbcd2uCD6pYJUxIFKvUWOY6urbpzVZhepN66c-Yf8EuzEibqIXrh6bMvRzHie45lngLfGHSMUYZPY-LIeqjmJRWGKuEyY4ZliRdFyd15-YRdX9PN1eh3quJuQVmlVMR3ZWTWy05s2t3JeqXGfJzb-enmCPcnVeAM2XPDtD-gDz67oqk6w23wppuFm0hnyeG5lM8rICLORJ0FnW_BYZIJxz7J6LyZ1aYme69T1_xfu_Dt98l48On8KTwKQRB-7BW_DI213YDu4aoPeBT7pw2fwqyvGNeHvHKoNksjW3_UMNXp2im7qyu-AyFeaoLPVrVzc1Q6AHqHjjslZHiFpS-Q5aqWW79GnBnnUqF0rkp4CoXvOvl7coUr7QuJpU6Gp9ZNrWytPFe2g7O8fPyu9dCY3c-IPz-Hq_OzbyUUc3mKIVYrTZUyzRCbGiILKiWQlE9wobHjKFDGSlzgp3BFdCocvFSVM-32ECKNKLDHhSVKQXdi0tdV7gGiZYF1yIqmW1NPjpCQriSw5ZVRMlI7gsNdGPu8oN_L2qpyT3Oskz0iOWd7qMIKdVl1DR-ogJY5gr-3YN64NePOQKDch3SaC_V7pefDoJseemMid1bIIXg9S54r-fkVaXa8aN4uDr1ykD_fggrmPJCKC3c6EhnUES4wgXbOtQe5ZwNclzjlaNvDWGV7857h92GrT0Cc4xvQlbC4XK_3KoaxlceBjXHrQetcfLYkrNw |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH6CIcQuiA2mhQEzEgcmLW1qO7bDBcHY1ME6cdik3SLHsbWKxqmaFmk3rpz5h_wS7MStVsQuXP1sy9F7z_5e_N5ngDfGhRGKsEFsfFkP1ZzEojBFXCbM8Eyxomi5O0fnbHhJP1-lV6GOuwlplVYV456dVD07vm5zK6eV6i_zxPpfR0fYk1z178ODlPBssAzRV0y7oqs7wW77pZiGu0lnyv2plU0vIz3Mep4GnW3CQ5EJxj3P6q1TqUtM9Gynrv-_kOffCZS3TqSTJ_A4QEn0oVvyFtzTdhu2grM26G1glD54Cr-6clwT_s-h2iCJbP1dT1CjJ5_QdV35PRD5WhN0vPgmZze1g6CH6GPH5SwPkbQl8iy1Ust36LRBHjdq14qkJ0HoHrSvZzeo0r6UeNxUaGz95NrWypNFOzD7-8fPSs-d0U2c-P0zuDw5vjgaxuE1hlilOJ3HNEtkYowoqBxIVjLBjcKGp0wRI3mJk8IF6VI4hKkoYdrvJEQYVWKJCU-SguzAhq2t3gVEywTrkhNJtaSeICclWUlkySmjYqB0BAdLbeTTjnQjby_LOcm9TvKM5JjlrQ4j2G7VtepIHajEEey2HZeNawNe3yXKTUi4iWBvqfQ8-HSTY09N5KK1LIL9ldQ5o79hkVbXi8bN4gAsF-ndPbhg7iOJiGCnM6HVOoIlRpCu2dZK7nnA1yXOPVo-8NYdnv_nuH14NLwYneVnp-df9mCzTUof4BjTF7Axny30S4e55sWr1sf-APTzLaY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH6CIdAuExtMCwNmJA5MWtrUdmyHC4Jt1QZs2oFJu0WOY2sVjVM17aTduHLmH_JLsBO3WhG7cM2zLUfvPft79nufAd4aF0Yowgax8WU9VHMSi8IUcZkwwzPFiqLl7jw7ZyeX9PNVehWOLpqQVmlVMerZcdWzo-s2t3JSqf4iT6x_cXaIPclVf1Ka_kN4lBJnYoswfcm2K7raE-yWYIppuJ905tyfWNn0MtLDrOep0Nk6PBaZYNxzrd7ZmbrkRM946tr_C33-nUR5Z1caPoWNACfRx27am_BA2y3YDA7boHeBVXr_GfzqSnJNOKNDtUES2fpGj1Gjx0fouq78Ooh8vQk6nn-X09vawdAD9Knjc5YHSNoSeaZaqeV7dNogjx21-4qkJ0LoHrWvp7eo0r6ceNRUaGT94NrWyhNGO0D7-8fPSs-c4Y2d-MNzuBwefzs8icOLDLFKcTqLaZbIxBhRUDmQrGSCG4UNT5kiRvISJ4UL1KVwKFNRwrRfTYgwqsQSE54kBdmGNVtbvQOIlgnWJSeSakk9SU5KspLIklNGxUDpCPYX2sgnHfFG3l6Yc5J7neQZyTHLWx1GsNWqa9mQOmCJI9hpGy4-rnR4c58oNyHpJoLdhdLz4NdNjj09kYvYsgj2llLnkP6WRVpdzxs3igOxXKT3t-CCuZ8kIoLtzoSW8wiWGEG6YltLuecCX5U4F2k5wVuXePGf_fbgycXRMP96ev5lF9bbvPQBjjF9CWuz6Vy_crBrVrxuXewPLuUuuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+novel+selD+homolog+from+Eukaryotes%2C+bacteria%2C+and+Archaea%3A+Is+there+an+autoregulatory+mechanism+in+selenocysteine+metabolism%3F&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Guimaraes%2C+M+Jorge&rft.au=Peterson%2C+David&rft.au=Vicari%2C+Alain&rft.au=Cocks%2C+Benjamin+G&rft.date=1996-12-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=93&rft.issue=26&rft.spage=15086&rft_id=info:doi/10.1073%2Fpnas.93.26.15086&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=10949217 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F93%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F93%2F26.cover.gif |