Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product

The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 10; p. 833
Main Authors Ludwig, Yvonne, Slamet-Loedin, Inez H.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 16.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.
AbstractList The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.
The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.
Author Ludwig, Yvonne
Slamet-Loedin, Inez H.
AuthorAffiliation Trait and Genome Engineering Cluster, Strategic Innovation Platform, International Rice Research Institute , Los Baños , Philippines
AuthorAffiliation_xml – name: Trait and Genome Engineering Cluster, Strategic Innovation Platform, International Rice Research Institute , Los Baños , Philippines
Author_xml – sequence: 1
  givenname: Yvonne
  surname: Ludwig
  fullname: Ludwig, Yvonne
– sequence: 2
  givenname: Inez H.
  surname: Slamet-Loedin
  fullname: Slamet-Loedin, Inez H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31379889$$D View this record in MEDLINE/PubMed
BookMark eNp1kstrVDEUxoNUbK1du5Ms3cw0r5uHC0FLOw4UFB_oLmSSczspd5IxyQj-994700ormE3CyXd-H8n5nqOjlBMg9JKSOefanPfboc4ZoWZOiOb8CTqhUoqZkOzH0YPzMTqr9ZaMqyPEGPUMHXPKldHanKAvC0jQosfvY-5zabGP3rWYE24ZX6YS_Rp_jh6wSwF_X4NreFFcTHhZcnqDr0re4AlRJ_2nksPOtxfoae-GCmd3-yn6dnX59eLD7PrjYnnx7nrmO9a1mVBSBemEEZSGjnnVE6c467gILBghjAenPQhKaK-pCh0ABaNYcFJLEnp-ipYHbsju1m5L3Ljy22YX7b6Qy41144v8AFYyI4IyjGvvhIDedWG1Wmk1FlnwnIystwfWdrfaQPCQWnHDI-jjmxTX9ib_suMvSyknwOs7QMk_d1Cb3cTqYRhcgryrljGpO8WEoqP01UOvvyb3UxkF3UHgS661QG99bPupjNZxsJTYKQB2CoCdAmD3ARj7zv_pu0f_r-MP9-ay_g
CitedBy_id crossref_primary_10_1093_jxb_erac014
crossref_primary_10_3390_nu13031039
crossref_primary_10_1071_CP21436
crossref_primary_10_3390_foods12142776
crossref_primary_10_1021_acsomega_2c02494
crossref_primary_10_3390_soilsystems4030057
crossref_primary_10_3389_fnut_2021_721728
crossref_primary_10_3390_ijms21239280
crossref_primary_10_1016_j_cpb_2024_100328
crossref_primary_10_3389_fsufs_2020_591722
crossref_primary_10_3389_fpls_2022_840614
crossref_primary_10_3390_nu13020378
crossref_primary_10_1016_j_jgeb_2024_100445
crossref_primary_10_1016_j_heliyon_2023_e20208
crossref_primary_10_1186_s12870_024_05161_x
crossref_primary_10_1186_s12870_021_02996_6
crossref_primary_10_3390_agronomy10040504
crossref_primary_10_3389_fgeed_2023_1308228
crossref_primary_10_1038_s41598_021_04388_0
crossref_primary_10_3389_fgene_2020_00776
crossref_primary_10_3389_fnut_2023_1310020
crossref_primary_10_1007_s12011_021_03018_0
crossref_primary_10_1016_j_jia_2024_11_029
crossref_primary_10_1080_10408398_2021_1925629
crossref_primary_10_3390_plants11151979
crossref_primary_10_1016_j_lwt_2020_109459
crossref_primary_10_3390_su14063301
crossref_primary_10_1007_s42976_022_00288_9
crossref_primary_10_1038_s41437_020_0326_8
crossref_primary_10_1016_j_foohum_2024_100253
crossref_primary_10_1080_00103624_2023_2254330
crossref_primary_10_5897_JPBCS2022_0997
crossref_primary_10_1007_s00122_020_03709_7
crossref_primary_10_1071_CP21771
crossref_primary_10_1007_s11032_019_1077_1
crossref_primary_10_1016_j_cpb_2023_100309
crossref_primary_10_3389_fgene_2020_00763
crossref_primary_10_3389_fpls_2023_1138408
crossref_primary_10_1007_s00122_019_03530_x
crossref_primary_10_3390_ijms21082827
crossref_primary_10_1016_j_fufo_2024_100425
crossref_primary_10_1021_acsagscitech_3c00140
crossref_primary_10_1093_bbb_zbab180
crossref_primary_10_1016_j_plaphy_2024_108457
crossref_primary_10_1016_j_rhisph_2020_100218
crossref_primary_10_1038_s41598_022_26854_z
crossref_primary_10_1016_j_rsci_2024_04_008
crossref_primary_10_3389_fpls_2023_1169858
crossref_primary_10_1093_jxb_eraa446
crossref_primary_10_3389_fnut_2022_826131
crossref_primary_10_3390_plants13131816
crossref_primary_10_1016_j_jenvman_2022_115289
crossref_primary_10_3390_agronomy11020241
crossref_primary_10_1093_advances_nmab104
crossref_primary_10_3389_fpls_2023_1157507
crossref_primary_10_1007_s41207_020_00240_5
crossref_primary_10_1016_j_jplph_2023_154059
crossref_primary_10_1111_ppl_13624
crossref_primary_10_1016_j_fcr_2022_108467
crossref_primary_10_3389_fgene_2021_635006
crossref_primary_10_3389_fpls_2021_647341
crossref_primary_10_1007_s00299_021_02790_6
crossref_primary_10_1016_j_crbiot_2022_09_005
crossref_primary_10_2139_ssrn_4004804
crossref_primary_10_9787_KJBS_2023_55_4_325
crossref_primary_10_1016_j_sjbs_2022_103456
Cites_doi 10.1371/journal.pone.0010190
10.1093/jxb/eri131
10.1177/156482650002100407
10.1146/annurev-arplant-042811-105522
10.1016/j.gfs.2017.01.009
10.1111/ejss.12437
10.1016/s0005-2736(00)00138-3
10.1111/j.1365-313X.2010.04158.x
10.1021/es010549d
10.3389/fpls.2018.00937
10.111/pbi.12943
10.1038/srep00543
10.12691/bb-3-1-3
10.1016/S0168-9452(02)00421-1
10.1093/aob/mcn207
10.3389/fpls.2018.01190
10.1104/pp.109.135418
10.1007/s11103-017-0656-y
10.1007/s11103-011-9752-6
10.1136/gut.35.9.1233
10.1111/j.1365-313x.2004.02146.x
10.1111/pbi.13074
10.111/j.1467-7652.2009.00430.x
10.1073/pnas.93.11.5624
10.1038/7029
10.1007/s12284-009-9031-9031
10.1023/A:1026534009483
10.3389/fpls.2015.00121
10.1111/j.1365-313x.2005.02624.x
10.1104/pp.121.3.947
10.1093/jxb/erx065
10.1111/j.1365-313x.2006.02853.x
10.2135/cropsci2005.0329
10.3390/ijms160819111
10.1111/j.1365-3040.2009.01935.x
10.1371/journal.pone.0024476
10.3390/ijms19113537
10.3389/fpls.2013.00158
10.1016/j.fcr.2013.05.012
10.1111/j.1467-7652.2011.00660.x
10.1016/.plantsci.2018.02.002
10.21608/jenvbs.2017.1089.1006
10.33389/fpls.2018.01361
10.1111/nyas.12297
10.1111/j.1365-313X.2012.05088.x
10.4161/gmcr.22104
10.1038/srep19792
10.9790/5736-0904010612
10.1080/07315724.2002.10719264
10.3389/fnut.2018.00012
10.1016/j.jcs.2016.08.007
10.1104/pp.119.2.471
10.1111/pbi.12637
10.1177/15648265100312S206
10.1038/17800
10.3389/fpls.2018.00985
10.1074/jbc.M110.180026
10.1038/s41598-017-07198-5
10.1111/j.1747-0765.2007.00205.x
10.1105/tpc.109.073023
10.1111/j.1399-3054.2006.00841.x
10.1016/j.febslet.2007.04.043
10.1073/pnas.0910950106
10.1038/35053080
10.1007/s11104-007-9466-3
10.1093/ajcn/83.1.103
10.1104/pp.17.00672
10.1007/s11103-015-0404-0
10.1007/s11032-013-9931-z
10.1093/jxb/erx304
10.1104/pp.108.128132
10.1007/s00425-005-1530-8
10.1039/c7mt00136c
10.1074/jbc.M806042200
10.1016/J.Jcs.2012.03.005
10.1038/sj.emboj.7600864
10.1074/jbc.m604133200
10.1186/1939-8433-6-31
10.1080/00380768.2004.10408586
10.1007/s00122-016-2808-x
10.3389/fpls.2017.00130
10.1080/01904168409363213
10.3389/fpls.2014.00053
10.1002/jsfa.5749
10.1093/jxb/erh064
10.1007/s10059-012-2231-3
10.1016/S0140-6736(16)31678-6
10.1007/s11130-014-0431-z
ContentType Journal Article
Copyright Copyright © 2019 Ludwig and Slamet-Loedin. 2019 Ludwig and Slamet-Loedin
Copyright_xml – notice: Copyright © 2019 Ludwig and Slamet-Loedin. 2019 Ludwig and Slamet-Loedin
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2019.00833
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_6294d79238ca44efa5dbbb874d72dc30
PMC6646660
31379889
10_3389_fpls_2019_00833
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-4767d6a49411d52c7f0a732534d2d9449cea8ce4101f817d5ee1e972da6860df3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:32:20 EDT 2025
Thu Aug 21 13:54:50 EDT 2025
Fri Jul 11 11:34:03 EDT 2025
Thu Jan 02 23:01:33 EST 2025
Thu Apr 24 23:05:00 EDT 2025
Tue Jul 01 02:06:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords iron
wheat
rice
biofortification
genes
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-4767d6a49411d52c7f0a732534d2d9449cea8ce4101f817d5ee1e972da6860df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Khurram Bashir, RIKEN, Japan; Soumitra Paul, University of Calcutta, India
This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science
Edited by: Thomas J. Buckhout, Humboldt University of Berlin, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00833
PMID 31379889
PQID 2268572471
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6294d79238ca44efa5dbbb874d72dc30
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6646660
proquest_miscellaneous_2268572471
pubmed_primary_31379889
crossref_citationtrail_10_3389_fpls_2019_00833
crossref_primary_10_3389_fpls_2019_00833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-16
PublicationDateYYYYMMDD 2019-07-16
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-16
  day: 16
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gregorio (B35) 2000; 21
Ogo (B69) 2011; 75
Lee (B56); 150
Jaganathan (B47) 2018; 9
Mabesa (B61) 2013; 149
Singh (B77); 7
Kim (B50) 2007; 581
Saenchai (B75) 2016; 71
Koike (B53) 2004; 39
Beasley (B8) 2019
Connorton (B18); 9
Bashir (B7) 2013; 6
Banakar (B4); 68
Kobayashi (B52) 2005; 56
Suzuki (B80) 2008; 54
Bashir (B6) 2017; 68
Aung (B2) 2013; 4
Gibson (B32) 2010
Heck (B38) 2005; 44
Diaz-Benito (B23) 2018; 9
Curie (B21) 2001; 409
(B37) 1999
Vasconcelos (B85) 2003; 164
(B31) 2016; 388
Holme (B40) 2012; 10
Borrill (B12) 2014; 5
Calliatte (B17) 2010; 22
Boonyaves (B10) 2017; 8
Paul (B72) 2012; 3
Khalekuzzaman (B49) 2006; 5
Takahashi (B83) 1999; 121
Connorton (B19); 174
Wirth (B87) 2009; 7
Bashir (B5) 2006; 281
Masuda (B62) 2012; 2
Bouis (B14) 2017; 12
Johnson (B48) 2011; 6
Suzuki (B81) 2006; 48
Ishimaru (B45) 2010; 62
Singh (B78); 130
Slamet-Loedin (B79) 2015; 6
Yoneyama (B91) 2015; 16
Senoura (B76) 2017; 95
Masuda (B63) 2009; 2
Qu (B73) 2005; 222
Oliva (B70) 2014; 33
Welch (B86) 2004; 55
Wu (B89) 2019; 17
Ishimaru (B46) 2006; 45
Guerinot (B36) 2000; 1465
Curie (B20) 2009; 103
Borg (B11) 2012; 56
Inoue (B41) 2009; 284
Nozoye (B68) 2011; 286
Mulualem (B67) 2015; 3
Kobayashi (B51) 2012; 63
Del Rosario (B22) 1968; 45
Boonyaves (B9) 2016; 90
Garcia-Oliveira (B29) 2018; 9
Lee (B55) 2009; 32
Cakmak (B16) 2017; 69
Lanquar (B54) 2005; 24
Lönnerdal (B59) 2006; 83
Zheng (B95) 2010; 5
Iqbal (B43) 1994; 35
Mishra (B65) 2018; 9
Higuchi (B39) 1999; 119
Inoue (B42) 2004; 50
Lee (B57); 106
Cakmak (B15) 2008; 302
Alshall (B1) 2017; 1
Zhang (B93) 2018; 19
Takagi (B82) 1984; 7
Bouis (B13) 2011; 32
Banakar (B3); 15
Paul (B71) 2014; 69
Garg (B30) 2018; 5
Graham (B34) 2003; 28
(B44) 2019
Yuan (B92) 2012; 93
Eide (B26) 1996; 93
McDougall (B64) 2011
Lucca (B60) 2002; 21
Wu (B88) 2018; 270
Distelfeld (B24) 2007; 129
Robinson (B74) 1999; 397
Lee (B58) 2012; 33
Moretti (B66) 2014; 1312
Trijatmiko (B84) 2016; 6
Yokosho (B90) 2009; 149
Elzain (B27) 2016; 9
Drakakaki (B25) 2000; 9
Goto (B33) 1999; 17
(B28) 2003
Zhang (B94) 2012; 72
References_xml – volume: 5
  year: 2010
  ident: B95
  article-title: Nicotianamine, a novel enhancer of rice iron bioavailability to humans.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010190
– volume: 56
  start-page: 1305
  year: 2005
  ident: B52
  article-title: Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri131
– volume: 21
  start-page: 382
  year: 2000
  ident: B35
  article-title: Breeding for trace mineral density in rice.
  publication-title: Food Nutr. Bull.
  doi: 10.1177/156482650002100407
– volume: 63
  start-page: 131
  year: 2012
  ident: B51
  article-title: Iron uptake, translocation, and regulation in higher plants.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042811-105522
– volume: 12
  start-page: 49
  year: 2017
  ident: B14
  article-title: Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016.
  publication-title: Glob. Food Secur.
  doi: 10.1016/j.gfs.2017.01.009
– volume: 69
  start-page: 172
  year: 2017
  ident: B16
  article-title: Agronomic biofortification of cereals with zinc: a review.
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12437
– volume: 1465
  start-page: 190
  year: 2000
  ident: B36
  article-title: The ZIP family of metal transporters.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/s0005-2736(00)00138-3
– volume: 62
  start-page: 379
  year: 2010
  ident: B45
  article-title: Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04158.x
– volume: 32
  start-page: S31
  year: 2011
  ident: B13
  article-title: Biofortification: a new tool to reduce micronutrient malnutrient.
  publication-title: Food Nutr. Bull.
  doi: 10.1021/es010549d
– volume: 9
  year: 2018
  ident: B29
  article-title: Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00937
– volume: 17
  start-page: 9
  year: 2019
  ident: B89
  article-title: Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice.
  publication-title: Plant Biotechnol. J.
  doi: 10.111/pbi.12943
– volume: 2
  start-page: 1
  year: 2012
  ident: B62
  article-title: Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition.
  publication-title: Sci. Rep.
  doi: 10.1038/srep00543
– volume: 3
  start-page: 11
  year: 2015
  ident: B67
  article-title: Application of bio-fortification through plant breeding to improve the value of staple crops.
  publication-title: Biomed. Biotechnol.
  doi: 10.12691/bb-3-1-3
– volume: 164
  start-page: 371
  year: 2003
  ident: B85
  article-title: Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene.
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(02)00421-1
– volume: 103
  start-page: 1
  year: 2009
  ident: B20
  article-title: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporter.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcn207
– volume: 9
  year: 2018
  ident: B23
  article-title: Iron and zinc in the embryo and endosperm of rice (Oryza sativa L.) seeds in contrasting 2’-deoxymugineic acid/ nicotianamine scenarios.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01190
– volume: 150
  start-page: 786
  ident: B56
  article-title: Disruption of OsYSL15 leads to iron inefficiency in rice plants.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.135418
– volume: 95
  start-page: 375
  year: 2017
  ident: B76
  article-title: The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-017-0656-y
– volume: 75
  start-page: 593
  year: 2011
  ident: B69
  article-title: OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9752-6
– volume: 35
  start-page: 1233
  year: 1994
  ident: B43
  article-title: Phytase activity in the human and rat small intestine.
  publication-title: Gut
  doi: 10.1136/gut.35.9.1233
– volume: 39
  start-page: 415
  year: 2004
  ident: B53
  article-title: OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in phloem.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313x.2004.02146.x
– year: 2019
  ident: B8
  article-title: Metabolic engineering of bread wheat improves grain iron concentration and bioavailability.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13074
– volume: 7
  start-page: 631
  year: 2009
  ident: B87
  article-title: Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin.
  publication-title: Plant Biotechnol. J.
  doi: 10.111/j.1467-7652.2009.00430.x
– volume: 93
  start-page: 5624
  year: 1996
  ident: B26
  article-title: A novel iron-regulated metal transporter from plants identified by functional expression in yeast.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.11.5624
– volume: 5
  start-page: 26
  year: 2006
  ident: B49
  article-title: Stable integration, expression and inheritance of the ferritin gene in transgenic elite indica rice cultivar BR29 with enhanced iron level in the endosperm.
  publication-title: Indian J.
– volume: 17
  start-page: 282
  year: 1999
  ident: B33
  article-title: Iron fortification of rice seed by the soybean ferritin gene.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/7029
– volume: 2
  start-page: 155
  year: 2009
  ident: B63
  article-title: Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains.
  publication-title: Rice
  doi: 10.1007/s12284-009-9031-9031
– volume: 9
  start-page: 445
  year: 2000
  ident: B25
  article-title: Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds.
  publication-title: Transgenic Res.
  doi: 10.1023/A:1026534009483
– volume: 6
  year: 2015
  ident: B79
  article-title: Enriching rice with Zn and Fe while minimizing Cd risk.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00121
– volume: 45
  start-page: 335
  year: 2006
  ident: B46
  article-title: Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313x.2005.02624.x
– volume: 121
  start-page: 947
  year: 1999
  ident: B83
  article-title: Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (StrategyII) in graminaceous plants.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.3.947
– volume: 68
  start-page: 1785
  year: 2017
  ident: B6
  article-title: Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx065
– volume: 45
  start-page: 225
  year: 1968
  ident: B22
  article-title: Composition and endosperm structure of developing and mature rice kernel.
  publication-title: Cereal Chem.
– volume: 48
  start-page: 85
  year: 2006
  ident: B81
  article-title: Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barely.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313x.2006.02853.x
– volume: 44
  start-page: 329
  year: 2005
  ident: B38
  article-title: Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2005.0329
– volume: 16
  start-page: 19111
  year: 2015
  ident: B91
  article-title: Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160819111
– volume: 32
  start-page: 408
  year: 2009
  ident: B55
  article-title: Over-expression of OsIRT leads to increased iron and zinc accumulations in rice.
  publication-title: Plant. Cell Environ.
  doi: 10.1111/j.1365-3040.2009.01935.x
– volume: 6
  year: 2011
  ident: B48
  article-title: Constitutive overexpression of OsNAS gene family reveals single-gene strategies for effective iron- and zinc- biofortification of rice endosperm.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024476
– volume: 19
  year: 2018
  ident: B93
  article-title: OsYSL13 is involved in iron distribution in rice.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19113537
– volume: 4
  year: 2013
  ident: B2
  article-title: Iron biofortification of myanmar rice.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00158
– volume: 149
  start-page: 223
  year: 2013
  ident: B61
  article-title: Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application.
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.05.012
– year: 2003
  ident: B28
  publication-title: Guideline for the Conduct of Food Safety Assessment of Foods Derived From Recombinant-DNA Plants.
– volume: 10
  start-page: 237
  year: 2012
  ident: B40
  article-title: Cisgenic barley with improved phytase activity.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00660.x
– volume: 270
  start-page: 13
  year: 2018
  ident: B88
  article-title: Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations.
  publication-title: Plant Sci.
  doi: 10.1016/.plantsci.2018.02.002
– volume: 1
  start-page: 71
  year: 2017
  ident: B1
  article-title: Foliar application: from plant nutrition to biofortification.
  publication-title: Environ. Biodiver. Soil Secur.
  doi: 10.21608/jenvbs.2017.1089.1006
– volume: 9
  year: 2018
  ident: B65
  article-title: Genome editing in rice: recent advances, challenges, and future implications.
  publication-title: Front. Plant Sci.
  doi: 10.33389/fpls.2018.01361
– volume: 1312
  start-page: 54
  year: 2014
  ident: B66
  article-title: Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12297
– volume: 72
  start-page: 400
  year: 2012
  ident: B94
  article-title: Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.05088.x
– volume: 3
  start-page: 310
  year: 2012
  ident: B72
  article-title: Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain.
  publication-title: GM Crops Food
  doi: 10.4161/gmcr.22104
– volume: 6
  year: 2016
  ident: B84
  article-title: Biofortified indica rice attains iron and zinc nutrition dietary targets in the field.
  publication-title: Sci. Rep.
  doi: 10.1038/srep19792
– volume: 9
  start-page: 6
  year: 2016
  ident: B27
  article-title: Comparison between XRF, PIXE and ICP-OES Techniques Applied For Analysis of Some Medicinal Plants.
  publication-title: IOSR-JAC
  doi: 10.9790/5736-0904010612
– volume: 21
  start-page: 184
  year: 2002
  ident: B60
  article-title: Fighting iron deficiency anemia with iron-rich rice.
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2002.10719264
– volume: 5
  year: 2018
  ident: B30
  article-title: Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world.
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2018.00012
– volume: 71
  start-page: 108
  year: 2016
  ident: B75
  article-title: Distribution of iron and Zn in plant and grain of different rice genotypes grown under aerobic and wetland conditions.
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2016.08.007
– volume: 119
  start-page: 471
  year: 1999
  ident: B39
  article-title: Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.119.2.471
– volume: 15
  start-page: 423
  ident: B3
  article-title: The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12637
– start-page: S134
  year: 2010
  ident: B32
  article-title: A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
  publication-title: Food Nutr. Bull.
  doi: 10.1177/15648265100312S206
– volume: 397
  start-page: 694
  year: 1999
  ident: B74
  article-title: A ferric-chelate reductase for iron uptake from soils.
  publication-title: Nature
  doi: 10.1038/17800
– volume: 28
  start-page: 4
  year: 2003
  ident: B34
  article-title: Biofortification: a global challenge.
  publication-title: Int. Rice Res. Notes
– volume: 9
  year: 2018
  ident: B47
  article-title: CRISPR for crop improvement: an update review.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00985
– year: 2011
  ident: B64
  publication-title: The Cost and Time Involved in the Discovery, Development and Authorisation of a New Plant Biotechnology Derived Trait, a Consultancy Study for Crop Life International.
– volume: 286
  start-page: 5446
  year: 2011
  ident: B68
  article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.180026
– volume: 7
  ident: B77
  article-title: Single genetic locus improvement if iron, zinc and β-carotene content in rice grains.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07198-5
– volume: 54
  start-page: 77
  year: 2008
  ident: B80
  article-title: Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2007.00205.x
– volume: 22
  start-page: 904
  year: 2010
  ident: B17
  article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions.
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073023
– volume: 129
  start-page: 635
  year: 2007
  ident: B24
  article-title: Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations.
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2006.00841.x
– volume: 581
  start-page: 2273
  year: 2007
  ident: B50
  article-title: Mining iron: iron uptake and transport in plants.
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.04.043
– volume: 106
  start-page: 22014
  ident: B57
  article-title: Iron fortification of rice seeds through activation of the nicotianamine synthase gene.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0910950106
– volume: 409
  start-page: 346
  year: 2001
  ident: B21
  article-title: Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake.
  publication-title: Nature
  doi: 10.1038/35053080
– year: 1999
  ident: B37
  publication-title: ARCHIVED - High Lauric Acid Canola Lines 23-198, 23-18-17.
– volume: 302
  start-page: 1
  year: 2008
  ident: B15
  article-title: Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9466-3
– volume: 83
  start-page: 103
  year: 2006
  ident: B59
  article-title: Iron absorption from soybean ferritin in nonanemic women.
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/83.1.103
– volume: 174
  start-page: 2434
  ident: B19
  article-title: Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00672
– volume: 90
  start-page: 207
  year: 2016
  ident: B9
  article-title: NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-015-0404-0
– volume: 33
  start-page: 23
  year: 2014
  ident: B70
  article-title: Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes.
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-013-9931-z
– volume: 68
  start-page: 4983
  ident: B4
  article-title: Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx304
– volume: 149
  start-page: 297
  year: 2009
  ident: B90
  article-title: OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.128132
– volume: 222
  start-page: 225
  year: 2005
  ident: B73
  article-title: Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds.
  publication-title: Planta
  doi: 10.1007/s00425-005-1530-8
– volume: 9
  start-page: 813
  ident: B18
  article-title: Iron homeostasis in plants – a brief overview.
  publication-title: Metallomics
  doi: 10.1039/c7mt00136c
– volume: 284
  start-page: 3470
  year: 2009
  ident: B41
  article-title: Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806042200
– volume: 56
  start-page: 204
  year: 2012
  ident: B11
  article-title: Wheat ferritins: improving the iron content of the wheat grain.
  publication-title: J. Cereal Sci.
  doi: 10.1016/J.Jcs.2012.03.005
– volume: 24
  start-page: 4041
  year: 2005
  ident: B54
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and At NRAMP4 is essential for seed germination on low iron.
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600864
– volume: 281
  start-page: 32395
  year: 2006
  ident: B5
  article-title: Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m604133200
– volume: 6
  year: 2013
  ident: B7
  article-title: The knockdown of OsVIT2 and MIT affects iron localization in rice seed.
  publication-title: Rice
  doi: 10.1186/1939-8433-6-31
– volume: 50
  start-page: 1133
  year: 2004
  ident: B42
  article-title: A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2004.10408586
– volume: 130
  start-page: 283
  ident: B78
  article-title: Rice nicotianamine synthase 2 expression improves dietary iron and zinc levels in wheat.
  publication-title: Theor. Appl. Genet
  doi: 10.1007/s00122-016-2808-x
– volume: 8
  year: 2017
  ident: B10
  article-title: Enhanced Grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00130
– volume: 7
  start-page: 469
  year: 1984
  ident: B82
  article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants.
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168409363213
– volume: 5
  year: 2014
  ident: B12
  article-title: Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00053
– volume: 93
  start-page: 254
  year: 2012
  ident: B92
  article-title: Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality.
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.5749
– year: 2019
  ident: B44
  publication-title: International Service for the Acquisition of Agri-Biotech Applications.
– volume: 55
  start-page: 353
  year: 2004
  ident: B86
  article-title: Breeding for micronutrients in staple food crops from human nutrition perspective.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh064
– volume: 33
  start-page: 269
  year: 2012
  ident: B58
  article-title: Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification.
  publication-title: Mol. Cells
  doi: 10.1007/s10059-012-2231-3
– volume: 388
  start-page: 1545
  year: 2016
  ident: B31
  article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31678-6
– volume: 69
  start-page: 203
  year: 2014
  ident: B71
  article-title: Development of an iron-enriched high-yieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice.
  publication-title: Plant Foods Hum. Nutr.
  doi: 10.1007/s11130-014-0431-z
SSID ssj0000500997
Score 2.4680085
SecondaryResourceType review_article
Snippet The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 833
SubjectTerms biofortification
genes
iron
Plant Science
rice
wheat
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZQtQMXxAaDsA15EgcuoYl_Z7cV0XU7IARD6i2yY0dFKgkq5cB_z3tOW7VoExeutuNY33u2v5c8fY-QE-aBpFpTpcAmQiosc6nhgaVO-azOcs-si9kWl2p0K_6M5Xit1BfmhHXywB1wfcUK4VHkzlRWiFBb6Z1zRkMj8xWP0TrceWvBVKfqjdRHd1o-EIUV_fphiurcOcpTGs43rqGo1v8vivk6U3Lt6hnukp0FZ6Q_u7V-JFuh-UQ-DFrgdc975AaVo6GHDu5aYKAx9yfCTectvWjgnJvQazgOqG08jWcv_YV1IejvWdv8oMNZe09xikccf9UJwO6T2-HF3_NRuiiVkFaSyXkqtNJeWVGIPPeSVbrOrOZMcuHBGkIUVQCDBAEbsDa59jKEPBSAoFVGZb7mn0mvaZtwSKiRprBWW2FqD7MpV2sjHRAdWUlljUzI2RK5slroiGM5i2kJ8QRCXSLUJUJdRqgTcrp64KGT0Pj_0AGaYjUMta9jA3hEufCI8i2PSMj3pSFL2Cv4A8Q2oX2CFzFlpGZwHyfkoDPs6lU85yjdViREb5h8Yy2bPc3dJOpxKyUgCMyO3mPxX8g2woFfj3P1lfTms6fwDWjP3B1HD38Bkn4AXg
  priority: 102
  providerName: Directory of Open Access Journals
Title Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product
URI https://www.ncbi.nlm.nih.gov/pubmed/31379889
https://www.proquest.com/docview/2268572471
https://pubmed.ncbi.nlm.nih.gov/PMC6646660
https://doaj.org/article/6294d79238ca44efa5dbbb874d72dc30
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagcOCCKM8ArYzEgUtK_HaQEOqibgsSCAEr7S2yY6ettCQl3Ur033fGSRcWLRKXHGzHdmY8nm8c6xtCXvIAINXZOgc0EXPpuM-tiDz3OhRNwQJ3Pt22-KyPZvLjXM1_pwMaBXi-MbTDfFKzfrH36-flOzD4txhxgr993ZwtkHibIfOkFeImuQVuyWA6g08j1h-IvhENpWQrWstcaj4fqH429bHmpRKZ_yYE-vdFyj880_QeuTtCSro_rIFtciO298ntSQew7_IB-YbE0lBDJ6cdANR0NShpgy47etDCNnhCv8JuQV0baNqa6SGmjaAf-q59Q6d994NiF-fY_svAD_uQzKYH398f5WMmhbxWXC1zabQJ2slSMhYUr01TOCO4EjKAsqQs6wj6ihLss7HMBBUji6XhwWmri9CIR2Sr7dr4hFCrbOmccdI2AXrTvjFWecBBqlbaWZWRvWvJVfVIM47ZLhYVhBso6gpFXaGoqyTqjLxavXA2MGz8u-kEVbFqhtTYqaDrj6vR0irNSxmQFdHWTsrYOBW899ZAIQ-1KDLy4lqRFZgS_h9xbewuYCCurTIc3HVGHg-KXQ0lmEBmtzIjZk3la3NZr2lPTxJdN6w2iBGLp_8x7jNyB78Wz46Zfk62lv1F3AHQs_S76bAAnodztpsW9hVm_QCT
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Biofortification+to+Enrich+Rice+and+Wheat+Grain+Iron%3A+From+Genes+to+Product&rft.jtitle=Frontiers+in+plant+science&rft.au=Ludwig%2C+Yvonne&rft.au=Slamet-Loedin%2C+Inez+H&rft.date=2019-07-16&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft.spage=833&rft_id=info:doi/10.3389%2Ffpls.2019.00833&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon