Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product
The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly...
Saved in:
Published in | Frontiers in plant science Vol. 10; p. 833 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
16.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product. |
---|---|
AbstractList | The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product. The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product. |
Author | Ludwig, Yvonne Slamet-Loedin, Inez H. |
AuthorAffiliation | Trait and Genome Engineering Cluster, Strategic Innovation Platform, International Rice Research Institute , Los Baños , Philippines |
AuthorAffiliation_xml | – name: Trait and Genome Engineering Cluster, Strategic Innovation Platform, International Rice Research Institute , Los Baños , Philippines |
Author_xml | – sequence: 1 givenname: Yvonne surname: Ludwig fullname: Ludwig, Yvonne – sequence: 2 givenname: Inez H. surname: Slamet-Loedin fullname: Slamet-Loedin, Inez H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31379889$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstrVDEUxoNUbK1du5Ms3cw0r5uHC0FLOw4UFB_oLmSSczspd5IxyQj-994700ormE3CyXd-H8n5nqOjlBMg9JKSOefanPfboc4ZoWZOiOb8CTqhUoqZkOzH0YPzMTqr9ZaMqyPEGPUMHXPKldHanKAvC0jQosfvY-5zabGP3rWYE24ZX6YS_Rp_jh6wSwF_X4NreFFcTHhZcnqDr0re4AlRJ_2nksPOtxfoae-GCmd3-yn6dnX59eLD7PrjYnnx7nrmO9a1mVBSBemEEZSGjnnVE6c467gILBghjAenPQhKaK-pCh0ABaNYcFJLEnp-ipYHbsju1m5L3Ljy22YX7b6Qy41144v8AFYyI4IyjGvvhIDedWG1Wmk1FlnwnIystwfWdrfaQPCQWnHDI-jjmxTX9ib_suMvSyknwOs7QMk_d1Cb3cTqYRhcgryrljGpO8WEoqP01UOvvyb3UxkF3UHgS661QG99bPupjNZxsJTYKQB2CoCdAmD3ARj7zv_pu0f_r-MP9-ay_g |
CitedBy_id | crossref_primary_10_1093_jxb_erac014 crossref_primary_10_3390_nu13031039 crossref_primary_10_1071_CP21436 crossref_primary_10_3390_foods12142776 crossref_primary_10_1021_acsomega_2c02494 crossref_primary_10_3390_soilsystems4030057 crossref_primary_10_3389_fnut_2021_721728 crossref_primary_10_3390_ijms21239280 crossref_primary_10_1016_j_cpb_2024_100328 crossref_primary_10_3389_fsufs_2020_591722 crossref_primary_10_3389_fpls_2022_840614 crossref_primary_10_3390_nu13020378 crossref_primary_10_1016_j_jgeb_2024_100445 crossref_primary_10_1016_j_heliyon_2023_e20208 crossref_primary_10_1186_s12870_024_05161_x crossref_primary_10_1186_s12870_021_02996_6 crossref_primary_10_3390_agronomy10040504 crossref_primary_10_3389_fgeed_2023_1308228 crossref_primary_10_1038_s41598_021_04388_0 crossref_primary_10_3389_fgene_2020_00776 crossref_primary_10_3389_fnut_2023_1310020 crossref_primary_10_1007_s12011_021_03018_0 crossref_primary_10_1016_j_jia_2024_11_029 crossref_primary_10_1080_10408398_2021_1925629 crossref_primary_10_3390_plants11151979 crossref_primary_10_1016_j_lwt_2020_109459 crossref_primary_10_3390_su14063301 crossref_primary_10_1007_s42976_022_00288_9 crossref_primary_10_1038_s41437_020_0326_8 crossref_primary_10_1016_j_foohum_2024_100253 crossref_primary_10_1080_00103624_2023_2254330 crossref_primary_10_5897_JPBCS2022_0997 crossref_primary_10_1007_s00122_020_03709_7 crossref_primary_10_1071_CP21771 crossref_primary_10_1007_s11032_019_1077_1 crossref_primary_10_1016_j_cpb_2023_100309 crossref_primary_10_3389_fgene_2020_00763 crossref_primary_10_3389_fpls_2023_1138408 crossref_primary_10_1007_s00122_019_03530_x crossref_primary_10_3390_ijms21082827 crossref_primary_10_1016_j_fufo_2024_100425 crossref_primary_10_1021_acsagscitech_3c00140 crossref_primary_10_1093_bbb_zbab180 crossref_primary_10_1016_j_plaphy_2024_108457 crossref_primary_10_1016_j_rhisph_2020_100218 crossref_primary_10_1038_s41598_022_26854_z crossref_primary_10_1016_j_rsci_2024_04_008 crossref_primary_10_3389_fpls_2023_1169858 crossref_primary_10_1093_jxb_eraa446 crossref_primary_10_3389_fnut_2022_826131 crossref_primary_10_3390_plants13131816 crossref_primary_10_1016_j_jenvman_2022_115289 crossref_primary_10_3390_agronomy11020241 crossref_primary_10_1093_advances_nmab104 crossref_primary_10_3389_fpls_2023_1157507 crossref_primary_10_1007_s41207_020_00240_5 crossref_primary_10_1016_j_jplph_2023_154059 crossref_primary_10_1111_ppl_13624 crossref_primary_10_1016_j_fcr_2022_108467 crossref_primary_10_3389_fgene_2021_635006 crossref_primary_10_3389_fpls_2021_647341 crossref_primary_10_1007_s00299_021_02790_6 crossref_primary_10_1016_j_crbiot_2022_09_005 crossref_primary_10_2139_ssrn_4004804 crossref_primary_10_9787_KJBS_2023_55_4_325 crossref_primary_10_1016_j_sjbs_2022_103456 |
Cites_doi | 10.1371/journal.pone.0010190 10.1093/jxb/eri131 10.1177/156482650002100407 10.1146/annurev-arplant-042811-105522 10.1016/j.gfs.2017.01.009 10.1111/ejss.12437 10.1016/s0005-2736(00)00138-3 10.1111/j.1365-313X.2010.04158.x 10.1021/es010549d 10.3389/fpls.2018.00937 10.111/pbi.12943 10.1038/srep00543 10.12691/bb-3-1-3 10.1016/S0168-9452(02)00421-1 10.1093/aob/mcn207 10.3389/fpls.2018.01190 10.1104/pp.109.135418 10.1007/s11103-017-0656-y 10.1007/s11103-011-9752-6 10.1136/gut.35.9.1233 10.1111/j.1365-313x.2004.02146.x 10.1111/pbi.13074 10.111/j.1467-7652.2009.00430.x 10.1073/pnas.93.11.5624 10.1038/7029 10.1007/s12284-009-9031-9031 10.1023/A:1026534009483 10.3389/fpls.2015.00121 10.1111/j.1365-313x.2005.02624.x 10.1104/pp.121.3.947 10.1093/jxb/erx065 10.1111/j.1365-313x.2006.02853.x 10.2135/cropsci2005.0329 10.3390/ijms160819111 10.1111/j.1365-3040.2009.01935.x 10.1371/journal.pone.0024476 10.3390/ijms19113537 10.3389/fpls.2013.00158 10.1016/j.fcr.2013.05.012 10.1111/j.1467-7652.2011.00660.x 10.1016/.plantsci.2018.02.002 10.21608/jenvbs.2017.1089.1006 10.33389/fpls.2018.01361 10.1111/nyas.12297 10.1111/j.1365-313X.2012.05088.x 10.4161/gmcr.22104 10.1038/srep19792 10.9790/5736-0904010612 10.1080/07315724.2002.10719264 10.3389/fnut.2018.00012 10.1016/j.jcs.2016.08.007 10.1104/pp.119.2.471 10.1111/pbi.12637 10.1177/15648265100312S206 10.1038/17800 10.3389/fpls.2018.00985 10.1074/jbc.M110.180026 10.1038/s41598-017-07198-5 10.1111/j.1747-0765.2007.00205.x 10.1105/tpc.109.073023 10.1111/j.1399-3054.2006.00841.x 10.1016/j.febslet.2007.04.043 10.1073/pnas.0910950106 10.1038/35053080 10.1007/s11104-007-9466-3 10.1093/ajcn/83.1.103 10.1104/pp.17.00672 10.1007/s11103-015-0404-0 10.1007/s11032-013-9931-z 10.1093/jxb/erx304 10.1104/pp.108.128132 10.1007/s00425-005-1530-8 10.1039/c7mt00136c 10.1074/jbc.M806042200 10.1016/J.Jcs.2012.03.005 10.1038/sj.emboj.7600864 10.1074/jbc.m604133200 10.1186/1939-8433-6-31 10.1080/00380768.2004.10408586 10.1007/s00122-016-2808-x 10.3389/fpls.2017.00130 10.1080/01904168409363213 10.3389/fpls.2014.00053 10.1002/jsfa.5749 10.1093/jxb/erh064 10.1007/s10059-012-2231-3 10.1016/S0140-6736(16)31678-6 10.1007/s11130-014-0431-z |
ContentType | Journal Article |
Copyright | Copyright © 2019 Ludwig and Slamet-Loedin. 2019 Ludwig and Slamet-Loedin |
Copyright_xml | – notice: Copyright © 2019 Ludwig and Slamet-Loedin. 2019 Ludwig and Slamet-Loedin |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.00833 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_6294d79238ca44efa5dbbb874d72dc30 PMC6646660 31379889 10_3389_fpls_2019_00833 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c525t-4767d6a49411d52c7f0a732534d2d9449cea8ce4101f817d5ee1e972da6860df3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:32:20 EDT 2025 Thu Aug 21 13:54:50 EDT 2025 Fri Jul 11 11:34:03 EDT 2025 Thu Jan 02 23:01:33 EST 2025 Thu Apr 24 23:05:00 EDT 2025 Tue Jul 01 02:06:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | iron wheat rice biofortification genes |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-4767d6a49411d52c7f0a732534d2d9449cea8ce4101f817d5ee1e972da6860df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Khurram Bashir, RIKEN, Japan; Soumitra Paul, University of Calcutta, India This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science Edited by: Thomas J. Buckhout, Humboldt University of Berlin, Germany |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00833 |
PMID | 31379889 |
PQID | 2268572471 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6294d79238ca44efa5dbbb874d72dc30 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6646660 proquest_miscellaneous_2268572471 pubmed_primary_31379889 crossref_citationtrail_10_3389_fpls_2019_00833 crossref_primary_10_3389_fpls_2019_00833 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-16 |
PublicationDateYYYYMMDD | 2019-07-16 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Gregorio (B35) 2000; 21 Ogo (B69) 2011; 75 Lee (B56); 150 Jaganathan (B47) 2018; 9 Mabesa (B61) 2013; 149 Singh (B77); 7 Kim (B50) 2007; 581 Saenchai (B75) 2016; 71 Koike (B53) 2004; 39 Beasley (B8) 2019 Connorton (B18); 9 Bashir (B7) 2013; 6 Banakar (B4); 68 Kobayashi (B52) 2005; 56 Suzuki (B80) 2008; 54 Bashir (B6) 2017; 68 Aung (B2) 2013; 4 Gibson (B32) 2010 Heck (B38) 2005; 44 Diaz-Benito (B23) 2018; 9 Curie (B21) 2001; 409 (B37) 1999 Vasconcelos (B85) 2003; 164 (B31) 2016; 388 Holme (B40) 2012; 10 Borrill (B12) 2014; 5 Calliatte (B17) 2010; 22 Boonyaves (B10) 2017; 8 Paul (B72) 2012; 3 Khalekuzzaman (B49) 2006; 5 Takahashi (B83) 1999; 121 Connorton (B19); 174 Wirth (B87) 2009; 7 Bashir (B5) 2006; 281 Masuda (B62) 2012; 2 Bouis (B14) 2017; 12 Johnson (B48) 2011; 6 Suzuki (B81) 2006; 48 Ishimaru (B45) 2010; 62 Singh (B78); 130 Slamet-Loedin (B79) 2015; 6 Yoneyama (B91) 2015; 16 Senoura (B76) 2017; 95 Masuda (B63) 2009; 2 Qu (B73) 2005; 222 Oliva (B70) 2014; 33 Welch (B86) 2004; 55 Wu (B89) 2019; 17 Ishimaru (B46) 2006; 45 Guerinot (B36) 2000; 1465 Curie (B20) 2009; 103 Borg (B11) 2012; 56 Inoue (B41) 2009; 284 Nozoye (B68) 2011; 286 Mulualem (B67) 2015; 3 Kobayashi (B51) 2012; 63 Del Rosario (B22) 1968; 45 Boonyaves (B9) 2016; 90 Garcia-Oliveira (B29) 2018; 9 Lee (B55) 2009; 32 Cakmak (B16) 2017; 69 Lanquar (B54) 2005; 24 Lönnerdal (B59) 2006; 83 Zheng (B95) 2010; 5 Iqbal (B43) 1994; 35 Mishra (B65) 2018; 9 Higuchi (B39) 1999; 119 Inoue (B42) 2004; 50 Lee (B57); 106 Cakmak (B15) 2008; 302 Alshall (B1) 2017; 1 Zhang (B93) 2018; 19 Takagi (B82) 1984; 7 Bouis (B13) 2011; 32 Banakar (B3); 15 Paul (B71) 2014; 69 Garg (B30) 2018; 5 Graham (B34) 2003; 28 (B44) 2019 Yuan (B92) 2012; 93 Eide (B26) 1996; 93 McDougall (B64) 2011 Lucca (B60) 2002; 21 Wu (B88) 2018; 270 Distelfeld (B24) 2007; 129 Robinson (B74) 1999; 397 Lee (B58) 2012; 33 Moretti (B66) 2014; 1312 Trijatmiko (B84) 2016; 6 Yokosho (B90) 2009; 149 Elzain (B27) 2016; 9 Drakakaki (B25) 2000; 9 Goto (B33) 1999; 17 (B28) 2003 Zhang (B94) 2012; 72 |
References_xml | – volume: 5 year: 2010 ident: B95 article-title: Nicotianamine, a novel enhancer of rice iron bioavailability to humans. publication-title: PLoS One doi: 10.1371/journal.pone.0010190 – volume: 56 start-page: 1305 year: 2005 ident: B52 article-title: Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri131 – volume: 21 start-page: 382 year: 2000 ident: B35 article-title: Breeding for trace mineral density in rice. publication-title: Food Nutr. Bull. doi: 10.1177/156482650002100407 – volume: 63 start-page: 131 year: 2012 ident: B51 article-title: Iron uptake, translocation, and regulation in higher plants. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042811-105522 – volume: 12 start-page: 49 year: 2017 ident: B14 article-title: Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. publication-title: Glob. Food Secur. doi: 10.1016/j.gfs.2017.01.009 – volume: 69 start-page: 172 year: 2017 ident: B16 article-title: Agronomic biofortification of cereals with zinc: a review. publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12437 – volume: 1465 start-page: 190 year: 2000 ident: B36 article-title: The ZIP family of metal transporters. publication-title: Biochim. Biophys. Acta doi: 10.1016/s0005-2736(00)00138-3 – volume: 62 start-page: 379 year: 2010 ident: B45 article-title: Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04158.x – volume: 32 start-page: S31 year: 2011 ident: B13 article-title: Biofortification: a new tool to reduce micronutrient malnutrient. publication-title: Food Nutr. Bull. doi: 10.1021/es010549d – volume: 9 year: 2018 ident: B29 article-title: Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00937 – volume: 17 start-page: 9 year: 2019 ident: B89 article-title: Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. publication-title: Plant Biotechnol. J. doi: 10.111/pbi.12943 – volume: 2 start-page: 1 year: 2012 ident: B62 article-title: Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. publication-title: Sci. Rep. doi: 10.1038/srep00543 – volume: 3 start-page: 11 year: 2015 ident: B67 article-title: Application of bio-fortification through plant breeding to improve the value of staple crops. publication-title: Biomed. Biotechnol. doi: 10.12691/bb-3-1-3 – volume: 164 start-page: 371 year: 2003 ident: B85 article-title: Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. publication-title: Plant Sci. doi: 10.1016/S0168-9452(02)00421-1 – volume: 103 start-page: 1 year: 2009 ident: B20 article-title: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporter. publication-title: Ann. Bot. doi: 10.1093/aob/mcn207 – volume: 9 year: 2018 ident: B23 article-title: Iron and zinc in the embryo and endosperm of rice (Oryza sativa L.) seeds in contrasting 2’-deoxymugineic acid/ nicotianamine scenarios. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01190 – volume: 150 start-page: 786 ident: B56 article-title: Disruption of OsYSL15 leads to iron inefficiency in rice plants. publication-title: Plant Physiol. doi: 10.1104/pp.109.135418 – volume: 95 start-page: 375 year: 2017 ident: B76 article-title: The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-017-0656-y – volume: 75 start-page: 593 year: 2011 ident: B69 article-title: OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9752-6 – volume: 35 start-page: 1233 year: 1994 ident: B43 article-title: Phytase activity in the human and rat small intestine. publication-title: Gut doi: 10.1136/gut.35.9.1233 – volume: 39 start-page: 415 year: 2004 ident: B53 article-title: OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in phloem. publication-title: Plant J. doi: 10.1111/j.1365-313x.2004.02146.x – year: 2019 ident: B8 article-title: Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13074 – volume: 7 start-page: 631 year: 2009 ident: B87 article-title: Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. publication-title: Plant Biotechnol. J. doi: 10.111/j.1467-7652.2009.00430.x – volume: 93 start-page: 5624 year: 1996 ident: B26 article-title: A novel iron-regulated metal transporter from plants identified by functional expression in yeast. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.11.5624 – volume: 5 start-page: 26 year: 2006 ident: B49 article-title: Stable integration, expression and inheritance of the ferritin gene in transgenic elite indica rice cultivar BR29 with enhanced iron level in the endosperm. publication-title: Indian J. – volume: 17 start-page: 282 year: 1999 ident: B33 article-title: Iron fortification of rice seed by the soybean ferritin gene. publication-title: Nat. Biotechnol. doi: 10.1038/7029 – volume: 2 start-page: 155 year: 2009 ident: B63 article-title: Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. publication-title: Rice doi: 10.1007/s12284-009-9031-9031 – volume: 9 start-page: 445 year: 2000 ident: B25 article-title: Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. publication-title: Transgenic Res. doi: 10.1023/A:1026534009483 – volume: 6 year: 2015 ident: B79 article-title: Enriching rice with Zn and Fe while minimizing Cd risk. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00121 – volume: 45 start-page: 335 year: 2006 ident: B46 article-title: Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. publication-title: Plant J. doi: 10.1111/j.1365-313x.2005.02624.x – volume: 121 start-page: 947 year: 1999 ident: B83 article-title: Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (StrategyII) in graminaceous plants. publication-title: Plant Physiol. doi: 10.1104/pp.121.3.947 – volume: 68 start-page: 1785 year: 2017 ident: B6 article-title: Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx065 – volume: 45 start-page: 225 year: 1968 ident: B22 article-title: Composition and endosperm structure of developing and mature rice kernel. publication-title: Cereal Chem. – volume: 48 start-page: 85 year: 2006 ident: B81 article-title: Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barely. publication-title: Plant J. doi: 10.1111/j.1365-313x.2006.02853.x – volume: 44 start-page: 329 year: 2005 ident: B38 article-title: Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event. publication-title: Crop Sci. doi: 10.2135/cropsci2005.0329 – volume: 16 start-page: 19111 year: 2015 ident: B91 article-title: Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160819111 – volume: 32 start-page: 408 year: 2009 ident: B55 article-title: Over-expression of OsIRT leads to increased iron and zinc accumulations in rice. publication-title: Plant. Cell Environ. doi: 10.1111/j.1365-3040.2009.01935.x – volume: 6 year: 2011 ident: B48 article-title: Constitutive overexpression of OsNAS gene family reveals single-gene strategies for effective iron- and zinc- biofortification of rice endosperm. publication-title: PLoS One doi: 10.1371/journal.pone.0024476 – volume: 19 year: 2018 ident: B93 article-title: OsYSL13 is involved in iron distribution in rice. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113537 – volume: 4 year: 2013 ident: B2 article-title: Iron biofortification of myanmar rice. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00158 – volume: 149 start-page: 223 year: 2013 ident: B61 article-title: Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.05.012 – year: 2003 ident: B28 publication-title: Guideline for the Conduct of Food Safety Assessment of Foods Derived From Recombinant-DNA Plants. – volume: 10 start-page: 237 year: 2012 ident: B40 article-title: Cisgenic barley with improved phytase activity. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2011.00660.x – volume: 270 start-page: 13 year: 2018 ident: B88 article-title: Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. publication-title: Plant Sci. doi: 10.1016/.plantsci.2018.02.002 – volume: 1 start-page: 71 year: 2017 ident: B1 article-title: Foliar application: from plant nutrition to biofortification. publication-title: Environ. Biodiver. Soil Secur. doi: 10.21608/jenvbs.2017.1089.1006 – volume: 9 year: 2018 ident: B65 article-title: Genome editing in rice: recent advances, challenges, and future implications. publication-title: Front. Plant Sci. doi: 10.33389/fpls.2018.01361 – volume: 1312 start-page: 54 year: 2014 ident: B66 article-title: Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12297 – volume: 72 start-page: 400 year: 2012 ident: B94 article-title: Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. publication-title: Plant J. doi: 10.1111/j.1365-313X.2012.05088.x – volume: 3 start-page: 310 year: 2012 ident: B72 article-title: Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. publication-title: GM Crops Food doi: 10.4161/gmcr.22104 – volume: 6 year: 2016 ident: B84 article-title: Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. publication-title: Sci. Rep. doi: 10.1038/srep19792 – volume: 9 start-page: 6 year: 2016 ident: B27 article-title: Comparison between XRF, PIXE and ICP-OES Techniques Applied For Analysis of Some Medicinal Plants. publication-title: IOSR-JAC doi: 10.9790/5736-0904010612 – volume: 21 start-page: 184 year: 2002 ident: B60 article-title: Fighting iron deficiency anemia with iron-rich rice. publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2002.10719264 – volume: 5 year: 2018 ident: B30 article-title: Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. publication-title: Front. Nutr. doi: 10.3389/fnut.2018.00012 – volume: 71 start-page: 108 year: 2016 ident: B75 article-title: Distribution of iron and Zn in plant and grain of different rice genotypes grown under aerobic and wetland conditions. publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2016.08.007 – volume: 119 start-page: 471 year: 1999 ident: B39 article-title: Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. publication-title: Plant Physiol. doi: 10.1104/pp.119.2.471 – volume: 15 start-page: 423 ident: B3 article-title: The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12637 – start-page: S134 year: 2010 ident: B32 article-title: A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. publication-title: Food Nutr. Bull. doi: 10.1177/15648265100312S206 – volume: 397 start-page: 694 year: 1999 ident: B74 article-title: A ferric-chelate reductase for iron uptake from soils. publication-title: Nature doi: 10.1038/17800 – volume: 28 start-page: 4 year: 2003 ident: B34 article-title: Biofortification: a global challenge. publication-title: Int. Rice Res. Notes – volume: 9 year: 2018 ident: B47 article-title: CRISPR for crop improvement: an update review. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00985 – year: 2011 ident: B64 publication-title: The Cost and Time Involved in the Discovery, Development and Authorisation of a New Plant Biotechnology Derived Trait, a Consultancy Study for Crop Life International. – volume: 286 start-page: 5446 year: 2011 ident: B68 article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.180026 – volume: 7 ident: B77 article-title: Single genetic locus improvement if iron, zinc and β-carotene content in rice grains. publication-title: Sci. Rep. doi: 10.1038/s41598-017-07198-5 – volume: 54 start-page: 77 year: 2008 ident: B80 article-title: Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2007.00205.x – volume: 22 start-page: 904 year: 2010 ident: B17 article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. publication-title: Plant Cell doi: 10.1105/tpc.109.073023 – volume: 129 start-page: 635 year: 2007 ident: B24 article-title: Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.2006.00841.x – volume: 581 start-page: 2273 year: 2007 ident: B50 article-title: Mining iron: iron uptake and transport in plants. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.04.043 – volume: 106 start-page: 22014 ident: B57 article-title: Iron fortification of rice seeds through activation of the nicotianamine synthase gene. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0910950106 – volume: 409 start-page: 346 year: 2001 ident: B21 article-title: Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake. publication-title: Nature doi: 10.1038/35053080 – year: 1999 ident: B37 publication-title: ARCHIVED - High Lauric Acid Canola Lines 23-198, 23-18-17. – volume: 302 start-page: 1 year: 2008 ident: B15 article-title: Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? publication-title: Plant Soil doi: 10.1007/s11104-007-9466-3 – volume: 83 start-page: 103 year: 2006 ident: B59 article-title: Iron absorption from soybean ferritin in nonanemic women. publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/83.1.103 – volume: 174 start-page: 2434 ident: B19 article-title: Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. publication-title: Plant Physiol. doi: 10.1104/pp.17.00672 – volume: 90 start-page: 207 year: 2016 ident: B9 article-title: NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-015-0404-0 – volume: 33 start-page: 23 year: 2014 ident: B70 article-title: Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. publication-title: Mol. Breed. doi: 10.1007/s11032-013-9931-z – volume: 68 start-page: 4983 ident: B4 article-title: Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx304 – volume: 149 start-page: 297 year: 2009 ident: B90 article-title: OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. publication-title: Plant Physiol. doi: 10.1104/pp.108.128132 – volume: 222 start-page: 225 year: 2005 ident: B73 article-title: Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. publication-title: Planta doi: 10.1007/s00425-005-1530-8 – volume: 9 start-page: 813 ident: B18 article-title: Iron homeostasis in plants – a brief overview. publication-title: Metallomics doi: 10.1039/c7mt00136c – volume: 284 start-page: 3470 year: 2009 ident: B41 article-title: Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806042200 – volume: 56 start-page: 204 year: 2012 ident: B11 article-title: Wheat ferritins: improving the iron content of the wheat grain. publication-title: J. Cereal Sci. doi: 10.1016/J.Jcs.2012.03.005 – volume: 24 start-page: 4041 year: 2005 ident: B54 article-title: Mobilization of vacuolar iron by AtNRAMP3 and At NRAMP4 is essential for seed germination on low iron. publication-title: EMBO J. doi: 10.1038/sj.emboj.7600864 – volume: 281 start-page: 32395 year: 2006 ident: B5 article-title: Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m604133200 – volume: 6 year: 2013 ident: B7 article-title: The knockdown of OsVIT2 and MIT affects iron localization in rice seed. publication-title: Rice doi: 10.1186/1939-8433-6-31 – volume: 50 start-page: 1133 year: 2004 ident: B42 article-title: A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport. publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2004.10408586 – volume: 130 start-page: 283 ident: B78 article-title: Rice nicotianamine synthase 2 expression improves dietary iron and zinc levels in wheat. publication-title: Theor. Appl. Genet doi: 10.1007/s00122-016-2808-x – volume: 8 year: 2017 ident: B10 article-title: Enhanced Grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00130 – volume: 7 start-page: 469 year: 1984 ident: B82 article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. publication-title: J. Plant Nutr. doi: 10.1080/01904168409363213 – volume: 5 year: 2014 ident: B12 article-title: Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00053 – volume: 93 start-page: 254 year: 2012 ident: B92 article-title: Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.5749 – year: 2019 ident: B44 publication-title: International Service for the Acquisition of Agri-Biotech Applications. – volume: 55 start-page: 353 year: 2004 ident: B86 article-title: Breeding for micronutrients in staple food crops from human nutrition perspective. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh064 – volume: 33 start-page: 269 year: 2012 ident: B58 article-title: Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. publication-title: Mol. Cells doi: 10.1007/s10059-012-2231-3 – volume: 388 start-page: 1545 year: 2016 ident: B31 article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. publication-title: Lancet doi: 10.1016/S0140-6736(16)31678-6 – volume: 69 start-page: 203 year: 2014 ident: B71 article-title: Development of an iron-enriched high-yieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice. publication-title: Plant Foods Hum. Nutr. doi: 10.1007/s11130-014-0431-z |
SSID | ssj0000500997 |
Score | 2.4680085 |
SecondaryResourceType | review_article |
Snippet | The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 833 |
SubjectTerms | biofortification genes iron Plant Science rice wheat |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZQtQMXxAaDsA15EgcuoYl_Z7cV0XU7IARD6i2yY0dFKgkq5cB_z3tOW7VoExeutuNY33u2v5c8fY-QE-aBpFpTpcAmQiosc6nhgaVO-azOcs-si9kWl2p0K_6M5Xit1BfmhHXywB1wfcUK4VHkzlRWiFBb6Z1zRkMj8xWP0TrceWvBVKfqjdRHd1o-EIUV_fphiurcOcpTGs43rqGo1v8vivk6U3Lt6hnukp0FZ6Q_u7V-JFuh-UQ-DFrgdc975AaVo6GHDu5aYKAx9yfCTectvWjgnJvQazgOqG08jWcv_YV1IejvWdv8oMNZe09xikccf9UJwO6T2-HF3_NRuiiVkFaSyXkqtNJeWVGIPPeSVbrOrOZMcuHBGkIUVQCDBAEbsDa59jKEPBSAoFVGZb7mn0mvaZtwSKiRprBWW2FqD7MpV2sjHRAdWUlljUzI2RK5slroiGM5i2kJ8QRCXSLUJUJdRqgTcrp64KGT0Pj_0AGaYjUMta9jA3hEufCI8i2PSMj3pSFL2Cv4A8Q2oX2CFzFlpGZwHyfkoDPs6lU85yjdViREb5h8Yy2bPc3dJOpxKyUgCMyO3mPxX8g2woFfj3P1lfTms6fwDWjP3B1HD38Bkn4AXg priority: 102 providerName: Directory of Open Access Journals |
Title | Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31379889 https://www.proquest.com/docview/2268572471 https://pubmed.ncbi.nlm.nih.gov/PMC6646660 https://doaj.org/article/6294d79238ca44efa5dbbb874d72dc30 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagcOCCKM8ArYzEgUtK_HaQEOqibgsSCAEr7S2yY6ettCQl3Ur033fGSRcWLRKXHGzHdmY8nm8c6xtCXvIAINXZOgc0EXPpuM-tiDz3OhRNwQJ3Pt22-KyPZvLjXM1_pwMaBXi-MbTDfFKzfrH36-flOzD4txhxgr993ZwtkHibIfOkFeImuQVuyWA6g08j1h-IvhENpWQrWstcaj4fqH429bHmpRKZ_yYE-vdFyj880_QeuTtCSro_rIFtciO298ntSQew7_IB-YbE0lBDJ6cdANR0NShpgy47etDCNnhCv8JuQV0baNqa6SGmjaAf-q59Q6d994NiF-fY_svAD_uQzKYH398f5WMmhbxWXC1zabQJ2slSMhYUr01TOCO4EjKAsqQs6wj6ihLss7HMBBUji6XhwWmri9CIR2Sr7dr4hFCrbOmccdI2AXrTvjFWecBBqlbaWZWRvWvJVfVIM47ZLhYVhBso6gpFXaGoqyTqjLxavXA2MGz8u-kEVbFqhtTYqaDrj6vR0irNSxmQFdHWTsrYOBW899ZAIQ-1KDLy4lqRFZgS_h9xbewuYCCurTIc3HVGHg-KXQ0lmEBmtzIjZk3la3NZr2lPTxJdN6w2iBGLp_8x7jNyB78Wz46Zfk62lv1F3AHQs_S76bAAnodztpsW9hVm_QCT |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Biofortification+to+Enrich+Rice+and+Wheat+Grain+Iron%3A+From+Genes+to+Product&rft.jtitle=Frontiers+in+plant+science&rft.au=Ludwig%2C+Yvonne&rft.au=Slamet-Loedin%2C+Inez+H&rft.date=2019-07-16&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft.spage=833&rft_id=info:doi/10.3389%2Ffpls.2019.00833&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |