Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus
The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobu...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 30; pp. 11067 - 11072 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.07.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell’s ribosomes appear to have less direct access to the cell’s nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. |
---|---|
AbstractList | The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis. The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell's ribosomes appear to have less direct access to the cell's nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation), whereas prokaryotic (bacteria and archaea) cells lack the nuclear membrane barrier to colocated transcription and translation. However, cells of the bacterium Gemmata obscuriglobus possess extensive intracellular membranes, resulting in superficially eukaryote-like cellular complexity. We have found that a substantial amount of G. obscuriglobus translation is uncoupled from transcription, broadening our understanding of the spatial organization of bacterial gene expression, which currently is based entirely on a handful of model species. This broader understanding provides a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell’s ribosomes appear to have less direct access to the cell’s nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. Significance Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation), whereas prokaryotic (bacteria and archaea) cells lack the nuclear membrane barrier to colocated transcription and translation. However, cells of the bacterium Gemmata obscuriglobus possess extensive intracellular membranes, resulting in superficially eukaryote-like cellular complexity. We have found that a substantial amount of G. obscuriglobus translation is uncoupled from transcription, broadening our understanding of the spatial organization of bacterial gene expression, which currently is based entirely on a handful of model species. This broader understanding provides a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell’s ribosomes appear to have less direct access to the cell’s nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. |
Author | Ward, Naomi L. Gatlin, Jesse C. Gottshall, Ekaterina Y. Seebart, Corrine |
Author_xml | – sequence: 1 givenname: Ekaterina Y. surname: Gottshall fullname: Gottshall, Ekaterina Y. – sequence: 2 givenname: Corrine surname: Seebart fullname: Seebart, Corrine – sequence: 3 givenname: Jesse C. surname: Gatlin fullname: Gatlin, Jesse C. – sequence: 4 givenname: Naomi L. surname: Ward fullname: Ward, Naomi L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25024214$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURLeFMycgUi9c0s74I44vlVBVClIlDqVna5J4U68Se7ETpPLrSdhlC1w4-WOeeT3veE6yIx-8zbLXCOcIil9sPaVzFKCxUoj4LFvhvC9KoeEoWwEwVVSCiePsJKUNAGhZwYvsmElggqFYZT_utjQ66vvHPNku2o5G2-ZjJJ-a6LajCz4nv7_p6dfZ-byxfZ_ysM7HB5tb34bBDvWM2KIJfiTnne_ymprRRjcN-Y0dBhopD3Vqpui6PtRTepk9X1Of7Kv9eprdf7z-evWpuP1y8_nqw23RSCbHgnNgULJSaZI1tZKvqW2VbktNCG3JLAcCVtUcOIkKFRJqXUosNWsrwpKfZpc73e1UD7ZtrJ_N9GYb3UDx0QRy5u-Idw-mC9-NQIZK4Szwfi8Qw7fJptEMLi0dmP2GKRlUsprbKTT_PyolgCqZWNCzf9BNmKKfO7FQqLgUain-Ykc1MaQU7fpQN4JZRsAsI2CeRmDOePun3QP_-89nIN8DS-ZBDtHwWRKhVDPyZods0hjikwSvQGi9vPFuF19TMNRFl8z9HQMsAVAIYJL_BF6GzVU |
CitedBy_id | crossref_primary_10_1007_s00253_017_8381_7 crossref_primary_10_1186_s12866_017_0981_y crossref_primary_10_3389_fmicb_2018_02604 crossref_primary_10_1002_wrna_1615 crossref_primary_10_1093_femsre_fuy029 crossref_primary_10_1016_j_mib_2016_07_003 crossref_primary_10_1016_j_resmic_2017_01_001 crossref_primary_10_1038_s41579_020_0413_0 crossref_primary_10_3389_fmicb_2019_01198 crossref_primary_10_1093_femsre_fuy042 crossref_primary_10_1007_s10482_018_1102_0 crossref_primary_10_3389_fmicb_2019_02585 crossref_primary_10_3389_fmicb_2021_641317 crossref_primary_10_1016_j_ympev_2020_107018 crossref_primary_10_1038_ncomms14853 crossref_primary_10_1371_journal_pone_0169432 crossref_primary_10_1093_molbev_msz287 |
Cites_doi | 10.1002/bies.201100147 10.1146/annurev.bi.40.070171.002205 10.3184/003685007780440549 10.1007/s10162-009-0160-4 10.1083/jcb.98.6.2011 10.1002/bies.201100045 10.1126/science.169.3943.392 10.1111/j.1365-2958.2012.08081.x 10.1016/0022-2836(77)90279-0 10.1007/s00284-002-3945-9 10.1371/journal.pone.0016273 10.1083/jcb.37.2.583 10.1016/j.cell.2008.11.016 10.1523/JNEUROSCI.0346-04.2004 10.1146/annurev.micro.59.030804.121258 10.1016/0022-2836(87)90369-X 10.1046/j.1365-2958.2002.02993.x 10.1099/vir.0.005355-0 10.1371/journal.pbio.1000281 10.1038/nature09152 10.1177/42.5.7512586 10.4161/cib.3.6.13061 10.1139/m73-100 10.1046/j.1365-2443.2000.00350.x 10.1038/nprot.2008.31 10.1105/tpc.104.026765 10.1073/pnas.0911979107 10.1093/emboj/19.4.710 10.1016/j.bpj.2011.04.030 10.1111/j.1365-2958.2006.05063.x 10.1073/pnas.88.18.8184 10.1128/IAI.72.4.2160-2169.2004 10.1126/science.289.5481.905 10.1007/s002030100280 10.1073/pnas.1001085107 10.1267/ahc.07002 10.1371/journal.pbio.1001565 10.1038/nsmb1271 10.1126/science.1195691 10.1242/jcs.103.3.857 10.1038/35030006 10.1099/13500872-141-7-1493 10.1021/bi00302a019 10.1111/j.1365-2958.2004.04289.x 10.1093/embo-reports/kve160 10.1046/j.1365-2818.2003.01228.x 10.3389/fmicb.2012.00326 10.1073/pnas.0805633105 10.1242/jcs.137596 10.1007/BF02342136 10.1128/JB.01513-08 10.1016/0304-4173(78)90009-5 10.1093/emboj/17.22.6437 10.1371/journal.pone.0091344 10.4161/trns.2.3.15671 10.1093/emboj/17.24.7490 10.3389/fmicb.2012.00167 10.1111/j.1574-695X.2008.00419.x |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 29, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 29, 2014 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7T7 5PM |
DOI | 10.1073/pnas.1409187111 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | Engineering Research Database Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Transcription and translation in G. obscuriglobus |
EISSN | 1091-6490 |
EndPage | 11072 |
ExternalDocumentID | 3395284981 10_1073_pnas_1409187111 25024214 111_30_11067 23804991 US201600144025 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P20 RR016474 – fundername: NCCDPHP CDC HHS grantid: DP1 HD075622 – fundername: NIGMS NIH HHS grantid: P20 GM103432 – fundername: NIGMS NIH HHS grantid: 8 P20 GM103432-12 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADACV ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ASUFR - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO DZ H13 KM PQEST X XHC CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7T7 5PM |
ID | FETCH-LOGICAL-c525t-3302062679a5bad53fadd79d69a10d62e30a028b303a48171a199651692d8a163 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:27:26 EDT 2024 Fri Aug 16 21:52:27 EDT 2024 Sat Aug 17 04:09:02 EDT 2024 Thu Oct 10 19:40:14 EDT 2024 Fri Aug 23 03:01:21 EDT 2024 Sat Sep 28 08:07:24 EDT 2024 Wed Nov 11 00:30:15 EST 2020 Fri Feb 02 07:04:46 EST 2024 Fri Apr 12 18:11:20 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-3302062679a5bad53fadd79d69a10d62e30a028b303a48171a199651692d8a163 |
Notes | http://dx.doi.org/10.1073/pnas.1409187111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: E.Y.G., C.S., J.C.G., and N.L.W. designed research; E.Y.G. and C.S. performed research; E.Y.G., C.S., J.C.G., and N.L.W. analyzed data; and E.Y.G., C.S., J.C.G., and N.L.W. wrote the paper. Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved June 27, 2014 (received for review May 21, 2014) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/30/11067.full.pdf |
PMID | 25024214 |
PQID | 1551735476 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | fao_agris_US201600144025 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121771 pnas_primary_111_30_11067 pubmed_primary_25024214 crossref_primary_10_1073_pnas_1409187111 proquest_journals_1551735476 proquest_miscellaneous_1758242493 proquest_miscellaneous_1550076243 jstor_primary_23804991 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-07-29 |
PublicationDateYYYYMMDD | 2014-07-29 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 17898874 - Acta Histochem Cytochem. 2007 Aug 30;40(4):101-11 7551018 - Microbiology. 1995 Jul;141 ( Pt 7):1493-506 21326610 - PLoS One. 2011;6(2):e16273 15491353 - Mol Microbiol. 2004 Nov;54(3):598-603 23700385 - PLoS Biol. 2013;11(5):e1001565 4941237 - Annu Rev Biochem. 1971;40:409-48 19255807 - J Assoc Res Otolaryngol. 2009 Jun;10(2):205-19 21350180 - Science. 2011 Feb 25;331(6020):1081-4 361078 - Biochim Biophys Acta. 1978 Sep 21;505(1):95-127 14516362 - J Microsc. 2003 Oct;212(Pt 1):53-61 3039150 - J Mol Biol. 1987 Mar 20;194(2):205-18 6486770 - Antonie Van Leeuwenhoek. 1984;50(3):261-8 17455763 - Sci Prog. 2007;90(Pt 1):15-27 21641305 - Biophys J. 2011 Jun 8;100(11):2605-13 11463749 - EMBO Rep. 2001 Aug;2(8):685-9 15039339 - Infect Immun. 2004 Apr;72(4):2160-9 15548740 - Plant Cell. 2004 Dec;16(12):3496-507 10947847 - Genes Cells. 2000 Aug;5(8):613-26 11014182 - Nature. 2000 Sep 21;407(6802):327-39 22624875 - Mol Microbiol. 2012 Jul;85(1):21-38 20133608 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3163-8 1478975 - J Cell Sci. 1992 Nov;103 ( Pt 3):857-62 17660832 - Nat Struct Mol Biol. 2007 Aug;14(8):727-32 22183969 - Bioessays. 2012 Jan;34(1):38-9 11491082 - Arch Microbiol. 2001 Jun;175(6):413-29 12100545 - Mol Microbiol. 2002 Jul;45(1):17-29 18388944 - Nat Protoc. 2008;3(4):619-28 24632833 - PLoS One. 2014;9(3):e91344 10937989 - Science. 2000 Aug 11;289(5481):905-20 14570276 - Curr Microbiol. 2003 Sep;47(3):237-43 16553874 - Mol Microbiol. 2006 Mar;59(6):1664-77 18695246 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11685-90 4122691 - Can J Microbiol. 1973 May;19(5):609-14 22993511 - Front Microbiol. 2012 Sep 13;3:326 4915822 - Science. 1970 Jul 24;169(3943):392-5 20087413 - PLoS Biol. 2010 Jan;8(1):e1000281 6722101 - Biochemistry. 1984 Mar 27;23(7):1462-7 19141455 - J Gen Virol. 2009 Feb;90(Pt 2):448-56 20562858 - Nature. 2010 Jul 1;466(7302):77-81 9822590 - EMBO J. 1998 Nov 16;17(22):6437-48 19074379 - J Bacteriol. 2009 Mar;191(5):1439-45 21331243 - Commun Integr Biol. 2010 Nov;3(6):572-5 11607213 - Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8184-8 21922055 - Transcription. 2011 May;2(3):130-134 6202701 - J Cell Biol. 1984 Jun;98(6):2011-8 18462389 - FEMS Immunol Med Microbiol. 2008 Jul;53(2):222-30 15910279 - Annu Rev Microbiol. 2005;59:299-328 19167328 - Cell. 2009 Jan 23;136(2):261-71 409848 - J Mol Biol. 1977 Jul;114(1):1-21 24259664 - J Cell Sci. 2014 Jan 15;127(Pt 2):277-80 21858844 - Bioessays. 2011 Nov;33(11):810-7 9857203 - EMBO J. 1998 Dec 15;17(24):7490-7 7512586 - J Histochem Cytochem. 1994 May;42(5):635-43 22545403 - Nat Prod Commun. 2012 Mar;7(3):317-20 15102922 - J Neurosci. 2004 Apr 21;24(16):4070-81 20566852 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12883-8 10675340 - EMBO J. 2000 Feb 15;19(4):710-8 4872184 - J Cell Biol. 1968 May;37(2):583-90 e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Escobedo JO (e_1_3_3_33_2) 2012; 7 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_22_2 doi: 10.1002/bies.201100147 – ident: e_1_3_3_24_2 doi: 10.1146/annurev.bi.40.070171.002205 – ident: e_1_3_3_49_2 doi: 10.3184/003685007780440549 – ident: e_1_3_3_31_2 doi: 10.1007/s10162-009-0160-4 – ident: e_1_3_3_26_2 doi: 10.1083/jcb.98.6.2011 – ident: e_1_3_3_21_2 doi: 10.1002/bies.201100045 – ident: e_1_3_3_2_2 doi: 10.1126/science.169.3943.392 – ident: e_1_3_3_50_2 doi: 10.1111/j.1365-2958.2012.08081.x – ident: e_1_3_3_53_2 – ident: e_1_3_3_45_2 doi: 10.1016/0022-2836(77)90279-0 – ident: e_1_3_3_35_2 doi: 10.1007/s00284-002-3945-9 – ident: e_1_3_3_40_2 doi: 10.1371/journal.pone.0016273 – ident: e_1_3_3_44_2 doi: 10.1083/jcb.37.2.583 – ident: e_1_3_3_47_2 doi: 10.1016/j.cell.2008.11.016 – ident: e_1_3_3_58_2 doi: 10.1523/JNEUROSCI.0346-04.2004 – ident: e_1_3_3_12_2 doi: 10.1146/annurev.micro.59.030804.121258 – ident: e_1_3_3_46_2 doi: 10.1016/0022-2836(87)90369-X – ident: e_1_3_3_48_2 doi: 10.1046/j.1365-2958.2002.02993.x – ident: e_1_3_3_60_2 doi: 10.1099/vir.0.005355-0 – volume: 7 start-page: 317 year: 2012 ident: e_1_3_3_33_2 article-title: Live cell imaging of a fluorescent gentamicin conjugate publication-title: Nat Prod Commun contributor: fullname: Escobedo JO – ident: e_1_3_3_51_2 doi: 10.1371/journal.pbio.1000281 – ident: e_1_3_3_3_2 doi: 10.1038/nature09152 – ident: e_1_3_3_57_2 doi: 10.1177/42.5.7512586 – ident: e_1_3_3_15_2 doi: 10.4161/cib.3.6.13061 – ident: e_1_3_3_52_2 doi: 10.1139/m73-100 – ident: e_1_3_3_6_2 doi: 10.1046/j.1365-2443.2000.00350.x – ident: e_1_3_3_59_2 doi: 10.1038/nprot.2008.31 – ident: e_1_3_3_43_2 doi: 10.1105/tpc.104.026765 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.0911979107 – ident: e_1_3_3_4_2 doi: 10.1093/emboj/19.4.710 – ident: e_1_3_3_7_2 doi: 10.1016/j.bpj.2011.04.030 – ident: e_1_3_3_34_2 doi: 10.1111/j.1365-2958.2006.05063.x – ident: e_1_3_3_10_2 doi: 10.1073/pnas.88.18.8184 – ident: e_1_3_3_41_2 doi: 10.1128/IAI.72.4.2160-2169.2004 – ident: e_1_3_3_54_2 doi: 10.1126/science.289.5481.905 – ident: e_1_3_3_13_2 doi: 10.1007/s002030100280 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.1001085107 – ident: e_1_3_3_28_2 doi: 10.1267/ahc.07002 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pbio.1001565 – ident: e_1_3_3_36_2 doi: 10.1038/nsmb1271 – ident: e_1_3_3_8_2 doi: 10.1126/science.1195691 – ident: e_1_3_3_29_2 doi: 10.1242/jcs.103.3.857 – ident: e_1_3_3_38_2 doi: 10.1038/35030006 – ident: e_1_3_3_11_2 doi: 10.1099/13500872-141-7-1493 – ident: e_1_3_3_37_2 doi: 10.1021/bi00302a019 – ident: e_1_3_3_1_2 doi: 10.1111/j.1365-2958.2004.04289.x – ident: e_1_3_3_5_2 doi: 10.1093/embo-reports/kve160 – ident: e_1_3_3_56_2 doi: 10.1046/j.1365-2818.2003.01228.x – ident: e_1_3_3_30_2 doi: 10.3389/fmicb.2012.00326 – ident: e_1_3_3_55_2 doi: 10.1073/pnas.0805633105 – ident: e_1_3_3_16_2 doi: 10.1242/jcs.137596 – ident: e_1_3_3_9_2 doi: 10.1007/BF02342136 – ident: e_1_3_3_14_2 doi: 10.1128/JB.01513-08 – ident: e_1_3_3_23_2 doi: 10.1016/0304-4173(78)90009-5 – ident: e_1_3_3_32_2 doi: 10.1093/emboj/17.22.6437 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pone.0091344 – ident: e_1_3_3_27_2 doi: 10.4161/trns.2.3.15671 – ident: e_1_3_3_25_2 doi: 10.1093/emboj/17.24.7490 – ident: e_1_3_3_20_2 doi: 10.3389/fmicb.2012.00167 – ident: e_1_3_3_42_2 doi: 10.1111/j.1574-695X.2008.00419.x |
SSID | ssj0009580 |
Score | 2.2922955 |
Snippet | The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the... Significance Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation),... Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation), whereas... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11067 |
SubjectTerms | Animal cells Antibodies Bacillus subtilis Bacteria Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Biological Sciences Cell Membrane - genetics Cell Membrane - metabolism Cell separation Cells DNA Escherichia coli Eukaryotes Evolution Gemmata obscuriglobus Gene expression Gene Expression Regulation, Bacterial - physiology Messenger RNA Microscopy Morphology Nuclear membrane Phylogenetics Planctomycetales - classification Planctomycetales - genetics Planctomycetales - metabolism Protein Biosynthesis - physiology Ribosomes Transcription, Genetic - physiology |
Title | Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus |
URI | https://www.jstor.org/stable/23804991 http://www.pnas.org/content/111/30/11067.abstract https://www.ncbi.nlm.nih.gov/pubmed/25024214 https://www.proquest.com/docview/1551735476 https://search.proquest.com/docview/1550076243 https://search.proquest.com/docview/1758242493 https://pubmed.ncbi.nlm.nih.gov/PMC4121771 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6PXFBFCgNlMpIHMohu4kfcXxEFaWAipBgpd4ie-3AShtnRTYH-us7k1dZhDhwTWwnGs_j--zxmJDXQKOtViaLvZZJLFInY23TMuYysdbk3vgSzw5ff86uluLjjbw5IHI8C9Ml7a_seh421Tysf3S5ldtqtRjzxBZfri9ECkBapYsZmYGCjhR9qrSb9-dOGLhfwcRYz0fxxTaYZo4VnlKgCSleEgMAAPdExV5UmpWmHtMTseYp9Pob_vwzjfK3uHT5iDwcACV92__4ETnw4TE5Gky2oedDXek3T8gtXj8M6rb5RRsPNBsX0BzdYbAaXQc1YXjSp8jRdaC4tN_QuqQAFakPrq58BRQ7-BjT3PsLJqjtiz63FX3vKwDBhtbgkFqg_pvats1Tsrx89-3iKh6uXohXksldzDnASOA6ShtpjZO8BD-otMu0SROXMc8TA8jEQgA0Ik9VajCbGffcmMsNYLxjchjq4E8IVVYnK6dybVkibFkaCZAUjV04oXPLInI-ir7Y9hU2im5nXPECRV_cT1hETmBqCvMd_F-x_MqwOh4yQsBtETnu5msaAqAIsjnoE3WjTEMD4eFIfCBMR-R0nNViMF34HGBIxaVQWUReTa_B6FDcINy67drgFiYT_B9tgInh2RsNbZ71inL_c4PaRUTtqdDUAIt-778BW-iKfw-6__y_e74gD0BwAtenmT4lh7ufrX8JwGpnz4BSfPh01pnTHbLlIHU |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXRIHSlAJG4lAO2U0cO46PqKIs0K2Q6Eq9RfbGgZU2yYpsDuXXM5NXWYQ4cE1sJxrP4_vs8RjgDdJoq5WJfadl4Iswk762Ye5HMrDWJM64nM4Oz6_i2UJ8upE3eyCHszBt0v7SriblupiUq-9tbuWmWE6HPLHpl_m5CBFIq3C6D_fQXgMxkPSx1m7SnTzh6IAFF0NFHxVNN6WpJ1TjKUSiENI1MQgBaFdU7MSl_dxUQ4IiVT3FXn9DoH8mUv4WmS4ewcMeUrJ33a8fwp4rH8Nhb7Q1O-srS799Aj_pAmJUuPUtqx0SbVpCy9iWwtXgPJgp-yddkhxblYwW92tW5QzBInNlVhWuQJJdOp8S3bsrJpjtyj43BfvgCoTBhlXokhok_-vKNvVTWFy8vz6f-f3lC_5Scrn1owiBJLIdpY20JpNRjp5Q6SzWJgyymLsoMIhNLIZAI5JQhYbymWnXjWeJQZR3BAdlVbpjYMrqYJmpRFseCJvnRiIoJXMXmdCJ5R6cDaJPN12NjbTdG1dRSqJP7ybMg2OcmtR8Qw-YLr5yqo9HnBCRmwdH7XyNQ3BSDfySB147yjg0Up6IqA8Gag9Oh1lNe-PFzyGKVJEUKvbg9fgazY7EjcKtmrYNbWJyEf2jDXIxOn2jsc2zTlHufq5XOw_UjgqNDajs9-4btIa2_Hev_Sf_3fMV3J9dzy_Ty49Xn5_DAxSioNVqrk_hYPujcS8QZm3ty9aofgE35SLS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRIHSQAEjcSiHbB624_iICkt5tKoEK_UW2WunrNQ4q2ZzgF_PTF7tIsSBa2I7ke3xfJ89_oaQN0CjjZI6C50SccgTK0JlkjJkIjZG5067Eu8On55lJwv--UJc3Er11QXtL81q5q-qmV_96GIr19UyGuPEovPTY54AkJZJtLZltEPugs3G2UjUJ73dvL99ksIizFM-qvpIFq29bmao85QAWUgwVQzAADwZ5Vu-aafU9RikiMqnUOtvKPTPYMpb3mn-kDwYYCV91__-Hrnj_COyNxhuQ48Gdem3j8kvTEIMk-7qJ20ckG3cRrN0gy5rXECo9sOTPlCOrjzFDf6G1iUFwEidt3XlKiDa3oUY7N6nmaCml35uK_rRVQCFNa1hWWqvVyg70jZPyGL-4fvxSTgkYAiXIhWbkDEAk8B4pNLCaCtYCauhVDZTOoltljoWa8AnBtyg5nkiE40xzXjyltpcA9LbJ7u-9u6AUGlUvLQyVyaNuSlLLQCYoslzy1Vu0oAcjV1frHudjaI7H5eswK4vbgYsIAcwNIW-hFWwWHxLUSMPeSGgt4Dsd-M1NQGABDkd1Am6VqamgfYwpD_grANyOI5qMRgwfA6QpGSCyywgr6fXYHrY3dC5dduVwYPMlLN_lAE-hjdwFJR52k-Um58bpl1A5NYUmgqg9Pf2G7CITgJ8sIBn_13zFbl3_n5efP109uU5uQ99yHHDOlWHZHdz3boXgLQ25mVnU78Baioj5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+segregated+transcription+and+translation+in+cells+of+the+endomembrane-containing+bacterium+Gemmata+obscuriglobus&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gottshall%2C+Ekaterina+Y.&rft.au=Seebart%2C+Corrine&rft.au=Gatlin%2C+Jesse+C.&rft.au=Ward%2C+Naomi+L.&rft.date=2014-07-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=30&rft.spage=11067&rft.epage=11072&rft_id=info:doi/10.1073%2Fpnas.1409187111&rft_id=info%3Apmid%2F25024214&rft.externalDBID=PMC4121771 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif |