Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus

The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 30; pp. 11067 - 11072
Main Authors Gottshall, Ekaterina Y., Seebart, Corrine, Gatlin, Jesse C., Ward, Naomi L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.07.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell’s ribosomes appear to have less direct access to the cell’s nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes.
AbstractList The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis. The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell's ribosomes appear to have less direct access to the cell's nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes.
Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation), whereas prokaryotic (bacteria and archaea) cells lack the nuclear membrane barrier to colocated transcription and translation. However, cells of the bacterium Gemmata obscuriglobus possess extensive intracellular membranes, resulting in superficially eukaryote-like cellular complexity. We have found that a substantial amount of G. obscuriglobus translation is uncoupled from transcription, broadening our understanding of the spatial organization of bacterial gene expression, which currently is based entirely on a handful of model species. This broader understanding provides a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell’s ribosomes appear to have less direct access to the cell’s nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes.
Significance Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation), whereas prokaryotic (bacteria and archaea) cells lack the nuclear membrane barrier to colocated transcription and translation. However, cells of the bacterium Gemmata obscuriglobus possess extensive intracellular membranes, resulting in superficially eukaryote-like cellular complexity. We have found that a substantial amount of G. obscuriglobus translation is uncoupled from transcription, broadening our understanding of the spatial organization of bacterial gene expression, which currently is based entirely on a handful of model species. This broader understanding provides a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes. The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis . The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell’s ribosomes appear to have less direct access to the cell’s nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes.
Author Ward, Naomi L.
Gatlin, Jesse C.
Gottshall, Ekaterina Y.
Seebart, Corrine
Author_xml – sequence: 1
  givenname: Ekaterina Y.
  surname: Gottshall
  fullname: Gottshall, Ekaterina Y.
– sequence: 2
  givenname: Corrine
  surname: Seebart
  fullname: Seebart, Corrine
– sequence: 3
  givenname: Jesse C.
  surname: Gatlin
  fullname: Gatlin, Jesse C.
– sequence: 4
  givenname: Naomi L.
  surname: Ward
  fullname: Ward, Naomi L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25024214$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURLeFMycgUi9c0s74I44vlVBVClIlDqVna5J4U68Se7ETpPLrSdhlC1w4-WOeeT3veE6yIx-8zbLXCOcIil9sPaVzFKCxUoj4LFvhvC9KoeEoWwEwVVSCiePsJKUNAGhZwYvsmElggqFYZT_utjQ66vvHPNku2o5G2-ZjJJ-a6LajCz4nv7_p6dfZ-byxfZ_ysM7HB5tb34bBDvWM2KIJfiTnne_ymprRRjcN-Y0dBhopD3Vqpui6PtRTepk9X1Of7Kv9eprdf7z-evWpuP1y8_nqw23RSCbHgnNgULJSaZI1tZKvqW2VbktNCG3JLAcCVtUcOIkKFRJqXUosNWsrwpKfZpc73e1UD7ZtrJ_N9GYb3UDx0QRy5u-Idw-mC9-NQIZK4Szwfi8Qw7fJptEMLi0dmP2GKRlUsprbKTT_PyolgCqZWNCzf9BNmKKfO7FQqLgUain-Ykc1MaQU7fpQN4JZRsAsI2CeRmDOePun3QP_-89nIN8DS-ZBDtHwWRKhVDPyZods0hjikwSvQGi9vPFuF19TMNRFl8z9HQMsAVAIYJL_BF6GzVU
CitedBy_id crossref_primary_10_1007_s00253_017_8381_7
crossref_primary_10_1186_s12866_017_0981_y
crossref_primary_10_3389_fmicb_2018_02604
crossref_primary_10_1002_wrna_1615
crossref_primary_10_1093_femsre_fuy029
crossref_primary_10_1016_j_mib_2016_07_003
crossref_primary_10_1016_j_resmic_2017_01_001
crossref_primary_10_1038_s41579_020_0413_0
crossref_primary_10_3389_fmicb_2019_01198
crossref_primary_10_1093_femsre_fuy042
crossref_primary_10_1007_s10482_018_1102_0
crossref_primary_10_3389_fmicb_2019_02585
crossref_primary_10_3389_fmicb_2021_641317
crossref_primary_10_1016_j_ympev_2020_107018
crossref_primary_10_1038_ncomms14853
crossref_primary_10_1371_journal_pone_0169432
crossref_primary_10_1093_molbev_msz287
Cites_doi 10.1002/bies.201100147
10.1146/annurev.bi.40.070171.002205
10.3184/003685007780440549
10.1007/s10162-009-0160-4
10.1083/jcb.98.6.2011
10.1002/bies.201100045
10.1126/science.169.3943.392
10.1111/j.1365-2958.2012.08081.x
10.1016/0022-2836(77)90279-0
10.1007/s00284-002-3945-9
10.1371/journal.pone.0016273
10.1083/jcb.37.2.583
10.1016/j.cell.2008.11.016
10.1523/JNEUROSCI.0346-04.2004
10.1146/annurev.micro.59.030804.121258
10.1016/0022-2836(87)90369-X
10.1046/j.1365-2958.2002.02993.x
10.1099/vir.0.005355-0
10.1371/journal.pbio.1000281
10.1038/nature09152
10.1177/42.5.7512586
10.4161/cib.3.6.13061
10.1139/m73-100
10.1046/j.1365-2443.2000.00350.x
10.1038/nprot.2008.31
10.1105/tpc.104.026765
10.1073/pnas.0911979107
10.1093/emboj/19.4.710
10.1016/j.bpj.2011.04.030
10.1111/j.1365-2958.2006.05063.x
10.1073/pnas.88.18.8184
10.1128/IAI.72.4.2160-2169.2004
10.1126/science.289.5481.905
10.1007/s002030100280
10.1073/pnas.1001085107
10.1267/ahc.07002
10.1371/journal.pbio.1001565
10.1038/nsmb1271
10.1126/science.1195691
10.1242/jcs.103.3.857
10.1038/35030006
10.1099/13500872-141-7-1493
10.1021/bi00302a019
10.1111/j.1365-2958.2004.04289.x
10.1093/embo-reports/kve160
10.1046/j.1365-2818.2003.01228.x
10.3389/fmicb.2012.00326
10.1073/pnas.0805633105
10.1242/jcs.137596
10.1007/BF02342136
10.1128/JB.01513-08
10.1016/0304-4173(78)90009-5
10.1093/emboj/17.22.6437
10.1371/journal.pone.0091344
10.4161/trns.2.3.15671
10.1093/emboj/17.24.7490
10.3389/fmicb.2012.00167
10.1111/j.1574-695X.2008.00419.x
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 29, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 29, 2014
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7T7
5PM
DOI 10.1073/pnas.1409187111
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList Engineering Research Database
Virology and AIDS Abstracts


MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Transcription and translation in G. obscuriglobus
EISSN 1091-6490
EndPage 11072
ExternalDocumentID 3395284981
10_1073_pnas_1409187111
25024214
111_30_11067
23804991
US201600144025
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P20 RR016474
– fundername: NCCDPHP CDC HHS
  grantid: DP1 HD075622
– fundername: NIGMS NIH HHS
  grantid: P20 GM103432
– fundername: NIGMS NIH HHS
  grantid: 8 P20 GM103432-12
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADACV
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ASUFR
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
DZ
H13
KM
PQEST
X
XHC
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7T7
5PM
ID FETCH-LOGICAL-c525t-3302062679a5bad53fadd79d69a10d62e30a028b303a48171a199651692d8a163
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:27:26 EDT 2024
Fri Aug 16 21:52:27 EDT 2024
Sat Aug 17 04:09:02 EDT 2024
Thu Oct 10 19:40:14 EDT 2024
Fri Aug 23 03:01:21 EDT 2024
Sat Sep 28 08:07:24 EDT 2024
Wed Nov 11 00:30:15 EST 2020
Fri Feb 02 07:04:46 EST 2024
Fri Apr 12 18:11:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-3302062679a5bad53fadd79d69a10d62e30a028b303a48171a199651692d8a163
Notes http://dx.doi.org/10.1073/pnas.1409187111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: E.Y.G., C.S., J.C.G., and N.L.W. designed research; E.Y.G. and C.S. performed research; E.Y.G., C.S., J.C.G., and N.L.W. analyzed data; and E.Y.G., C.S., J.C.G., and N.L.W. wrote the paper.
Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved June 27, 2014 (received for review May 21, 2014)
OpenAccessLink https://www.pnas.org/content/pnas/111/30/11067.full.pdf
PMID 25024214
PQID 1551735476
PQPubID 42026
PageCount 6
ParticipantIDs fao_agris_US201600144025
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121771
pnas_primary_111_30_11067
pubmed_primary_25024214
crossref_primary_10_1073_pnas_1409187111
proquest_journals_1551735476
proquest_miscellaneous_1758242493
proquest_miscellaneous_1550076243
jstor_primary_23804991
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-07-29
PublicationDateYYYYMMDD 2014-07-29
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 17898874 - Acta Histochem Cytochem. 2007 Aug 30;40(4):101-11
7551018 - Microbiology. 1995 Jul;141 ( Pt 7):1493-506
21326610 - PLoS One. 2011;6(2):e16273
15491353 - Mol Microbiol. 2004 Nov;54(3):598-603
23700385 - PLoS Biol. 2013;11(5):e1001565
4941237 - Annu Rev Biochem. 1971;40:409-48
19255807 - J Assoc Res Otolaryngol. 2009 Jun;10(2):205-19
21350180 - Science. 2011 Feb 25;331(6020):1081-4
361078 - Biochim Biophys Acta. 1978 Sep 21;505(1):95-127
14516362 - J Microsc. 2003 Oct;212(Pt 1):53-61
3039150 - J Mol Biol. 1987 Mar 20;194(2):205-18
6486770 - Antonie Van Leeuwenhoek. 1984;50(3):261-8
17455763 - Sci Prog. 2007;90(Pt 1):15-27
21641305 - Biophys J. 2011 Jun 8;100(11):2605-13
11463749 - EMBO Rep. 2001 Aug;2(8):685-9
15039339 - Infect Immun. 2004 Apr;72(4):2160-9
15548740 - Plant Cell. 2004 Dec;16(12):3496-507
10947847 - Genes Cells. 2000 Aug;5(8):613-26
11014182 - Nature. 2000 Sep 21;407(6802):327-39
22624875 - Mol Microbiol. 2012 Jul;85(1):21-38
20133608 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3163-8
1478975 - J Cell Sci. 1992 Nov;103 ( Pt 3):857-62
17660832 - Nat Struct Mol Biol. 2007 Aug;14(8):727-32
22183969 - Bioessays. 2012 Jan;34(1):38-9
11491082 - Arch Microbiol. 2001 Jun;175(6):413-29
12100545 - Mol Microbiol. 2002 Jul;45(1):17-29
18388944 - Nat Protoc. 2008;3(4):619-28
24632833 - PLoS One. 2014;9(3):e91344
10937989 - Science. 2000 Aug 11;289(5481):905-20
14570276 - Curr Microbiol. 2003 Sep;47(3):237-43
16553874 - Mol Microbiol. 2006 Mar;59(6):1664-77
18695246 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11685-90
4122691 - Can J Microbiol. 1973 May;19(5):609-14
22993511 - Front Microbiol. 2012 Sep 13;3:326
4915822 - Science. 1970 Jul 24;169(3943):392-5
20087413 - PLoS Biol. 2010 Jan;8(1):e1000281
6722101 - Biochemistry. 1984 Mar 27;23(7):1462-7
19141455 - J Gen Virol. 2009 Feb;90(Pt 2):448-56
20562858 - Nature. 2010 Jul 1;466(7302):77-81
9822590 - EMBO J. 1998 Nov 16;17(22):6437-48
19074379 - J Bacteriol. 2009 Mar;191(5):1439-45
21331243 - Commun Integr Biol. 2010 Nov;3(6):572-5
11607213 - Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8184-8
21922055 - Transcription. 2011 May;2(3):130-134
6202701 - J Cell Biol. 1984 Jun;98(6):2011-8
18462389 - FEMS Immunol Med Microbiol. 2008 Jul;53(2):222-30
15910279 - Annu Rev Microbiol. 2005;59:299-328
19167328 - Cell. 2009 Jan 23;136(2):261-71
409848 - J Mol Biol. 1977 Jul;114(1):1-21
24259664 - J Cell Sci. 2014 Jan 15;127(Pt 2):277-80
21858844 - Bioessays. 2011 Nov;33(11):810-7
9857203 - EMBO J. 1998 Dec 15;17(24):7490-7
7512586 - J Histochem Cytochem. 1994 May;42(5):635-43
22545403 - Nat Prod Commun. 2012 Mar;7(3):317-20
15102922 - J Neurosci. 2004 Apr 21;24(16):4070-81
20566852 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12883-8
10675340 - EMBO J. 2000 Feb 15;19(4):710-8
4872184 - J Cell Biol. 1968 May;37(2):583-90
e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Escobedo JO (e_1_3_3_33_2) 2012; 7
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_22_2
  doi: 10.1002/bies.201100147
– ident: e_1_3_3_24_2
  doi: 10.1146/annurev.bi.40.070171.002205
– ident: e_1_3_3_49_2
  doi: 10.3184/003685007780440549
– ident: e_1_3_3_31_2
  doi: 10.1007/s10162-009-0160-4
– ident: e_1_3_3_26_2
  doi: 10.1083/jcb.98.6.2011
– ident: e_1_3_3_21_2
  doi: 10.1002/bies.201100045
– ident: e_1_3_3_2_2
  doi: 10.1126/science.169.3943.392
– ident: e_1_3_3_50_2
  doi: 10.1111/j.1365-2958.2012.08081.x
– ident: e_1_3_3_53_2
– ident: e_1_3_3_45_2
  doi: 10.1016/0022-2836(77)90279-0
– ident: e_1_3_3_35_2
  doi: 10.1007/s00284-002-3945-9
– ident: e_1_3_3_40_2
  doi: 10.1371/journal.pone.0016273
– ident: e_1_3_3_44_2
  doi: 10.1083/jcb.37.2.583
– ident: e_1_3_3_47_2
  doi: 10.1016/j.cell.2008.11.016
– ident: e_1_3_3_58_2
  doi: 10.1523/JNEUROSCI.0346-04.2004
– ident: e_1_3_3_12_2
  doi: 10.1146/annurev.micro.59.030804.121258
– ident: e_1_3_3_46_2
  doi: 10.1016/0022-2836(87)90369-X
– ident: e_1_3_3_48_2
  doi: 10.1046/j.1365-2958.2002.02993.x
– ident: e_1_3_3_60_2
  doi: 10.1099/vir.0.005355-0
– volume: 7
  start-page: 317
  year: 2012
  ident: e_1_3_3_33_2
  article-title: Live cell imaging of a fluorescent gentamicin conjugate
  publication-title: Nat Prod Commun
  contributor:
    fullname: Escobedo JO
– ident: e_1_3_3_51_2
  doi: 10.1371/journal.pbio.1000281
– ident: e_1_3_3_3_2
  doi: 10.1038/nature09152
– ident: e_1_3_3_57_2
  doi: 10.1177/42.5.7512586
– ident: e_1_3_3_15_2
  doi: 10.4161/cib.3.6.13061
– ident: e_1_3_3_52_2
  doi: 10.1139/m73-100
– ident: e_1_3_3_6_2
  doi: 10.1046/j.1365-2443.2000.00350.x
– ident: e_1_3_3_59_2
  doi: 10.1038/nprot.2008.31
– ident: e_1_3_3_43_2
  doi: 10.1105/tpc.104.026765
– ident: e_1_3_3_39_2
  doi: 10.1073/pnas.0911979107
– ident: e_1_3_3_4_2
  doi: 10.1093/emboj/19.4.710
– ident: e_1_3_3_7_2
  doi: 10.1016/j.bpj.2011.04.030
– ident: e_1_3_3_34_2
  doi: 10.1111/j.1365-2958.2006.05063.x
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.88.18.8184
– ident: e_1_3_3_41_2
  doi: 10.1128/IAI.72.4.2160-2169.2004
– ident: e_1_3_3_54_2
  doi: 10.1126/science.289.5481.905
– ident: e_1_3_3_13_2
  doi: 10.1007/s002030100280
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.1001085107
– ident: e_1_3_3_28_2
  doi: 10.1267/ahc.07002
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pbio.1001565
– ident: e_1_3_3_36_2
  doi: 10.1038/nsmb1271
– ident: e_1_3_3_8_2
  doi: 10.1126/science.1195691
– ident: e_1_3_3_29_2
  doi: 10.1242/jcs.103.3.857
– ident: e_1_3_3_38_2
  doi: 10.1038/35030006
– ident: e_1_3_3_11_2
  doi: 10.1099/13500872-141-7-1493
– ident: e_1_3_3_37_2
  doi: 10.1021/bi00302a019
– ident: e_1_3_3_1_2
  doi: 10.1111/j.1365-2958.2004.04289.x
– ident: e_1_3_3_5_2
  doi: 10.1093/embo-reports/kve160
– ident: e_1_3_3_56_2
  doi: 10.1046/j.1365-2818.2003.01228.x
– ident: e_1_3_3_30_2
  doi: 10.3389/fmicb.2012.00326
– ident: e_1_3_3_55_2
  doi: 10.1073/pnas.0805633105
– ident: e_1_3_3_16_2
  doi: 10.1242/jcs.137596
– ident: e_1_3_3_9_2
  doi: 10.1007/BF02342136
– ident: e_1_3_3_14_2
  doi: 10.1128/JB.01513-08
– ident: e_1_3_3_23_2
  doi: 10.1016/0304-4173(78)90009-5
– ident: e_1_3_3_32_2
  doi: 10.1093/emboj/17.22.6437
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pone.0091344
– ident: e_1_3_3_27_2
  doi: 10.4161/trns.2.3.15671
– ident: e_1_3_3_25_2
  doi: 10.1093/emboj/17.24.7490
– ident: e_1_3_3_20_2
  doi: 10.3389/fmicb.2012.00167
– ident: e_1_3_3_42_2
  doi: 10.1111/j.1574-695X.2008.00419.x
SSID ssj0009580
Score 2.2922955
Snippet The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the...
Significance Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation),...
Eukaryotic (plant and animal) cells possess a nuclear membrane that separates the two stages of gene expression (transcription and translation), whereas...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11067
SubjectTerms Animal cells
Antibodies
Bacillus subtilis
Bacteria
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Biological Sciences
Cell Membrane - genetics
Cell Membrane - metabolism
Cell separation
Cells
DNA
Escherichia coli
Eukaryotes
Evolution
Gemmata obscuriglobus
Gene expression
Gene Expression Regulation, Bacterial - physiology
Messenger RNA
Microscopy
Morphology
Nuclear membrane
Phylogenetics
Planctomycetales - classification
Planctomycetales - genetics
Planctomycetales - metabolism
Protein Biosynthesis - physiology
Ribosomes
Transcription, Genetic - physiology
Title Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus
URI https://www.jstor.org/stable/23804991
http://www.pnas.org/content/111/30/11067.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25024214
https://www.proquest.com/docview/1551735476
https://search.proquest.com/docview/1550076243
https://search.proquest.com/docview/1758242493
https://pubmed.ncbi.nlm.nih.gov/PMC4121771
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6PXFBFCgNlMpIHMohu4kfcXxEFaWAipBgpd4ie-3AShtnRTYH-us7k1dZhDhwTWwnGs_j--zxmJDXQKOtViaLvZZJLFInY23TMuYysdbk3vgSzw5ff86uluLjjbw5IHI8C9Ml7a_seh421Tysf3S5ldtqtRjzxBZfri9ECkBapYsZmYGCjhR9qrSb9-dOGLhfwcRYz0fxxTaYZo4VnlKgCSleEgMAAPdExV5UmpWmHtMTseYp9Pob_vwzjfK3uHT5iDwcACV92__4ETnw4TE5Gky2oedDXek3T8gtXj8M6rb5RRsPNBsX0BzdYbAaXQc1YXjSp8jRdaC4tN_QuqQAFakPrq58BRQ7-BjT3PsLJqjtiz63FX3vKwDBhtbgkFqg_pvats1Tsrx89-3iKh6uXohXksldzDnASOA6ShtpjZO8BD-otMu0SROXMc8TA8jEQgA0Ik9VajCbGffcmMsNYLxjchjq4E8IVVYnK6dybVkibFkaCZAUjV04oXPLInI-ir7Y9hU2im5nXPECRV_cT1hETmBqCvMd_F-x_MqwOh4yQsBtETnu5msaAqAIsjnoE3WjTEMD4eFIfCBMR-R0nNViMF34HGBIxaVQWUReTa_B6FDcINy67drgFiYT_B9tgInh2RsNbZ71inL_c4PaRUTtqdDUAIt-778BW-iKfw-6__y_e74gD0BwAtenmT4lh7ufrX8JwGpnz4BSfPh01pnTHbLlIHU
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXRIHSlAJG4lAO2U0cO46PqKIs0K2Q6Eq9RfbGgZU2yYpsDuXXM5NXWYQ4cE1sJxrP4_vs8RjgDdJoq5WJfadl4Iswk762Ye5HMrDWJM64nM4Oz6_i2UJ8upE3eyCHszBt0v7SriblupiUq-9tbuWmWE6HPLHpl_m5CBFIq3C6D_fQXgMxkPSx1m7SnTzh6IAFF0NFHxVNN6WpJ1TjKUSiENI1MQgBaFdU7MSl_dxUQ4IiVT3FXn9DoH8mUv4WmS4ewcMeUrJ33a8fwp4rH8Nhb7Q1O-srS799Aj_pAmJUuPUtqx0SbVpCy9iWwtXgPJgp-yddkhxblYwW92tW5QzBInNlVhWuQJJdOp8S3bsrJpjtyj43BfvgCoTBhlXokhok_-vKNvVTWFy8vz6f-f3lC_5Scrn1owiBJLIdpY20JpNRjp5Q6SzWJgyymLsoMIhNLIZAI5JQhYbymWnXjWeJQZR3BAdlVbpjYMrqYJmpRFseCJvnRiIoJXMXmdCJ5R6cDaJPN12NjbTdG1dRSqJP7ybMg2OcmtR8Qw-YLr5yqo9HnBCRmwdH7XyNQ3BSDfySB147yjg0Up6IqA8Gag9Oh1lNe-PFzyGKVJEUKvbg9fgazY7EjcKtmrYNbWJyEf2jDXIxOn2jsc2zTlHufq5XOw_UjgqNDajs9-4btIa2_Hev_Sf_3fMV3J9dzy_Ty49Xn5_DAxSioNVqrk_hYPujcS8QZm3ty9aofgE35SLS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRIHSQAEjcSiHbB624_iICkt5tKoEK_UW2WunrNQ4q2ZzgF_PTF7tIsSBa2I7ke3xfJ89_oaQN0CjjZI6C50SccgTK0JlkjJkIjZG5067Eu8On55lJwv--UJc3Er11QXtL81q5q-qmV_96GIr19UyGuPEovPTY54AkJZJtLZltEPugs3G2UjUJ73dvL99ksIizFM-qvpIFq29bmao85QAWUgwVQzAADwZ5Vu-aafU9RikiMqnUOtvKPTPYMpb3mn-kDwYYCV91__-Hrnj_COyNxhuQ48Gdem3j8kvTEIMk-7qJ20ckG3cRrN0gy5rXECo9sOTPlCOrjzFDf6G1iUFwEidt3XlKiDa3oUY7N6nmaCml35uK_rRVQCFNa1hWWqvVyg70jZPyGL-4fvxSTgkYAiXIhWbkDEAk8B4pNLCaCtYCauhVDZTOoltljoWa8AnBtyg5nkiE40xzXjyltpcA9LbJ7u-9u6AUGlUvLQyVyaNuSlLLQCYoslzy1Vu0oAcjV1frHudjaI7H5eswK4vbgYsIAcwNIW-hFWwWHxLUSMPeSGgt4Dsd-M1NQGABDkd1Am6VqamgfYwpD_grANyOI5qMRgwfA6QpGSCyywgr6fXYHrY3dC5dduVwYPMlLN_lAE-hjdwFJR52k-Um58bpl1A5NYUmgqg9Pf2G7CITgJ8sIBn_13zFbl3_n5efP109uU5uQ99yHHDOlWHZHdz3boXgLQ25mVnU78Baioj5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+segregated+transcription+and+translation+in+cells+of+the+endomembrane-containing+bacterium+Gemmata+obscuriglobus&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gottshall%2C+Ekaterina+Y.&rft.au=Seebart%2C+Corrine&rft.au=Gatlin%2C+Jesse+C.&rft.au=Ward%2C+Naomi+L.&rft.date=2014-07-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=30&rft.spage=11067&rft.epage=11072&rft_id=info:doi/10.1073%2Fpnas.1409187111&rft_id=info%3Apmid%2F25024214&rft.externalDBID=PMC4121771
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif