Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?
Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we eval...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 194; pp. 68 - 81 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70–90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.
•We evaluate removal of weak connections from diffusion MRI dense weighted connectomes.•We calculate graph-theoretical metrics after enforcing various connectome densities.•Removal of the weakest connections is inconsequential for graph-theoretical analysis.•Removing larger extent of weak connections has ramifications to statistical analyses.•We advocate against removal of weak connections from dMRI dense weighted connectomes. |
---|---|
AbstractList | Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70–90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.
•We evaluate removal of weak connections from diffusion MRI dense weighted connectomes.•We calculate graph-theoretical metrics after enforcing various connectome densities.•Removal of the weakest connections is inconsequential for graph-theoretical analysis.•Removing larger extent of weak connections has ramifications to statistical analyses.•We advocate against removal of weak connections from dMRI dense weighted connectomes. Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs' weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70-90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs' weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70-90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies. Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70–90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies. |
Author | Connelly, Alan Civier, Oren Calamante, Fernando Smith, Robert Elton Yeh, Chun-Hung |
Author_xml | – sequence: 1 givenname: Oren surname: Civier fullname: Civier, Oren email: orenciv@gmail.com organization: The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, J07 University of Sydney, Camperdown, NSW, 2006, Australia – sequence: 2 givenname: Robert Elton surname: Smith fullname: Smith, Robert Elton organization: Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia – sequence: 3 givenname: Chun-Hung surname: Yeh fullname: Yeh, Chun-Hung organization: Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia – sequence: 4 givenname: Alan surname: Connelly fullname: Connelly, Alan organization: Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia – sequence: 5 givenname: Fernando surname: Calamante fullname: Calamante, Fernando organization: The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, J07 University of Sydney, Camperdown, NSW, 2006, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30844506$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV2PEyEUholZ437oXzAk3ngzIzDQDjd-bdRtsmaTjV4TyhxaujNQgVnTe3-4TFrXpFe94iQ870s4zyU688EDQpiSmhI6e7epPYwxuEGvoGaEypqwmjTyGbqgRIpKijk7m2bRVC2l8hxdprQhhEjK2xfovCEt54LMLtCfRcIRhvCoexws_g36AZvgPZjsgk-4DJCSjjtsQ8SrqLfrKq8hRMjOlIz2ut8ll6ZwBz5BqXCrdYYOpxxHk8dYqENjGCBhG8OAO2ftmMoL-Pv94sNL9NzqPsGrw3mFfn798uP6prq9-7a4_nRbGcFErpikRpgZ6yQAAQbUMkk4k8xS0jAhORFLKzvKeDtfUs6obviy3DArpG3nXXOF3u57tzH8GiFlNbhkoO-1hzAmxWgrBSezZl7QN0foJoyxfLZQjMnyWMubQr0-UONygE5tY1ESd-rffgvQ7gETQ0oR7BNCiZpUqo36r1JNKhVhqqgs0fdHUeOynqzkqF1_SsHnfQGUlT46iCoZB95A52KRobrgTin5eFRieucn9Q-wO63iL1sX2FQ |
CitedBy_id | crossref_primary_10_1093_braincomms_fcaf074 crossref_primary_10_1038_s41598_022_17213_z crossref_primary_10_1016_j_neuroimage_2022_119401 crossref_primary_10_1177_0271678X211069228 crossref_primary_10_3389_fnimg_2022_850266 crossref_primary_10_3389_fnins_2022_1040799 crossref_primary_10_1212_WNL_0000000000010669 crossref_primary_10_1016_j_neuroimage_2023_120191 crossref_primary_10_1162_netn_a_00161 crossref_primary_10_1088_1742_6596_1727_1_012009 crossref_primary_10_1016_j_neuroimage_2021_118675 crossref_primary_10_3174_ajnr_A6306 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1093_braincomms_fcac049 crossref_primary_10_1038_s41398_024_02810_5 crossref_primary_10_1093_cercor_bhae238 crossref_primary_10_1002_jnr_25392 crossref_primary_10_3390_diagnostics9030115 crossref_primary_10_1016_j_neuroimage_2019_116443 crossref_primary_10_7554_eLife_76143 crossref_primary_10_1002_hbm_25301 crossref_primary_10_3389_fneur_2022_813763 crossref_primary_10_1016_j_media_2020_101799 crossref_primary_10_1016_j_tics_2022_12_011 crossref_primary_10_1038_s41598_024_63716_2 crossref_primary_10_1016_j_dcn_2023_101253 crossref_primary_10_1002_jmri_27188 crossref_primary_10_1371_journal_pone_0224598 crossref_primary_10_1089_brain_2020_0935 crossref_primary_10_3389_fnimg_2024_1341607 crossref_primary_10_1007_s41109_022_00516_5 crossref_primary_10_23868_gc562843 crossref_primary_10_1162_netn_a_00308 crossref_primary_10_1162_netn_a_00301 crossref_primary_10_1007_s00429_024_02807_2 crossref_primary_10_1063_10_0034533 crossref_primary_10_3389_fnhum_2020_00010 crossref_primary_10_1088_1741_2552_ab6aad crossref_primary_10_1088_1741_2552_abc29b crossref_primary_10_1038_s41598_022_22079_2 crossref_primary_10_1093_cercor_bhac438 crossref_primary_10_1093_braincomms_fcaa001 crossref_primary_10_1002_brb3_3460 crossref_primary_10_1016_j_neuroimage_2024_120563 crossref_primary_10_1109_TBME_2020_3002688 crossref_primary_10_1016_j_neuroimage_2022_119455 crossref_primary_10_1016_j_nicl_2024_103690 crossref_primary_10_1002_sim_10091 crossref_primary_10_1088_1741_2552_ab947b crossref_primary_10_1016_j_bpsc_2022_06_002 crossref_primary_10_1016_j_dcn_2023_101316 crossref_primary_10_1093_braincomms_fcz020 crossref_primary_10_1093_cercor_bhac444 |
Cites_doi | 10.1016/j.neuroimage.2011.03.069 10.1016/j.neuroimage.2015.04.009 10.1002/mrm.24623 10.1109/TMI.2010.2046908 10.3389/fneur.2017.00580 10.1371/journal.pone.0048121 10.1016/j.neuroimage.2011.12.090 10.1371/journal.pbio.0060159 10.1016/j.neuroimage.2014.07.061 10.1016/j.neuroimage.2015.08.008 10.1016/j.neuroimage.2015.10.019 10.1038/nmeth.3098 10.3389/fneur.2014.00232 10.1016/j.neuroimage.2015.05.011 10.1016/j.nicl.2017.11.007 10.2202/1544-6115.1128 10.1016/j.neuroimage.2006.01.021 10.1103/PhysRevE.98.042304 10.1002/mrm.10308 10.1371/journal.pone.0013701 10.1002/mrm.26054 10.1016/j.neuroimage.2012.11.049 10.1002/mrm.22924 10.1016/j.neuroimage.2012.12.066 10.1016/j.neuroimage.2004.07.051 10.1002/mrm.23097 10.1002/mrm.22361 10.1177/1073858416667720 10.1371/journal.pone.0000597 10.1371/journal.pone.0021570 10.1002/mrm.1910150117 10.1002/mrm.26059 10.1016/j.neuroimage.2007.02.016 10.1016/j.neuroimage.2016.08.016 10.1002/hbm.23520 10.1016/j.neuroimage.2016.05.047 10.1016/j.neuroimage.2013.05.041 10.1073/pnas.1405672111 10.1016/j.neuroimage.2012.06.005 10.1093/cercor/bhq201 10.1109/TMI.2013.2285500 10.1016/j.neuroimage.2013.04.087 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2011.02.046 10.1016/j.neuroimage.2014.10.004 10.1016/j.neuroimage.2015.06.092 10.1038/nature13186 10.1016/j.neuroimage.2004.07.037 10.1016/j.neuroimage.2007.10.060 10.1016/j.neuron.2013.07.036 10.1371/journal.pone.0015710 10.1016/j.neuroimage.2015.07.067 10.3389/fninf.2011.00013 10.1016/j.neuroimage.2010.09.016 10.1093/cercor/bhx249 10.1016/S1053-8119(03)00336-7 10.1371/journal.pcbi.1005104 10.1016/j.neuroimage.2012.06.081 10.1016/j.neuroimage.2016.06.035 10.1371/journal.pcbi.0010042 10.1002/hbm.23741 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2019.02.039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 1095-9572 |
EndPage | 81 |
ExternalDocumentID | 30844506 10_1016_j_neuroimage_2019_02_039 S1053811919301351 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia United States--US |
GeographicLocations_xml | – name: United States--US – name: Australia |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c525t-291c5c62d9ee0e2e1f2904292f103259405bf9d12487b1421a34b0322f59f87d3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 15:15:12 EDT 2025 Wed Aug 13 11:28:20 EDT 2025 Wed Feb 19 02:31:50 EST 2025 Tue Jul 01 03:02:07 EDT 2025 Thu Apr 24 23:44:18 EDT 2025 Fri Feb 23 02:36:55 EST 2024 Tue Aug 26 20:02:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph-theoretical analysis Fiber tracking Diffusion MRI Weighted connectome Tractography Connectomics |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-291c5c62d9ee0e2e1f2904292f103259405bf9d12487b1421a34b0322f59f87d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30844506 |
PQID | 2229594843 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2189540637 proquest_journals_2229594843 pubmed_primary_30844506 crossref_primary_10_1016_j_neuroimage_2019_02_039 crossref_citationtrail_10_1016_j_neuroimage_2019_02_039 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_02_039 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_02_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong (bib2a) 2017; 8 Zalesky, Fornito, Cocchi, Gollo, van den Heuvel, Breakspear (bib65) 2016; 142 Iturria-Medina, Sotero, Canales-Rodríguez, Alemán-Gómez, Melie-García (bib22) 2008; 40 Tournier, Calamante, Connelly (bib51) 2007; 35 Andersson, Sotiropoulos (bib2) 2015; 122 Daducci, Canales-Rodríguez, Descoteaux, Garyfallidis, Gur, Lin, Mani, Merlet, Paquette, Ramirez-Manzanares (bib8) 2014; 33 Smith, Tournier, Calamante, Connelly (bib44) 2013; 67 Patenaude, Smith, Kennedy, Jenkinson (bib34) 2011; 56 Sherbondy, Rowe, Alexander (bib42) 2010 Oh, Harris, Ng, Winslow, Cain, Mihalas, Wang, Lau, Kuan, Henry (bib31) 2014; 508 Tournier, Calamante, Connelly (bib53) 2010 Tournier, Calamante, Gadian, Connelly (bib52) 2004; 23 Christiaens, Reisert, Dhollander, Sunaert, Suetens, Maes (bib5) 2015; 123 Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom, Ghosh (bib19) 2011; 5 Bassett, Bullmore (bib4) 2016; 23 Rubinov, Sporns (bib40) 2011; 56 Veraart, Novikov, Christiaens, Ades-Aron, Sijbers, Fieremans (bib60) 2016; 142 Veraart, Fieremans, Novikov (bib59) 2016; 76 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib20) 2008; 6 Perry, Wen, Lord, Thalamuthu, Roberts, Mitchell, Sachdev, Breakspear (bib35) 2015; 114 Xu, Moeller, Strupp, Auerbach, Chen, Feinberg, Ugurbil, Yacoub (bib61) 2012 Thomas, Frank, Irfanoglu, Modi, Saleem, Leopold, Pierpaoli (bib1a) 2014; 111 Girard, Daducci, Petit, Thiran, Whittingstall, Deriche, Wassermann, Descoteaux (bib18) 2017; 38 Yan, Jeub, Flammini, Radicchi, Fortunato (bib62) 2018; 98 Onnela, Saramäki, Kertész, Kaski (bib32) 2005; 71 Ypma, Bullmore (bib64) 2016; 12 Ercsey-Ravasz, Markov, Lamy, Van Essen, Knoblauch, Toroczkai, Kennedy (bib13) 2013; 80 Rubinov, Sporns (bib39) 2010; 52 Hagmann, Kurant, Gigandet, Thiran, Wedeen, Meuli, Thiran (bib21) 2007; 2 Lemkaddem, Skiöldebrand, Dal Palú, Thiran, Daducci (bib27) 2014; 5 Drakesmith, Caeyenberghs, Dutt, Lewis, David, Jones (bib12) 2015; 118 Ginestet, Nichols, Bullmore, Simmons (bib17) 2011; 6 Sotiropoulos, Zalesky (bib49) 2017 Kellner, Dhital, Kiselev, Reisert (bib26) 2016; 76 de Reus, van den Heuvel (bib10) 2013; 70 Smith, Tournier, Calamante, Connelly (bib45) 2015; 104 Zhang, Horvath (bib66) 2005; 4 Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bib23) 2014; 103 Feinberg, Moeller, Smith, Auerbach, Ramanna, Glasser, Miller, Ugurbil, Yacoub (bib14) 2010; 5 Fornito, Zalesky, Pantelis, Bullmore (bib16) 2012; 62 Conti, Mitra, Calderoni, Pannek, Shen, Pagnozzi, Rose, Mazzotti, Scelfo, Tosetti (bib7) 2017; 38 Andersson, Skare, Ashburner (bib1) 2003; 20 Jones, Knosche, Turner (bib24) 2013; 73 Yeh, Smith, Liang, Calamante, Connelly (bib63) 2016; 142 Desikan, Segonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib11) 2006; 31 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, WU-Minn HCP Consortium (bib56) 2013; 80 Sotiropoulos, Moeller, Jbabdi, Xu, Andersson, Auerbach, Yacoub, Feinberg, Setsompop, Wald (bib48) 2013; 70 Vasa, Seidlitz, Romero-Garcia, Whitaker, Rosenthal, Vertes, Shinn, Alexander-Bloch, Fonagy, Dolan, Jones, Goodyer, consortium, Sporns, Bullmore (bib58) 2018; 28 van Wijk, Stam, Daffertshofer (bib57) 2010; 5 Pestilli, Yeatman, Rokem, Kay, Wandell (bib36) 2014; 11 Daducci, Gerhard, Griffa, Lemkaddem, Cammoun, Gigandet, Meuli, Hagmann, Thiran (bib9) 2012; 7 Smith, Tournier, Calamante, Connelly (bib43) 2012; 62 Reese, Heid, Weisskoff, Wedeen (bib37) 2003; 49 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib55) 2010; 29 Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Uğurbil (bib29) 2010; 63 Fornito, Zalesky, Breakspear (bib15) 2013; 80 Kamagata, Zalesky, Hatano, Di Biase, El Samad, Saiki, Shimoji, Kumamaru, Kamiya, Hori (bib25) 2018; 17 Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bib41) 2012; 67 Oxtoby, Garbarino, Firth, Warren, Schott, Alexander, Initiative (bib33) 2017; 8 Mugler, Brookeman (bib30) 1990; 15 Smith, Tournier, Calamante, Connelly (bib46) 2015; 119 Andersson, Sotiropoulos (bib3) 2016; 125 Tournier, Mori, Leemans (bib54) 2011; 65 Civier, Smith, Yeh, Connelly, Calamante (bib6) 2018 Markov, Misery, Falchier, Lamy, Vezoli, Quilodran, Gariel, Giroud, Ercsey-Ravasz, Pilaz (bib28) 2011; 21 Reisert, Mader, Anastasopoulos, Weigel, Schnell, Kiselev (bib38) 2011; 54 Sporns, Tononi, Kotter (bib50) 2005; 1 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bib47) 2004; 23 Smith (10.1016/j.neuroimage.2019.02.039_bib47) 2004; 23 Fornito (10.1016/j.neuroimage.2019.02.039_bib15) 2013; 80 Tournier (10.1016/j.neuroimage.2019.02.039_bib52) 2004; 23 Rubinov (10.1016/j.neuroimage.2019.02.039_bib39) 2010; 52 Daducci (10.1016/j.neuroimage.2019.02.039_bib9) 2012; 7 Sherbondy (10.1016/j.neuroimage.2019.02.039_bib42) 2010 Smith (10.1016/j.neuroimage.2019.02.039_bib45) 2015; 104 Sporns (10.1016/j.neuroimage.2019.02.039_bib50) 2005; 1 Hagmann (10.1016/j.neuroimage.2019.02.039_bib21) 2007; 2 Vasa (10.1016/j.neuroimage.2019.02.039_bib58) 2018; 28 Moeller (10.1016/j.neuroimage.2019.02.039_bib29) 2010; 63 Kamagata (10.1016/j.neuroimage.2019.02.039_bib25) 2018; 17 Xu (10.1016/j.neuroimage.2019.02.039_bib61) 2012 Rubinov (10.1016/j.neuroimage.2019.02.039_bib40) 2011; 56 Bassett (10.1016/j.neuroimage.2019.02.039_bib4) 2016; 23 Thomas (10.1016/j.neuroimage.2019.02.039_bib1a) 2014; 111 Reisert (10.1016/j.neuroimage.2019.02.039_bib38) 2011; 54 Sotiropoulos (10.1016/j.neuroimage.2019.02.039_bib48) 2013; 70 Conti (10.1016/j.neuroimage.2019.02.039_bib7) 2017; 38 Pestilli (10.1016/j.neuroimage.2019.02.039_bib36) 2014; 11 Jones (10.1016/j.neuroimage.2019.02.039_bib24) 2013; 73 Jeurissen (10.1016/j.neuroimage.2019.02.039_bib23) 2014; 103 Reese (10.1016/j.neuroimage.2019.02.039_bib37) 2003; 49 Kellner (10.1016/j.neuroimage.2019.02.039_bib26) 2016; 76 Onnela (10.1016/j.neuroimage.2019.02.039_bib32) 2005; 71 Smith (10.1016/j.neuroimage.2019.02.039_bib43) 2012; 62 Patenaude (10.1016/j.neuroimage.2019.02.039_bib34) 2011; 56 Oxtoby (10.1016/j.neuroimage.2019.02.039_bib33) 2017; 8 Smith (10.1016/j.neuroimage.2019.02.039_bib46) 2015; 119 Tournier (10.1016/j.neuroimage.2019.02.039_bib54) 2011; 65 Van Essen (10.1016/j.neuroimage.2019.02.039_bib56) 2013; 80 Zhang (10.1016/j.neuroimage.2019.02.039_bib66) 2005; 4 Veraart (10.1016/j.neuroimage.2019.02.039_bib59) 2016; 76 Veraart (10.1016/j.neuroimage.2019.02.039_bib60) 2016; 142 Ercsey-Ravasz (10.1016/j.neuroimage.2019.02.039_bib13) 2013; 80 Ypma (10.1016/j.neuroimage.2019.02.039_bib64) 2016; 12 Andersson (10.1016/j.neuroimage.2019.02.039_bib1) 2003; 20 Perry (10.1016/j.neuroimage.2019.02.039_bib35) 2015; 114 Fornito (10.1016/j.neuroimage.2019.02.039_bib16) 2012; 62 Setsompop (10.1016/j.neuroimage.2019.02.039_bib41) 2012; 67 Girard (10.1016/j.neuroimage.2019.02.039_bib18) 2017; 38 van Wijk (10.1016/j.neuroimage.2019.02.039_bib57) 2010; 5 Desikan (10.1016/j.neuroimage.2019.02.039_bib11) 2006; 31 Yeh (10.1016/j.neuroimage.2019.02.039_bib63) 2016; 142 Oh (10.1016/j.neuroimage.2019.02.039_bib31) 2014; 508 Feinberg (10.1016/j.neuroimage.2019.02.039_bib14) 2010; 5 Tustison (10.1016/j.neuroimage.2019.02.039_bib55) 2010; 29 Gorgolewski (10.1016/j.neuroimage.2019.02.039_bib19) 2011; 5 Daducci (10.1016/j.neuroimage.2019.02.039_bib8) 2014; 33 Sotiropoulos (10.1016/j.neuroimage.2019.02.039_bib49) 2017 Andersson (10.1016/j.neuroimage.2019.02.039_bib3) 2016; 125 Christiaens (10.1016/j.neuroimage.2019.02.039_bib5) 2015; 123 Tournier (10.1016/j.neuroimage.2019.02.039_bib51) 2007; 35 Zalesky (10.1016/j.neuroimage.2019.02.039_bib65) 2016; 142 Smith (10.1016/j.neuroimage.2019.02.039_bib44) 2013; 67 Iturria-Medina (10.1016/j.neuroimage.2019.02.039_bib22) 2008; 40 Markov (10.1016/j.neuroimage.2019.02.039_bib28) 2011; 21 Andersson (10.1016/j.neuroimage.2019.02.039_bib2) 2015; 122 Hagmann (10.1016/j.neuroimage.2019.02.039_bib20) 2008; 6 Ginestet (10.1016/j.neuroimage.2019.02.039_bib17) 2011; 6 Tournier (10.1016/j.neuroimage.2019.02.039_bib53) 2010 Yan (10.1016/j.neuroimage.2019.02.039_bib62) 2018; 98 de Reus (10.1016/j.neuroimage.2019.02.039_bib10) 2013; 70 Maier-Hein (10.1016/j.neuroimage.2019.02.039_bib2a) 2017; 8 Civier (10.1016/j.neuroimage.2019.02.039_bib6) 2018 Mugler (10.1016/j.neuroimage.2019.02.039_bib30) 1990; 15 Lemkaddem (10.1016/j.neuroimage.2019.02.039_bib27) 2014; 5 Drakesmith (10.1016/j.neuroimage.2019.02.039_bib12) 2015; 118 |
References_xml | – start-page: 183 year: 2010 end-page: 190 ident: bib42 article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 123 start-page: 89 year: 2015 end-page: 101 ident: bib5 article-title: Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model publication-title: Neuroimage – volume: 4 year: 2005 ident: bib66 article-title: A general framework for weighted gene co-expression network analysis publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 118 start-page: 313 year: 2015 end-page: 333 ident: bib12 article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data publication-title: Neuroimage – volume: 5 start-page: 13 year: 2011 ident: bib19 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinf. – volume: 23 start-page: 1176 year: 2004 end-page: 1185 ident: bib52 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib51 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: bib43 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage – volume: 40 start-page: 1064 year: 2008 end-page: 1076 ident: bib22 article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory publication-title: Neuroimage – volume: 76 start-page: 1582 year: 2016 end-page: 1593 ident: bib59 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn. Reson. Med. – volume: 5 start-page: 232 year: 2014 ident: bib27 article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis publication-title: Front. Neurol. – volume: 8 start-page: 1349 year: 2017 ident: bib2a article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun – volume: 21 start-page: 1254 year: 2011 end-page: 1272 ident: bib28 article-title: Weight consistency specifies regularities of macaque cortical networks publication-title: Cerebr. Cortex – volume: 28 start-page: 281 year: 2018 end-page: 294 ident: bib58 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: Cerebr. Cortex – volume: 2 start-page: e597 year: 2007 ident: bib21 article-title: Mapping human whole-brain structural networks with diffusion MRI publication-title: PLoS One – volume: 142 start-page: 407 year: 2016 end-page: 420 ident: bib65 article-title: Connectome sensitivity or specificity: which is more important? publication-title: Neuroimage – year: 2018 ident: bib6 article-title: Is removal of weak connections necessary for dense weighted structural connectomes? publication-title: Proceedings of the Joint Annual Meeting ISMRM (International Society for Magnetic Resonance in Medicine) - ESMRMB 2018, Paris, France – start-page: 1670 year: 2010 ident: bib53 article-title: Improved probabilistic streamlines tractography by 2 publication-title: Proceedings of the 18 – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib39 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bib47 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 114 start-page: 414 year: 2015 end-page: 426 ident: bib35 article-title: The organisation of the elderly connectome publication-title: Neuroimage – volume: 70 start-page: 1682 year: 2013 end-page: 1689 ident: bib48 article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE publication-title: Magn. Reson. Med. – volume: 142 start-page: 394 year: 2016 end-page: 406 ident: bib60 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib56 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 56 start-page: 2068 year: 2011 end-page: 2079 ident: bib40 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage – volume: 67 start-page: 298 year: 2013 end-page: 312 ident: bib44 article-title: SIFT: spherical-deconvolution informed filtering of tractograms publication-title: Neuroimage – volume: 12 year: 2016 ident: bib64 article-title: Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse publication-title: PLoS Comput. Biol. – volume: 33 start-page: 384 year: 2014 end-page: 399 ident: bib8 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans. Med. Imaging – volume: 111 start-page: 16574 year: 2014 end-page: 16579 ident: bib1a article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 38 start-page: 2333 year: 2017 end-page: 2344 ident: bib7 article-title: Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: a diffusion MRI study publication-title: Hum. Brain Mapp. – volume: 63 start-page: 1144 year: 2010 end-page: 1153 ident: bib29 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. – volume: 119 start-page: 338 year: 2015 end-page: 351 ident: bib46 article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bib1 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib55 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – volume: 6 start-page: e159 year: 2008 ident: bib20 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 49 start-page: 177 year: 2003 end-page: 182 ident: bib37 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. – volume: 54 start-page: 955 year: 2011 end-page: 962 ident: bib38 article-title: Global fiber reconstruction becomes practical publication-title: Neuroimage – volume: 73 start-page: 239 year: 2013 end-page: 254 ident: bib24 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: Neuroimage – volume: 6 year: 2011 ident: bib17 article-title: Brain network analysis: separating cost from topology using cost-integration publication-title: PLoS One – volume: 142 start-page: 150 year: 2016 end-page: 162 ident: bib63 article-title: Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics publication-title: Neuroimage – year: 2012 ident: bib61 article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI publication-title: Proceedings of the 20 – volume: 103 start-page: 411 year: 2014 end-page: 426 ident: bib23 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage – volume: 38 start-page: 5485 year: 2017 end-page: 5500 ident: bib18 article-title: AxTract: toward microstructure informed tractography publication-title: Hum. Brain Mapp. – volume: 5 year: 2010 ident: bib57 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bib3 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 7 year: 2012 ident: bib9 article-title: The connectome mapper: an open-source processing pipeline to map connectomes with MRI publication-title: PLoS One – volume: 508 start-page: 207 year: 2014 ident: bib31 article-title: A mesoscale connectome of the mouse brain publication-title: Nature – volume: 67 start-page: 1210 year: 2012 end-page: 1224 ident: bib41 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced publication-title: Magn. Reson. Med. – volume: 23 start-page: 499 year: 2016 end-page: 516 ident: bib4 article-title: Small-world brain networks revisited publication-title: Neuroscientist – volume: 15 start-page: 152 year: 1990 end-page: 157 ident: bib30 article-title: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE) publication-title: Magn. Reson. Med. – volume: 1 start-page: e42 year: 2005 ident: bib50 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – volume: 56 start-page: 907 year: 2011 end-page: 922 ident: bib34 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: Neuroimage – volume: 80 start-page: 426 year: 2013 end-page: 444 ident: bib15 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: Neuroimage – volume: 17 start-page: 518 year: 2018 end-page: 529 ident: bib25 article-title: Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: evaluation using multi-shell, multi-tissue, constrained spherical deconvolution publication-title: Neuroimage: Clinical – volume: 70 start-page: 402 year: 2013 end-page: 409 ident: bib10 article-title: Estimating false positives and negatives in brain networks publication-title: Neuroimage – year: 2017 ident: bib49 article-title: Building connectomes using diffusion MRI: why, how and but publication-title: NMR in Biomedicine – volume: 5 year: 2010 ident: bib14 article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging publication-title: PLoS One – volume: 71 year: 2005 ident: bib32 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys. Rev. – volume: 98 start-page: 042304 year: 2018 ident: bib62 article-title: Weight thresholding on complex networks publication-title: Phys. Rev. E – volume: 62 start-page: 2296 year: 2012 end-page: 2314 ident: bib16 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib11 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 11 start-page: 1058 year: 2014 ident: bib36 article-title: Evaluation and statistical inference for human connectomes publication-title: Nat. Methods – volume: 104 start-page: 253 year: 2015 end-page: 265 ident: bib45 article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome publication-title: Neuroimage – volume: 76 start-page: 1574 year: 2016 end-page: 1581 ident: bib26 article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts publication-title: Magn. Reson. Med. – volume: 8 start-page: 580 year: 2017 ident: bib33 article-title: Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer's disease publication-title: Front. Neurol. – volume: 80 start-page: 184 year: 2013 end-page: 197 ident: bib13 article-title: A predictive network model of cerebral cortical connectivity based on a distance rule publication-title: Neuron – volume: 122 start-page: 166 year: 2015 end-page: 176 ident: bib2 article-title: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage – volume: 65 start-page: 1532 year: 2011 end-page: 1556 ident: bib54 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. – volume: 56 start-page: 2068 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib40 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.069 – volume: 114 start-page: 414 year: 2015 ident: 10.1016/j.neuroimage.2019.02.039_bib35 article-title: The organisation of the elderly connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.009 – volume: 70 start-page: 1682 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib48 article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24623 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib55 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 8 start-page: 580 year: 2017 ident: 10.1016/j.neuroimage.2019.02.039_bib33 article-title: Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer's disease publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00580 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2019.02.039_bib9 article-title: The connectome mapper: an open-source processing pipeline to map connectomes with MRI publication-title: PLoS One doi: 10.1371/journal.pone.0048121 – volume: 62 start-page: 2296 year: 2012 ident: 10.1016/j.neuroimage.2019.02.039_bib16 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.090 – volume: 6 start-page: e159 year: 2008 ident: 10.1016/j.neuroimage.2019.02.039_bib20 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 103 start-page: 411 year: 2014 ident: 10.1016/j.neuroimage.2019.02.039_bib23 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 123 start-page: 89 year: 2015 ident: 10.1016/j.neuroimage.2019.02.039_bib5 article-title: Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.008 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib3 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 11 start-page: 1058 year: 2014 ident: 10.1016/j.neuroimage.2019.02.039_bib36 article-title: Evaluation and statistical inference for human connectomes publication-title: Nat. Methods doi: 10.1038/nmeth.3098 – volume: 5 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2019.02.039_bib27 article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis publication-title: Front. Neurol. doi: 10.3389/fneur.2014.00232 – volume: 118 start-page: 313 year: 2015 ident: 10.1016/j.neuroimage.2019.02.039_bib12 article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.011 – volume: 17 start-page: 518 year: 2018 ident: 10.1016/j.neuroimage.2019.02.039_bib25 article-title: Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: evaluation using multi-shell, multi-tissue, constrained spherical deconvolution publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2017.11.007 – volume: 4 year: 2005 ident: 10.1016/j.neuroimage.2019.02.039_bib66 article-title: A general framework for weighted gene co-expression network analysis publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1128 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroimage.2019.02.039_bib11 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 71 year: 2005 ident: 10.1016/j.neuroimage.2019.02.039_bib32 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys. Rev. – volume: 98 start-page: 042304 year: 2018 ident: 10.1016/j.neuroimage.2019.02.039_bib62 article-title: Weight thresholding on complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.042304 – year: 2012 ident: 10.1016/j.neuroimage.2019.02.039_bib61 article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI – volume: 49 start-page: 177 year: 2003 ident: 10.1016/j.neuroimage.2019.02.039_bib37 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10308 – volume: 5 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib57 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One doi: 10.1371/journal.pone.0013701 – volume: 76 start-page: 1574 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib26 article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26054 – volume: 67 start-page: 298 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib44 article-title: SIFT: spherical-deconvolution informed filtering of tractograms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.049 – volume: 65 start-page: 1532 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib54 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22924 – volume: 70 start-page: 402 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib10 article-title: Estimating false positives and negatives in brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.12.066 – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroimage.2019.02.039_bib47 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 67 start-page: 1210 year: 2012 ident: 10.1016/j.neuroimage.2019.02.039_bib41 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 63 start-page: 1144 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib29 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22361 – volume: 23 start-page: 499 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib4 article-title: Small-world brain networks revisited publication-title: Neuroscientist doi: 10.1177/1073858416667720 – volume: 2 start-page: e597 year: 2007 ident: 10.1016/j.neuroimage.2019.02.039_bib21 article-title: Mapping human whole-brain structural networks with diffusion MRI publication-title: PLoS One doi: 10.1371/journal.pone.0000597 – start-page: 183 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib42 article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib17 article-title: Brain network analysis: separating cost from topology using cost-integration publication-title: PLoS One doi: 10.1371/journal.pone.0021570 – volume: 15 start-page: 152 year: 1990 ident: 10.1016/j.neuroimage.2019.02.039_bib30 article-title: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910150117 – volume: 76 start-page: 1582 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib59 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26059 – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.neuroimage.2019.02.039_bib51 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 142 start-page: 394 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib60 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.016 – volume: 38 start-page: 2333 year: 2017 ident: 10.1016/j.neuroimage.2019.02.039_bib7 article-title: Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: a diffusion MRI study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23520 – volume: 142 start-page: 150 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib63 article-title: Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.047 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib56 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 111 start-page: 16574 year: 2014 ident: 10.1016/j.neuroimage.2019.02.039_bib1a article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1405672111 – volume: 62 start-page: 1924 year: 2012 ident: 10.1016/j.neuroimage.2019.02.039_bib43 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 21 start-page: 1254 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib28 article-title: Weight consistency specifies regularities of macaque cortical networks publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhq201 – year: 2017 ident: 10.1016/j.neuroimage.2019.02.039_bib49 article-title: Building connectomes using diffusion MRI: why, how and but – volume: 33 start-page: 384 year: 2014 ident: 10.1016/j.neuroimage.2019.02.039_bib8 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2285500 – volume: 80 start-page: 426 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib15 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.087 – volume: 8 start-page: 1349 issue: 2017 year: 2017 ident: 10.1016/j.neuroimage.2019.02.039_bib2a article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun doi: 10.1038/s41467-017-01285-x – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib39 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 56 start-page: 907 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib34 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.046 – volume: 104 start-page: 253 year: 2015 ident: 10.1016/j.neuroimage.2019.02.039_bib45 article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.004 – volume: 119 start-page: 338 year: 2015 ident: 10.1016/j.neuroimage.2019.02.039_bib46 article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.092 – volume: 508 start-page: 207 year: 2014 ident: 10.1016/j.neuroimage.2019.02.039_bib31 article-title: A mesoscale connectome of the mouse brain publication-title: Nature doi: 10.1038/nature13186 – volume: 23 start-page: 1176 year: 2004 ident: 10.1016/j.neuroimage.2019.02.039_bib52 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.037 – volume: 40 start-page: 1064 year: 2008 ident: 10.1016/j.neuroimage.2019.02.039_bib22 article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.060 – volume: 80 start-page: 184 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib13 article-title: A predictive network model of cerebral cortical connectivity based on a distance rule publication-title: Neuron doi: 10.1016/j.neuron.2013.07.036 – volume: 5 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib14 article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging publication-title: PLoS One doi: 10.1371/journal.pone.0015710 – volume: 122 start-page: 166 year: 2015 ident: 10.1016/j.neuroimage.2019.02.039_bib2 article-title: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.067 – volume: 5 start-page: 13 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib19 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinf. doi: 10.3389/fninf.2011.00013 – year: 2018 ident: 10.1016/j.neuroimage.2019.02.039_bib6 article-title: Is removal of weak connections necessary for dense weighted structural connectomes? – volume: 54 start-page: 955 year: 2011 ident: 10.1016/j.neuroimage.2019.02.039_bib38 article-title: Global fiber reconstruction becomes practical publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.016 – volume: 28 start-page: 281 year: 2018 ident: 10.1016/j.neuroimage.2019.02.039_bib58 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhx249 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.neuroimage.2019.02.039_bib1 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 12 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib64 article-title: Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005104 – start-page: 1670 year: 2010 ident: 10.1016/j.neuroimage.2019.02.039_bib53 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions – volume: 73 start-page: 239 year: 2013 ident: 10.1016/j.neuroimage.2019.02.039_bib24 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.081 – volume: 142 start-page: 407 year: 2016 ident: 10.1016/j.neuroimage.2019.02.039_bib65 article-title: Connectome sensitivity or specificity: which is more important? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.035 – volume: 1 start-page: e42 year: 2005 ident: 10.1016/j.neuroimage.2019.02.039_bib50 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 38 start-page: 5485 year: 2017 ident: 10.1016/j.neuroimage.2019.02.039_bib18 article-title: AxTract: toward microstructure informed tractography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23741 |
SSID | ssj0009148 |
Score | 2.5489666 |
Snippet | Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 68 |
SubjectTerms | Brain - physiology Brain architecture Brain research Connectome - methods Connectomics Dietary fiber Diffusion MRI Diffusion Tensor Imaging - methods Fiber tracking Graph-theoretical analysis Heuristic Humans Image Processing, Computer-Assisted - methods Magnetic resonance imaging Methods Models, Neurological Neural networks Neurosciences Statistical analysis Statistics Tractography Weighted connectome |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxUxEA-lh-KlaNX6tJYUvMa3-drd4EGktLSF14Na6C0kmyw89b0t3Rbx4sk_3Jls9rUFCw-8LLubnZBNJjOTZOY3hLzTpa9NXXrGPY9MxVAxI8uSaYQG19K5ImCg8Oy8PLlQZ5f6coMcjrEw6FaZZf8g05O0zm-muTenV_P59AtYBqBuYL1hgEllCqNWqkIuf__7zs3DcDWEw2nJ8OvszTP4eCXMyPkCZi46eZmE3olpw_-toh4zQZMqOn5KtrMNST8NzXxGNuJyh2zN8in5c_LntKfXcdEBE9GupT-j-04bdGhJMQw9hRtMfHL9i4LFShNkNbsX0EhdBipBYhBLfYQqcA0fAx3gZhGqY6yxW8SeYpAKxVwrt7j5RmefTz--IBfHR18PT1jOtsAaLfQNE4Y3uilFMDEWUUTeCoPaSrSIuacNWHa-NQHsgbrCnSPupPJQIlpt2roK8iXZXHbL-IrQSlahEY33og3KB-ckb4QLDq5atlJNSDV2sG0yFDlmxPhhR5-zb_ZuaCwOjS2EhaGZEL6ivBrgONagMeMY2jHcFASkBZ2xBu2HFe0DtlyTem9kGZtFQ29TAnWjaiUn5GBVDJMaT2rcMna38A2vDZjSpawmZHdgtdXvyqJWShfl6_9q2hvyBJ8Gx-M9sgncE9-CeXXj99P8-Qt6BCYl priority: 102 providerName: Elsevier |
Title | Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919301351 https://dx.doi.org/10.1016/j.neuroimage.2019.02.039 https://www.ncbi.nlm.nih.gov/pubmed/30844506 https://www.proquest.com/docview/2229594843 https://www.proquest.com/docview/2189540637 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoK6FeEJTXlrIyEldD_EpicagKarUL2hWqqLQ3y44dicdu2qYV4sKJH85M4uxyALSXJJIzVpIZj7_YM98Q8lLnvjRl7hn3PDIVQ8GMzHOmkRpcS-eygInCs3k-uVDvF3qRFtzaFFY5-MTOUYemwjXy113daaNKJY8vrxhWjcLd1VRCY4fsIXUZhnQVi2JDustVnwqnJSvhhhTJ08d3dXyRn5cwajHAy3TMnVgy_O_T07_gZzcNnd0n9xJ-pCe9wh-QO3F1QO7O0g75AdlH9NiTLz8kv6YtvY7LBqyJNjX9Ht1XWmFkS5fM0FK4wAoo1z8oQFfacVezPzIbqUuMJSgM_qmN0AX-zMdAe95Z5OwYemyWsaWYrUKx6MotrsLR2fn0-BG5ODv99G7CUtkFVmmhb5gwvNJVLoKJMYsi8loYnLZEjeR7oINM-9oEAAZlgUtI3EnloUXU2tRlEeRjsrtqVvEpoYUsQiUq70UdlA_OSV4JFxwctaylGpFi-Nq2SpzkWBrjmx2Cz77YjZ4s6slmwoKeRoSvJS97Xo4tZMygUDvknYKntDB5bCH7Zi2bsEmPObaUPhrsxyYf0dqNRY_Ii3UzjG7csnGr2NzCPbw0gKlzWYzIk97u1q8rs1IpneWH_-_8GdnHJ-lDjI_ILphHfA5A6saPyc6rn3zcjZkx2TuZfpjM4fz2dP7x_DeFtCM- |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVoJeEBQoCwUGCY4RmVeSEUIVj1a7tLtCVSv1NkwyE4nHbkrTquqd38NvxM5jlwOgvfQSRUrsPOzxeDz2Z4AXOskzkyV5xHMeIhV8GhmZJJEmaHAtnYs9FQpPpsnoWH080Sdr8KuvhaG0yt4mNobaVwXFyF81faeNypTcOf0RUdco2l3tW2i0arEfri5xyVa_GX9A-b4UYm_36P0o6roKRIUW-jwShhe6SIQ3IcRBBF4KQ1ZZlIQth4-IdV4aj_NellKEhDupcrwiSm3KLPUS-d6AdSVxKTOA9Xe700-HS5hfrtriOy2jjHPT5Q61GWUNQuWXGdoJSikzDVYoNSn_-4T4L4e3mfj27sDtzmNlb1sVuwtrYb4JNyfdnvwmbJC_2sI934Of45qdhVmF-suqkl0G940VlEvTlE_UDE-o58rZFUNnmTVo2dEftZTMdRgpRIwWsQ7IgsIHwbMW6ZZQQnqO1SzUjOpjGLV5uaC4H5scjnfuw_G1iOQBDObVPDwElsrUF6LIc1F6lXvnJC-E8w6PWpZSDSHt_7YtOhR0asbx3fbpbl_tUk6W5GRjYVFOQ-ALytMWCWQFGtML1PaVrmibLU5XK9C-XtB23lDr5axIvd3rj-2sUm2XY2gIzxeX0Z7QJpGbh-oC7-GZQS8-kekQtlq9W3yujDOldJw8-j_zZ3BrdDQ5sAfj6f5j2KC3ahOct2GAqhKeoBt3nj_txg6Dz9c9XH8DbKlayQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkapeEJRHFwoYCY5W41ccC6EKUVZdylYIUak348SOxGM3pWlV9c6v4tcxEye7HADtpZcokjPOYx6ejGe-IeS5zsvCFnnJeMkjUzEYZmWeM43Q4Fp6nwUsFJ4e5QfH6t2JPlkjv4ZaGEyrHGxiZ6hDU2GMfLfrO21VoeRu3adFfNgf753-YNhBCndah3YaSUQO49Ul_L61ryb7wOsXQozffnpzwPoOA6zSQp8zYXmlq1wEG2MWReS1sGihRY04c3C7TJe1DbAGFgajJdxLVcKIqLWtCxMkzHuD3DRSc9Qxc2KWgL9cpTI8LVnBue2ziFJuWYdV-WUGFgOTy2yHGortyv--NP7L9e2WwPFtcqv3XenrJGx3yFqcb5GNab87v0U20XNNwM93yc9JS8_irAFJpk1NL6P_RivMqukKKVoKJ9h95eyKgttMO9xs9kdVJfU9WgoSg21sI0yBgYQYaMK8RbyQYcZmFluKlTIUG75cYASQTj9O9u6R42thyH2yPm_mcZtQI02oRFWWog6qDN5LXgkfPBy1rKUaETN8bVf1eOjYluO7GxLfvrolnxzyyWXCAZ9GhC8oTxMmyAo0dmCoG2pewUo7WLhWoH25oO39ouTvrEi9M8iP6-1T65baNCLPFsNgWXC7yM9jcwHX8MKCP59LMyIPktwtXldmhVI6yx_-f_KnZAOU1L2fHB0-Ipv4UCnTeYesg6TEx-DPnZdPOsWh5PN1a-pvqUtdmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+removal+of+weak+connections+necessary+for+graph-theoretical+analysis+of+dense+weighted+structural+connectomes+from+diffusion+MRI%3F&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Civier%2C+Oren&rft.au=Smith%2C+Robert+Elton&rft.au=Chun-Hung+Yeh&rft.au=Connelly%2C+Alan&rft.date=2019-07-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=194&rft.spage=68&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.02.039&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |