Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?

Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we eval...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 194; pp. 68 - 81
Main Authors Civier, Oren, Smith, Robert Elton, Yeh, Chun-Hung, Connelly, Alan, Calamante, Fernando
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70–90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies. •We evaluate removal of weak connections from diffusion MRI dense weighted connectomes.•We calculate graph-theoretical metrics after enforcing various connectome densities.•Removal of the weakest connections is inconsequential for graph-theoretical analysis.•Removing larger extent of weak connections has ramifications to statistical analyses.•We advocate against removal of weak connections from dMRI dense weighted connectomes.
AbstractList Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70–90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies. •We evaluate removal of weak connections from diffusion MRI dense weighted connectomes.•We calculate graph-theoretical metrics after enforcing various connectome densities.•Removal of the weakest connections is inconsequential for graph-theoretical analysis.•Removing larger extent of weak connections has ramifications to statistical analyses.•We advocate against removal of weak connections from dMRI dense weighted connectomes.
Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs' weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70-90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs' weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70-90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.
Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain organization. However, these efforts are hampered by the lack of consensus on how to extract topological measures from the resulting graphs. Here we evaluate the common practice of removing the graphs’ weak connections, which is primarily intended to eliminate spurious connections and emphasize strong connections. Because this processing step requires arbitrary or heuristic-based choices (e.g., setting a threshold level below which connections are removed), and such choices might complicate statistical analysis and inter-study comparisons, in this work we test whether removing weak connections is indeed necessary. To this end, we systematically evaluated the effect of removing weak connections on a range of popular graph-theoretical metrics. Specifically, we investigated if (and at what extent) removal of weak connections introduces a statistically significant difference between two otherwise equal groups of healthy subjects when only applied to one of the groups. Using data from the Human Connectome Project, we found that removal of weak connections had no statistical effect even when removing the weakest ∼70–90% connections. Removing yet a larger extent of weak connections, thus reducing connectivity density even further, did produce a predictably significant effect. However, metric values became sensitive to the exact connectivity density, which has ramifications regarding the stability of the statistical analysis. This pattern persisted whether connections were removed by connection strength threshold or connectivity density, and for connectomes generated using parcellations at different resolutions. Finally, we showed that the same pattern also applies for data from a clinical-grade MRI scanner. In conclusion, our analysis revealed that removing weak connections is not necessary for graph-theoretical analysis of dense weighted connectomes. Because removal of weak connections provides no practical utility to offset the undesirable requirement for arbitrary or heuristic-based choices, we recommend that this step is avoided in future studies.
Author Connelly, Alan
Civier, Oren
Calamante, Fernando
Smith, Robert Elton
Yeh, Chun-Hung
Author_xml – sequence: 1
  givenname: Oren
  surname: Civier
  fullname: Civier, Oren
  email: orenciv@gmail.com
  organization: The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, J07 University of Sydney, Camperdown, NSW, 2006, Australia
– sequence: 2
  givenname: Robert Elton
  surname: Smith
  fullname: Smith, Robert Elton
  organization: Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
– sequence: 3
  givenname: Chun-Hung
  surname: Yeh
  fullname: Yeh, Chun-Hung
  organization: Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
– sequence: 4
  givenname: Alan
  surname: Connelly
  fullname: Connelly, Alan
  organization: Florey Institute of Neuroscience and Mental Health, Melbourne, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
– sequence: 5
  givenname: Fernando
  surname: Calamante
  fullname: Calamante, Fernando
  organization: The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, J07 University of Sydney, Camperdown, NSW, 2006, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30844506$$D View this record in MEDLINE/PubMed
BookMark eNqNkV2PEyEUholZ437oXzAk3ngzIzDQDjd-bdRtsmaTjV4TyhxaujNQgVnTe3-4TFrXpFe94iQ870s4zyU688EDQpiSmhI6e7epPYwxuEGvoGaEypqwmjTyGbqgRIpKijk7m2bRVC2l8hxdprQhhEjK2xfovCEt54LMLtCfRcIRhvCoexws_g36AZvgPZjsgk-4DJCSjjtsQ8SrqLfrKq8hRMjOlIz2ut8ll6ZwBz5BqXCrdYYOpxxHk8dYqENjGCBhG8OAO2ftmMoL-Pv94sNL9NzqPsGrw3mFfn798uP6prq9-7a4_nRbGcFErpikRpgZ6yQAAQbUMkk4k8xS0jAhORFLKzvKeDtfUs6obviy3DArpG3nXXOF3u57tzH8GiFlNbhkoO-1hzAmxWgrBSezZl7QN0foJoyxfLZQjMnyWMubQr0-UONygE5tY1ESd-rffgvQ7gETQ0oR7BNCiZpUqo36r1JNKhVhqqgs0fdHUeOynqzkqF1_SsHnfQGUlT46iCoZB95A52KRobrgTin5eFRieucn9Q-wO63iL1sX2FQ
CitedBy_id crossref_primary_10_1093_braincomms_fcaf074
crossref_primary_10_1038_s41598_022_17213_z
crossref_primary_10_1016_j_neuroimage_2022_119401
crossref_primary_10_1177_0271678X211069228
crossref_primary_10_3389_fnimg_2022_850266
crossref_primary_10_3389_fnins_2022_1040799
crossref_primary_10_1212_WNL_0000000000010669
crossref_primary_10_1016_j_neuroimage_2023_120191
crossref_primary_10_1162_netn_a_00161
crossref_primary_10_1088_1742_6596_1727_1_012009
crossref_primary_10_1016_j_neuroimage_2021_118675
crossref_primary_10_3174_ajnr_A6306
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1093_braincomms_fcac049
crossref_primary_10_1038_s41398_024_02810_5
crossref_primary_10_1093_cercor_bhae238
crossref_primary_10_1002_jnr_25392
crossref_primary_10_3390_diagnostics9030115
crossref_primary_10_1016_j_neuroimage_2019_116443
crossref_primary_10_7554_eLife_76143
crossref_primary_10_1002_hbm_25301
crossref_primary_10_3389_fneur_2022_813763
crossref_primary_10_1016_j_media_2020_101799
crossref_primary_10_1016_j_tics_2022_12_011
crossref_primary_10_1038_s41598_024_63716_2
crossref_primary_10_1016_j_dcn_2023_101253
crossref_primary_10_1002_jmri_27188
crossref_primary_10_1371_journal_pone_0224598
crossref_primary_10_1089_brain_2020_0935
crossref_primary_10_3389_fnimg_2024_1341607
crossref_primary_10_1007_s41109_022_00516_5
crossref_primary_10_23868_gc562843
crossref_primary_10_1162_netn_a_00308
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1007_s00429_024_02807_2
crossref_primary_10_1063_10_0034533
crossref_primary_10_3389_fnhum_2020_00010
crossref_primary_10_1088_1741_2552_ab6aad
crossref_primary_10_1088_1741_2552_abc29b
crossref_primary_10_1038_s41598_022_22079_2
crossref_primary_10_1093_cercor_bhac438
crossref_primary_10_1093_braincomms_fcaa001
crossref_primary_10_1002_brb3_3460
crossref_primary_10_1016_j_neuroimage_2024_120563
crossref_primary_10_1109_TBME_2020_3002688
crossref_primary_10_1016_j_neuroimage_2022_119455
crossref_primary_10_1016_j_nicl_2024_103690
crossref_primary_10_1002_sim_10091
crossref_primary_10_1088_1741_2552_ab947b
crossref_primary_10_1016_j_bpsc_2022_06_002
crossref_primary_10_1016_j_dcn_2023_101316
crossref_primary_10_1093_braincomms_fcz020
crossref_primary_10_1093_cercor_bhac444
Cites_doi 10.1016/j.neuroimage.2011.03.069
10.1016/j.neuroimage.2015.04.009
10.1002/mrm.24623
10.1109/TMI.2010.2046908
10.3389/fneur.2017.00580
10.1371/journal.pone.0048121
10.1016/j.neuroimage.2011.12.090
10.1371/journal.pbio.0060159
10.1016/j.neuroimage.2014.07.061
10.1016/j.neuroimage.2015.08.008
10.1016/j.neuroimage.2015.10.019
10.1038/nmeth.3098
10.3389/fneur.2014.00232
10.1016/j.neuroimage.2015.05.011
10.1016/j.nicl.2017.11.007
10.2202/1544-6115.1128
10.1016/j.neuroimage.2006.01.021
10.1103/PhysRevE.98.042304
10.1002/mrm.10308
10.1371/journal.pone.0013701
10.1002/mrm.26054
10.1016/j.neuroimage.2012.11.049
10.1002/mrm.22924
10.1016/j.neuroimage.2012.12.066
10.1016/j.neuroimage.2004.07.051
10.1002/mrm.23097
10.1002/mrm.22361
10.1177/1073858416667720
10.1371/journal.pone.0000597
10.1371/journal.pone.0021570
10.1002/mrm.1910150117
10.1002/mrm.26059
10.1016/j.neuroimage.2007.02.016
10.1016/j.neuroimage.2016.08.016
10.1002/hbm.23520
10.1016/j.neuroimage.2016.05.047
10.1016/j.neuroimage.2013.05.041
10.1073/pnas.1405672111
10.1016/j.neuroimage.2012.06.005
10.1093/cercor/bhq201
10.1109/TMI.2013.2285500
10.1016/j.neuroimage.2013.04.087
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2011.02.046
10.1016/j.neuroimage.2014.10.004
10.1016/j.neuroimage.2015.06.092
10.1038/nature13186
10.1016/j.neuroimage.2004.07.037
10.1016/j.neuroimage.2007.10.060
10.1016/j.neuron.2013.07.036
10.1371/journal.pone.0015710
10.1016/j.neuroimage.2015.07.067
10.3389/fninf.2011.00013
10.1016/j.neuroimage.2010.09.016
10.1093/cercor/bhx249
10.1016/S1053-8119(03)00336-7
10.1371/journal.pcbi.1005104
10.1016/j.neuroimage.2012.06.081
10.1016/j.neuroimage.2016.06.035
10.1371/journal.pcbi.0010042
10.1002/hbm.23741
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2019.02.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest One Psychology
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1095-9572
EndPage 81
ExternalDocumentID 30844506
10_1016_j_neuroimage_2019_02_039
S1053811919301351
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
United States--US
GeographicLocations_xml – name: United States--US
– name: Australia
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c525t-291c5c62d9ee0e2e1f2904292f103259405bf9d12487b1421a34b0322f59f87d3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 15:15:12 EDT 2025
Wed Aug 13 11:28:20 EDT 2025
Wed Feb 19 02:31:50 EST 2025
Tue Jul 01 03:02:07 EDT 2025
Thu Apr 24 23:44:18 EDT 2025
Fri Feb 23 02:36:55 EST 2024
Tue Aug 26 20:02:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph-theoretical analysis
Fiber tracking
Diffusion MRI
Weighted connectome
Tractography
Connectomics
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-291c5c62d9ee0e2e1f2904292f103259405bf9d12487b1421a34b0322f59f87d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30844506
PQID 2229594843
PQPubID 2031077
PageCount 14
ParticipantIDs proquest_miscellaneous_2189540637
proquest_journals_2229594843
pubmed_primary_30844506
crossref_primary_10_1016_j_neuroimage_2019_02_039
crossref_citationtrail_10_1016_j_neuroimage_2019_02_039
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_02_039
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_02_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong (bib2a) 2017; 8
Zalesky, Fornito, Cocchi, Gollo, van den Heuvel, Breakspear (bib65) 2016; 142
Iturria-Medina, Sotero, Canales-Rodríguez, Alemán-Gómez, Melie-García (bib22) 2008; 40
Tournier, Calamante, Connelly (bib51) 2007; 35
Andersson, Sotiropoulos (bib2) 2015; 122
Daducci, Canales-Rodríguez, Descoteaux, Garyfallidis, Gur, Lin, Mani, Merlet, Paquette, Ramirez-Manzanares (bib8) 2014; 33
Smith, Tournier, Calamante, Connelly (bib44) 2013; 67
Patenaude, Smith, Kennedy, Jenkinson (bib34) 2011; 56
Sherbondy, Rowe, Alexander (bib42) 2010
Oh, Harris, Ng, Winslow, Cain, Mihalas, Wang, Lau, Kuan, Henry (bib31) 2014; 508
Tournier, Calamante, Connelly (bib53) 2010
Tournier, Calamante, Gadian, Connelly (bib52) 2004; 23
Christiaens, Reisert, Dhollander, Sunaert, Suetens, Maes (bib5) 2015; 123
Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom, Ghosh (bib19) 2011; 5
Bassett, Bullmore (bib4) 2016; 23
Rubinov, Sporns (bib40) 2011; 56
Veraart, Novikov, Christiaens, Ades-Aron, Sijbers, Fieremans (bib60) 2016; 142
Veraart, Fieremans, Novikov (bib59) 2016; 76
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib20) 2008; 6
Perry, Wen, Lord, Thalamuthu, Roberts, Mitchell, Sachdev, Breakspear (bib35) 2015; 114
Xu, Moeller, Strupp, Auerbach, Chen, Feinberg, Ugurbil, Yacoub (bib61) 2012
Thomas, Frank, Irfanoglu, Modi, Saleem, Leopold, Pierpaoli (bib1a) 2014; 111
Girard, Daducci, Petit, Thiran, Whittingstall, Deriche, Wassermann, Descoteaux (bib18) 2017; 38
Yan, Jeub, Flammini, Radicchi, Fortunato (bib62) 2018; 98
Onnela, Saramäki, Kertész, Kaski (bib32) 2005; 71
Ypma, Bullmore (bib64) 2016; 12
Ercsey-Ravasz, Markov, Lamy, Van Essen, Knoblauch, Toroczkai, Kennedy (bib13) 2013; 80
Rubinov, Sporns (bib39) 2010; 52
Hagmann, Kurant, Gigandet, Thiran, Wedeen, Meuli, Thiran (bib21) 2007; 2
Lemkaddem, Skiöldebrand, Dal Palú, Thiran, Daducci (bib27) 2014; 5
Drakesmith, Caeyenberghs, Dutt, Lewis, David, Jones (bib12) 2015; 118
Ginestet, Nichols, Bullmore, Simmons (bib17) 2011; 6
Sotiropoulos, Zalesky (bib49) 2017
Kellner, Dhital, Kiselev, Reisert (bib26) 2016; 76
de Reus, van den Heuvel (bib10) 2013; 70
Smith, Tournier, Calamante, Connelly (bib45) 2015; 104
Zhang, Horvath (bib66) 2005; 4
Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bib23) 2014; 103
Feinberg, Moeller, Smith, Auerbach, Ramanna, Glasser, Miller, Ugurbil, Yacoub (bib14) 2010; 5
Fornito, Zalesky, Pantelis, Bullmore (bib16) 2012; 62
Conti, Mitra, Calderoni, Pannek, Shen, Pagnozzi, Rose, Mazzotti, Scelfo, Tosetti (bib7) 2017; 38
Andersson, Skare, Ashburner (bib1) 2003; 20
Jones, Knosche, Turner (bib24) 2013; 73
Yeh, Smith, Liang, Calamante, Connelly (bib63) 2016; 142
Desikan, Segonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib11) 2006; 31
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, WU-Minn HCP Consortium (bib56) 2013; 80
Sotiropoulos, Moeller, Jbabdi, Xu, Andersson, Auerbach, Yacoub, Feinberg, Setsompop, Wald (bib48) 2013; 70
Vasa, Seidlitz, Romero-Garcia, Whitaker, Rosenthal, Vertes, Shinn, Alexander-Bloch, Fonagy, Dolan, Jones, Goodyer, consortium, Sporns, Bullmore (bib58) 2018; 28
van Wijk, Stam, Daffertshofer (bib57) 2010; 5
Pestilli, Yeatman, Rokem, Kay, Wandell (bib36) 2014; 11
Daducci, Gerhard, Griffa, Lemkaddem, Cammoun, Gigandet, Meuli, Hagmann, Thiran (bib9) 2012; 7
Smith, Tournier, Calamante, Connelly (bib43) 2012; 62
Reese, Heid, Weisskoff, Wedeen (bib37) 2003; 49
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib55) 2010; 29
Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Uğurbil (bib29) 2010; 63
Fornito, Zalesky, Breakspear (bib15) 2013; 80
Kamagata, Zalesky, Hatano, Di Biase, El Samad, Saiki, Shimoji, Kumamaru, Kamiya, Hori (bib25) 2018; 17
Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bib41) 2012; 67
Oxtoby, Garbarino, Firth, Warren, Schott, Alexander, Initiative (bib33) 2017; 8
Mugler, Brookeman (bib30) 1990; 15
Smith, Tournier, Calamante, Connelly (bib46) 2015; 119
Andersson, Sotiropoulos (bib3) 2016; 125
Tournier, Mori, Leemans (bib54) 2011; 65
Civier, Smith, Yeh, Connelly, Calamante (bib6) 2018
Markov, Misery, Falchier, Lamy, Vezoli, Quilodran, Gariel, Giroud, Ercsey-Ravasz, Pilaz (bib28) 2011; 21
Reisert, Mader, Anastasopoulos, Weigel, Schnell, Kiselev (bib38) 2011; 54
Sporns, Tononi, Kotter (bib50) 2005; 1
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bib47) 2004; 23
Smith (10.1016/j.neuroimage.2019.02.039_bib47) 2004; 23
Fornito (10.1016/j.neuroimage.2019.02.039_bib15) 2013; 80
Tournier (10.1016/j.neuroimage.2019.02.039_bib52) 2004; 23
Rubinov (10.1016/j.neuroimage.2019.02.039_bib39) 2010; 52
Daducci (10.1016/j.neuroimage.2019.02.039_bib9) 2012; 7
Sherbondy (10.1016/j.neuroimage.2019.02.039_bib42) 2010
Smith (10.1016/j.neuroimage.2019.02.039_bib45) 2015; 104
Sporns (10.1016/j.neuroimage.2019.02.039_bib50) 2005; 1
Hagmann (10.1016/j.neuroimage.2019.02.039_bib21) 2007; 2
Vasa (10.1016/j.neuroimage.2019.02.039_bib58) 2018; 28
Moeller (10.1016/j.neuroimage.2019.02.039_bib29) 2010; 63
Kamagata (10.1016/j.neuroimage.2019.02.039_bib25) 2018; 17
Xu (10.1016/j.neuroimage.2019.02.039_bib61) 2012
Rubinov (10.1016/j.neuroimage.2019.02.039_bib40) 2011; 56
Bassett (10.1016/j.neuroimage.2019.02.039_bib4) 2016; 23
Thomas (10.1016/j.neuroimage.2019.02.039_bib1a) 2014; 111
Reisert (10.1016/j.neuroimage.2019.02.039_bib38) 2011; 54
Sotiropoulos (10.1016/j.neuroimage.2019.02.039_bib48) 2013; 70
Conti (10.1016/j.neuroimage.2019.02.039_bib7) 2017; 38
Pestilli (10.1016/j.neuroimage.2019.02.039_bib36) 2014; 11
Jones (10.1016/j.neuroimage.2019.02.039_bib24) 2013; 73
Jeurissen (10.1016/j.neuroimage.2019.02.039_bib23) 2014; 103
Reese (10.1016/j.neuroimage.2019.02.039_bib37) 2003; 49
Kellner (10.1016/j.neuroimage.2019.02.039_bib26) 2016; 76
Onnela (10.1016/j.neuroimage.2019.02.039_bib32) 2005; 71
Smith (10.1016/j.neuroimage.2019.02.039_bib43) 2012; 62
Patenaude (10.1016/j.neuroimage.2019.02.039_bib34) 2011; 56
Oxtoby (10.1016/j.neuroimage.2019.02.039_bib33) 2017; 8
Smith (10.1016/j.neuroimage.2019.02.039_bib46) 2015; 119
Tournier (10.1016/j.neuroimage.2019.02.039_bib54) 2011; 65
Van Essen (10.1016/j.neuroimage.2019.02.039_bib56) 2013; 80
Zhang (10.1016/j.neuroimage.2019.02.039_bib66) 2005; 4
Veraart (10.1016/j.neuroimage.2019.02.039_bib59) 2016; 76
Veraart (10.1016/j.neuroimage.2019.02.039_bib60) 2016; 142
Ercsey-Ravasz (10.1016/j.neuroimage.2019.02.039_bib13) 2013; 80
Ypma (10.1016/j.neuroimage.2019.02.039_bib64) 2016; 12
Andersson (10.1016/j.neuroimage.2019.02.039_bib1) 2003; 20
Perry (10.1016/j.neuroimage.2019.02.039_bib35) 2015; 114
Fornito (10.1016/j.neuroimage.2019.02.039_bib16) 2012; 62
Setsompop (10.1016/j.neuroimage.2019.02.039_bib41) 2012; 67
Girard (10.1016/j.neuroimage.2019.02.039_bib18) 2017; 38
van Wijk (10.1016/j.neuroimage.2019.02.039_bib57) 2010; 5
Desikan (10.1016/j.neuroimage.2019.02.039_bib11) 2006; 31
Yeh (10.1016/j.neuroimage.2019.02.039_bib63) 2016; 142
Oh (10.1016/j.neuroimage.2019.02.039_bib31) 2014; 508
Feinberg (10.1016/j.neuroimage.2019.02.039_bib14) 2010; 5
Tustison (10.1016/j.neuroimage.2019.02.039_bib55) 2010; 29
Gorgolewski (10.1016/j.neuroimage.2019.02.039_bib19) 2011; 5
Daducci (10.1016/j.neuroimage.2019.02.039_bib8) 2014; 33
Sotiropoulos (10.1016/j.neuroimage.2019.02.039_bib49) 2017
Andersson (10.1016/j.neuroimage.2019.02.039_bib3) 2016; 125
Christiaens (10.1016/j.neuroimage.2019.02.039_bib5) 2015; 123
Tournier (10.1016/j.neuroimage.2019.02.039_bib51) 2007; 35
Zalesky (10.1016/j.neuroimage.2019.02.039_bib65) 2016; 142
Smith (10.1016/j.neuroimage.2019.02.039_bib44) 2013; 67
Iturria-Medina (10.1016/j.neuroimage.2019.02.039_bib22) 2008; 40
Markov (10.1016/j.neuroimage.2019.02.039_bib28) 2011; 21
Andersson (10.1016/j.neuroimage.2019.02.039_bib2) 2015; 122
Hagmann (10.1016/j.neuroimage.2019.02.039_bib20) 2008; 6
Ginestet (10.1016/j.neuroimage.2019.02.039_bib17) 2011; 6
Tournier (10.1016/j.neuroimage.2019.02.039_bib53) 2010
Yan (10.1016/j.neuroimage.2019.02.039_bib62) 2018; 98
de Reus (10.1016/j.neuroimage.2019.02.039_bib10) 2013; 70
Maier-Hein (10.1016/j.neuroimage.2019.02.039_bib2a) 2017; 8
Civier (10.1016/j.neuroimage.2019.02.039_bib6) 2018
Mugler (10.1016/j.neuroimage.2019.02.039_bib30) 1990; 15
Lemkaddem (10.1016/j.neuroimage.2019.02.039_bib27) 2014; 5
Drakesmith (10.1016/j.neuroimage.2019.02.039_bib12) 2015; 118
References_xml – start-page: 183
  year: 2010
  end-page: 190
  ident: bib42
  article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 123
  start-page: 89
  year: 2015
  end-page: 101
  ident: bib5
  article-title: Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model
  publication-title: Neuroimage
– volume: 4
  year: 2005
  ident: bib66
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 118
  start-page: 313
  year: 2015
  end-page: 333
  ident: bib12
  article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data
  publication-title: Neuroimage
– volume: 5
  start-page: 13
  year: 2011
  ident: bib19
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinf.
– volume: 23
  start-page: 1176
  year: 2004
  end-page: 1185
  ident: bib52
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: Neuroimage
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bib51
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: bib43
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: Neuroimage
– volume: 40
  start-page: 1064
  year: 2008
  end-page: 1076
  ident: bib22
  article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory
  publication-title: Neuroimage
– volume: 76
  start-page: 1582
  year: 2016
  end-page: 1593
  ident: bib59
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 232
  year: 2014
  ident: bib27
  article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis
  publication-title: Front. Neurol.
– volume: 8
  start-page: 1349
  year: 2017
  ident: bib2a
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun
– volume: 21
  start-page: 1254
  year: 2011
  end-page: 1272
  ident: bib28
  article-title: Weight consistency specifies regularities of macaque cortical networks
  publication-title: Cerebr. Cortex
– volume: 28
  start-page: 281
  year: 2018
  end-page: 294
  ident: bib58
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: Cerebr. Cortex
– volume: 2
  start-page: e597
  year: 2007
  ident: bib21
  article-title: Mapping human whole-brain structural networks with diffusion MRI
  publication-title: PLoS One
– volume: 142
  start-page: 407
  year: 2016
  end-page: 420
  ident: bib65
  article-title: Connectome sensitivity or specificity: which is more important?
  publication-title: Neuroimage
– year: 2018
  ident: bib6
  article-title: Is removal of weak connections necessary for dense weighted structural connectomes?
  publication-title: Proceedings of the Joint Annual Meeting ISMRM (International Society for Magnetic Resonance in Medicine) - ESMRMB 2018, Paris, France
– start-page: 1670
  year: 2010
  ident: bib53
  article-title: Improved probabilistic streamlines tractography by 2
  publication-title: Proceedings of the 18
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib39
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bib47
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 114
  start-page: 414
  year: 2015
  end-page: 426
  ident: bib35
  article-title: The organisation of the elderly connectome
  publication-title: Neuroimage
– volume: 70
  start-page: 1682
  year: 2013
  end-page: 1689
  ident: bib48
  article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE
  publication-title: Magn. Reson. Med.
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: bib60
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib56
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 56
  start-page: 2068
  year: 2011
  end-page: 2079
  ident: bib40
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
– volume: 67
  start-page: 298
  year: 2013
  end-page: 312
  ident: bib44
  article-title: SIFT: spherical-deconvolution informed filtering of tractograms
  publication-title: Neuroimage
– volume: 12
  year: 2016
  ident: bib64
  article-title: Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse
  publication-title: PLoS Comput. Biol.
– volume: 33
  start-page: 384
  year: 2014
  end-page: 399
  ident: bib8
  article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 111
  start-page: 16574
  year: 2014
  end-page: 16579
  ident: bib1a
  article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 38
  start-page: 2333
  year: 2017
  end-page: 2344
  ident: bib7
  article-title: Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: a diffusion MRI study
  publication-title: Hum. Brain Mapp.
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  ident: bib29
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
– volume: 119
  start-page: 338
  year: 2015
  end-page: 351
  ident: bib46
  article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
  publication-title: Neuroimage
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib1
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib55
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: e159
  year: 2008
  ident: bib20
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  ident: bib37
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
– volume: 54
  start-page: 955
  year: 2011
  end-page: 962
  ident: bib38
  article-title: Global fiber reconstruction becomes practical
  publication-title: Neuroimage
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  ident: bib24
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: Neuroimage
– volume: 6
  year: 2011
  ident: bib17
  article-title: Brain network analysis: separating cost from topology using cost-integration
  publication-title: PLoS One
– volume: 142
  start-page: 150
  year: 2016
  end-page: 162
  ident: bib63
  article-title: Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics
  publication-title: Neuroimage
– year: 2012
  ident: bib61
  article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI
  publication-title: Proceedings of the 20
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  ident: bib23
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
– volume: 38
  start-page: 5485
  year: 2017
  end-page: 5500
  ident: bib18
  article-title: AxTract: toward microstructure informed tractography
  publication-title: Hum. Brain Mapp.
– volume: 5
  year: 2010
  ident: bib57
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS One
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bib3
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 7
  year: 2012
  ident: bib9
  article-title: The connectome mapper: an open-source processing pipeline to map connectomes with MRI
  publication-title: PLoS One
– volume: 508
  start-page: 207
  year: 2014
  ident: bib31
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: bib41
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 499
  year: 2016
  end-page: 516
  ident: bib4
  article-title: Small-world brain networks revisited
  publication-title: Neuroscientist
– volume: 15
  start-page: 152
  year: 1990
  end-page: 157
  ident: bib30
  article-title: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)
  publication-title: Magn. Reson. Med.
– volume: 1
  start-page: e42
  year: 2005
  ident: bib50
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– volume: 56
  start-page: 907
  year: 2011
  end-page: 922
  ident: bib34
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
– volume: 80
  start-page: 426
  year: 2013
  end-page: 444
  ident: bib15
  article-title: Graph analysis of the human connectome: promise, progress, and pitfalls
  publication-title: Neuroimage
– volume: 17
  start-page: 518
  year: 2018
  end-page: 529
  ident: bib25
  article-title: Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: evaluation using multi-shell, multi-tissue, constrained spherical deconvolution
  publication-title: Neuroimage: Clinical
– volume: 70
  start-page: 402
  year: 2013
  end-page: 409
  ident: bib10
  article-title: Estimating false positives and negatives in brain networks
  publication-title: Neuroimage
– year: 2017
  ident: bib49
  article-title: Building connectomes using diffusion MRI: why, how and but
  publication-title: NMR in Biomedicine
– volume: 5
  year: 2010
  ident: bib14
  article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging
  publication-title: PLoS One
– volume: 71
  year: 2005
  ident: bib32
  article-title: Intensity and coherence of motifs in weighted complex networks
  publication-title: Phys. Rev.
– volume: 98
  start-page: 042304
  year: 2018
  ident: bib62
  article-title: Weight thresholding on complex networks
  publication-title: Phys. Rev. E
– volume: 62
  start-page: 2296
  year: 2012
  end-page: 2314
  ident: bib16
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib11
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 11
  start-page: 1058
  year: 2014
  ident: bib36
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nat. Methods
– volume: 104
  start-page: 253
  year: 2015
  end-page: 265
  ident: bib45
  article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome
  publication-title: Neuroimage
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  ident: bib26
  article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: 580
  year: 2017
  ident: bib33
  article-title: Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer's disease
  publication-title: Front. Neurol.
– volume: 80
  start-page: 184
  year: 2013
  end-page: 197
  ident: bib13
  article-title: A predictive network model of cerebral cortical connectivity based on a distance rule
  publication-title: Neuron
– volume: 122
  start-page: 166
  year: 2015
  end-page: 176
  ident: bib2
  article-title: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
– volume: 65
  start-page: 1532
  year: 2011
  end-page: 1556
  ident: bib54
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
– volume: 56
  start-page: 2068
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib40
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.069
– volume: 114
  start-page: 414
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.039_bib35
  article-title: The organisation of the elderly connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.009
– volume: 70
  start-page: 1682
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib48
  article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24623
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib55
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 8
  start-page: 580
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.039_bib33
  article-title: Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer's disease
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00580
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.039_bib9
  article-title: The connectome mapper: an open-source processing pipeline to map connectomes with MRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048121
– volume: 62
  start-page: 2296
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.039_bib16
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.090
– volume: 6
  start-page: e159
  year: 2008
  ident: 10.1016/j.neuroimage.2019.02.039_bib20
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 103
  start-page: 411
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.039_bib23
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 123
  start-page: 89
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.039_bib5
  article-title: Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.008
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib3
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 11
  start-page: 1058
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.039_bib36
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3098
– volume: 5
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.039_bib27
  article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2014.00232
– volume: 118
  start-page: 313
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.039_bib12
  article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.011
– volume: 17
  start-page: 518
  year: 2018
  ident: 10.1016/j.neuroimage.2019.02.039_bib25
  article-title: Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: evaluation using multi-shell, multi-tissue, constrained spherical deconvolution
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2017.11.007
– volume: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2019.02.039_bib66
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1128
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroimage.2019.02.039_bib11
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 71
  year: 2005
  ident: 10.1016/j.neuroimage.2019.02.039_bib32
  article-title: Intensity and coherence of motifs in weighted complex networks
  publication-title: Phys. Rev.
– volume: 98
  start-page: 042304
  year: 2018
  ident: 10.1016/j.neuroimage.2019.02.039_bib62
  article-title: Weight thresholding on complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.042304
– year: 2012
  ident: 10.1016/j.neuroimage.2019.02.039_bib61
  article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI
– volume: 49
  start-page: 177
  year: 2003
  ident: 10.1016/j.neuroimage.2019.02.039_bib37
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10308
– volume: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib57
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013701
– volume: 76
  start-page: 1574
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib26
  article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26054
– volume: 67
  start-page: 298
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib44
  article-title: SIFT: spherical-deconvolution informed filtering of tractograms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.049
– volume: 65
  start-page: 1532
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib54
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22924
– volume: 70
  start-page: 402
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib10
  article-title: Estimating false positives and negatives in brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.066
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.neuroimage.2019.02.039_bib47
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 67
  start-page: 1210
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.039_bib41
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 63
  start-page: 1144
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib29
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22361
– volume: 23
  start-page: 499
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib4
  article-title: Small-world brain networks revisited
  publication-title: Neuroscientist
  doi: 10.1177/1073858416667720
– volume: 2
  start-page: e597
  year: 2007
  ident: 10.1016/j.neuroimage.2019.02.039_bib21
  article-title: Mapping human whole-brain structural networks with diffusion MRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000597
– start-page: 183
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib42
  article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib17
  article-title: Brain network analysis: separating cost from topology using cost-integration
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021570
– volume: 15
  start-page: 152
  year: 1990
  ident: 10.1016/j.neuroimage.2019.02.039_bib30
  article-title: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910150117
– volume: 76
  start-page: 1582
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib59
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26059
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.neuroimage.2019.02.039_bib51
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 142
  start-page: 394
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib60
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 38
  start-page: 2333
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.039_bib7
  article-title: Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: a diffusion MRI study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23520
– volume: 142
  start-page: 150
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib63
  article-title: Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.047
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib56
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 111
  start-page: 16574
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.039_bib1a
  article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1405672111
– volume: 62
  start-page: 1924
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.039_bib43
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 21
  start-page: 1254
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib28
  article-title: Weight consistency specifies regularities of macaque cortical networks
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhq201
– year: 2017
  ident: 10.1016/j.neuroimage.2019.02.039_bib49
  article-title: Building connectomes using diffusion MRI: why, how and but
– volume: 33
  start-page: 384
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.039_bib8
  article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2285500
– volume: 80
  start-page: 426
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib15
  article-title: Graph analysis of the human connectome: promise, progress, and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.087
– volume: 8
  start-page: 1349
  issue: 2017
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.039_bib2a
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun
  doi: 10.1038/s41467-017-01285-x
– volume: 52
  start-page: 1059
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib39
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 56
  start-page: 907
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib34
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 104
  start-page: 253
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.039_bib45
  article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.004
– volume: 119
  start-page: 338
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.039_bib46
  article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.06.092
– volume: 508
  start-page: 207
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.039_bib31
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
  doi: 10.1038/nature13186
– volume: 23
  start-page: 1176
  year: 2004
  ident: 10.1016/j.neuroimage.2019.02.039_bib52
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.037
– volume: 40
  start-page: 1064
  year: 2008
  ident: 10.1016/j.neuroimage.2019.02.039_bib22
  article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.060
– volume: 80
  start-page: 184
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib13
  article-title: A predictive network model of cerebral cortical connectivity based on a distance rule
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.036
– volume: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib14
  article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015710
– volume: 122
  start-page: 166
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.039_bib2
  article-title: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.067
– volume: 5
  start-page: 13
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib19
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2011.00013
– year: 2018
  ident: 10.1016/j.neuroimage.2019.02.039_bib6
  article-title: Is removal of weak connections necessary for dense weighted structural connectomes?
– volume: 54
  start-page: 955
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.039_bib38
  article-title: Global fiber reconstruction becomes practical
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.016
– volume: 28
  start-page: 281
  year: 2018
  ident: 10.1016/j.neuroimage.2019.02.039_bib58
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhx249
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.neuroimage.2019.02.039_bib1
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 12
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib64
  article-title: Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005104
– start-page: 1670
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.039_bib53
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
– volume: 73
  start-page: 239
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.039_bib24
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 142
  start-page: 407
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.039_bib65
  article-title: Connectome sensitivity or specificity: which is more important?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.035
– volume: 1
  start-page: e42
  year: 2005
  ident: 10.1016/j.neuroimage.2019.02.039_bib50
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 38
  start-page: 5485
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.039_bib18
  article-title: AxTract: toward microstructure informed tractography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23741
SSID ssj0009148
Score 2.5489666
Snippet Recent advances in diffusion MRI tractography permit the generation of dense weighted structural connectomes that offer greater insight into brain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Brain - physiology
Brain architecture
Brain research
Connectome - methods
Connectomics
Dietary fiber
Diffusion MRI
Diffusion Tensor Imaging - methods
Fiber tracking
Graph-theoretical analysis
Heuristic
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Methods
Models, Neurological
Neural networks
Neurosciences
Statistical analysis
Statistics
Tractography
Weighted connectome
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxUxEA-lh-KlaNX6tJYUvMa3-drd4EGktLSF14Na6C0kmyw89b0t3Rbx4sk_3Jls9rUFCw-8LLubnZBNJjOTZOY3hLzTpa9NXXrGPY9MxVAxI8uSaYQG19K5ImCg8Oy8PLlQZ5f6coMcjrEw6FaZZf8g05O0zm-muTenV_P59AtYBqBuYL1hgEllCqNWqkIuf__7zs3DcDWEw2nJ8OvszTP4eCXMyPkCZi46eZmE3olpw_-toh4zQZMqOn5KtrMNST8NzXxGNuJyh2zN8in5c_LntKfXcdEBE9GupT-j-04bdGhJMQw9hRtMfHL9i4LFShNkNbsX0EhdBipBYhBLfYQqcA0fAx3gZhGqY6yxW8SeYpAKxVwrt7j5RmefTz--IBfHR18PT1jOtsAaLfQNE4Y3uilFMDEWUUTeCoPaSrSIuacNWHa-NQHsgbrCnSPupPJQIlpt2roK8iXZXHbL-IrQSlahEY33og3KB-ckb4QLDq5atlJNSDV2sG0yFDlmxPhhR5-zb_ZuaCwOjS2EhaGZEL6ivBrgONagMeMY2jHcFASkBZ2xBu2HFe0DtlyTem9kGZtFQ29TAnWjaiUn5GBVDJMaT2rcMna38A2vDZjSpawmZHdgtdXvyqJWShfl6_9q2hvyBJ8Gx-M9sgncE9-CeXXj99P8-Qt6BCYl
  priority: 102
  providerName: Elsevier
Title Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919301351
https://dx.doi.org/10.1016/j.neuroimage.2019.02.039
https://www.ncbi.nlm.nih.gov/pubmed/30844506
https://www.proquest.com/docview/2229594843
https://www.proquest.com/docview/2189540637
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoK6FeEJTXlrIyEldD_EpicagKarUL2hWqqLQ3y44dicdu2qYV4sKJH85M4uxyALSXJJIzVpIZj7_YM98Q8lLnvjRl7hn3PDIVQ8GMzHOmkRpcS-eygInCs3k-uVDvF3qRFtzaFFY5-MTOUYemwjXy113daaNKJY8vrxhWjcLd1VRCY4fsIXUZhnQVi2JDustVnwqnJSvhhhTJ08d3dXyRn5cwajHAy3TMnVgy_O_T07_gZzcNnd0n9xJ-pCe9wh-QO3F1QO7O0g75AdlH9NiTLz8kv6YtvY7LBqyJNjX9Ht1XWmFkS5fM0FK4wAoo1z8oQFfacVezPzIbqUuMJSgM_qmN0AX-zMdAe95Z5OwYemyWsaWYrUKx6MotrsLR2fn0-BG5ODv99G7CUtkFVmmhb5gwvNJVLoKJMYsi8loYnLZEjeR7oINM-9oEAAZlgUtI3EnloUXU2tRlEeRjsrtqVvEpoYUsQiUq70UdlA_OSV4JFxwctaylGpFi-Nq2SpzkWBrjmx2Cz77YjZ4s6slmwoKeRoSvJS97Xo4tZMygUDvknYKntDB5bCH7Zi2bsEmPObaUPhrsxyYf0dqNRY_Ii3UzjG7csnGr2NzCPbw0gKlzWYzIk97u1q8rs1IpneWH_-_8GdnHJ-lDjI_ILphHfA5A6saPyc6rn3zcjZkx2TuZfpjM4fz2dP7x_DeFtCM-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVoJeEBQoCwUGCY4RmVeSEUIVj1a7tLtCVSv1NkwyE4nHbkrTquqd38NvxM5jlwOgvfQSRUrsPOzxeDz2Z4AXOskzkyV5xHMeIhV8GhmZJJEmaHAtnYs9FQpPpsnoWH080Sdr8KuvhaG0yt4mNobaVwXFyF81faeNypTcOf0RUdco2l3tW2i0arEfri5xyVa_GX9A-b4UYm_36P0o6roKRIUW-jwShhe6SIQ3IcRBBF4KQ1ZZlIQth4-IdV4aj_NellKEhDupcrwiSm3KLPUS-d6AdSVxKTOA9Xe700-HS5hfrtriOy2jjHPT5Q61GWUNQuWXGdoJSikzDVYoNSn_-4T4L4e3mfj27sDtzmNlb1sVuwtrYb4JNyfdnvwmbJC_2sI934Of45qdhVmF-suqkl0G940VlEvTlE_UDE-o58rZFUNnmTVo2dEftZTMdRgpRIwWsQ7IgsIHwbMW6ZZQQnqO1SzUjOpjGLV5uaC4H5scjnfuw_G1iOQBDObVPDwElsrUF6LIc1F6lXvnJC-E8w6PWpZSDSHt_7YtOhR0asbx3fbpbl_tUk6W5GRjYVFOQ-ALytMWCWQFGtML1PaVrmibLU5XK9C-XtB23lDr5axIvd3rj-2sUm2XY2gIzxeX0Z7QJpGbh-oC7-GZQS8-kekQtlq9W3yujDOldJw8-j_zZ3BrdDQ5sAfj6f5j2KC3ahOct2GAqhKeoBt3nj_txg6Dz9c9XH8DbKlayQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkapeEJRHFwoYCY5W41ccC6EKUVZdylYIUak348SOxGM3pWlV9c6v4tcxEye7HADtpZcokjPOYx6ejGe-IeS5zsvCFnnJeMkjUzEYZmWeM43Q4Fp6nwUsFJ4e5QfH6t2JPlkjv4ZaGEyrHGxiZ6hDU2GMfLfrO21VoeRu3adFfNgf753-YNhBCndah3YaSUQO49Ul_L61ryb7wOsXQozffnpzwPoOA6zSQp8zYXmlq1wEG2MWReS1sGihRY04c3C7TJe1DbAGFgajJdxLVcKIqLWtCxMkzHuD3DRSc9Qxc2KWgL9cpTI8LVnBue2ziFJuWYdV-WUGFgOTy2yHGortyv--NP7L9e2WwPFtcqv3XenrJGx3yFqcb5GNab87v0U20XNNwM93yc9JS8_irAFJpk1NL6P_RivMqukKKVoKJ9h95eyKgttMO9xs9kdVJfU9WgoSg21sI0yBgYQYaMK8RbyQYcZmFluKlTIUG75cYASQTj9O9u6R42thyH2yPm_mcZtQI02oRFWWog6qDN5LXgkfPBy1rKUaETN8bVf1eOjYluO7GxLfvrolnxzyyWXCAZ9GhC8oTxMmyAo0dmCoG2pewUo7WLhWoH25oO39ouTvrEi9M8iP6-1T65baNCLPFsNgWXC7yM9jcwHX8MKCP59LMyIPktwtXldmhVI6yx_-f_KnZAOU1L2fHB0-Ipv4UCnTeYesg6TEx-DPnZdPOsWh5PN1a-pvqUtdmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+removal+of+weak+connections+necessary+for+graph-theoretical+analysis+of+dense+weighted+structural+connectomes+from+diffusion+MRI%3F&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Civier%2C+Oren&rft.au=Smith%2C+Robert+Elton&rft.au=Chun-Hung+Yeh&rft.au=Connelly%2C+Alan&rft.date=2019-07-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=194&rft.spage=68&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.02.039&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon