Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression

Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized h...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 30; p. 101412
Main Authors Li, Lu, Fu, Jingqi, Liu, Dan, Sun, Jing, Hou, Yongyong, Chen, Chengjie, Shao, Junbo, Wang, Linlin, Wang, Xin, Zhao, Rui, Wang, Huihui, Andersen, Melvin E., Zhang, Qiang, Xu, Yuanyuan, Pi, Jingbo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2213-2317
2213-2317
DOI10.1016/j.redox.2019.101412

Cover

Loading…
Abstract Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. [Display omitted] •Nrf2(L)-KO, but not Nrf2(Mϕ)-KO, mice showed lessened hepatic steatosis induced by HFD feeding.•Nrf2 deficiency dampened the expression and transcriptional activity of PPARγ in hepatocytes.•PPARγ agonists increased PPARγ expression/activity in hepatocytes in a NRF2-dependent manner.•OE of PPARγ partially reversed the reduction of lipogenic genes in Nrf2(L)-KO hepatocytes.
AbstractList Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. [Display omitted] •Nrf2(L)-KO, but not Nrf2(Mϕ)-KO, mice showed lessened hepatic steatosis induced by HFD feeding.•Nrf2 deficiency dampened the expression and transcriptional activity of PPARγ in hepatocytes.•PPARγ agonists increased PPARγ expression/activity in hepatocytes in a NRF2-dependent manner.•OE of PPARγ partially reversed the reduction of lipogenic genes in Nrf2(L)-KO hepatocytes.
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2 -knockout [ Nrf2 (L)-KO and Nrf2 (Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2 -LoxP littermates, Nrf2 (L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2 (Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2 -LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4 , lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. Image 1 • Nrf2 (L)-KO, but not Nrf2 (Mϕ)-KO, mice showed lessened hepatic steatosis induced by HFD feeding. • Nrf2 deficiency dampened the expression and transcriptional activity of PPARγ in hepatocytes. • PPARγ agonists increased PPARγ expression/activity in hepatocytes in a NRF2-dependent manner. • OE of PPARγ partially reversed the reduction of lipogenic genes in Nrf2 (L)-KO hepatocytes.
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. Keywords: Nrf2, NALFD, High-fat diet, Hepatocyte, PPARγ
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.
ArticleNumber 101412
Author Andersen, Melvin E.
Wang, Xin
Zhang, Qiang
Hou, Yongyong
Fu, Jingqi
Liu, Dan
Wang, Huihui
Xu, Yuanyuan
Chen, Chengjie
Wang, Linlin
Pi, Jingbo
Li, Lu
Sun, Jing
Shao, Junbo
Zhao, Rui
AuthorAffiliation d ScitoVation, LLC, Research Triangle Park, NC, 27709, USA
c Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
b School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
e Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
a Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
AuthorAffiliation_xml – name: b School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– name: a Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– name: c Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– name: d ScitoVation, LLC, Research Triangle Park, NC, 27709, USA
– name: e Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
Author_xml – sequence: 1
  givenname: Lu
  surname: Li
  fullname: Li, Lu
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 2
  givenname: Jingqi
  surname: Fu
  fullname: Fu, Jingqi
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 3
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 4
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 5
  givenname: Yongyong
  surname: Hou
  fullname: Hou, Yongyong
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 6
  givenname: Chengjie
  surname: Chen
  fullname: Chen, Chengjie
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 7
  givenname: Junbo
  surname: Shao
  fullname: Shao, Junbo
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 8
  givenname: Linlin
  surname: Wang
  fullname: Wang, Linlin
  organization: School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 9
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 10
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 11
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
  organization: Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 12
  givenname: Melvin E.
  surname: Andersen
  fullname: Andersen, Melvin E.
  organization: ScitoVation, LLC, Research Triangle Park, NC, 27709, USA
– sequence: 13
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
– sequence: 14
  givenname: Yuanyuan
  surname: Xu
  fullname: Xu, Yuanyuan
  email: yyxu@cmu.edu.cn
  organization: Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
– sequence: 15
  givenname: Jingbo
  surname: Pi
  fullname: Pi, Jingbo
  email: jbpi@cmu.edu.cn, jingbopi@163.com
  organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31901728$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuEzEUtVARLaFfgIRmyWaCH-OZMRJIVVVopAoqBGvLY18njibjYDtRs-Kj-I9-Uz1Ji1oW9cbW9Tnn-vqc1-ho8AMg9JbgKcGk_rCcBjD-ZkoxEWOlIvQFOqGUsJIy0hw9Oh-j0xiXOK-2rSjBr9AxIwKThrYn6M8lrFXyepegjGvQzjpdfAuWFgby0cGgd8XKJTdXCWKxcPNFaVUqjINUusFsNJhiMWpkXkyQtaKLH4vZsPX9FlYwpMLbIj92j7y-Pvtx-7eAm3WAGJ0f3qCXVvURTu_3Cfr15eLn-WV59f3r7PzsqtSc8lRSThRw1WKmRFVVnHSs07VqhBWs4y1toGJ5topz01EwTa5CSzuLG25rbRmboNlB13i1lOvgVirspFdO7gs-zKUKeYYeJFXU6g7A8LqqGBVdg5UhSrW64x2v26z1-aC13nQrMDrPGFT_RPTpzeAWcu63shYVrrMtE_T-XiD43xuISa5c1ND3agC_iZIyxgQVrcAZ-u5xr39NHhzMAHEA6OBjDGCldim74cfWrpcEyzEwcin3gZFjYOQhMJnL_uM-yD_P-nRgQfZr6yDIuM8JGBdAp_yh7ln-HVy83c4
CitedBy_id crossref_primary_10_3389_fphar_2024_1470879
crossref_primary_10_1016_j_taap_2021_115617
crossref_primary_10_1172_JCI162533
crossref_primary_10_1016_j_chemosphere_2020_129177
crossref_primary_10_1039_D3FO04348G
crossref_primary_10_31083_j_fbl2901030
crossref_primary_10_3390_antiox11102067
crossref_primary_10_1002_ctm2_70233
crossref_primary_10_1007_s12033_024_01131_8
crossref_primary_10_1007_s12272_020_01227_0
crossref_primary_10_1021_acs_est_3c02769
crossref_primary_10_2174_0118715303257018230927182802
crossref_primary_10_1021_acs_est_2c09024
crossref_primary_10_1016_j_foodchem_2024_140460
crossref_primary_10_1007_s10565_024_09925_x
crossref_primary_10_1021_acsptsci_4c00185
crossref_primary_10_3390_antiox12010172
crossref_primary_10_1016_j_arabjc_2024_105607
crossref_primary_10_1016_j_fct_2021_112002
crossref_primary_10_1002_fsn3_3713
crossref_primary_10_3389_fphar_2023_1254317
crossref_primary_10_3390_ijms24076613
crossref_primary_10_1016_j_jpha_2023_12_020
crossref_primary_10_1016_j_heliyon_2023_e18321
crossref_primary_10_1096_fj_202101456R
crossref_primary_10_1002_jat_4752
crossref_primary_10_1111_ajt_16789
crossref_primary_10_1155_2022_9493710
crossref_primary_10_1016_j_taap_2021_115523
crossref_primary_10_2174_0115672018260113231023064614
crossref_primary_10_1016_j_biopha_2024_117701
crossref_primary_10_1038_s41598_023_39641_1
crossref_primary_10_1038_s41423_022_00964_0
crossref_primary_10_3390_biomedicines12081876
crossref_primary_10_1155_2022_9723632
crossref_primary_10_1038_s41419_023_05792_2
crossref_primary_10_1016_j_fct_2021_112633
crossref_primary_10_3390_antiox11010091
crossref_primary_10_1021_acs_jafc_1c05213
crossref_primary_10_3390_ijms21249493
crossref_primary_10_1111_jre_13200
crossref_primary_10_3389_fcell_2022_1089124
crossref_primary_10_3390_antiox10081289
crossref_primary_10_3390_antiox13121461
crossref_primary_10_1016_j_biopha_2024_116942
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_1021_acs_jafc_3c06148
crossref_primary_10_1016_j_taap_2025_117263
crossref_primary_10_3390_antiox12111928
crossref_primary_10_1038_s41573_025_01145_0
crossref_primary_10_3390_biomedicines10051020
crossref_primary_10_1016_j_heliyon_2024_e36726
crossref_primary_10_3389_fnut_2024_1437183
crossref_primary_10_1016_j_fct_2023_113757
crossref_primary_10_1016_j_ijbiomac_2023_127042
crossref_primary_10_1186_s12951_025_03128_0
crossref_primary_10_1016_j_metabol_2023_155665
crossref_primary_10_1021_acs_jafc_2c05747
crossref_primary_10_3389_fphar_2021_662664
crossref_primary_10_1042_CS20230048
crossref_primary_10_3390_ijms232415489
crossref_primary_10_1289_EHP13849
crossref_primary_10_3390_ph17101287
crossref_primary_10_1016_j_biopha_2022_113127
crossref_primary_10_3389_fmmed_2023_1283170
crossref_primary_10_1007_s42764_023_00103_7
crossref_primary_10_1016_j_ijbiomac_2022_05_130
crossref_primary_10_1007_s11033_024_09771_4
crossref_primary_10_1016_j_coph_2021_07_021
crossref_primary_10_1016_j_scitotenv_2023_166988
crossref_primary_10_3390_ijms21155378
crossref_primary_10_1038_s42003_024_06063_2
crossref_primary_10_1186_s12951_024_02807_8
crossref_primary_10_37349_edd_2023_00029
crossref_primary_10_1016_j_bcp_2024_116639
crossref_primary_10_1096_fj_202301137R
crossref_primary_10_3748_wjg_v28_i48_6909
crossref_primary_10_1016_j_redox_2024_103464
crossref_primary_10_1016_j_fbio_2022_101659
crossref_primary_10_3390_antiox11020307
Cites_doi 10.1515/hsz-2013-0241
10.1152/physrev.00023.2017
10.1007/s00011-015-0834-9
10.1016/j.freeradbiomed.2015.12.014
10.1371/journal.pone.0078522
10.2337/db12-0584
10.1074/jbc.M109.093955
10.1124/jpet.115.231316
10.1016/j.taap.2012.09.014
10.4254/wjh.v7.i8.1012
10.1016/j.freeradbiomed.2013.03.007
10.1053/j.gastro.2010.09.038
10.1016/j.freeradbiomed.2009.11.007
10.1016/j.bbrc.2018.06.013
10.1074/jbc.M115.673756
10.1016/j.jhep.2009.03.008
10.1016/j.tem.2015.11.008
10.1016/j.jhep.2009.03.019
10.1016/j.jhep.2014.12.012
10.1096/fj.10-173716
10.1016/j.fct.2018.09.042
10.1016/j.metabol.2015.11.008
10.1371/journal.ppat.1002254
10.1002/hep.23594
10.1152/ajpgi.00322.2010
10.1146/annurev-med-051215-031109
10.1016/j.taap.2017.05.013
10.1007/s11154-016-9339-2
10.1111/j.1440-1746.2012.07180.x
10.1038/nm.3450
10.1152/ajpendo.00311.2017
10.1016/S2213-8587(18)30154-2
10.1038/ncomms11624
10.1007/s40139-013-0039-2
10.1210/me.2015-1145
10.1089/ars.2014.6017
10.1038/s41467-019-09152-7
10.1016/j.cotox.2018.12.005
10.1128/MCB.00677-14
10.1016/j.tibs.2014.02.002
10.1016/j.taap.2019.02.003
10.1101/gad.8.10.1224
10.1002/hep.30251
10.1186/s12936-015-0888-8
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2019.101412
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
ExternalDocumentID oai_doaj_org_article_2a2fcbeed5644329b70ad1aa8cb5b568
PMC6940621
31901728
10_1016_j_redox_2019_101412
S2213231719308559
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES019776
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADUVX
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c525t-251ae5a803a944451b3bc6a79f93b5827e43421455db2ed793be82bf075f6cf33
IEDL.DBID M48
ISSN 2213-2317
IngestDate Wed Aug 27 00:14:30 EDT 2025
Thu Aug 21 18:30:54 EDT 2025
Thu Jul 10 20:55:36 EDT 2025
Thu Apr 03 06:59:12 EDT 2025
Tue Jul 01 00:47:03 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Tue Jul 25 21:05:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hepatocyte
Nrf2
High-fat diet
NALFD
PPARγ
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-251ae5a803a944451b3bc6a79f93b5827e43421455db2ed793be82bf075f6cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2213231719308559
PMID 31901728
PQID 2333929890
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2a2fcbeed5644329b70ad1aa8cb5b568
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6940621
proquest_miscellaneous_2333929890
pubmed_primary_31901728
crossref_citationtrail_10_1016_j_redox_2019_101412
crossref_primary_10_1016_j_redox_2019_101412
elsevier_sciencedirect_doi_10_1016_j_redox_2019_101412
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Starley, Calcagno, Harrison (bib6) 2010; 51
Dandekar, Mendez, Zhang (bib14) 2015
Aubouy (bib34) 2015; 14
Olagnier (bib33) 2011; 7
Xue (bib22) 2013; 62
Yamamoto, Kensler, Motohashi (bib8) 2018; 98
Byrne, Targher (bib21) 2015; 62
Rui (bib41) 2016; 358
Suzuki, Diehl (bib18) 2017; 68
Schneider (bib40) 2016; 291
Baffy (bib19) 2009; 51
Pi (bib17) 2010; 285
Zhang (bib44) 2012; 264
Sauer (bib43) 2014; 2
Lugrin (bib13) 2014; 395
Nati (bib20) 2016; 17
Tanaka (bib37) 2012; 27
Hayes, Dinkova-Kostova (bib7) 2014; 39
Ramadori (bib38) 2016; 91
Bertolio (bib36) 2019; 10
Younossi (bib2) 2019; 69
Meakin (bib11) 2014; 34
Zheng (bib27) 2015; 22
Kobayashi (bib10) 2016; 7
Brown, Kleiner (bib32) 2016; 65
Huang (bib15) 2010; 299
Williams (bib4) 2011; 140
Liu (bib31) 2019; 367
Argo (bib5) 2009; 51
Cui (bib30) 2017; 329
Souza-Mello (bib16) 2015; 7
Sun (bib24) 2018; 121
Moran-Salvador (bib35) 2011; 25
Fu, Akhmedov, Berdeaux (bib25) 2013; 8
Chowdhry (bib12) 2010; 48
Hou (bib23) 2018; 503
Qin (bib9) 2015; 64
More (bib39) 2013; 61
Chartoumpekis (bib45) 2018; 315
Khalifeh-Soltani (bib26) 2014; 20
Tontonoz (bib28) 1994; 8
Stefan, Haring, Cusi (bib1) 2019; 7
Gao (bib29) 2015; 29
Li (bib42) 2019; 13
Ioannou (bib3) 2016; 27
Younossi (10.1016/j.redox.2019.101412_bib2) 2019; 69
Olagnier (10.1016/j.redox.2019.101412_bib33) 2011; 7
Gao (10.1016/j.redox.2019.101412_bib29) 2015; 29
Tanaka (10.1016/j.redox.2019.101412_bib37) 2012; 27
Byrne (10.1016/j.redox.2019.101412_bib21) 2015; 62
Starley (10.1016/j.redox.2019.101412_bib6) 2010; 51
Souza-Mello (10.1016/j.redox.2019.101412_bib16) 2015; 7
Zheng (10.1016/j.redox.2019.101412_bib27) 2015; 22
Cui (10.1016/j.redox.2019.101412_bib30) 2017; 329
More (10.1016/j.redox.2019.101412_bib39) 2013; 61
Chowdhry (10.1016/j.redox.2019.101412_bib12) 2010; 48
Aubouy (10.1016/j.redox.2019.101412_bib34) 2015; 14
Bertolio (10.1016/j.redox.2019.101412_bib36) 2019; 10
Chartoumpekis (10.1016/j.redox.2019.101412_bib45) 2018; 315
Schneider (10.1016/j.redox.2019.101412_bib40) 2016; 291
Argo (10.1016/j.redox.2019.101412_bib5) 2009; 51
Huang (10.1016/j.redox.2019.101412_bib15) 2010; 299
Zhang (10.1016/j.redox.2019.101412_bib44) 2012; 264
Pi (10.1016/j.redox.2019.101412_bib17) 2010; 285
Moran-Salvador (10.1016/j.redox.2019.101412_bib35) 2011; 25
Stefan (10.1016/j.redox.2019.101412_bib1) 2019; 7
Xue (10.1016/j.redox.2019.101412_bib22) 2013; 62
Fu (10.1016/j.redox.2019.101412_bib25) 2013; 8
Suzuki (10.1016/j.redox.2019.101412_bib18) 2017; 68
Hou (10.1016/j.redox.2019.101412_bib23) 2018; 503
Brown (10.1016/j.redox.2019.101412_bib32) 2016; 65
Li (10.1016/j.redox.2019.101412_bib42) 2019; 13
Hayes (10.1016/j.redox.2019.101412_bib7) 2014; 39
Rui (10.1016/j.redox.2019.101412_bib41) 2016; 358
Nati (10.1016/j.redox.2019.101412_bib20) 2016; 17
Kobayashi (10.1016/j.redox.2019.101412_bib10) 2016; 7
Sun (10.1016/j.redox.2019.101412_bib24) 2018; 121
Ioannou (10.1016/j.redox.2019.101412_bib3) 2016; 27
Dandekar (10.1016/j.redox.2019.101412_bib14) 2015
Williams (10.1016/j.redox.2019.101412_bib4) 2011; 140
Baffy (10.1016/j.redox.2019.101412_bib19) 2009; 51
Tontonoz (10.1016/j.redox.2019.101412_bib28) 1994; 8
Lugrin (10.1016/j.redox.2019.101412_bib13) 2014; 395
Khalifeh-Soltani (10.1016/j.redox.2019.101412_bib26) 2014; 20
Qin (10.1016/j.redox.2019.101412_bib9) 2015; 64
Yamamoto (10.1016/j.redox.2019.101412_bib8) 2018; 98
Ramadori (10.1016/j.redox.2019.101412_bib38) 2016; 91
Liu (10.1016/j.redox.2019.101412_bib31) 2019; 367
Sauer (10.1016/j.redox.2019.101412_bib43) 2014; 2
Meakin (10.1016/j.redox.2019.101412_bib11) 2014; 34
References_xml – start-page: 205
  year: 2015
  end-page: 214
  ident: bib14
  article-title: Cross talk between ER stress, oxidative stress, and inflammation in Health and disease
  publication-title: Stress Responses: Methods and Protocols
– volume: 121
  start-page: 495
  year: 2018
  end-page: 503
  ident: bib24
  article-title: NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice
  publication-title: Food Chem. Toxicol.
– volume: 8
  year: 2013
  ident: bib25
  article-title: The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes
  publication-title: PLoS One
– volume: 7
  start-page: 11624
  year: 2016
  ident: bib10
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
– volume: 291
  start-page: 7754
  year: 2016
  end-page: 7766
  ident: bib40
  article-title: Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2)
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 1012
  year: 2015
  end-page: 1019
  ident: bib16
  article-title: Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease
  publication-title: World J. Hepatol.
– volume: 62
  start-page: S47
  year: 2015
  end-page: S64
  ident: bib21
  article-title: NAFLD: a multisystem disease
  publication-title: J. Hepatol.
– volume: 51
  start-page: 212
  year: 2009
  end-page: 223
  ident: bib19
  article-title: Kupffer cells in non-alcoholic fatty liver disease: the emerging view
  publication-title: J. Hepatol.
– volume: 140
  start-page: 124
  year: 2011
  end-page: 131
  ident: bib4
  article-title: Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study
  publication-title: Gastroenterology
– volume: 17
  start-page: 29
  year: 2016
  end-page: 39
  ident: bib20
  article-title: The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)
  publication-title: Rev. Endocr. Metab. Disord.
– volume: 65
  start-page: 1080
  year: 2016
  end-page: 1086
  ident: bib32
  article-title: Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Metabolism
– volume: 64
  start-page: 537
  year: 2015
  end-page: 548
  ident: bib9
  article-title: Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation
  publication-title: Inflamm. Res.
– volume: 13
  start-page: 35
  year: 2019
  end-page: 44
  ident: bib42
  article-title: Is Nrf2-ARE a potential target in NAFLD mitigation?
  publication-title: Curr. Opin. Toxicol.
– volume: 264
  start-page: 305
  year: 2012
  end-page: 314
  ident: bib44
  article-title: Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 367
  start-page: 62
  year: 2019
  end-page: 70
  ident: bib31
  article-title: Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 39
  start-page: 199
  year: 2014
  end-page: 218
  ident: bib7
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
– volume: 29
  start-page: 1558
  year: 2015
  end-page: 1570
  ident: bib29
  article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α
  publication-title: Mol. Endocrinol. (Baltimore, Md.)
– volume: 285
  start-page: 9292
  year: 2010
  end-page: 9300
  ident: bib17
  article-title: Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity
  publication-title: J. Biol. Chem.
– volume: 10
  year: 2019
  ident: bib36
  article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism
  publication-title: Nat. Commun.
– volume: 48
  start-page: 357
  year: 2010
  end-page: 371
  ident: bib12
  article-title: Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis
  publication-title: Free Radic. Biol. Med.
– volume: 25
  start-page: 2538
  year: 2011
  end-page: 2550
  ident: bib35
  article-title: Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts
  publication-title: FASEB J.
– volume: 34
  start-page: 3305
  year: 2014
  end-page: 3320
  ident: bib11
  article-title: Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance
  publication-title: Mol. Cell. Biol.
– volume: 20
  start-page: 175
  year: 2014
  end-page: 183
  ident: bib26
  article-title: Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids
  publication-title: Nat. Med.
– volume: 315
  start-page: E180
  year: 2018
  end-page: e195
  ident: bib45
  article-title: Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 51
  start-page: 1820
  year: 2010
  end-page: 1832
  ident: bib6
  article-title: Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection
  publication-title: Hepatology
– volume: 27
  start-page: 1711
  year: 2012
  end-page: 1717
  ident: bib37
  article-title: Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice
  publication-title: J. Gastroenterol. Hepatol.
– volume: 91
  start-page: 114
  year: 2016
  end-page: 126
  ident: bib38
  article-title: Hepatocyte-specific Keap1 deletion reduces liver steatosis but not inflammation during non-alcoholic steatohepatitis development
  publication-title: Free Radic. Biol. Med.
– volume: 69
  start-page: 2672
  year: 2019
  end-page: 2682
  ident: bib2
  article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 7
  year: 2011
  ident: bib33
  article-title: Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria
  publication-title: PLoS Pathog.
– volume: 358
  start-page: 14
  year: 2016
  end-page: 21
  ident: bib41
  article-title: Nuclear factor erythroid 2-related factor 2 deficiency results in amplification of the liver fat-lowering effect of estrogen
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 299
  start-page: G1211
  year: 2010
  end-page: G1221
  ident: bib15
  article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 22
  start-page: 819
  year: 2015
  end-page: 831
  ident: bib27
  article-title: CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion
  publication-title: Antioxidants Redox Signal.
– volume: 329
  start-page: 67
  year: 2017
  end-page: 74
  ident: bib30
  article-title: Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic beta cells to arsenite-induced cytotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 2
  start-page: 11
  year: 2014
  end-page: 20
  ident: bib43
  article-title: Induced pluripotent stem cells as a source of hepatocytes
  publication-title: Curr. Pathobiol. Rep.
– volume: 62
  start-page: 845
  year: 2013
  end-page: 854
  ident: bib22
  article-title: Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome
  publication-title: Diabetes
– volume: 27
  start-page: 84
  year: 2016
  end-page: 95
  ident: bib3
  article-title: The role of cholesterol in the pathogenesis of NASH
  publication-title: Trends Endocrinol. Metab.
– volume: 68
  start-page: 85
  year: 2017
  end-page: 98
  ident: bib18
  article-title: Nonalcoholic steatohepatitis
  publication-title: Annu. Rev. Med.
– volume: 7
  start-page: 313
  year: 2019
  end-page: 324
  ident: bib1
  article-title: Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies
  publication-title: Lancet Diab. Endocrinol.
– volume: 503
  start-page: 264
  year: 2018
  end-page: 270
  ident: bib23
  article-title: Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 395
  start-page: 203
  year: 2014
  end-page: 230
  ident: bib13
  article-title: The role of oxidative stress during inflammatory processes
  publication-title: Biol. Chem.
– volume: 14
  start-page: 358
  year: 2015
  ident: bib34
  article-title: Nrf2-driven CD36 and HO-1 gene expression in circulating monocytes correlates with favourable clinical outcome in pregnancy-associated malaria
  publication-title: Malar. J.
– volume: 98
  start-page: 1169
  year: 2018
  end-page: 1203
  ident: bib8
  article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis
  publication-title: Physiol. Rev.
– volume: 8
  start-page: 1224
  year: 1994
  end-page: 1234
  ident: bib28
  article-title: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer
  publication-title: Genes Dev.
– volume: 51
  start-page: 371
  year: 2009
  end-page: 379
  ident: bib5
  article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis
  publication-title: J. Hepatol.
– volume: 61
  start-page: 85
  year: 2013
  end-page: 94
  ident: bib39
  article-title: Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding
  publication-title: Free Radic. Biol. Med.
– volume: 395
  start-page: 203
  issue: 2
  year: 2014
  ident: 10.1016/j.redox.2019.101412_bib13
  article-title: The role of oxidative stress during inflammatory processes
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2013-0241
– volume: 98
  start-page: 1169
  issue: 3
  year: 2018
  ident: 10.1016/j.redox.2019.101412_bib8
  article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00023.2017
– volume: 64
  start-page: 537
  issue: 7
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib9
  article-title: Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-015-0834-9
– volume: 91
  start-page: 114
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib38
  article-title: Hepatocyte-specific Keap1 deletion reduces liver steatosis but not inflammation during non-alcoholic steatohepatitis development
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.12.014
– volume: 8
  issue: 10
  year: 2013
  ident: 10.1016/j.redox.2019.101412_bib25
  article-title: The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0078522
– volume: 62
  start-page: 845
  issue: 3
  year: 2013
  ident: 10.1016/j.redox.2019.101412_bib22
  article-title: Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome
  publication-title: Diabetes
  doi: 10.2337/db12-0584
– volume: 285
  start-page: 9292
  issue: 12
  year: 2010
  ident: 10.1016/j.redox.2019.101412_bib17
  article-title: Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.093955
– volume: 358
  start-page: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib41
  article-title: Nuclear factor erythroid 2-related factor 2 deficiency results in amplification of the liver fat-lowering effect of estrogen
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.115.231316
– volume: 264
  start-page: 305
  issue: 3
  year: 2012
  ident: 10.1016/j.redox.2019.101412_bib44
  article-title: Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2012.09.014
– volume: 7
  start-page: 1012
  issue: 8
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib16
  article-title: Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease
  publication-title: World J. Hepatol.
  doi: 10.4254/wjh.v7.i8.1012
– volume: 61
  start-page: 85
  year: 2013
  ident: 10.1016/j.redox.2019.101412_bib39
  article-title: Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.03.007
– volume: 140
  start-page: 124
  issue: 1
  year: 2011
  ident: 10.1016/j.redox.2019.101412_bib4
  article-title: Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.09.038
– volume: 48
  start-page: 357
  issue: 2
  year: 2010
  ident: 10.1016/j.redox.2019.101412_bib12
  article-title: Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.11.007
– volume: 503
  start-page: 264
  issue: 1
  year: 2018
  ident: 10.1016/j.redox.2019.101412_bib23
  article-title: Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.06.013
– volume: 291
  start-page: 7754
  issue: 14
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib40
  article-title: Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.673756
– volume: 51
  start-page: 212
  issue: 1
  year: 2009
  ident: 10.1016/j.redox.2019.101412_bib19
  article-title: Kupffer cells in non-alcoholic fatty liver disease: the emerging view
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2009.03.008
– volume: 27
  start-page: 84
  issue: 2
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib3
  article-title: The role of cholesterol in the pathogenesis of NASH
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2015.11.008
– volume: 51
  start-page: 371
  issue: 2
  year: 2009
  ident: 10.1016/j.redox.2019.101412_bib5
  article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2009.03.019
– volume: 62
  start-page: S47
  issue: 1 Suppl
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib21
  article-title: NAFLD: a multisystem disease
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2014.12.012
– volume: 25
  start-page: 2538
  issue: 8
  year: 2011
  ident: 10.1016/j.redox.2019.101412_bib35
  article-title: Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts
  publication-title: FASEB J.
  doi: 10.1096/fj.10-173716
– volume: 121
  start-page: 495
  year: 2018
  ident: 10.1016/j.redox.2019.101412_bib24
  article-title: NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2018.09.042
– volume: 65
  start-page: 1080
  issue: 8
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib32
  article-title: Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2015.11.008
– volume: 7
  issue: 9
  year: 2011
  ident: 10.1016/j.redox.2019.101412_bib33
  article-title: Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002254
– volume: 51
  start-page: 1820
  issue: 5
  year: 2010
  ident: 10.1016/j.redox.2019.101412_bib6
  article-title: Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection
  publication-title: Hepatology
  doi: 10.1002/hep.23594
– volume: 299
  start-page: G1211
  issue: 6
  year: 2010
  ident: 10.1016/j.redox.2019.101412_bib15
  article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00322.2010
– volume: 68
  start-page: 85
  year: 2017
  ident: 10.1016/j.redox.2019.101412_bib18
  article-title: Nonalcoholic steatohepatitis
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev-med-051215-031109
– volume: 329
  start-page: 67
  year: 2017
  ident: 10.1016/j.redox.2019.101412_bib30
  article-title: Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic beta cells to arsenite-induced cytotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.05.013
– volume: 17
  start-page: 29
  issue: 1
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib20
  article-title: The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)
  publication-title: Rev. Endocr. Metab. Disord.
  doi: 10.1007/s11154-016-9339-2
– volume: 27
  start-page: 1711
  issue: 11
  year: 2012
  ident: 10.1016/j.redox.2019.101412_bib37
  article-title: Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2012.07180.x
– volume: 20
  start-page: 175
  issue: 2
  year: 2014
  ident: 10.1016/j.redox.2019.101412_bib26
  article-title: Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids
  publication-title: Nat. Med.
  doi: 10.1038/nm.3450
– volume: 315
  start-page: E180
  issue: 2
  year: 2018
  ident: 10.1016/j.redox.2019.101412_bib45
  article-title: Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00311.2017
– volume: 7
  start-page: 313
  issue: 4
  year: 2019
  ident: 10.1016/j.redox.2019.101412_bib1
  article-title: Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies
  publication-title: Lancet Diab. Endocrinol.
  doi: 10.1016/S2213-8587(18)30154-2
– volume: 7
  start-page: 11624
  year: 2016
  ident: 10.1016/j.redox.2019.101412_bib10
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11624
– volume: 2
  start-page: 11
  issue: 1
  year: 2014
  ident: 10.1016/j.redox.2019.101412_bib43
  article-title: Induced pluripotent stem cells as a source of hepatocytes
  publication-title: Curr. Pathobiol. Rep.
  doi: 10.1007/s40139-013-0039-2
– volume: 29
  start-page: 1558
  issue: 11
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib29
  article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α
  publication-title: Mol. Endocrinol. (Baltimore, Md.)
  doi: 10.1210/me.2015-1145
– volume: 22
  start-page: 819
  issue: 10
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib27
  article-title: CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2014.6017
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.redox.2019.101412_bib36
  article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09152-7
– volume: 13
  start-page: 35
  year: 2019
  ident: 10.1016/j.redox.2019.101412_bib42
  article-title: Is Nrf2-ARE a potential target in NAFLD mitigation?
  publication-title: Curr. Opin. Toxicol.
  doi: 10.1016/j.cotox.2018.12.005
– volume: 34
  start-page: 3305
  issue: 17
  year: 2014
  ident: 10.1016/j.redox.2019.101412_bib11
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00677-14
– volume: 39
  start-page: 199
  issue: 4
  year: 2014
  ident: 10.1016/j.redox.2019.101412_bib7
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.02.002
– start-page: 205
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib14
  article-title: Cross talk between ER stress, oxidative stress, and inflammation in Health and disease
– volume: 367
  start-page: 62
  year: 2019
  ident: 10.1016/j.redox.2019.101412_bib31
  article-title: Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2019.02.003
– volume: 8
  start-page: 1224
  issue: 10
  year: 1994
  ident: 10.1016/j.redox.2019.101412_bib28
  article-title: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.10.1224
– volume: 69
  start-page: 2672
  issue: 6
  year: 2019
  ident: 10.1016/j.redox.2019.101412_bib2
  article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.30251
– volume: 14
  start-page: 358
  year: 2015
  ident: 10.1016/j.redox.2019.101412_bib34
  article-title: Nrf2-driven CD36 and HO-1 gene expression in circulating monocytes correlates with favourable clinical outcome in pregnancy-associated malaria
  publication-title: Malar. J.
  doi: 10.1186/s12936-015-0888-8
SSID ssj0000884210
Score 2.5068288
Snippet Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101412
SubjectTerms Animals
Diet, High-Fat - adverse effects
Disease Models, Animal
Gene Expression Regulation - drug effects
Gene Knockout Techniques
Hepatocyte
Hepatocytes - cytology
Hepatocytes - drug effects
Hepatocytes - metabolism
High-fat diet
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
Male
Mice
Mice, Inbred C57BL
NALFD
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Non-alcoholic Fatty Liver Disease - chemically induced
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Nrf2
Organ Specificity
Palmitates - adverse effects
PPAR gamma - genetics
PPAR gamma - metabolism
PPARγ
Research Paper
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9wwEMdFCQR6KX13-wgq9FhTW7JlKbc0JGwLDaE0kJuQ5DFxae2y60By6ofK9-hn6oxsL-sW0kuvtvyQZqT5yx79xNgbqZSuMiIAgMEJShVUol2ukwAaUkAFYiJi49OJWp7lH8-L862tvignbMADDw33TjhRB48jeYGRWwrjy9RVmXM6-MIXKi7zxZi3NZmKY7DWuYgoAiEymaCIKSfkUEzuIhjnFSV2GTqSZ2IWliK9fxad_laffyZRbkWl4_vs3ign-cFQjQfsDrQP2e6wweT1I_ZzidGm78J1DwmtqaS8IH6yqgWvgNARtO6Sf28iZwPWnNjFSe16XjXQJzhbR7tX_ILugdeRP_Tdulnv8w8tjmqRNN7zruYrGEqenh58_nXD4WrMrm0fs7Pjoy-Hy2TcciEJhSj6BNWOg8LpVDqTE7vMSx-UK01tpC-0KCGXeYSbV15AhZ3bgxa-RuFRq1BL-YTttF0LzxivnFeoLdOyzCBPa6mJZa-DS5UGmSu1YGJqcRtGHjlti_HNTolnX200kyUz2cFMC_Z2c9GPAcdxe_H3ZMpNUWJpxwPoYXb0MPsvD1swNTmCHWXJIDfwVs3tT389uY3FTkt_YlwL3eXaCilJl2qTLtjTwY027yhJopUCH1vOHGxWifmZtrmIYHBlUJ6J7Pn_qPULdlfQp4WYoP6S7fSrS3iF-qv3e7Gr_QaMkS8V
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUOilNP3cfqFCjzXrlWRZzi0JDdtCQ2gb2JuQ5HHj0Nph14Hk1B_V_9Hf1BnZXuoWcuhVlmRZGmme5DdPjL2RWptyQQoAUOAGpQw6MU6ZJICBFBCBFFFi4-OJXp6pD6tstcOOxlgYolUOa3-_psfVekiZD705v6zr-WchcCeF7g8hCJGtKIhPKhOD-FaH23MWnEVKRFECyp9QgVF8KNK8SJbzmiheBaWohZg4qKjjP_FT_-LQv-mUf_in4_vs3gAs-UHf9j22A80Ddqe_avLmIfuxRL_TteGmg4SiK4khxE_WleAlkIgERWDy73VU3IANJxXjpHIdL2voEty3owWU_JzqwHJkGV27qTf7_H2D61vUHO94W_E19DlPTw8-_frJ4Xrg2TaP2Nnxuy9Hy2S4fCEJmci6BHGPg8yZVLpCkYqZlz5olxdVIX1mRA5KqihzXnoBJU5zD0b4CiFIpUMl5WO227QNPGW8dF4jykzzfAEqraQhVXsTXKoNSKX1jImxx20YlMnpgoxvdqSgXdg4TJaGyfbDNGNvt4Uue2GO27Mf0lBus5Kqdkxo11_tYFZWOFEFj6ghQ5QoReHz1JUL50zwmc-0mTE9GoKdGClWVd_-9tej2VicvvRPxjXQXm2skJIQqinSGXvSm9G2jZLAWi7wtfnEwCYfMX3S1OdRIlwXCNTE4tn_Nvg5uyvoYCHS01-w3W59BS8RfXX-VZxevwG8wS6n
  priority: 102
  providerName: Elsevier
Title Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression
URI https://dx.doi.org/10.1016/j.redox.2019.101412
https://www.ncbi.nlm.nih.gov/pubmed/31901728
https://www.proquest.com/docview/2333929890
https://pubmed.ncbi.nlm.nih.gov/PMC6940621
https://doaj.org/article/2a2fcbeed5644329b70ad1aa8cb5b568
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fa9RAEMeXUhF8EX97_igr-Ggk2U02G0GkFctVaCniwb0tu8nERmqilxTunvyj_D_8m5zZJKfRUvAlD8lmk9udyXw3N_kMY8-lUrqIiAAAGS5QilwF2sY6yEFDCKhAMo_YOD5R80X8fpksd9hYFXUYwPbSpR3Vk1qszl-uv23eoMO__p2rRWzNNeVpZbQnpqrD1zA0pVTL4XjQ-_7RrHUsPKFAiEgGqG3SkUR0eT-TaOWh_pOg9a8o_Tu38o9gdXiL3RxUJt_vzeI224H6Drve153c3GXf5xiEuibfdBDQp5aULsRPVqXgBRBRgj7H5F8qj9-AlhPSOChtx4sKugAX8WgOBT-jPvA8MpOuaav2FT-q8WHnAeQdb0q-gr7l6en-h58_OKyHpNv6Hlscvvv4dh4MlRiCPBFJF6AIspBYHUqbxYQ0c9LlyqZZmUmXaJFCLGPPPC-cgAJ93oEWrkQ9Uqq8lPI-262bGh4yXlinUHKGaRpBHJZSE-Je5zZUGmSs1IyJccRNPmDKqVrGuRnz0T4bP02Gpsn00zRjL7Ynfe0pHVc3P6Cp3DYlxLbf0aw-mcFjjbCizB1KiAQloxSZS0NbRNbq3CUuUXrG1GgIZlArvQrBrqqrr_5sNBuDvkx_0NgamovWCClJruosnLEHvRlt71GScksFXjadGNjkR0yP1NWZ54WrDFWbiB793yA9ZjcEvVvwGepP2G63uoCnKMA6t-dfXOD2aHmw5x3sF31eMNc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKEYIN4s3wNBJLoknsxLHZtRXVDLSjClppdpbtOG0QJNVMKrUrPor_4Ju410lGBKQu2Dp24sTHvsfO8TEhb7kQskjQAcArmKAUTkTSpDJyXvrYAwNRwWLjcCFmJ-nHZbbcInvDXhiUVfZjfzemh9G6T5n2X3N6XlXTL4zBTArCH1AQFFupG-QmsAGB0J4vdzcLLdCNUhZcCbBAhCUG96Gg80JfzkvUeClMSRM2ilDByH8UqP4lon_rKf8IUPv3yN2eWdKdrvL3yZavH5Bb3VmTVw_JjxkEnrZxV62PcHslSoToYlUyWnh0kcAtmPR7FSw3_JqijXFUmpYWlW8jmLgDBAp6hveAcgiNtllX6_d0XsMAF0zHW9qUdOW7nEdHO59__aT-shfa1o_Iyf6H471Z1J--ELmMZW0ExMf4zMiYG5WijZnl1gmTq1Jxm0mW-5Snwee8sMwX0M-tl8yWwEFK4UrOH5Ptuqn9U0ILYwXQzDjPE5_GJZdoay-diYX0PBViQtjwxbXrrcnxhIxvetCgfdWhmTQ2k-6aaULebQqdd84c12ffxabcZEVb7ZDQrE51jyvNDCudBdqQAU3kTNk8NkVijHQ2s5mQEyIGIOgRSuFW1fVPfzPARkP_xZ8ypvbNxVozzpGiShVPyJMORps6cmRrOYPH5iOAjV5ifKWuzoJHuFDA1Fjy7H8r_Jrcnh0fHuiD-eLTc3KH4SpD0Kq_INvt6sK_BCrW2lehq_0GA24xzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatocyte-specific+Nrf2+deficiency+mitigates+high-fat+diet-induced+hepatic+steatosis%3A+Involvement+of+reduced+PPAR%CE%B3+expression&rft.jtitle=Redox+biology&rft.au=Li%2C+Lu&rft.au=Fu%2C+Jingqi&rft.au=Liu%2C+Dan&rft.au=Sun%2C+Jing&rft.date=2020-02-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=30&rft.spage=101412&rft_id=info:doi/10.1016%2Fj.redox.2019.101412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_redox_2019_101412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon