Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized h...
Saved in:
Published in | Redox biology Vol. 30; p. 101412 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-2317 2213-2317 |
DOI | 10.1016/j.redox.2019.101412 |
Cover
Loading…
Abstract | Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.
[Display omitted]
•Nrf2(L)-KO, but not Nrf2(Mϕ)-KO, mice showed lessened hepatic steatosis induced by HFD feeding.•Nrf2 deficiency dampened the expression and transcriptional activity of PPARγ in hepatocytes.•PPARγ agonists increased PPARγ expression/activity in hepatocytes in a NRF2-dependent manner.•OE of PPARγ partially reversed the reduction of lipogenic genes in Nrf2(L)-KO hepatocytes. |
---|---|
AbstractList | Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.
[Display omitted]
•Nrf2(L)-KO, but not Nrf2(Mϕ)-KO, mice showed lessened hepatic steatosis induced by HFD feeding.•Nrf2 deficiency dampened the expression and transcriptional activity of PPARγ in hepatocytes.•PPARγ agonists increased PPARγ expression/activity in hepatocytes in a NRF2-dependent manner.•OE of PPARγ partially reversed the reduction of lipogenic genes in Nrf2(L)-KO hepatocytes. Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2 -knockout [ Nrf2 (L)-KO and Nrf2 (Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2 -LoxP littermates, Nrf2 (L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2 (Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2 -LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4 , lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. Image 1 • Nrf2 (L)-KO, but not Nrf2 (Mϕ)-KO, mice showed lessened hepatic steatosis induced by HFD feeding. • Nrf2 deficiency dampened the expression and transcriptional activity of PPARγ in hepatocytes. • PPARγ agonists increased PPARγ expression/activity in hepatocytes in a NRF2-dependent manner. • OE of PPARγ partially reversed the reduction of lipogenic genes in Nrf2 (L)-KO hepatocytes. Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. Keywords: Nrf2, NALFD, High-fat diet, Hepatocyte, PPARγ Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease. |
ArticleNumber | 101412 |
Author | Andersen, Melvin E. Wang, Xin Zhang, Qiang Hou, Yongyong Fu, Jingqi Liu, Dan Wang, Huihui Xu, Yuanyuan Chen, Chengjie Wang, Linlin Pi, Jingbo Li, Lu Sun, Jing Shao, Junbo Zhao, Rui |
AuthorAffiliation | d ScitoVation, LLC, Research Triangle Park, NC, 27709, USA c Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China b School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China e Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA a Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China |
AuthorAffiliation_xml | – name: b School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – name: a Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – name: c Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – name: d ScitoVation, LLC, Research Triangle Park, NC, 27709, USA – name: e Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA |
Author_xml | – sequence: 1 givenname: Lu surname: Li fullname: Li, Lu organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 2 givenname: Jingqi surname: Fu fullname: Fu, Jingqi organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 3 givenname: Dan surname: Liu fullname: Liu, Dan organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 4 givenname: Jing surname: Sun fullname: Sun, Jing organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 5 givenname: Yongyong surname: Hou fullname: Hou, Yongyong organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 6 givenname: Chengjie surname: Chen fullname: Chen, Chengjie organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 7 givenname: Junbo surname: Shao fullname: Shao, Junbo organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 8 givenname: Linlin surname: Wang fullname: Wang, Linlin organization: School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 9 givenname: Xin surname: Wang fullname: Wang, Xin organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 10 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 11 givenname: Huihui surname: Wang fullname: Wang, Huihui organization: Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 12 givenname: Melvin E. surname: Andersen fullname: Andersen, Melvin E. organization: ScitoVation, LLC, Research Triangle Park, NC, 27709, USA – sequence: 13 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA – sequence: 14 givenname: Yuanyuan surname: Xu fullname: Xu, Yuanyuan email: yyxu@cmu.edu.cn organization: Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China – sequence: 15 givenname: Jingbo surname: Pi fullname: Pi, Jingbo email: jbpi@cmu.edu.cn, jingbopi@163.com organization: Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31901728$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUtVARLaFfgIRmyWaCH-OZMRJIVVVopAoqBGvLY18njibjYDtRs-Kj-I9-Uz1Ji1oW9cbW9Tnn-vqc1-ho8AMg9JbgKcGk_rCcBjD-ZkoxEWOlIvQFOqGUsJIy0hw9Oh-j0xiXOK-2rSjBr9AxIwKThrYn6M8lrFXyepegjGvQzjpdfAuWFgby0cGgd8XKJTdXCWKxcPNFaVUqjINUusFsNJhiMWpkXkyQtaKLH4vZsPX9FlYwpMLbIj92j7y-Pvtx-7eAm3WAGJ0f3qCXVvURTu_3Cfr15eLn-WV59f3r7PzsqtSc8lRSThRw1WKmRFVVnHSs07VqhBWs4y1toGJ5topz01EwTa5CSzuLG25rbRmboNlB13i1lOvgVirspFdO7gs-zKUKeYYeJFXU6g7A8LqqGBVdg5UhSrW64x2v26z1-aC13nQrMDrPGFT_RPTpzeAWcu63shYVrrMtE_T-XiD43xuISa5c1ND3agC_iZIyxgQVrcAZ-u5xr39NHhzMAHEA6OBjDGCldim74cfWrpcEyzEwcin3gZFjYOQhMJnL_uM-yD_P-nRgQfZr6yDIuM8JGBdAp_yh7ln-HVy83c4 |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1470879 crossref_primary_10_1016_j_taap_2021_115617 crossref_primary_10_1172_JCI162533 crossref_primary_10_1016_j_chemosphere_2020_129177 crossref_primary_10_1039_D3FO04348G crossref_primary_10_31083_j_fbl2901030 crossref_primary_10_3390_antiox11102067 crossref_primary_10_1002_ctm2_70233 crossref_primary_10_1007_s12033_024_01131_8 crossref_primary_10_1007_s12272_020_01227_0 crossref_primary_10_1021_acs_est_3c02769 crossref_primary_10_2174_0118715303257018230927182802 crossref_primary_10_1021_acs_est_2c09024 crossref_primary_10_1016_j_foodchem_2024_140460 crossref_primary_10_1007_s10565_024_09925_x crossref_primary_10_1021_acsptsci_4c00185 crossref_primary_10_3390_antiox12010172 crossref_primary_10_1016_j_arabjc_2024_105607 crossref_primary_10_1016_j_fct_2021_112002 crossref_primary_10_1002_fsn3_3713 crossref_primary_10_3389_fphar_2023_1254317 crossref_primary_10_3390_ijms24076613 crossref_primary_10_1016_j_jpha_2023_12_020 crossref_primary_10_1016_j_heliyon_2023_e18321 crossref_primary_10_1096_fj_202101456R crossref_primary_10_1002_jat_4752 crossref_primary_10_1111_ajt_16789 crossref_primary_10_1155_2022_9493710 crossref_primary_10_1016_j_taap_2021_115523 crossref_primary_10_2174_0115672018260113231023064614 crossref_primary_10_1016_j_biopha_2024_117701 crossref_primary_10_1038_s41598_023_39641_1 crossref_primary_10_1038_s41423_022_00964_0 crossref_primary_10_3390_biomedicines12081876 crossref_primary_10_1155_2022_9723632 crossref_primary_10_1038_s41419_023_05792_2 crossref_primary_10_1016_j_fct_2021_112633 crossref_primary_10_3390_antiox11010091 crossref_primary_10_1021_acs_jafc_1c05213 crossref_primary_10_3390_ijms21249493 crossref_primary_10_1111_jre_13200 crossref_primary_10_3389_fcell_2022_1089124 crossref_primary_10_3390_antiox10081289 crossref_primary_10_3390_antiox13121461 crossref_primary_10_1016_j_biopha_2024_116942 crossref_primary_10_1016_j_biopha_2023_115415 crossref_primary_10_1021_acs_jafc_3c06148 crossref_primary_10_1016_j_taap_2025_117263 crossref_primary_10_3390_antiox12111928 crossref_primary_10_1038_s41573_025_01145_0 crossref_primary_10_3390_biomedicines10051020 crossref_primary_10_1016_j_heliyon_2024_e36726 crossref_primary_10_3389_fnut_2024_1437183 crossref_primary_10_1016_j_fct_2023_113757 crossref_primary_10_1016_j_ijbiomac_2023_127042 crossref_primary_10_1186_s12951_025_03128_0 crossref_primary_10_1016_j_metabol_2023_155665 crossref_primary_10_1021_acs_jafc_2c05747 crossref_primary_10_3389_fphar_2021_662664 crossref_primary_10_1042_CS20230048 crossref_primary_10_3390_ijms232415489 crossref_primary_10_1289_EHP13849 crossref_primary_10_3390_ph17101287 crossref_primary_10_1016_j_biopha_2022_113127 crossref_primary_10_3389_fmmed_2023_1283170 crossref_primary_10_1007_s42764_023_00103_7 crossref_primary_10_1016_j_ijbiomac_2022_05_130 crossref_primary_10_1007_s11033_024_09771_4 crossref_primary_10_1016_j_coph_2021_07_021 crossref_primary_10_1016_j_scitotenv_2023_166988 crossref_primary_10_3390_ijms21155378 crossref_primary_10_1038_s42003_024_06063_2 crossref_primary_10_1186_s12951_024_02807_8 crossref_primary_10_37349_edd_2023_00029 crossref_primary_10_1016_j_bcp_2024_116639 crossref_primary_10_1096_fj_202301137R crossref_primary_10_3748_wjg_v28_i48_6909 crossref_primary_10_1016_j_redox_2024_103464 crossref_primary_10_1016_j_fbio_2022_101659 crossref_primary_10_3390_antiox11020307 |
Cites_doi | 10.1515/hsz-2013-0241 10.1152/physrev.00023.2017 10.1007/s00011-015-0834-9 10.1016/j.freeradbiomed.2015.12.014 10.1371/journal.pone.0078522 10.2337/db12-0584 10.1074/jbc.M109.093955 10.1124/jpet.115.231316 10.1016/j.taap.2012.09.014 10.4254/wjh.v7.i8.1012 10.1016/j.freeradbiomed.2013.03.007 10.1053/j.gastro.2010.09.038 10.1016/j.freeradbiomed.2009.11.007 10.1016/j.bbrc.2018.06.013 10.1074/jbc.M115.673756 10.1016/j.jhep.2009.03.008 10.1016/j.tem.2015.11.008 10.1016/j.jhep.2009.03.019 10.1016/j.jhep.2014.12.012 10.1096/fj.10-173716 10.1016/j.fct.2018.09.042 10.1016/j.metabol.2015.11.008 10.1371/journal.ppat.1002254 10.1002/hep.23594 10.1152/ajpgi.00322.2010 10.1146/annurev-med-051215-031109 10.1016/j.taap.2017.05.013 10.1007/s11154-016-9339-2 10.1111/j.1440-1746.2012.07180.x 10.1038/nm.3450 10.1152/ajpendo.00311.2017 10.1016/S2213-8587(18)30154-2 10.1038/ncomms11624 10.1007/s40139-013-0039-2 10.1210/me.2015-1145 10.1089/ars.2014.6017 10.1038/s41467-019-09152-7 10.1016/j.cotox.2018.12.005 10.1128/MCB.00677-14 10.1016/j.tibs.2014.02.002 10.1016/j.taap.2019.02.003 10.1101/gad.8.10.1224 10.1002/hep.30251 10.1186/s12936-015-0888-8 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. 2019 The Authors 2019 |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2019 The Authors 2019 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2019.101412 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_2a2fcbeed5644329b70ad1aa8cb5b568 PMC6940621 31901728 10_1016_j_redox_2019_101412 S2213231719308559 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES019776 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E NCXOZ O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c525t-251ae5a803a944451b3bc6a79f93b5827e43421455db2ed793be82bf075f6cf33 |
IEDL.DBID | M48 |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 00:14:30 EDT 2025 Thu Aug 21 18:30:54 EDT 2025 Thu Jul 10 20:55:36 EDT 2025 Thu Apr 03 06:59:12 EDT 2025 Tue Jul 01 00:47:03 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Tue Jul 25 21:05:00 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hepatocyte Nrf2 High-fat diet NALFD PPARγ |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-251ae5a803a944451b3bc6a79f93b5827e43421455db2ed793be82bf075f6cf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2213231719308559 |
PMID | 31901728 |
PQID | 2333929890 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a2fcbeed5644329b70ad1aa8cb5b568 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6940621 proquest_miscellaneous_2333929890 pubmed_primary_31901728 crossref_citationtrail_10_1016_j_redox_2019_101412 crossref_primary_10_1016_j_redox_2019_101412 elsevier_sciencedirect_doi_10_1016_j_redox_2019_101412 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Starley, Calcagno, Harrison (bib6) 2010; 51 Dandekar, Mendez, Zhang (bib14) 2015 Aubouy (bib34) 2015; 14 Olagnier (bib33) 2011; 7 Xue (bib22) 2013; 62 Yamamoto, Kensler, Motohashi (bib8) 2018; 98 Byrne, Targher (bib21) 2015; 62 Rui (bib41) 2016; 358 Suzuki, Diehl (bib18) 2017; 68 Schneider (bib40) 2016; 291 Baffy (bib19) 2009; 51 Pi (bib17) 2010; 285 Zhang (bib44) 2012; 264 Sauer (bib43) 2014; 2 Lugrin (bib13) 2014; 395 Nati (bib20) 2016; 17 Tanaka (bib37) 2012; 27 Hayes, Dinkova-Kostova (bib7) 2014; 39 Ramadori (bib38) 2016; 91 Bertolio (bib36) 2019; 10 Younossi (bib2) 2019; 69 Meakin (bib11) 2014; 34 Zheng (bib27) 2015; 22 Kobayashi (bib10) 2016; 7 Brown, Kleiner (bib32) 2016; 65 Huang (bib15) 2010; 299 Williams (bib4) 2011; 140 Liu (bib31) 2019; 367 Argo (bib5) 2009; 51 Cui (bib30) 2017; 329 Souza-Mello (bib16) 2015; 7 Sun (bib24) 2018; 121 Moran-Salvador (bib35) 2011; 25 Fu, Akhmedov, Berdeaux (bib25) 2013; 8 Chowdhry (bib12) 2010; 48 Hou (bib23) 2018; 503 Qin (bib9) 2015; 64 More (bib39) 2013; 61 Chartoumpekis (bib45) 2018; 315 Khalifeh-Soltani (bib26) 2014; 20 Tontonoz (bib28) 1994; 8 Stefan, Haring, Cusi (bib1) 2019; 7 Gao (bib29) 2015; 29 Li (bib42) 2019; 13 Ioannou (bib3) 2016; 27 Younossi (10.1016/j.redox.2019.101412_bib2) 2019; 69 Olagnier (10.1016/j.redox.2019.101412_bib33) 2011; 7 Gao (10.1016/j.redox.2019.101412_bib29) 2015; 29 Tanaka (10.1016/j.redox.2019.101412_bib37) 2012; 27 Byrne (10.1016/j.redox.2019.101412_bib21) 2015; 62 Starley (10.1016/j.redox.2019.101412_bib6) 2010; 51 Souza-Mello (10.1016/j.redox.2019.101412_bib16) 2015; 7 Zheng (10.1016/j.redox.2019.101412_bib27) 2015; 22 Cui (10.1016/j.redox.2019.101412_bib30) 2017; 329 More (10.1016/j.redox.2019.101412_bib39) 2013; 61 Chowdhry (10.1016/j.redox.2019.101412_bib12) 2010; 48 Aubouy (10.1016/j.redox.2019.101412_bib34) 2015; 14 Bertolio (10.1016/j.redox.2019.101412_bib36) 2019; 10 Chartoumpekis (10.1016/j.redox.2019.101412_bib45) 2018; 315 Schneider (10.1016/j.redox.2019.101412_bib40) 2016; 291 Argo (10.1016/j.redox.2019.101412_bib5) 2009; 51 Huang (10.1016/j.redox.2019.101412_bib15) 2010; 299 Zhang (10.1016/j.redox.2019.101412_bib44) 2012; 264 Pi (10.1016/j.redox.2019.101412_bib17) 2010; 285 Moran-Salvador (10.1016/j.redox.2019.101412_bib35) 2011; 25 Stefan (10.1016/j.redox.2019.101412_bib1) 2019; 7 Xue (10.1016/j.redox.2019.101412_bib22) 2013; 62 Fu (10.1016/j.redox.2019.101412_bib25) 2013; 8 Suzuki (10.1016/j.redox.2019.101412_bib18) 2017; 68 Hou (10.1016/j.redox.2019.101412_bib23) 2018; 503 Brown (10.1016/j.redox.2019.101412_bib32) 2016; 65 Li (10.1016/j.redox.2019.101412_bib42) 2019; 13 Hayes (10.1016/j.redox.2019.101412_bib7) 2014; 39 Rui (10.1016/j.redox.2019.101412_bib41) 2016; 358 Nati (10.1016/j.redox.2019.101412_bib20) 2016; 17 Kobayashi (10.1016/j.redox.2019.101412_bib10) 2016; 7 Sun (10.1016/j.redox.2019.101412_bib24) 2018; 121 Ioannou (10.1016/j.redox.2019.101412_bib3) 2016; 27 Dandekar (10.1016/j.redox.2019.101412_bib14) 2015 Williams (10.1016/j.redox.2019.101412_bib4) 2011; 140 Baffy (10.1016/j.redox.2019.101412_bib19) 2009; 51 Tontonoz (10.1016/j.redox.2019.101412_bib28) 1994; 8 Lugrin (10.1016/j.redox.2019.101412_bib13) 2014; 395 Khalifeh-Soltani (10.1016/j.redox.2019.101412_bib26) 2014; 20 Qin (10.1016/j.redox.2019.101412_bib9) 2015; 64 Yamamoto (10.1016/j.redox.2019.101412_bib8) 2018; 98 Ramadori (10.1016/j.redox.2019.101412_bib38) 2016; 91 Liu (10.1016/j.redox.2019.101412_bib31) 2019; 367 Sauer (10.1016/j.redox.2019.101412_bib43) 2014; 2 Meakin (10.1016/j.redox.2019.101412_bib11) 2014; 34 |
References_xml | – start-page: 205 year: 2015 end-page: 214 ident: bib14 article-title: Cross talk between ER stress, oxidative stress, and inflammation in Health and disease publication-title: Stress Responses: Methods and Protocols – volume: 121 start-page: 495 year: 2018 end-page: 503 ident: bib24 article-title: NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice publication-title: Food Chem. Toxicol. – volume: 8 year: 2013 ident: bib25 article-title: The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes publication-title: PLoS One – volume: 7 start-page: 11624 year: 2016 ident: bib10 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. – volume: 291 start-page: 7754 year: 2016 end-page: 7766 ident: bib40 article-title: Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2) publication-title: J. Biol. Chem. – volume: 7 start-page: 1012 year: 2015 end-page: 1019 ident: bib16 article-title: Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease publication-title: World J. Hepatol. – volume: 62 start-page: S47 year: 2015 end-page: S64 ident: bib21 article-title: NAFLD: a multisystem disease publication-title: J. Hepatol. – volume: 51 start-page: 212 year: 2009 end-page: 223 ident: bib19 article-title: Kupffer cells in non-alcoholic fatty liver disease: the emerging view publication-title: J. Hepatol. – volume: 140 start-page: 124 year: 2011 end-page: 131 ident: bib4 article-title: Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study publication-title: Gastroenterology – volume: 17 start-page: 29 year: 2016 end-page: 39 ident: bib20 article-title: The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH) publication-title: Rev. Endocr. Metab. Disord. – volume: 65 start-page: 1080 year: 2016 end-page: 1086 ident: bib32 article-title: Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis publication-title: Metabolism – volume: 64 start-page: 537 year: 2015 end-page: 548 ident: bib9 article-title: Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation publication-title: Inflamm. Res. – volume: 13 start-page: 35 year: 2019 end-page: 44 ident: bib42 article-title: Is Nrf2-ARE a potential target in NAFLD mitigation? publication-title: Curr. Opin. Toxicol. – volume: 264 start-page: 305 year: 2012 end-page: 314 ident: bib44 article-title: Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet publication-title: Toxicol. Appl. Pharmacol. – volume: 367 start-page: 62 year: 2019 end-page: 70 ident: bib31 article-title: Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic publication-title: Toxicol. Appl. Pharmacol. – volume: 39 start-page: 199 year: 2014 end-page: 218 ident: bib7 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. – volume: 29 start-page: 1558 year: 2015 end-page: 1570 ident: bib29 article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α publication-title: Mol. Endocrinol. (Baltimore, Md.) – volume: 285 start-page: 9292 year: 2010 end-page: 9300 ident: bib17 article-title: Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity publication-title: J. Biol. Chem. – volume: 10 year: 2019 ident: bib36 article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism publication-title: Nat. Commun. – volume: 48 start-page: 357 year: 2010 end-page: 371 ident: bib12 article-title: Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis publication-title: Free Radic. Biol. Med. – volume: 25 start-page: 2538 year: 2011 end-page: 2550 ident: bib35 article-title: Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts publication-title: FASEB J. – volume: 34 start-page: 3305 year: 2014 end-page: 3320 ident: bib11 article-title: Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance publication-title: Mol. Cell. Biol. – volume: 20 start-page: 175 year: 2014 end-page: 183 ident: bib26 article-title: Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids publication-title: Nat. Med. – volume: 315 start-page: E180 year: 2018 end-page: e195 ident: bib45 article-title: Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 51 start-page: 1820 year: 2010 end-page: 1832 ident: bib6 article-title: Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection publication-title: Hepatology – volume: 27 start-page: 1711 year: 2012 end-page: 1717 ident: bib37 article-title: Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice publication-title: J. Gastroenterol. Hepatol. – volume: 91 start-page: 114 year: 2016 end-page: 126 ident: bib38 article-title: Hepatocyte-specific Keap1 deletion reduces liver steatosis but not inflammation during non-alcoholic steatohepatitis development publication-title: Free Radic. Biol. Med. – volume: 69 start-page: 2672 year: 2019 end-page: 2682 ident: bib2 article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis publication-title: Hepatology – volume: 7 year: 2011 ident: bib33 article-title: Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria publication-title: PLoS Pathog. – volume: 358 start-page: 14 year: 2016 end-page: 21 ident: bib41 article-title: Nuclear factor erythroid 2-related factor 2 deficiency results in amplification of the liver fat-lowering effect of estrogen publication-title: J. Pharmacol. Exp. Ther. – volume: 299 start-page: G1211 year: 2010 end-page: G1221 ident: bib15 article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 22 start-page: 819 year: 2015 end-page: 831 ident: bib27 article-title: CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion publication-title: Antioxidants Redox Signal. – volume: 329 start-page: 67 year: 2017 end-page: 74 ident: bib30 article-title: Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic beta cells to arsenite-induced cytotoxicity publication-title: Toxicol. Appl. Pharmacol. – volume: 2 start-page: 11 year: 2014 end-page: 20 ident: bib43 article-title: Induced pluripotent stem cells as a source of hepatocytes publication-title: Curr. Pathobiol. Rep. – volume: 62 start-page: 845 year: 2013 end-page: 854 ident: bib22 article-title: Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome publication-title: Diabetes – volume: 27 start-page: 84 year: 2016 end-page: 95 ident: bib3 article-title: The role of cholesterol in the pathogenesis of NASH publication-title: Trends Endocrinol. Metab. – volume: 68 start-page: 85 year: 2017 end-page: 98 ident: bib18 article-title: Nonalcoholic steatohepatitis publication-title: Annu. Rev. Med. – volume: 7 start-page: 313 year: 2019 end-page: 324 ident: bib1 article-title: Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies publication-title: Lancet Diab. Endocrinol. – volume: 503 start-page: 264 year: 2018 end-page: 270 ident: bib23 article-title: Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice publication-title: Biochem. Biophys. Res. Commun. – volume: 395 start-page: 203 year: 2014 end-page: 230 ident: bib13 article-title: The role of oxidative stress during inflammatory processes publication-title: Biol. Chem. – volume: 14 start-page: 358 year: 2015 ident: bib34 article-title: Nrf2-driven CD36 and HO-1 gene expression in circulating monocytes correlates with favourable clinical outcome in pregnancy-associated malaria publication-title: Malar. J. – volume: 98 start-page: 1169 year: 2018 end-page: 1203 ident: bib8 article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis publication-title: Physiol. Rev. – volume: 8 start-page: 1224 year: 1994 end-page: 1234 ident: bib28 article-title: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer publication-title: Genes Dev. – volume: 51 start-page: 371 year: 2009 end-page: 379 ident: bib5 article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis publication-title: J. Hepatol. – volume: 61 start-page: 85 year: 2013 end-page: 94 ident: bib39 article-title: Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding publication-title: Free Radic. Biol. Med. – volume: 395 start-page: 203 issue: 2 year: 2014 ident: 10.1016/j.redox.2019.101412_bib13 article-title: The role of oxidative stress during inflammatory processes publication-title: Biol. Chem. doi: 10.1515/hsz-2013-0241 – volume: 98 start-page: 1169 issue: 3 year: 2018 ident: 10.1016/j.redox.2019.101412_bib8 article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis publication-title: Physiol. Rev. doi: 10.1152/physrev.00023.2017 – volume: 64 start-page: 537 issue: 7 year: 2015 ident: 10.1016/j.redox.2019.101412_bib9 article-title: Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation publication-title: Inflamm. Res. doi: 10.1007/s00011-015-0834-9 – volume: 91 start-page: 114 year: 2016 ident: 10.1016/j.redox.2019.101412_bib38 article-title: Hepatocyte-specific Keap1 deletion reduces liver steatosis but not inflammation during non-alcoholic steatohepatitis development publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.12.014 – volume: 8 issue: 10 year: 2013 ident: 10.1016/j.redox.2019.101412_bib25 article-title: The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes publication-title: PLoS One doi: 10.1371/journal.pone.0078522 – volume: 62 start-page: 845 issue: 3 year: 2013 ident: 10.1016/j.redox.2019.101412_bib22 article-title: Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome publication-title: Diabetes doi: 10.2337/db12-0584 – volume: 285 start-page: 9292 issue: 12 year: 2010 ident: 10.1016/j.redox.2019.101412_bib17 article-title: Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.093955 – volume: 358 start-page: 14 issue: 1 year: 2016 ident: 10.1016/j.redox.2019.101412_bib41 article-title: Nuclear factor erythroid 2-related factor 2 deficiency results in amplification of the liver fat-lowering effect of estrogen publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.115.231316 – volume: 264 start-page: 305 issue: 3 year: 2012 ident: 10.1016/j.redox.2019.101412_bib44 article-title: Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2012.09.014 – volume: 7 start-page: 1012 issue: 8 year: 2015 ident: 10.1016/j.redox.2019.101412_bib16 article-title: Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease publication-title: World J. Hepatol. doi: 10.4254/wjh.v7.i8.1012 – volume: 61 start-page: 85 year: 2013 ident: 10.1016/j.redox.2019.101412_bib39 article-title: Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.03.007 – volume: 140 start-page: 124 issue: 1 year: 2011 ident: 10.1016/j.redox.2019.101412_bib4 article-title: Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.09.038 – volume: 48 start-page: 357 issue: 2 year: 2010 ident: 10.1016/j.redox.2019.101412_bib12 article-title: Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.11.007 – volume: 503 start-page: 264 issue: 1 year: 2018 ident: 10.1016/j.redox.2019.101412_bib23 article-title: Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.06.013 – volume: 291 start-page: 7754 issue: 14 year: 2016 ident: 10.1016/j.redox.2019.101412_bib40 article-title: Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.673756 – volume: 51 start-page: 212 issue: 1 year: 2009 ident: 10.1016/j.redox.2019.101412_bib19 article-title: Kupffer cells in non-alcoholic fatty liver disease: the emerging view publication-title: J. Hepatol. doi: 10.1016/j.jhep.2009.03.008 – volume: 27 start-page: 84 issue: 2 year: 2016 ident: 10.1016/j.redox.2019.101412_bib3 article-title: The role of cholesterol in the pathogenesis of NASH publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2015.11.008 – volume: 51 start-page: 371 issue: 2 year: 2009 ident: 10.1016/j.redox.2019.101412_bib5 article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2009.03.019 – volume: 62 start-page: S47 issue: 1 Suppl year: 2015 ident: 10.1016/j.redox.2019.101412_bib21 article-title: NAFLD: a multisystem disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2014.12.012 – volume: 25 start-page: 2538 issue: 8 year: 2011 ident: 10.1016/j.redox.2019.101412_bib35 article-title: Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts publication-title: FASEB J. doi: 10.1096/fj.10-173716 – volume: 121 start-page: 495 year: 2018 ident: 10.1016/j.redox.2019.101412_bib24 article-title: NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.09.042 – volume: 65 start-page: 1080 issue: 8 year: 2016 ident: 10.1016/j.redox.2019.101412_bib32 article-title: Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis publication-title: Metabolism doi: 10.1016/j.metabol.2015.11.008 – volume: 7 issue: 9 year: 2011 ident: 10.1016/j.redox.2019.101412_bib33 article-title: Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002254 – volume: 51 start-page: 1820 issue: 5 year: 2010 ident: 10.1016/j.redox.2019.101412_bib6 article-title: Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection publication-title: Hepatology doi: 10.1002/hep.23594 – volume: 299 start-page: G1211 issue: 6 year: 2010 ident: 10.1016/j.redox.2019.101412_bib15 article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00322.2010 – volume: 68 start-page: 85 year: 2017 ident: 10.1016/j.redox.2019.101412_bib18 article-title: Nonalcoholic steatohepatitis publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-051215-031109 – volume: 329 start-page: 67 year: 2017 ident: 10.1016/j.redox.2019.101412_bib30 article-title: Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic beta cells to arsenite-induced cytotoxicity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.05.013 – volume: 17 start-page: 29 issue: 1 year: 2016 ident: 10.1016/j.redox.2019.101412_bib20 article-title: The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH) publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-016-9339-2 – volume: 27 start-page: 1711 issue: 11 year: 2012 ident: 10.1016/j.redox.2019.101412_bib37 article-title: Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/j.1440-1746.2012.07180.x – volume: 20 start-page: 175 issue: 2 year: 2014 ident: 10.1016/j.redox.2019.101412_bib26 article-title: Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids publication-title: Nat. Med. doi: 10.1038/nm.3450 – volume: 315 start-page: E180 issue: 2 year: 2018 ident: 10.1016/j.redox.2019.101412_bib45 article-title: Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00311.2017 – volume: 7 start-page: 313 issue: 4 year: 2019 ident: 10.1016/j.redox.2019.101412_bib1 article-title: Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies publication-title: Lancet Diab. Endocrinol. doi: 10.1016/S2213-8587(18)30154-2 – volume: 7 start-page: 11624 year: 2016 ident: 10.1016/j.redox.2019.101412_bib10 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. doi: 10.1038/ncomms11624 – volume: 2 start-page: 11 issue: 1 year: 2014 ident: 10.1016/j.redox.2019.101412_bib43 article-title: Induced pluripotent stem cells as a source of hepatocytes publication-title: Curr. Pathobiol. Rep. doi: 10.1007/s40139-013-0039-2 – volume: 29 start-page: 1558 issue: 11 year: 2015 ident: 10.1016/j.redox.2019.101412_bib29 article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α publication-title: Mol. Endocrinol. (Baltimore, Md.) doi: 10.1210/me.2015-1145 – volume: 22 start-page: 819 issue: 10 year: 2015 ident: 10.1016/j.redox.2019.101412_bib27 article-title: CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2014.6017 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.redox.2019.101412_bib36 article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism publication-title: Nat. Commun. doi: 10.1038/s41467-019-09152-7 – volume: 13 start-page: 35 year: 2019 ident: 10.1016/j.redox.2019.101412_bib42 article-title: Is Nrf2-ARE a potential target in NAFLD mitigation? publication-title: Curr. Opin. Toxicol. doi: 10.1016/j.cotox.2018.12.005 – volume: 34 start-page: 3305 issue: 17 year: 2014 ident: 10.1016/j.redox.2019.101412_bib11 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00677-14 – volume: 39 start-page: 199 issue: 4 year: 2014 ident: 10.1016/j.redox.2019.101412_bib7 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.002 – start-page: 205 year: 2015 ident: 10.1016/j.redox.2019.101412_bib14 article-title: Cross talk between ER stress, oxidative stress, and inflammation in Health and disease – volume: 367 start-page: 62 year: 2019 ident: 10.1016/j.redox.2019.101412_bib31 article-title: Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2019.02.003 – volume: 8 start-page: 1224 issue: 10 year: 1994 ident: 10.1016/j.redox.2019.101412_bib28 article-title: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer publication-title: Genes Dev. doi: 10.1101/gad.8.10.1224 – volume: 69 start-page: 2672 issue: 6 year: 2019 ident: 10.1016/j.redox.2019.101412_bib2 article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.30251 – volume: 14 start-page: 358 year: 2015 ident: 10.1016/j.redox.2019.101412_bib34 article-title: Nrf2-driven CD36 and HO-1 gene expression in circulating monocytes correlates with favourable clinical outcome in pregnancy-associated malaria publication-title: Malar. J. doi: 10.1186/s12936-015-0888-8 |
SSID | ssj0000884210 |
Score | 2.5068288 |
Snippet | Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101412 |
SubjectTerms | Animals Diet, High-Fat - adverse effects Disease Models, Animal Gene Expression Regulation - drug effects Gene Knockout Techniques Hepatocyte Hepatocytes - cytology Hepatocytes - drug effects Hepatocytes - metabolism High-fat diet Macrophages - cytology Macrophages - drug effects Macrophages - metabolism Male Mice Mice, Inbred C57BL NALFD NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Non-alcoholic Fatty Liver Disease - chemically induced Non-alcoholic Fatty Liver Disease - genetics Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Nrf2 Organ Specificity Palmitates - adverse effects PPAR gamma - genetics PPAR gamma - metabolism PPARγ Research Paper |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9wwEMdFCQR6KX13-wgq9FhTW7JlKbc0JGwLDaE0kJuQ5DFxae2y60By6ofK9-hn6oxsL-sW0kuvtvyQZqT5yx79xNgbqZSuMiIAgMEJShVUol2ukwAaUkAFYiJi49OJWp7lH8-L862tvignbMADDw33TjhRB48jeYGRWwrjy9RVmXM6-MIXKi7zxZi3NZmKY7DWuYgoAiEymaCIKSfkUEzuIhjnFSV2GTqSZ2IWliK9fxad_laffyZRbkWl4_vs3ign-cFQjQfsDrQP2e6wweT1I_ZzidGm78J1DwmtqaS8IH6yqgWvgNARtO6Sf28iZwPWnNjFSe16XjXQJzhbR7tX_ILugdeRP_Tdulnv8w8tjmqRNN7zruYrGEqenh58_nXD4WrMrm0fs7Pjoy-Hy2TcciEJhSj6BNWOg8LpVDqTE7vMSx-UK01tpC-0KCGXeYSbV15AhZ3bgxa-RuFRq1BL-YTttF0LzxivnFeoLdOyzCBPa6mJZa-DS5UGmSu1YGJqcRtGHjlti_HNTolnX200kyUz2cFMC_Z2c9GPAcdxe_H3ZMpNUWJpxwPoYXb0MPsvD1swNTmCHWXJIDfwVs3tT389uY3FTkt_YlwL3eXaCilJl2qTLtjTwY027yhJopUCH1vOHGxWifmZtrmIYHBlUJ6J7Pn_qPULdlfQp4WYoP6S7fSrS3iF-qv3e7Gr_QaMkS8V priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUOilNP3cfqFCjzXrlWRZzi0JDdtCQ2gb2JuQ5HHj0Nph14Hk1B_V_9Hf1BnZXuoWcuhVlmRZGmme5DdPjL2RWptyQQoAUOAGpQw6MU6ZJICBFBCBFFFi4-OJXp6pD6tstcOOxlgYolUOa3-_psfVekiZD705v6zr-WchcCeF7g8hCJGtKIhPKhOD-FaH23MWnEVKRFECyp9QgVF8KNK8SJbzmiheBaWohZg4qKjjP_FT_-LQv-mUf_in4_vs3gAs-UHf9j22A80Ddqe_avLmIfuxRL_TteGmg4SiK4khxE_WleAlkIgERWDy73VU3IANJxXjpHIdL2voEty3owWU_JzqwHJkGV27qTf7_H2D61vUHO94W_E19DlPTw8-_frJ4Xrg2TaP2Nnxuy9Hy2S4fCEJmci6BHGPg8yZVLpCkYqZlz5olxdVIX1mRA5KqihzXnoBJU5zD0b4CiFIpUMl5WO227QNPGW8dF4jykzzfAEqraQhVXsTXKoNSKX1jImxx20YlMnpgoxvdqSgXdg4TJaGyfbDNGNvt4Uue2GO27Mf0lBus5Kqdkxo11_tYFZWOFEFj6ghQ5QoReHz1JUL50zwmc-0mTE9GoKdGClWVd_-9tej2VicvvRPxjXQXm2skJIQqinSGXvSm9G2jZLAWi7wtfnEwCYfMX3S1OdRIlwXCNTE4tn_Nvg5uyvoYCHS01-w3W59BS8RfXX-VZxevwG8wS6n priority: 102 providerName: Elsevier |
Title | Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression |
URI | https://dx.doi.org/10.1016/j.redox.2019.101412 https://www.ncbi.nlm.nih.gov/pubmed/31901728 https://www.proquest.com/docview/2333929890 https://pubmed.ncbi.nlm.nih.gov/PMC6940621 https://doaj.org/article/2a2fcbeed5644329b70ad1aa8cb5b568 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fa9RAEMeXUhF8EX97_igr-Ggk2U02G0GkFctVaCniwb0tu8nERmqilxTunvyj_D_8m5zZJKfRUvAlD8lmk9udyXw3N_kMY8-lUrqIiAAAGS5QilwF2sY6yEFDCKhAMo_YOD5R80X8fpksd9hYFXUYwPbSpR3Vk1qszl-uv23eoMO__p2rRWzNNeVpZbQnpqrD1zA0pVTL4XjQ-_7RrHUsPKFAiEgGqG3SkUR0eT-TaOWh_pOg9a8o_Tu38o9gdXiL3RxUJt_vzeI224H6Drve153c3GXf5xiEuibfdBDQp5aULsRPVqXgBRBRgj7H5F8qj9-AlhPSOChtx4sKugAX8WgOBT-jPvA8MpOuaav2FT-q8WHnAeQdb0q-gr7l6en-h58_OKyHpNv6Hlscvvv4dh4MlRiCPBFJF6AIspBYHUqbxYQ0c9LlyqZZmUmXaJFCLGPPPC-cgAJ93oEWrkQ9Uqq8lPI-262bGh4yXlinUHKGaRpBHJZSE-Je5zZUGmSs1IyJccRNPmDKqVrGuRnz0T4bP02Gpsn00zRjL7Ynfe0pHVc3P6Cp3DYlxLbf0aw-mcFjjbCizB1KiAQloxSZS0NbRNbq3CUuUXrG1GgIZlArvQrBrqqrr_5sNBuDvkx_0NgamovWCClJruosnLEHvRlt71GScksFXjadGNjkR0yP1NWZ54WrDFWbiB793yA9ZjcEvVvwGepP2G63uoCnKMA6t-dfXOD2aHmw5x3sF31eMNc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKEYIN4s3wNBJLoknsxLHZtRXVDLSjClppdpbtOG0QJNVMKrUrPor_4Ju410lGBKQu2Dp24sTHvsfO8TEhb7kQskjQAcArmKAUTkTSpDJyXvrYAwNRwWLjcCFmJ-nHZbbcInvDXhiUVfZjfzemh9G6T5n2X3N6XlXTL4zBTArCH1AQFFupG-QmsAGB0J4vdzcLLdCNUhZcCbBAhCUG96Gg80JfzkvUeClMSRM2ilDByH8UqP4lon_rKf8IUPv3yN2eWdKdrvL3yZavH5Bb3VmTVw_JjxkEnrZxV62PcHslSoToYlUyWnh0kcAtmPR7FSw3_JqijXFUmpYWlW8jmLgDBAp6hveAcgiNtllX6_d0XsMAF0zHW9qUdOW7nEdHO59__aT-shfa1o_Iyf6H471Z1J--ELmMZW0ExMf4zMiYG5WijZnl1gmTq1Jxm0mW-5Snwee8sMwX0M-tl8yWwEFK4UrOH5Ptuqn9U0ILYwXQzDjPE5_GJZdoay-diYX0PBViQtjwxbXrrcnxhIxvetCgfdWhmTQ2k-6aaULebQqdd84c12ffxabcZEVb7ZDQrE51jyvNDCudBdqQAU3kTNk8NkVijHQ2s5mQEyIGIOgRSuFW1fVPfzPARkP_xZ8ypvbNxVozzpGiShVPyJMORps6cmRrOYPH5iOAjV5ifKWuzoJHuFDA1Fjy7H8r_Jrcnh0fHuiD-eLTc3KH4SpD0Kq_INvt6sK_BCrW2lehq_0GA24xzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatocyte-specific+Nrf2+deficiency+mitigates+high-fat+diet-induced+hepatic+steatosis%3A+Involvement+of+reduced+PPAR%CE%B3+expression&rft.jtitle=Redox+biology&rft.au=Li%2C+Lu&rft.au=Fu%2C+Jingqi&rft.au=Liu%2C+Dan&rft.au=Sun%2C+Jing&rft.date=2020-02-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=30&rft.spage=101412&rft_id=info:doi/10.1016%2Fj.redox.2019.101412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_redox_2019_101412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |