Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction
Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use...
Saved in:
Published in | Analytical and bioanalytical chemistry Vol. 395; no. 3; pp. 809 - 817 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Berlin/Heidelberg : Springer-Verlag
01.10.2009
Springer-Verlag Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-¹³C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 μM for glutathione, 0.440 μM for phytochelatin 2, and 0.120 μM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. [graphic removed] |
---|---|
AbstractList | Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-¹³C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 μM for glutathione, 0.440 μM for phytochelatin 2, and 0.120 μM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. [graphic removed] Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine- 13 C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 μM for glutathione, 0.440 μM for phytochelatin 2, and 0.120 μM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. Figure This figure was created using Adobe Photoshop CS3 (San Jose, CA). It displays an image of a chromatogram from our manuscript (a phytochelatin extraction) overlaid upon an image of Chlorella vulgaris and laboratory equipment and materials used in our methods. Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 *mM for glutathione, 0.440 *mM for phytochelatin 2, and 0.120 *mM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-(13)C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 microM for glutathione, 0.440 microM for phytochelatin 2, and 0.120 microM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation.Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-(13)C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 microM for glutathione, 0.440 microM for phytochelatin 2, and 0.120 microM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-(13)C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 microM for glutathione, 0.440 microM for phytochelatin 2, and 0.120 microM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. |
Author | Simmons, Denina B. D Hayward, Allison R Emery, R. J. Neil Hutchinson, Thomas C |
Author_xml | – sequence: 1 fullname: Simmons, Denina B. D – sequence: 2 fullname: Hayward, Allison R – sequence: 3 fullname: Hutchinson, Thomas C – sequence: 4 fullname: Emery, R. J. Neil |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21949359$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19688341$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URC_wAGxgNlw2Q323Z4miQiOloiJ0bXkcezLVxE7tGdQ8Q1-6niQUxCKw8u37z8XnPwVHPngLwGsEPyEIxXmCECNeQliVBOYNegZOEEeyxJzBo6c9xcfgNKVbCBGTiL8Ax6jiUhKKTsDDdGF937rW6L4NvtB-UdwN-s-r4IqmG3rdL_PJbon1ctMHs7RdJnwqXAyrYrLsQrRdp4ufQ9fo2Kai3hTfr8vL69mkuJhPy6v5-dV8qw_3m8b60kVrC3vfR23GTC_Bc6e7ZF_t1zNw8-Xix-SynH37Op18npWGYdaXqKK1q1HlOOQEE0I0sxppoymqkYSYC72AktTGWckwJLnPKv-HpcJwRzklZ-DDLu46hrvBpl6t2mTG0r0NQ1KCUcYoIug_SJJLEKL6N0koZBBTkcn3B8lcIaRS8gx-PAgiQSmvmKBjnW_26FCv7EKtY7vScaN-zTkD7_aATkZ3Lmpv2vTE4fynFWFjG2jHmRhSitb9DgXV6Dm185zKnlOj59QYW_ylMW2_tU4ebNsdVOKdMuUsvrFR3YYh-jz7g6K3O5HTQekm-0zdzDFE47PMjXDyCFwQ8W4 |
CitedBy_id | crossref_primary_10_1007_s00216_010_3970_7 crossref_primary_10_1016_j_jchromb_2014_11_007 crossref_primary_10_1016_j_ecoenv_2016_11_002 crossref_primary_10_1016_j_ijms_2010_10_026 crossref_primary_10_1080_00032719_2018_1548020 crossref_primary_10_1371_journal_pone_0081631 crossref_primary_10_1039_C4AY01574F crossref_primary_10_1002_etc_392 crossref_primary_10_1139_cjb_2017_0211 crossref_primary_10_1007_s11356_017_8484_9 crossref_primary_10_1016_j_chemosphere_2012_11_064 crossref_primary_10_1016_j_aquatox_2016_02_020 crossref_primary_10_1093_jxb_eru195 crossref_primary_10_1002_lom3_10207 crossref_primary_10_1021_acs_jafc_5b01797 crossref_primary_10_1039_C3MB70425D crossref_primary_10_1007_s00128_020_02880_3 crossref_primary_10_1111_j_1468_2494_2011_00668_x crossref_primary_10_1080_15226514_2010_525560 crossref_primary_10_1016_j_phytochem_2019_05_007 crossref_primary_10_1002_pca_1162 crossref_primary_10_1080_03067319_2010_491913 crossref_primary_10_3390_antiox8040101 crossref_primary_10_1515_aeuc_2016_0009 crossref_primary_10_1007_s00128_014_1363_x crossref_primary_10_3390_ijerph19137692 crossref_primary_10_1016_j_chroma_2011_11_057 crossref_primary_10_1039_C3AY41629A crossref_primary_10_1016_j_etap_2016_07_008 crossref_primary_10_1016_j_plaphy_2012_12_018 crossref_primary_10_1002_jms_1645 |
Cites_doi | 10.1016/j.jchromb.2007.11.004 10.1073/pnas.86.18.6838 10.1104/pp.122.3.793 10.1016/0003-9861(59)90090-6 10.1023/A:1024761324710 10.1081/JLC-120025602 10.1016/j.phytochem.2007.10.012 10.1016/j.aquatox.2008.10.003 10.1073/pnas.84.2.439 10.1104/pp.107.4.1059 10.1104/pp.126.3.1275 10.1021/jp0731102 10.1104/pp.106.090894 10.1007/s00216-003-2415-y 10.1126/science.230.4726.674 10.1016/j.ab.2008.01.008 10.1093/jxb/erf107 10.1146/annurev.bi.59.070190.000425 10.1016/j.plantsci.2005.09.017 10.1016/j.plaphy.2008.09.010 10.1016/S0378-1119(96)00422-2 10.1021/ac801741b 10.1104/pp.106.085068 10.1016/0168-9452(95)04066-4 10.1016/0168-9452(87)90054-9 10.1016/j.aquatox.2006.10.002 10.1016/0076-6879(77)47012-5 10.1111/j.0031-9317.2004.00347.x 10.1897/04-394R.1 10.1007/s00216-005-3331-0 10.1263/jbb.100.593 10.1006/bbrc.1995.2524 10.1021/ac0207426 10.1021/jf9903105 10.1016/j.ab.2006.05.032 10.1104/pp.92.4.1086 10.1016/S0031-9422(00)00489-1 10.1104/pp.110.4.1145 10.1016/j.chroma.2008.08.023 10.1104/pp.104.1.255 10.1016/S1369-5266(00)80067-9 10.1016/B978-0-12-401350-6.50014-X 10.1104/pp.107.4.1293 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2009 2015 INIST-CNRS |
Copyright_xml | – notice: Springer-Verlag 2009 – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 7X8 7QH 7UA C1K F1W H95 L.G M7N |
DOI | 10.1007/s00216-009-3016-1 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic MEDLINE - Academic Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1618-2650 |
EndPage | 817 |
ExternalDocumentID | 19688341 21949359 10_1007_s00216_009_3016_1 US201301682196 |
Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 78A 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS EIOEI EJD EMK EMOBN EPAXT EPL ESBYG ESTFP ESX F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IAO IFM IGS IHE IJ- IKXTQ IMOTQ INH INR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAS LK8 LLZTM M1P M4Y M7P MA- ML- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R89 R9I RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SV3 SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 Z92 ZMTXR ~8M ~KM 0R~ AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACUHS ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS H13 IHR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 7X8 7QH 7UA C1K F1W H95 L.G M7N |
ID | FETCH-LOGICAL-c525t-194bfb19f60632333a5ea1aca41b180267ad083bcfe852033419650e47c6f4643 |
IEDL.DBID | U2A |
ISSN | 1618-2642 1618-2650 |
IngestDate | Sun Aug 24 03:56:38 EDT 2025 Mon Jul 21 10:51:42 EDT 2025 Fri Jul 11 07:07:51 EDT 2025 Thu Jul 10 17:37:00 EDT 2025 Fri Jul 11 10:01:49 EDT 2025 Mon Jul 21 06:07:17 EDT 2025 Mon Jul 21 09:14:39 EDT 2025 Tue Jul 01 04:32:33 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Fri Feb 21 02:33:29 EST 2025 Wed Dec 27 18:54:31 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Phytochelatins ESI-MS/MS HPLC-MS Internal standard Auto-oxidation Cysteine Peptides HPLC chromatography Glycine Electrospray Quadrupole spectrometer Sample preparation Indirect method Detection limit Oxidation Argon Quantitative analysis Glutathione Oxygen Algae Chlorella vulgaris Air Calibration Chemical ionization Heavy metal Reversed phase chromatography Sensitivity Linearity Mass spectrometry MS/MS Environment Mass spectrometry |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-194bfb19f60632333a5ea1aca41b180267ad083bcfe852033419650e47c6f4643 |
Notes | http://dx.doi.org/10.1007/s00216-009-3016-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 19688341 |
PQID | 1744695741 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_754554131 proquest_miscellaneous_753632779 proquest_miscellaneous_734050247 proquest_miscellaneous_46404886 proquest_miscellaneous_1744695741 pubmed_primary_19688341 pascalfrancis_primary_21949359 crossref_primary_10_1007_s00216_009_3016_1 crossref_citationtrail_10_1007_s00216_009_3016_1 springer_journals_10_1007_s00216_009_3016_1 fao_agris_US201301682196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-10-01 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: Germany |
PublicationTitle | Analytical and bioanalytical chemistry |
PublicationTitleAbbrev | Anal Bioanal Chem |
PublicationTitleAlternate | Anal Bioanal Chem |
PublicationYear | 2009 |
Publisher | Berlin/Heidelberg : Springer-Verlag Springer-Verlag Springer |
Publisher_xml | – name: Berlin/Heidelberg : Springer-Verlag – name: Springer-Verlag – name: Springer |
References | Gekeler, Grill, Winnacker, Zenk (CR5) 1989; 44 Grill, Loeffler, Winnacker, Zenk (CR18) 1989; 86 Bagiyan, Koroleva, Soroka, Ufirntsev (CR14) 2003; 52 Maitani, Kubota, Sato, Yamada (CR6) 1996; 110 Huang, Li, Huang, Yan, Shi, Xu (CR37) 2009; 91 Deknecht, Vanbaren, Tenbookum, Sang, Koevoets, Schat, Verkleij (CR11) 1995; 106 Ruegg, Rudinger (CR41) 1977; 47 Checkmeneva, Prohens, Diaz-Cruz, Arino, Esteban (CR45) 2008; 375 de Knecht, van Dillen, Koevoets, Schat, Verkleij, Erns (CR10) 1994; 104 Cobbett (CR3) 2000; 3 Rellan-Alvarez, Hernandez, Abadia, Alvarez-Fernandez (CR38) 2006; 356 Rauser (CR1) 1990; 59 Schmoger, Oven, Grill (CR7) 2000; 122 Le Faucheur, Schildknecht, Behra, Sigg (CR35) 2006; 80 Chassaigne, Vacchina, Kutchan, HM (CR26) 2001; 56 Jackson, Unkefer, Delhaize, Robinson, Katterman (CR8) 1990 Landberg, Greger (CR24) 2004; 121 Sadi, Vonderheide, Gong, Schroeder, Shann, Caruso (CR29) 2008; 861 Cardey, Foley, Enescu (CR15) 2007; 111 Zenk (CR2) 1996; 179 Oven, Raith, Neubert, Kutchan, Zenk (CR23) 2001; 126 Iglesia-Turino, Febrero, Jauregui, Caldelas, Araus, Bort (CR33) 2006; 142 Le Faucheur, Behra, Sigg (CR34) 2005; 24 Spain, Rabenstein (CR40) 2003; 75 Grill, Winacker, Zenk (CR13) 1985; 230 Zhang, Gao, Baosheng (CR42) 2008; 69 El-Zohri, Cabala, Frank (CR27) 2005; 382 Howden, Goldsbrough, Anderson, Cobbett (CR12) 1995; 107 Salt, Rauser (CR21) 1995; 107 Spain, Rabenstein (CR28) 2004; 378 Minocha, Thangavel, Dhankher, Long (CR30) 2008; 1207 Hunaiti, Abukhalaf, Silvestrov, Bayorh (CR31) 2003; 26 Vazquez, Goldsbrough, Carpena (CR32) 2009; 47 Mehra, Kodati, Abdullah (CR17) 1995; 215 Ellman (CR22) 1959; 82 Vogeli-Lange, Wagner (CR20) 1990; 92 El-Zohri, Cabala, Frank (CR43) 2005; 382 Grill, Winacker, Zenk (CR4) 1987; 84 CR46 Ramos, Clemente, Naya, Loscos, Perez-Rontome, Sato, Tabata, Becana (CR19) 2007; 143 Sneller, van Heerwaarden, Koevoets, Vooijs, Schat, Verkleij (CR25) 2000; 48 Schat, Llugany, Vooijs, Hartley-Whitaker, Bleeker (CR44) 2002; 53 Shirabe, Ito, Yoshimura (CR36) 2008; 80 Gadapati, Macfie (CR39) 2006; 170 Hirata, Tsuji, Miyamoto (CR16) 2005; 100 Huang, Hatch, Goldsbrough (CR9) 1987; 52 R Vogeli-Lange (3016_CR20) 1990; 92 3016_CR30 RK Mehra (3016_CR17) 1995; 215 UT Ruegg (3016_CR41) 1977; 47 T Maitani (3016_CR6) 1996; 110 E Grill (3016_CR18) 1989; 86 R Rellan-Alvarez (3016_CR38) 2006; 356 W Gekeler (3016_CR5) 1989; 44 DE Salt (3016_CR21) 1995; 107 H Schat (3016_CR44) 2002; 53 WE Rauser (3016_CR1) 1990; 59 AA Hunaiti (3016_CR31) 2003; 26 E Checkmeneva (3016_CR45) 2008; 375 H Chassaigne (3016_CR26) 2001; 56 S Faucheur Le (3016_CR34) 2005; 24 MH Zenk (3016_CR2) 1996; 179 S Faucheur Le (3016_CR35) 2006; 80 M Oven (3016_CR23) 2001; 126 S Iglesia-Turino (3016_CR33) 2006; 142 T Landberg (3016_CR24) 2004; 121 BBM Sadi (3016_CR29) 2008; 861 J Ramos (3016_CR19) 2007; 143 JA Knecht de (3016_CR10) 1994; 104 MHA El-Zohri (3016_CR43) 2005; 382 GA Bagiyan (3016_CR14) 2003; 52 WR Gadapati (3016_CR39) 2006; 170 3016_CR46 CS Cobbett (3016_CR3) 2000; 3 S Vazquez (3016_CR32) 2009; 47 SM Spain (3016_CR40) 2003; 75 ZY Huang (3016_CR37) 2009; 91 MHA El-Zohri (3016_CR27) 2005; 382 B Huang (3016_CR9) 1987; 52 K Hirata (3016_CR16) 2005; 100 JS Schmoger (3016_CR7) 2000; 122 PJ Jackson (3016_CR8) 1990 T Shirabe (3016_CR36) 2008; 80 JA Deknecht (3016_CR11) 1995; 106 R Howden (3016_CR12) 1995; 107 Z Zhang (3016_CR42) 2008; 69 B Cardey (3016_CR15) 2007; 111 SM Spain (3016_CR28) 2004; 378 FEC Sneller (3016_CR25) 2000; 48 E Grill (3016_CR13) 1985; 230 G Ellman (3016_CR22) 1959; 82 E Grill (3016_CR4) 1987; 84 |
References_xml | – volume: 861 start-page: 123 year: 2008 end-page: 129 ident: CR29 article-title: An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana publication-title: Journal of Chromatography B - Analytical technologies in the biomedical and life sciences doi: 10.1016/j.jchromb.2007.11.004 – volume: 86 start-page: 6838 year: 1989 end-page: 6842 ident: CR18 article-title: Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.86.18.6838 – volume: 110 start-page: 1145 year: 1996 end-page: 1150 ident: CR6 article-title: The composition of metals bound to class III metallothioneins (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum publication-title: Plant Physiol – volume: 122 start-page: 793 year: 2000 end-page: 801 ident: CR7 article-title: Detoxification of arsenic by phytochelatins in plants publication-title: Plant Physiol doi: 10.1104/pp.122.3.793 – volume: 82 start-page: 70 year: 1959 end-page: 77 ident: CR22 article-title: Tissue sulfhydryl groups publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(59)90090-6 – volume: 52 start-page: 1135 year: 2003 end-page: 1141 ident: CR14 article-title: Oxidation of thiol compounds by molecular oxygen in aqueous solutions publication-title: Russian Chemical Bulletin, International Edition doi: 10.1023/A:1024761324710 – volume: 26 start-page: 3463 year: 2003 end-page: 3473 ident: CR31 article-title: Rapid HPLC procedure for the quantification of phytochelatins in plant tissue extracts publication-title: J Liq Chromatogr Relat Technol doi: 10.1081/JLC-120025602 – volume: 69 start-page: 911 year: 2008 end-page: 918 ident: CR42 article-title: Detection of phytochelatins in the hyperaccumulator exposed to cadmium and lead publication-title: Phytochemistry doi: 10.1016/j.phytochem.2007.10.012 – volume: 104 start-page: 255 year: 1994 end-page: 261 ident: CR10 article-title: Phytochelatins in cadmium-sensitive and cadmium-tolerant silene vulgaris publication-title: Plant Physiol – volume: 91 start-page: 54 year: 2009 end-page: 61 ident: CR37 article-title: Growth-inhibitory and metal-binding proteins in exposed to cadmium or zinc publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2008.10.003 – volume: 84 start-page: 439 year: 1987 end-page: 443 ident: CR4 article-title: Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally, analogous to metallothioneins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.2.439 – volume: 44 start-page: 361 year: 1989 end-page: 369 ident: CR5 article-title: Survey of the plant kingdom for the ability to bind heavy-metals through phytochelatins publication-title: ZNaturforsch(C) – volume: 107 start-page: 1059 year: 1995 end-page: 1066 ident: CR12 article-title: Cadmium-sensitive, cad1, mutants of are phytochelatin deficient publication-title: Plant Physiol doi: 10.1104/pp.107.4.1059 – volume: 126 start-page: 1275 year: 2001 end-page: 1280 ident: CR23 article-title: Homo-phytochelatins are synthesized in response to cadmium in Azuki beans publication-title: Plant Physiol doi: 10.1104/pp.126.3.1275 – volume: 3 start-page: 211 year: 2000 end-page: 216 ident: CR3 article-title: Phytochelatin biosynthesis and function in heavy-metal detoxification publication-title: Curr Opin Plant Biol – volume: 111 start-page: 13046 year: 2007 end-page: 13052 ident: CR15 article-title: Mechanism of oxidation by the superoxide radical publication-title: J Phys Chem A doi: 10.1021/jp0731102 – volume: 143 start-page: 1110 year: 2007 end-page: 1118 ident: CR19 article-title: Phtyochelatin synthases of the model legume . A small multigene family with differential response to cadmium and alternatively spliced variants publication-title: Plant Physiol doi: 10.1104/pp.106.090894 – volume: 378 start-page: 1561 year: 2004 end-page: 1567 ident: CR28 article-title: Characterization of the selenotrisulfide formed by reaction of selenite with end-capped phytochelatin-2 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-003-2415-y – volume: 230 start-page: 674 year: 1985 end-page: 676 ident: CR13 article-title: Phytochelatins: the principal heavy-metal complexing peptides of higher plants publication-title: Science doi: 10.1126/science.230.4726.674 – volume: 375 start-page: 82 year: 2008 end-page: 89 ident: CR45 article-title: Thermodynamics of Cd and Zn binding by the phytochelatin (γ-Glu-Cys) -Gly and its precursor glutathione publication-title: Anal Biochem doi: 10.1016/j.ab.2008.01.008 – volume: 1207 start-page: 72 year: 2008 end-page: 83 ident: CR30 article-title: Separation and quantification of monthiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography publication-title: J Chromatogr A – volume: 53 start-page: 2381 year: 2002 end-page: 2392 ident: CR44 article-title: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes publication-title: J Exp Bot doi: 10.1093/jxb/erf107 – volume: 59 start-page: 61 year: 1990 end-page: 86 ident: CR1 article-title: Phytochelatins publication-title: Annual Reviews in Biochemistry doi: 10.1146/annurev.bi.59.070190.000425 – volume: 170 start-page: 471 year: 2006 end-page: 480 ident: CR39 article-title: Phytochelatins are only partially correlated with Cd-stress in two species of publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.09.017 – ident: CR46 – volume: 47 start-page: 63 year: 2009 end-page: 67 ident: CR32 article-title: Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2008.09.010 – volume: 179 start-page: 21 year: 1996 end-page: 30 ident: CR2 article-title: Heavy metal detoxification in higher plants—a review publication-title: Gene doi: 10.1016/S0378-1119(96)00422-2 – volume: 80 start-page: 9360 year: 2008 end-page: 9362 ident: CR36 article-title: Dequenching of Cu(I)-bathocuproinedisulfonate complexes for high-performance liquid chromatographic determination of phytochelatins, heavy-metal-binding peptides produced by the primitive red alga cyanidioschyzon merolae publication-title: Anal Chem doi: 10.1021/ac801741b – volume: 142 start-page: 742 year: 2006 end-page: 749 ident: CR33 article-title: Detection and quantification of unbound phytochelatin 2 in plant extracts of grown with different levels of mercury publication-title: Plant Physiol doi: 10.1104/pp.106.085068 – volume: 106 start-page: 9 year: 1995 end-page: 18 ident: CR11 article-title: Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant publication-title: Plant Sci doi: 10.1016/0168-9452(95)04066-4 – start-page: 231 year: 1990 end-page: 250 ident: CR8 article-title: Mechanisms of trace metal tolerance in plants publication-title: Environmental injury to plants – volume: 52 start-page: 211 year: 1987 end-page: 221 ident: CR9 article-title: Selection and characterization of cadmium tolerant cells in tomato publication-title: Plant Sci doi: 10.1016/0168-9452(87)90054-9 – volume: 80 start-page: 355 year: 2006 end-page: 361 ident: CR35 article-title: Thiols in upon exposure to metals and metalloids publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2006.10.002 – volume: 47 start-page: 111 year: 1977 end-page: 126 ident: CR41 article-title: Reductive cleavage of cystine disulfides with tributylphosphine publication-title: Methods Enzymol doi: 10.1016/0076-6879(77)47012-5 – volume: 121 start-page: 481 year: 2004 end-page: 487 ident: CR24 article-title: No phytochelatin (PC2 and PC3) detected in publication-title: Physiol Plant doi: 10.1111/j.0031-9317.2004.00347.x – volume: 24 start-page: 1731 year: 2005 end-page: 1737 ident: CR34 article-title: Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in publication-title: Environ Toxicol Chem doi: 10.1897/04-394R.1 – volume: 382 start-page: 1871 year: 2005 end-page: 1876 ident: CR43 article-title: Quantification of phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-005-3331-0 – volume: 107 start-page: 1293 year: 1995 end-page: 1301 ident: CR21 article-title: MgATP-dependant transport of phytochelatin across the tonoplast of the oat roots publication-title: Plant Physiol – volume: 100 start-page: 593 year: 2005 end-page: 599 ident: CR16 article-title: Biosynthetic regulation of phytochelatins, heavy metal-binding peptides publication-title: J Biosci Bioeng doi: 10.1263/jbb.100.593 – volume: 215 start-page: 730 year: 1995 end-page: 736 ident: CR17 article-title: Chain length-dependent Pb(II)-coordination in phytochelatins publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.2524 – volume: 75 start-page: 3712 year: 2003 end-page: 3719 ident: CR40 article-title: Characterization of the acid/base and redox chemistry of phytochelatin analogue peptides publication-title: Anal Chem doi: 10.1021/ac0207426 – volume: 382 start-page: 1871 year: 2005 end-page: 1876 ident: CR27 article-title: Quantification of phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS publication-title: Anal Bioanal Chem doi: 10.1007/s00216-005-3331-0 – volume: 48 start-page: 4014 year: 2000 end-page: 4019 ident: CR25 article-title: Derivatization of phytochelatins from , induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane publication-title: J Agric Food Chem doi: 10.1021/jf9903105 – volume: 356 start-page: 254 year: 2006 end-page: 264 ident: CR38 article-title: Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography-electrospray/mass spectrometry in plant tissue extracts publication-title: Anal Biochem doi: 10.1016/j.ab.2006.05.032 – volume: 92 start-page: 1086 year: 1990 end-page: 1093 ident: CR20 article-title: Subcellular localization of cadmium and cadmium-binding peptides in tabacco leaves publication-title: Plant Physiol doi: 10.1104/pp.92.4.1086 – volume: 56 start-page: 657 year: 2001 end-page: 668 ident: CR26 article-title: Identification and phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)00489-1 – volume: 47 start-page: 111 year: 1977 ident: 3016_CR41 publication-title: Methods Enzymol doi: 10.1016/0076-6879(77)47012-5 – volume: 122 start-page: 793 year: 2000 ident: 3016_CR7 publication-title: Plant Physiol doi: 10.1104/pp.122.3.793 – volume: 44 start-page: 361 year: 1989 ident: 3016_CR5 publication-title: ZNaturforsch(C) – volume: 84 start-page: 439 year: 1987 ident: 3016_CR4 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.2.439 – volume: 110 start-page: 1145 year: 1996 ident: 3016_CR6 publication-title: Plant Physiol doi: 10.1104/pp.110.4.1145 – volume: 52 start-page: 1135 year: 2003 ident: 3016_CR14 publication-title: Russian Chemical Bulletin, International Edition doi: 10.1023/A:1024761324710 – volume: 56 start-page: 657 year: 2001 ident: 3016_CR26 publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)00489-1 – volume: 378 start-page: 1561 year: 2004 ident: 3016_CR28 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-003-2415-y – volume: 52 start-page: 211 year: 1987 ident: 3016_CR9 publication-title: Plant Sci doi: 10.1016/0168-9452(87)90054-9 – volume: 215 start-page: 730 year: 1995 ident: 3016_CR17 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.2524 – ident: 3016_CR30 doi: 10.1016/j.chroma.2008.08.023 – volume: 26 start-page: 3463 year: 2003 ident: 3016_CR31 publication-title: J Liq Chromatogr Relat Technol doi: 10.1081/JLC-120025602 – volume: 80 start-page: 9360 year: 2008 ident: 3016_CR36 publication-title: Anal Chem doi: 10.1021/ac801741b – volume: 230 start-page: 674 year: 1985 ident: 3016_CR13 publication-title: Science doi: 10.1126/science.230.4726.674 – volume: 382 start-page: 1871 year: 2005 ident: 3016_CR27 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-005-3331-0 – volume: 104 start-page: 255 year: 1994 ident: 3016_CR10 publication-title: Plant Physiol doi: 10.1104/pp.104.1.255 – volume: 86 start-page: 6838 year: 1989 ident: 3016_CR18 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.86.18.6838 – volume: 143 start-page: 1110 year: 2007 ident: 3016_CR19 publication-title: Plant Physiol doi: 10.1104/pp.106.090894 – volume: 179 start-page: 21 year: 1996 ident: 3016_CR2 publication-title: Gene doi: 10.1016/S0378-1119(96)00422-2 – ident: 3016_CR46 – volume: 121 start-page: 481 year: 2004 ident: 3016_CR24 publication-title: Physiol Plant doi: 10.1111/j.0031-9317.2004.00347.x – volume: 861 start-page: 123 year: 2008 ident: 3016_CR29 publication-title: Journal of Chromatography B - Analytical technologies in the biomedical and life sciences doi: 10.1016/j.jchromb.2007.11.004 – volume: 91 start-page: 54 year: 2009 ident: 3016_CR37 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2008.10.003 – volume: 48 start-page: 4014 year: 2000 ident: 3016_CR25 publication-title: J Agric Food Chem doi: 10.1021/jf9903105 – volume: 107 start-page: 1059 year: 1995 ident: 3016_CR12 publication-title: Plant Physiol doi: 10.1104/pp.107.4.1059 – volume: 59 start-page: 61 year: 1990 ident: 3016_CR1 publication-title: Annual Reviews in Biochemistry doi: 10.1146/annurev.bi.59.070190.000425 – volume: 3 start-page: 211 year: 2000 ident: 3016_CR3 publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(00)80067-9 – volume: 111 start-page: 13046 year: 2007 ident: 3016_CR15 publication-title: J Phys Chem A doi: 10.1021/jp0731102 – volume: 53 start-page: 2381 year: 2002 ident: 3016_CR44 publication-title: J Exp Bot doi: 10.1093/jxb/erf107 – volume: 92 start-page: 1086 year: 1990 ident: 3016_CR20 publication-title: Plant Physiol doi: 10.1104/pp.92.4.1086 – volume: 375 start-page: 82 year: 2008 ident: 3016_CR45 publication-title: Anal Biochem doi: 10.1016/j.ab.2008.01.008 – volume: 106 start-page: 9 year: 1995 ident: 3016_CR11 publication-title: Plant Sci doi: 10.1016/0168-9452(95)04066-4 – volume: 142 start-page: 742 year: 2006 ident: 3016_CR33 publication-title: Plant Physiol doi: 10.1104/pp.106.085068 – volume: 82 start-page: 70 year: 1959 ident: 3016_CR22 publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(59)90090-6 – volume: 47 start-page: 63 year: 2009 ident: 3016_CR32 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2008.09.010 – volume: 356 start-page: 254 year: 2006 ident: 3016_CR38 publication-title: Anal Biochem doi: 10.1016/j.ab.2006.05.032 – volume: 126 start-page: 1275 year: 2001 ident: 3016_CR23 publication-title: Plant Physiol doi: 10.1104/pp.126.3.1275 – start-page: 231 volume-title: Environmental injury to plants year: 1990 ident: 3016_CR8 doi: 10.1016/B978-0-12-401350-6.50014-X – volume: 100 start-page: 593 year: 2005 ident: 3016_CR16 publication-title: J Biosci Bioeng doi: 10.1263/jbb.100.593 – volume: 107 start-page: 1293 year: 1995 ident: 3016_CR21 publication-title: Plant Physiol doi: 10.1104/pp.107.4.1293 – volume: 24 start-page: 1731 year: 2005 ident: 3016_CR34 publication-title: Environ Toxicol Chem doi: 10.1897/04-394R.1 – volume: 80 start-page: 355 year: 2006 ident: 3016_CR35 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2006.10.002 – volume: 69 start-page: 911 year: 2008 ident: 3016_CR42 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2007.10.012 – volume: 75 start-page: 3712 year: 2003 ident: 3016_CR40 publication-title: Anal Chem doi: 10.1021/ac0207426 – volume: 382 start-page: 1871 year: 2005 ident: 3016_CR43 publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-005-3331-0 – volume: 170 start-page: 471 year: 2006 ident: 3016_CR39 publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.09.017 |
SSID | ssj0015816 |
Score | 2.0836914 |
Snippet | Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides... |
SourceID | proquest pubmed pascalfrancis crossref springer fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 809 |
SubjectTerms | Adjustment air analysis Analytical Chemistry Applied sciences argon (noble gases) Auto-oxidation Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chlorella vulgaris Chlorella vulgaris - chemistry Chromatographic methods and physical methods associated with chromatography Chromatography, High Pressure Liquid Chromatography, High Pressure Liquid - methods Cost analysis cost effectiveness Degradation detection limit ESI-MS/MS Exact sciences and technology Extraction Food Science fungi Global environmental pollution Glutathione Glutathione - analysis Glutathione - isolation & purification heavy metals HPLC-MS Internal standard ionization isolation & purification Laboratory Medicine Linearity methods Monitoring/Environmental Analysis Original Paper Other chromatographic methods oxidation Peptides phytochelatins Phytochelatins - chemistry Phytochelatins - isolation & purification Pollution reversed-phase high performance liquid chromatography Sensitivity and Specificity spectrometers Spectrometric and optical methods Spectrometry, Mass, Electrospray Ionization Spectrometry, Mass, Electrospray Ionization - methods Tandem Mass Spectrometry Tandem Mass Spectrometry - methods |
Title | Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction |
URI | https://link.springer.com/article/10.1007/s00216-009-3016-1 https://www.ncbi.nlm.nih.gov/pubmed/19688341 https://www.proquest.com/docview/1744695741 https://www.proquest.com/docview/46404886 https://www.proquest.com/docview/734050247 https://www.proquest.com/docview/753632779 https://www.proquest.com/docview/754554131 |
Volume | 395 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbY3QNcEO_NAsVInEAWTWzHybEtLeXRVbWlUjlFTmIvSChZmhaxv4E_zYzzgBXbSpwSpZPEmpmMv-m8CHmhUuxRlOdMhIYzkUrDUhUZhiPKgyDr2zzE4uTZaThdivcruWrquKs2270NSTpL3RW74XYE3q-L1cMJuDxHEl13UOJlMOhCBzJy806xETymbwVtKPO6R1zZjA6sLjE1UlfAHVuPtbgOd_4TM3Vb0eQOud1gSDqohX6X3DDFPXJz1I5uu09-1eW3tvk_juoip9-3-u9LpaXnoHSYe1gWxlEAwzc4Pwuz44qKYuEJHX0Bfx4TpOiPLRZ9fK1oeknP5mw6_zii48U7Nlu8ni3c_eXPS9BGZtfGUDD567pk4gFZTsafRlPWTF1gmQzkhvmxSG3qxxZcGx5wzrU02teZFn6K7eJCpXPAbWlmTQT859gQDmCeESoLrQCA85AcFrDyY0I5922UAsTgNhRx0I8toCXpZ6KfCYDL0iP9lv1J1rQkx8kY35KumbKTWAISS1Biie-Rl90tF3U_jn3ExyDTRJ8Dd5LlAhcC1yMw0qFHelcE3T0MfhRYreyR563kE5AehlF0YcptlYAPJ8JYAhTzyLMdNMAHNI3wGrqDQnGAygCQ1B4SyUECSsX7SATgQZ_DUh7V2vmHK3EYRRwX-apV16SxT9Vulp38F_VjcstF11xy4xNyuFlvzVMAaZu0Rw7USvXI0WD4ZjjB49vPH8ZwHI5P52c998n-BvX3NKc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgPIwXxH3hshmJJ5BFEtu5PE7Vpg7aaaKrtDfLTuwNCSXQtIj9hv3pneNc2LS1Em9VepJa53OPv5NzI-RjarBHUVkykVjOhJGWmTSzDEeUx3ERujLB4uTpcTKei69n8qyr4276bPc-JOkt9VDshscReL8-Vg8fwOV5BFwgwzyuebw_hA5k5uedYiN4TN-K-1DmfY-4dRg9dLrG1EjdgHZcO9biPt55J2bqj6LDp-RJxyHpfgv6M_LAVs_J9qgf3faCXLXlt657H0d1VdLfK33zUu3oOWw6zD2sK-slQOFLnJ-F2XFVQ7HwhI4uwJ_HBCn6Z4VFHz8aai7p9xM2PpmM6MHsiE1nX6Yzf3_99xJ2I3MLaymY_EVbMvGSzA8PTkdj1k1dYIWM5ZJFuTDORLkD14bHnHMtrY50oUVksF1ckuoSeJspnM1kHHJsCAc0z4q0SJwAgvOKbFWw8h1COY9cZoBicJeIPA5zB2xJRoUICwF0WQYk7NWviq4lOU7G-KmGZsoeMQWIKURMRQH5NNzyq-3HsUl4BzBV-hy0o-YzXAhcz8BIJwHZvQX08DD4UmC1ckA-9MgrQA_DKLqy9apR4MOJJJdAxQKyt0YG9ICmEX6GrpFIOVBlIEjpBhHJAYE0zTeJCOCDEYelvG535z-t5EmWcVzk5367qs4-NetV9ua_pPfI9vh0OlGTo-Nvb8ljH2nziY7vyNZysbLvgbAtza7_g14Dl0IyEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSMCl4tmmQGskTiBrk9jO41gtXW2hW61YVurNshO7IKGkbLKI_gb-NDN5QUV3JW5RMkmsmcn4m8yLkDexwR5Fec5EZDkTRlpm4sQyHFEehpnv8giLk2fn0XQpPlzIi27OadVnu_chybamAbs0FfXoKnejofANtybwhJu4PRyA-3MPrHGAar0Mj4cwgkya2afYFB5TucI-rHnbI25sTHedLjFNUlfAKdeOuLgNg_4TP222pckjstvhSXrcKsBjcscWT8iDcT_G7Sn51Zbiuu7fHNVFTr-v9d-nSkcvQQExD7EsbEMBzK9xlhZmyhUVxSIUOv4Cvj0mS9EfaywA-VpRc00_zdl0fjamJ4tTNluMZovm_vLnNWgmcytrKZj_VVs-8YwsJyefx1PWTWBgmQxlzYJUGGeC1IGbw0POuZZWBzrTIjDYOi6KdQ4YzmTOJjL0OTaHA8hnRZxFTgDYeU52Clj5PqGcBy4xADe4i0Qa-qkD5CSDTPiZAOgsPeL37FdZ154cp2R8U0Nj5UZiCiSmUGIq8Mjb4ZartjfHNuJ9kKnSl8AdtVzgQuB8AgY78sjhDUEPD4OLAiuXPfK6l7wC6WFIRRe2XFcK_DkRpRJgmUeONtAAH9BMwmvoBoqYA2wGsBRvIZEcJBDH6TYSAdgQvgKP7LXa-YcraZQkHBf5rldX1dmqajPLDv6L-ojcn7-fqLPT848vyMMm6NbkPL4kO_VqbV8BdqvNYfN9_gbpYjZP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+quantification+of+glutathione+and+phytochelatins+from+Chlorella+vulgaris+by+RP-HPLC+ESI-MS%2FMS+and+oxygen-free+extraction&rft.jtitle=Analytical+and+bioanalytical+chemistry&rft.au=Simmons%2C+Denina+B+D&rft.au=Hayward%2C+Allison+R&rft.au=Hutchinson%2C+Thomas+C&rft.au=Emery%2C+R+J+Neil&rft.date=2009-10-01&rft.issn=1618-2650&rft.eissn=1618-2650&rft.volume=395&rft.issue=3&rft.spage=809&rft_id=info:doi/10.1007%2Fs00216-009-3016-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-2642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-2642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-2642&client=summon |