Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction

Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use...

Full description

Saved in:
Bibliographic Details
Published inAnalytical and bioanalytical chemistry Vol. 395; no. 3; pp. 809 - 817
Main Authors Simmons, Denina B. D, Hayward, Allison R, Hutchinson, Thomas C, Emery, R. J. Neil
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.10.2009
Springer-Verlag
Springer
Subjects
air
Air
Online AccessGet full text

Cover

Loading…
Abstract Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-¹³C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 μM for glutathione, 0.440 μM for phytochelatin 2, and 0.120 μM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. [graphic removed]
AbstractList Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-¹³C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 μM for glutathione, 0.440 μM for phytochelatin 2, and 0.120 μM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. [graphic removed]
Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine- 13 C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 μM for glutathione, 0.440 μM for phytochelatin 2, and 0.120 μM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation. Figure This figure was created using Adobe Photoshop CS3 (San Jose, CA). It displays an image of a chromatogram from our manuscript (a phytochelatin extraction) overlaid upon an image of Chlorella vulgaris and laboratory equipment and materials used in our methods.
Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 *mM for glutathione, 0.440 *mM for phytochelatin 2, and 0.120 *mM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation.
Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-(13)C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 microM for glutathione, 0.440 microM for phytochelatin 2, and 0.120 microM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation.Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-(13)C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 microM for glutathione, 0.440 microM for phytochelatin 2, and 0.120 microM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation.
Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides auto-oxidize easily. Current extraction protocols do not adequately address losses of phytochelatins because of their oxidation and the use of indirect methods for quantification. Method enhancements include the use of an argon environment during extraction to reduce auto-oxidation, the use of glycine-(13)C2-labeled glutathione as an internal standard, and an electrospray ionization source with a triple quadrupole mass spectrometer as a detector. The method-detection limits were 0.081 microM for glutathione, 0.440 microM for phytochelatin 2, and 0.120 microM for phytochelatin 3. These detection limits were comparable to similar studies and were not compromised incorporating these adjustments. The use of a labeled internal standard and an inert gaseous environment during sample preparation greatly improved calibration linearity and sensitivity. Furthermore, phytochelatin degradation was significantly reduced and more accurately tracked. Previous studies involving phytochelatin analyses have likely been subject to higher variability caused by this propensity for phytochelatins to degrade rapidly in air. The method adjustments were simple and cost-effective and allowed phytochelatin analyses to be performed for hours at a time with minimal auto-oxidation.
Author Simmons, Denina B. D
Hayward, Allison R
Emery, R. J. Neil
Hutchinson, Thomas C
Author_xml – sequence: 1
  fullname: Simmons, Denina B. D
– sequence: 2
  fullname: Hayward, Allison R
– sequence: 3
  fullname: Hutchinson, Thomas C
– sequence: 4
  fullname: Emery, R. J. Neil
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21949359$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19688341$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URC_wAGxgNlw2Q323Z4miQiOloiJ0bXkcezLVxE7tGdQ8Q1-6niQUxCKw8u37z8XnPwVHPngLwGsEPyEIxXmCECNeQliVBOYNegZOEEeyxJzBo6c9xcfgNKVbCBGTiL8Ax6jiUhKKTsDDdGF937rW6L4NvtB-UdwN-s-r4IqmG3rdL_PJbon1ctMHs7RdJnwqXAyrYrLsQrRdp4ufQ9fo2Kai3hTfr8vL69mkuJhPy6v5-dV8qw_3m8b60kVrC3vfR23GTC_Bc6e7ZF_t1zNw8-Xix-SynH37Op18npWGYdaXqKK1q1HlOOQEE0I0sxppoymqkYSYC72AktTGWckwJLnPKv-HpcJwRzklZ-DDLu46hrvBpl6t2mTG0r0NQ1KCUcYoIug_SJJLEKL6N0koZBBTkcn3B8lcIaRS8gx-PAgiQSmvmKBjnW_26FCv7EKtY7vScaN-zTkD7_aATkZ3Lmpv2vTE4fynFWFjG2jHmRhSitb9DgXV6Dm185zKnlOj59QYW_ylMW2_tU4ebNsdVOKdMuUsvrFR3YYh-jz7g6K3O5HTQekm-0zdzDFE47PMjXDyCFwQ8W4
CitedBy_id crossref_primary_10_1007_s00216_010_3970_7
crossref_primary_10_1016_j_jchromb_2014_11_007
crossref_primary_10_1016_j_ecoenv_2016_11_002
crossref_primary_10_1016_j_ijms_2010_10_026
crossref_primary_10_1080_00032719_2018_1548020
crossref_primary_10_1371_journal_pone_0081631
crossref_primary_10_1039_C4AY01574F
crossref_primary_10_1002_etc_392
crossref_primary_10_1139_cjb_2017_0211
crossref_primary_10_1007_s11356_017_8484_9
crossref_primary_10_1016_j_chemosphere_2012_11_064
crossref_primary_10_1016_j_aquatox_2016_02_020
crossref_primary_10_1093_jxb_eru195
crossref_primary_10_1002_lom3_10207
crossref_primary_10_1021_acs_jafc_5b01797
crossref_primary_10_1039_C3MB70425D
crossref_primary_10_1007_s00128_020_02880_3
crossref_primary_10_1111_j_1468_2494_2011_00668_x
crossref_primary_10_1080_15226514_2010_525560
crossref_primary_10_1016_j_phytochem_2019_05_007
crossref_primary_10_1002_pca_1162
crossref_primary_10_1080_03067319_2010_491913
crossref_primary_10_3390_antiox8040101
crossref_primary_10_1515_aeuc_2016_0009
crossref_primary_10_1007_s00128_014_1363_x
crossref_primary_10_3390_ijerph19137692
crossref_primary_10_1016_j_chroma_2011_11_057
crossref_primary_10_1039_C3AY41629A
crossref_primary_10_1016_j_etap_2016_07_008
crossref_primary_10_1016_j_plaphy_2012_12_018
crossref_primary_10_1002_jms_1645
Cites_doi 10.1016/j.jchromb.2007.11.004
10.1073/pnas.86.18.6838
10.1104/pp.122.3.793
10.1016/0003-9861(59)90090-6
10.1023/A:1024761324710
10.1081/JLC-120025602
10.1016/j.phytochem.2007.10.012
10.1016/j.aquatox.2008.10.003
10.1073/pnas.84.2.439
10.1104/pp.107.4.1059
10.1104/pp.126.3.1275
10.1021/jp0731102
10.1104/pp.106.090894
10.1007/s00216-003-2415-y
10.1126/science.230.4726.674
10.1016/j.ab.2008.01.008
10.1093/jxb/erf107
10.1146/annurev.bi.59.070190.000425
10.1016/j.plantsci.2005.09.017
10.1016/j.plaphy.2008.09.010
10.1016/S0378-1119(96)00422-2
10.1021/ac801741b
10.1104/pp.106.085068
10.1016/0168-9452(95)04066-4
10.1016/0168-9452(87)90054-9
10.1016/j.aquatox.2006.10.002
10.1016/0076-6879(77)47012-5
10.1111/j.0031-9317.2004.00347.x
10.1897/04-394R.1
10.1007/s00216-005-3331-0
10.1263/jbb.100.593
10.1006/bbrc.1995.2524
10.1021/ac0207426
10.1021/jf9903105
10.1016/j.ab.2006.05.032
10.1104/pp.92.4.1086
10.1016/S0031-9422(00)00489-1
10.1104/pp.110.4.1145
10.1016/j.chroma.2008.08.023
10.1104/pp.104.1.255
10.1016/S1369-5266(00)80067-9
10.1016/B978-0-12-401350-6.50014-X
10.1104/pp.107.4.1293
ContentType Journal Article
Copyright Springer-Verlag 2009
2015 INIST-CNRS
Copyright_xml – notice: Springer-Verlag 2009
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
7X8
7QH
7UA
C1K
F1W
H95
L.G
M7N
DOI 10.1007/s00216-009-3016-1
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

AGRICOLA
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1618-2650
EndPage 817
ExternalDocumentID 19688341
21949359
10_1007_s00216_009_3016_1
US201301682196
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
78A
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
EMOBN
EPAXT
EPL
ESBYG
ESTFP
ESX
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
IMOTQ
INH
INR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
ML-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
~8M
~KM
0R~
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACUHS
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
H13
IHR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
7X8
7QH
7UA
C1K
F1W
H95
L.G
M7N
ID FETCH-LOGICAL-c525t-194bfb19f60632333a5ea1aca41b180267ad083bcfe852033419650e47c6f4643
IEDL.DBID U2A
ISSN 1618-2642
1618-2650
IngestDate Sun Aug 24 03:56:38 EDT 2025
Mon Jul 21 10:51:42 EDT 2025
Fri Jul 11 07:07:51 EDT 2025
Thu Jul 10 17:37:00 EDT 2025
Fri Jul 11 10:01:49 EDT 2025
Mon Jul 21 06:07:17 EDT 2025
Mon Jul 21 09:14:39 EDT 2025
Tue Jul 01 04:32:33 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Fri Feb 21 02:33:29 EST 2025
Wed Dec 27 18:54:31 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Phytochelatins
ESI-MS/MS
HPLC-MS
Internal standard
Auto-oxidation
Cysteine
Peptides
HPLC chromatography
Glycine
Electrospray
Quadrupole spectrometer
Sample preparation
Indirect method
Detection limit
Oxidation
Argon
Quantitative analysis
Glutathione
Oxygen
Algae
Chlorella vulgaris
Air
Calibration
Chemical ionization
Heavy metal
Reversed phase chromatography
Sensitivity
Linearity
Mass spectrometry MS/MS
Environment
Mass spectrometry
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-194bfb19f60632333a5ea1aca41b180267ad083bcfe852033419650e47c6f4643
Notes http://dx.doi.org/10.1007/s00216-009-3016-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ObjectType-Article-2
ObjectType-Feature-1
PMID 19688341
PQID 1744695741
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_754554131
proquest_miscellaneous_753632779
proquest_miscellaneous_734050247
proquest_miscellaneous_46404886
proquest_miscellaneous_1744695741
pubmed_primary_19688341
pascalfrancis_primary_21949359
crossref_primary_10_1007_s00216_009_3016_1
crossref_citationtrail_10_1007_s00216_009_3016_1
springer_journals_10_1007_s00216_009_3016_1
fao_agris_US201301682196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: Germany
PublicationTitle Analytical and bioanalytical chemistry
PublicationTitleAbbrev Anal Bioanal Chem
PublicationTitleAlternate Anal Bioanal Chem
PublicationYear 2009
Publisher Berlin/Heidelberg : Springer-Verlag
Springer-Verlag
Springer
Publisher_xml – name: Berlin/Heidelberg : Springer-Verlag
– name: Springer-Verlag
– name: Springer
References Gekeler, Grill, Winnacker, Zenk (CR5) 1989; 44
Grill, Loeffler, Winnacker, Zenk (CR18) 1989; 86
Bagiyan, Koroleva, Soroka, Ufirntsev (CR14) 2003; 52
Maitani, Kubota, Sato, Yamada (CR6) 1996; 110
Huang, Li, Huang, Yan, Shi, Xu (CR37) 2009; 91
Deknecht, Vanbaren, Tenbookum, Sang, Koevoets, Schat, Verkleij (CR11) 1995; 106
Ruegg, Rudinger (CR41) 1977; 47
Checkmeneva, Prohens, Diaz-Cruz, Arino, Esteban (CR45) 2008; 375
de Knecht, van Dillen, Koevoets, Schat, Verkleij, Erns (CR10) 1994; 104
Cobbett (CR3) 2000; 3
Rellan-Alvarez, Hernandez, Abadia, Alvarez-Fernandez (CR38) 2006; 356
Rauser (CR1) 1990; 59
Schmoger, Oven, Grill (CR7) 2000; 122
Le Faucheur, Schildknecht, Behra, Sigg (CR35) 2006; 80
Chassaigne, Vacchina, Kutchan, HM (CR26) 2001; 56
Jackson, Unkefer, Delhaize, Robinson, Katterman (CR8) 1990
Landberg, Greger (CR24) 2004; 121
Sadi, Vonderheide, Gong, Schroeder, Shann, Caruso (CR29) 2008; 861
Cardey, Foley, Enescu (CR15) 2007; 111
Zenk (CR2) 1996; 179
Oven, Raith, Neubert, Kutchan, Zenk (CR23) 2001; 126
Iglesia-Turino, Febrero, Jauregui, Caldelas, Araus, Bort (CR33) 2006; 142
Le Faucheur, Behra, Sigg (CR34) 2005; 24
Spain, Rabenstein (CR40) 2003; 75
Grill, Winacker, Zenk (CR13) 1985; 230
Zhang, Gao, Baosheng (CR42) 2008; 69
El-Zohri, Cabala, Frank (CR27) 2005; 382
Howden, Goldsbrough, Anderson, Cobbett (CR12) 1995; 107
Salt, Rauser (CR21) 1995; 107
Spain, Rabenstein (CR28) 2004; 378
Minocha, Thangavel, Dhankher, Long (CR30) 2008; 1207
Hunaiti, Abukhalaf, Silvestrov, Bayorh (CR31) 2003; 26
Vazquez, Goldsbrough, Carpena (CR32) 2009; 47
Mehra, Kodati, Abdullah (CR17) 1995; 215
Ellman (CR22) 1959; 82
Vogeli-Lange, Wagner (CR20) 1990; 92
El-Zohri, Cabala, Frank (CR43) 2005; 382
Grill, Winacker, Zenk (CR4) 1987; 84
CR46
Ramos, Clemente, Naya, Loscos, Perez-Rontome, Sato, Tabata, Becana (CR19) 2007; 143
Sneller, van Heerwaarden, Koevoets, Vooijs, Schat, Verkleij (CR25) 2000; 48
Schat, Llugany, Vooijs, Hartley-Whitaker, Bleeker (CR44) 2002; 53
Shirabe, Ito, Yoshimura (CR36) 2008; 80
Gadapati, Macfie (CR39) 2006; 170
Hirata, Tsuji, Miyamoto (CR16) 2005; 100
Huang, Hatch, Goldsbrough (CR9) 1987; 52
R Vogeli-Lange (3016_CR20) 1990; 92
3016_CR30
RK Mehra (3016_CR17) 1995; 215
UT Ruegg (3016_CR41) 1977; 47
T Maitani (3016_CR6) 1996; 110
E Grill (3016_CR18) 1989; 86
R Rellan-Alvarez (3016_CR38) 2006; 356
W Gekeler (3016_CR5) 1989; 44
DE Salt (3016_CR21) 1995; 107
H Schat (3016_CR44) 2002; 53
WE Rauser (3016_CR1) 1990; 59
AA Hunaiti (3016_CR31) 2003; 26
E Checkmeneva (3016_CR45) 2008; 375
H Chassaigne (3016_CR26) 2001; 56
S Faucheur Le (3016_CR34) 2005; 24
MH Zenk (3016_CR2) 1996; 179
S Faucheur Le (3016_CR35) 2006; 80
M Oven (3016_CR23) 2001; 126
S Iglesia-Turino (3016_CR33) 2006; 142
T Landberg (3016_CR24) 2004; 121
BBM Sadi (3016_CR29) 2008; 861
J Ramos (3016_CR19) 2007; 143
JA Knecht de (3016_CR10) 1994; 104
MHA El-Zohri (3016_CR43) 2005; 382
GA Bagiyan (3016_CR14) 2003; 52
WR Gadapati (3016_CR39) 2006; 170
3016_CR46
CS Cobbett (3016_CR3) 2000; 3
S Vazquez (3016_CR32) 2009; 47
SM Spain (3016_CR40) 2003; 75
ZY Huang (3016_CR37) 2009; 91
MHA El-Zohri (3016_CR27) 2005; 382
B Huang (3016_CR9) 1987; 52
K Hirata (3016_CR16) 2005; 100
JS Schmoger (3016_CR7) 2000; 122
PJ Jackson (3016_CR8) 1990
T Shirabe (3016_CR36) 2008; 80
JA Deknecht (3016_CR11) 1995; 106
R Howden (3016_CR12) 1995; 107
Z Zhang (3016_CR42) 2008; 69
B Cardey (3016_CR15) 2007; 111
SM Spain (3016_CR28) 2004; 378
FEC Sneller (3016_CR25) 2000; 48
E Grill (3016_CR13) 1985; 230
G Ellman (3016_CR22) 1959; 82
E Grill (3016_CR4) 1987; 84
References_xml – volume: 861
  start-page: 123
  year: 2008
  end-page: 129
  ident: CR29
  article-title: An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana
  publication-title: Journal of Chromatography B - Analytical technologies in the biomedical and life sciences
  doi: 10.1016/j.jchromb.2007.11.004
– volume: 86
  start-page: 6838
  year: 1989
  end-page: 6842
  ident: CR18
  article-title: Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.86.18.6838
– volume: 110
  start-page: 1145
  year: 1996
  end-page: 1150
  ident: CR6
  article-title: The composition of metals bound to class III metallothioneins (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum
  publication-title: Plant Physiol
– volume: 122
  start-page: 793
  year: 2000
  end-page: 801
  ident: CR7
  article-title: Detoxification of arsenic by phytochelatins in plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.122.3.793
– volume: 82
  start-page: 70
  year: 1959
  end-page: 77
  ident: CR22
  article-title: Tissue sulfhydryl groups
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(59)90090-6
– volume: 52
  start-page: 1135
  year: 2003
  end-page: 1141
  ident: CR14
  article-title: Oxidation of thiol compounds by molecular oxygen in aqueous solutions
  publication-title: Russian Chemical Bulletin, International Edition
  doi: 10.1023/A:1024761324710
– volume: 26
  start-page: 3463
  year: 2003
  end-page: 3473
  ident: CR31
  article-title: Rapid HPLC procedure for the quantification of phytochelatins in plant tissue extracts
  publication-title: J Liq Chromatogr Relat Technol
  doi: 10.1081/JLC-120025602
– volume: 69
  start-page: 911
  year: 2008
  end-page: 918
  ident: CR42
  article-title: Detection of phytochelatins in the hyperaccumulator exposed to cadmium and lead
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.10.012
– volume: 104
  start-page: 255
  year: 1994
  end-page: 261
  ident: CR10
  article-title: Phytochelatins in cadmium-sensitive and cadmium-tolerant silene vulgaris
  publication-title: Plant Physiol
– volume: 91
  start-page: 54
  year: 2009
  end-page: 61
  ident: CR37
  article-title: Growth-inhibitory and metal-binding proteins in exposed to cadmium or zinc
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2008.10.003
– volume: 84
  start-page: 439
  year: 1987
  end-page: 443
  ident: CR4
  article-title: Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally, analogous to metallothioneins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.2.439
– volume: 44
  start-page: 361
  year: 1989
  end-page: 369
  ident: CR5
  article-title: Survey of the plant kingdom for the ability to bind heavy-metals through phytochelatins
  publication-title: ZNaturforsch(C)
– volume: 107
  start-page: 1059
  year: 1995
  end-page: 1066
  ident: CR12
  article-title: Cadmium-sensitive, cad1, mutants of are phytochelatin deficient
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.4.1059
– volume: 126
  start-page: 1275
  year: 2001
  end-page: 1280
  ident: CR23
  article-title: Homo-phytochelatins are synthesized in response to cadmium in Azuki beans
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.3.1275
– volume: 3
  start-page: 211
  year: 2000
  end-page: 216
  ident: CR3
  article-title: Phytochelatin biosynthesis and function in heavy-metal detoxification
  publication-title: Curr Opin Plant Biol
– volume: 111
  start-page: 13046
  year: 2007
  end-page: 13052
  ident: CR15
  article-title: Mechanism of oxidation by the superoxide radical
  publication-title: J Phys Chem A
  doi: 10.1021/jp0731102
– volume: 143
  start-page: 1110
  year: 2007
  end-page: 1118
  ident: CR19
  article-title: Phtyochelatin synthases of the model legume . A small multigene family with differential response to cadmium and alternatively spliced variants
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.090894
– volume: 378
  start-page: 1561
  year: 2004
  end-page: 1567
  ident: CR28
  article-title: Characterization of the selenotrisulfide formed by reaction of selenite with end-capped phytochelatin-2
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-003-2415-y
– volume: 230
  start-page: 674
  year: 1985
  end-page: 676
  ident: CR13
  article-title: Phytochelatins: the principal heavy-metal complexing peptides of higher plants
  publication-title: Science
  doi: 10.1126/science.230.4726.674
– volume: 375
  start-page: 82
  year: 2008
  end-page: 89
  ident: CR45
  article-title: Thermodynamics of Cd and Zn binding by the phytochelatin (γ-Glu-Cys) -Gly and its precursor glutathione
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2008.01.008
– volume: 1207
  start-page: 72
  year: 2008
  end-page: 83
  ident: CR30
  article-title: Separation and quantification of monthiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography
  publication-title: J Chromatogr A
– volume: 53
  start-page: 2381
  year: 2002
  end-page: 2392
  ident: CR44
  article-title: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erf107
– volume: 59
  start-page: 61
  year: 1990
  end-page: 86
  ident: CR1
  article-title: Phytochelatins
  publication-title: Annual Reviews in Biochemistry
  doi: 10.1146/annurev.bi.59.070190.000425
– volume: 170
  start-page: 471
  year: 2006
  end-page: 480
  ident: CR39
  article-title: Phytochelatins are only partially correlated with Cd-stress in two species of
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.09.017
– ident: CR46
– volume: 47
  start-page: 63
  year: 2009
  end-page: 67
  ident: CR32
  article-title: Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2008.09.010
– volume: 179
  start-page: 21
  year: 1996
  end-page: 30
  ident: CR2
  article-title: Heavy metal detoxification in higher plants—a review
  publication-title: Gene
  doi: 10.1016/S0378-1119(96)00422-2
– volume: 80
  start-page: 9360
  year: 2008
  end-page: 9362
  ident: CR36
  article-title: Dequenching of Cu(I)-bathocuproinedisulfonate complexes for high-performance liquid chromatographic determination of phytochelatins, heavy-metal-binding peptides produced by the primitive red alga cyanidioschyzon merolae
  publication-title: Anal Chem
  doi: 10.1021/ac801741b
– volume: 142
  start-page: 742
  year: 2006
  end-page: 749
  ident: CR33
  article-title: Detection and quantification of unbound phytochelatin 2 in plant extracts of grown with different levels of mercury
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.085068
– volume: 106
  start-page: 9
  year: 1995
  end-page: 18
  ident: CR11
  article-title: Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant
  publication-title: Plant Sci
  doi: 10.1016/0168-9452(95)04066-4
– start-page: 231
  year: 1990
  end-page: 250
  ident: CR8
  article-title: Mechanisms of trace metal tolerance in plants
  publication-title: Environmental injury to plants
– volume: 52
  start-page: 211
  year: 1987
  end-page: 221
  ident: CR9
  article-title: Selection and characterization of cadmium tolerant cells in tomato
  publication-title: Plant Sci
  doi: 10.1016/0168-9452(87)90054-9
– volume: 80
  start-page: 355
  year: 2006
  end-page: 361
  ident: CR35
  article-title: Thiols in upon exposure to metals and metalloids
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2006.10.002
– volume: 47
  start-page: 111
  year: 1977
  end-page: 126
  ident: CR41
  article-title: Reductive cleavage of cystine disulfides with tributylphosphine
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(77)47012-5
– volume: 121
  start-page: 481
  year: 2004
  end-page: 487
  ident: CR24
  article-title: No phytochelatin (PC2 and PC3) detected in
  publication-title: Physiol Plant
  doi: 10.1111/j.0031-9317.2004.00347.x
– volume: 24
  start-page: 1731
  year: 2005
  end-page: 1737
  ident: CR34
  article-title: Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in
  publication-title: Environ Toxicol Chem
  doi: 10.1897/04-394R.1
– volume: 382
  start-page: 1871
  year: 2005
  end-page: 1876
  ident: CR43
  article-title: Quantification of phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-005-3331-0
– volume: 107
  start-page: 1293
  year: 1995
  end-page: 1301
  ident: CR21
  article-title: MgATP-dependant transport of phytochelatin across the tonoplast of the oat roots
  publication-title: Plant Physiol
– volume: 100
  start-page: 593
  year: 2005
  end-page: 599
  ident: CR16
  article-title: Biosynthetic regulation of phytochelatins, heavy metal-binding peptides
  publication-title: J Biosci Bioeng
  doi: 10.1263/jbb.100.593
– volume: 215
  start-page: 730
  year: 1995
  end-page: 736
  ident: CR17
  article-title: Chain length-dependent Pb(II)-coordination in phytochelatins
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.2524
– volume: 75
  start-page: 3712
  year: 2003
  end-page: 3719
  ident: CR40
  article-title: Characterization of the acid/base and redox chemistry of phytochelatin analogue peptides
  publication-title: Anal Chem
  doi: 10.1021/ac0207426
– volume: 382
  start-page: 1871
  year: 2005
  end-page: 1876
  ident: CR27
  article-title: Quantification of phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-005-3331-0
– volume: 48
  start-page: 4014
  year: 2000
  end-page: 4019
  ident: CR25
  article-title: Derivatization of phytochelatins from , induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9903105
– volume: 356
  start-page: 254
  year: 2006
  end-page: 264
  ident: CR38
  article-title: Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography-electrospray/mass spectrometry in plant tissue extracts
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2006.05.032
– volume: 92
  start-page: 1086
  year: 1990
  end-page: 1093
  ident: CR20
  article-title: Subcellular localization of cadmium and cadmium-binding peptides in tabacco leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.92.4.1086
– volume: 56
  start-page: 657
  year: 2001
  end-page: 668
  ident: CR26
  article-title: Identification and phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00489-1
– volume: 47
  start-page: 111
  year: 1977
  ident: 3016_CR41
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(77)47012-5
– volume: 122
  start-page: 793
  year: 2000
  ident: 3016_CR7
  publication-title: Plant Physiol
  doi: 10.1104/pp.122.3.793
– volume: 44
  start-page: 361
  year: 1989
  ident: 3016_CR5
  publication-title: ZNaturforsch(C)
– volume: 84
  start-page: 439
  year: 1987
  ident: 3016_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.2.439
– volume: 110
  start-page: 1145
  year: 1996
  ident: 3016_CR6
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.4.1145
– volume: 52
  start-page: 1135
  year: 2003
  ident: 3016_CR14
  publication-title: Russian Chemical Bulletin, International Edition
  doi: 10.1023/A:1024761324710
– volume: 56
  start-page: 657
  year: 2001
  ident: 3016_CR26
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00489-1
– volume: 378
  start-page: 1561
  year: 2004
  ident: 3016_CR28
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-003-2415-y
– volume: 52
  start-page: 211
  year: 1987
  ident: 3016_CR9
  publication-title: Plant Sci
  doi: 10.1016/0168-9452(87)90054-9
– volume: 215
  start-page: 730
  year: 1995
  ident: 3016_CR17
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.2524
– ident: 3016_CR30
  doi: 10.1016/j.chroma.2008.08.023
– volume: 26
  start-page: 3463
  year: 2003
  ident: 3016_CR31
  publication-title: J Liq Chromatogr Relat Technol
  doi: 10.1081/JLC-120025602
– volume: 80
  start-page: 9360
  year: 2008
  ident: 3016_CR36
  publication-title: Anal Chem
  doi: 10.1021/ac801741b
– volume: 230
  start-page: 674
  year: 1985
  ident: 3016_CR13
  publication-title: Science
  doi: 10.1126/science.230.4726.674
– volume: 382
  start-page: 1871
  year: 2005
  ident: 3016_CR27
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-005-3331-0
– volume: 104
  start-page: 255
  year: 1994
  ident: 3016_CR10
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.1.255
– volume: 86
  start-page: 6838
  year: 1989
  ident: 3016_CR18
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.86.18.6838
– volume: 143
  start-page: 1110
  year: 2007
  ident: 3016_CR19
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.090894
– volume: 179
  start-page: 21
  year: 1996
  ident: 3016_CR2
  publication-title: Gene
  doi: 10.1016/S0378-1119(96)00422-2
– ident: 3016_CR46
– volume: 121
  start-page: 481
  year: 2004
  ident: 3016_CR24
  publication-title: Physiol Plant
  doi: 10.1111/j.0031-9317.2004.00347.x
– volume: 861
  start-page: 123
  year: 2008
  ident: 3016_CR29
  publication-title: Journal of Chromatography B - Analytical technologies in the biomedical and life sciences
  doi: 10.1016/j.jchromb.2007.11.004
– volume: 91
  start-page: 54
  year: 2009
  ident: 3016_CR37
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2008.10.003
– volume: 48
  start-page: 4014
  year: 2000
  ident: 3016_CR25
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9903105
– volume: 107
  start-page: 1059
  year: 1995
  ident: 3016_CR12
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.4.1059
– volume: 59
  start-page: 61
  year: 1990
  ident: 3016_CR1
  publication-title: Annual Reviews in Biochemistry
  doi: 10.1146/annurev.bi.59.070190.000425
– volume: 3
  start-page: 211
  year: 2000
  ident: 3016_CR3
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(00)80067-9
– volume: 111
  start-page: 13046
  year: 2007
  ident: 3016_CR15
  publication-title: J Phys Chem A
  doi: 10.1021/jp0731102
– volume: 53
  start-page: 2381
  year: 2002
  ident: 3016_CR44
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erf107
– volume: 92
  start-page: 1086
  year: 1990
  ident: 3016_CR20
  publication-title: Plant Physiol
  doi: 10.1104/pp.92.4.1086
– volume: 375
  start-page: 82
  year: 2008
  ident: 3016_CR45
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2008.01.008
– volume: 106
  start-page: 9
  year: 1995
  ident: 3016_CR11
  publication-title: Plant Sci
  doi: 10.1016/0168-9452(95)04066-4
– volume: 142
  start-page: 742
  year: 2006
  ident: 3016_CR33
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.085068
– volume: 82
  start-page: 70
  year: 1959
  ident: 3016_CR22
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(59)90090-6
– volume: 47
  start-page: 63
  year: 2009
  ident: 3016_CR32
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2008.09.010
– volume: 356
  start-page: 254
  year: 2006
  ident: 3016_CR38
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2006.05.032
– volume: 126
  start-page: 1275
  year: 2001
  ident: 3016_CR23
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.3.1275
– start-page: 231
  volume-title: Environmental injury to plants
  year: 1990
  ident: 3016_CR8
  doi: 10.1016/B978-0-12-401350-6.50014-X
– volume: 100
  start-page: 593
  year: 2005
  ident: 3016_CR16
  publication-title: J Biosci Bioeng
  doi: 10.1263/jbb.100.593
– volume: 107
  start-page: 1293
  year: 1995
  ident: 3016_CR21
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.4.1293
– volume: 24
  start-page: 1731
  year: 2005
  ident: 3016_CR34
  publication-title: Environ Toxicol Chem
  doi: 10.1897/04-394R.1
– volume: 80
  start-page: 355
  year: 2006
  ident: 3016_CR35
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2006.10.002
– volume: 69
  start-page: 911
  year: 2008
  ident: 3016_CR42
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.10.012
– volume: 75
  start-page: 3712
  year: 2003
  ident: 3016_CR40
  publication-title: Anal Chem
  doi: 10.1021/ac0207426
– volume: 382
  start-page: 1871
  year: 2005
  ident: 3016_CR43
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-005-3331-0
– volume: 170
  start-page: 471
  year: 2006
  ident: 3016_CR39
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.09.017
SSID ssj0015816
Score 2.0836914
Snippet Phytochelatins are short, cysteine-containing, detoxification peptides produced by plants, algae, and fungi in response to heavy metal exposure. These peptides...
SourceID proquest
pubmed
pascalfrancis
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 809
SubjectTerms Adjustment
air
analysis
Analytical Chemistry
Applied sciences
argon (noble gases)
Auto-oxidation
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chlorella vulgaris
Chlorella vulgaris - chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography, High Pressure Liquid
Chromatography, High Pressure Liquid - methods
Cost analysis
cost effectiveness
Degradation
detection limit
ESI-MS/MS
Exact sciences and technology
Extraction
Food Science
fungi
Global environmental pollution
Glutathione
Glutathione - analysis
Glutathione - isolation & purification
heavy metals
HPLC-MS
Internal standard
ionization
isolation & purification
Laboratory Medicine
Linearity
methods
Monitoring/Environmental Analysis
Original Paper
Other chromatographic methods
oxidation
Peptides
phytochelatins
Phytochelatins - chemistry
Phytochelatins - isolation & purification
Pollution
reversed-phase high performance liquid chromatography
Sensitivity and Specificity
spectrometers
Spectrometric and optical methods
Spectrometry, Mass, Electrospray Ionization
Spectrometry, Mass, Electrospray Ionization - methods
Tandem Mass Spectrometry
Tandem Mass Spectrometry - methods
Title Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction
URI https://link.springer.com/article/10.1007/s00216-009-3016-1
https://www.ncbi.nlm.nih.gov/pubmed/19688341
https://www.proquest.com/docview/1744695741
https://www.proquest.com/docview/46404886
https://www.proquest.com/docview/734050247
https://www.proquest.com/docview/753632779
https://www.proquest.com/docview/754554131
Volume 395
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbY3QNcEO_NAsVInEAWTWzHybEtLeXRVbWlUjlFTmIvSChZmhaxv4E_zYzzgBXbSpwSpZPEmpmMv-m8CHmhUuxRlOdMhIYzkUrDUhUZhiPKgyDr2zzE4uTZaThdivcruWrquKs2270NSTpL3RW74XYE3q-L1cMJuDxHEl13UOJlMOhCBzJy806xETymbwVtKPO6R1zZjA6sLjE1UlfAHVuPtbgOd_4TM3Vb0eQOud1gSDqohX6X3DDFPXJz1I5uu09-1eW3tvk_juoip9-3-u9LpaXnoHSYe1gWxlEAwzc4Pwuz44qKYuEJHX0Bfx4TpOiPLRZ9fK1oeknP5mw6_zii48U7Nlu8ni3c_eXPS9BGZtfGUDD567pk4gFZTsafRlPWTF1gmQzkhvmxSG3qxxZcGx5wzrU02teZFn6K7eJCpXPAbWlmTQT859gQDmCeESoLrQCA85AcFrDyY0I5922UAsTgNhRx0I8toCXpZ6KfCYDL0iP9lv1J1rQkx8kY35KumbKTWAISS1Biie-Rl90tF3U_jn3ExyDTRJ8Dd5LlAhcC1yMw0qFHelcE3T0MfhRYreyR563kE5AehlF0YcptlYAPJ8JYAhTzyLMdNMAHNI3wGrqDQnGAygCQ1B4SyUECSsX7SATgQZ_DUh7V2vmHK3EYRRwX-apV16SxT9Vulp38F_VjcstF11xy4xNyuFlvzVMAaZu0Rw7USvXI0WD4ZjjB49vPH8ZwHI5P52c998n-BvX3NKc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgPIwXxH3hshmJJ5BFEtu5PE7Vpg7aaaKrtDfLTuwNCSXQtIj9hv3pneNc2LS1Em9VepJa53OPv5NzI-RjarBHUVkykVjOhJGWmTSzDEeUx3ERujLB4uTpcTKei69n8qyr4276bPc-JOkt9VDshscReL8-Vg8fwOV5BFwgwzyuebw_hA5k5uedYiN4TN-K-1DmfY-4dRg9dLrG1EjdgHZcO9biPt55J2bqj6LDp-RJxyHpfgv6M_LAVs_J9qgf3faCXLXlt657H0d1VdLfK33zUu3oOWw6zD2sK-slQOFLnJ-F2XFVQ7HwhI4uwJ_HBCn6Z4VFHz8aai7p9xM2PpmM6MHsiE1nX6Yzf3_99xJ2I3MLaymY_EVbMvGSzA8PTkdj1k1dYIWM5ZJFuTDORLkD14bHnHMtrY50oUVksF1ckuoSeJspnM1kHHJsCAc0z4q0SJwAgvOKbFWw8h1COY9cZoBicJeIPA5zB2xJRoUICwF0WQYk7NWviq4lOU7G-KmGZsoeMQWIKURMRQH5NNzyq-3HsUl4BzBV-hy0o-YzXAhcz8BIJwHZvQX08DD4UmC1ckA-9MgrQA_DKLqy9apR4MOJJJdAxQKyt0YG9ICmEX6GrpFIOVBlIEjpBhHJAYE0zTeJCOCDEYelvG535z-t5EmWcVzk5367qs4-NetV9ua_pPfI9vh0OlGTo-Nvb8ljH2nziY7vyNZysbLvgbAtza7_g14Dl0IyEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSMCl4tmmQGskTiBrk9jO41gtXW2hW61YVurNshO7IKGkbLKI_gb-NDN5QUV3JW5RMkmsmcn4m8yLkDexwR5Fec5EZDkTRlpm4sQyHFEehpnv8giLk2fn0XQpPlzIi27OadVnu_chybamAbs0FfXoKnejofANtybwhJu4PRyA-3MPrHGAar0Mj4cwgkya2afYFB5TucI-rHnbI25sTHedLjFNUlfAKdeOuLgNg_4TP222pckjstvhSXrcKsBjcscWT8iDcT_G7Sn51Zbiuu7fHNVFTr-v9d-nSkcvQQExD7EsbEMBzK9xlhZmyhUVxSIUOv4Cvj0mS9EfaywA-VpRc00_zdl0fjamJ4tTNluMZovm_vLnNWgmcytrKZj_VVs-8YwsJyefx1PWTWBgmQxlzYJUGGeC1IGbw0POuZZWBzrTIjDYOi6KdQ4YzmTOJjL0OTaHA8hnRZxFTgDYeU52Clj5PqGcBy4xADe4i0Qa-qkD5CSDTPiZAOgsPeL37FdZ154cp2R8U0Nj5UZiCiSmUGIq8Mjb4ZartjfHNuJ9kKnSl8AdtVzgQuB8AgY78sjhDUEPD4OLAiuXPfK6l7wC6WFIRRe2XFcK_DkRpRJgmUeONtAAH9BMwmvoBoqYA2wGsBRvIZEcJBDH6TYSAdgQvgKP7LXa-YcraZQkHBf5rldX1dmqajPLDv6L-ojcn7-fqLPT848vyMMm6NbkPL4kO_VqbV8BdqvNYfN9_gbpYjZP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+quantification+of+glutathione+and+phytochelatins+from+Chlorella+vulgaris+by+RP-HPLC+ESI-MS%2FMS+and+oxygen-free+extraction&rft.jtitle=Analytical+and+bioanalytical+chemistry&rft.au=Simmons%2C+Denina+B+D&rft.au=Hayward%2C+Allison+R&rft.au=Hutchinson%2C+Thomas+C&rft.au=Emery%2C+R+J+Neil&rft.date=2009-10-01&rft.issn=1618-2650&rft.eissn=1618-2650&rft.volume=395&rft.issue=3&rft.spage=809&rft_id=info:doi/10.1007%2Fs00216-009-3016-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-2642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-2642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-2642&client=summon