Multiplatform single-sample estimates of transcriptional activation
Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 44; pp. 17778 - 17783 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.10.2013
NATIONAL ACADEMY OF SCIENCES National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1305823110 |
Cover
Loading…
Abstract | Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html . |
---|---|
AbstractList | Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html . Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only -- no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html. [PUBLICATION ABSTRACT] We present our Universal exPression Code (UPC) approach for deriving “barcodes,” which estimate the active/inactive state of genes in a sample. UPCs normalize for technological variance and standardize data so they can be combined across microarray and RNA-sequencing experiments with high concordance. Because our method is applied to one sample at a time and thus bypasses the need to standardize samples together, it is distinctively suitable for situations in which samples arrive serially rather than in batches. We demonstrate our method’s utility in various biomedical research applications and compare against technology-specific approaches. Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html . Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only--no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html.Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only--no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html. |
Author | Withers, Michelle R. Piccolo, Stephen R. Bild, Andrea H. Francis, Owen E. Johnson, W. Evan |
Author_xml | – sequence: 1 givenname: Stephen R. surname: Piccolo fullname: Piccolo, Stephen R. – sequence: 2 givenname: Michelle R. surname: Withers fullname: Withers, Michelle R. – sequence: 3 givenname: Owen E. surname: Francis fullname: Francis, Owen E. – sequence: 4 givenname: Andrea H. surname: Bild fullname: Bild, Andrea H. – sequence: 5 givenname: W. Evan surname: Johnson fullname: Johnson, W. Evan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24128763$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycgEhcuaccfie1LJbTiSyriQDlbjuMsXnnjYDuV-O9xussWeoDTyJrfjN-bd4ZOxjBahJ5juMDA6eU06nSBKTSCUIzhEVphkLhumYQTtAIgvBaMsFN0ltIWAGQj4Ak6JQwTwVu6QuvPs89u8joPIe6q5MaNt3XSu8nbyqbsdjrbVIWhylGPyUQ3ZRdG7SttsrvVy-Mpejxon-yzQz1HN-_f3aw_1tdfPnxav72uTUOaXOOGiFa2mAwgewKGC6ahHbiwTdcPQEsBYMLYviN9D9AB6UTXGehIg9uBnqOr_dpp7na2N3YskryaYtEYf6qgnfq7M7rvahNuFRW4ZViUBW8OC2L4MRdzaueSsd7r0YY5KSygHJFz1v4fZYwzySWRBX39AN2GOZYL3VESS4kxLdTLP8UfVf9OogCXe8DEkFK0wxHBoJas1ZK1us-6TDQPJozLd4EU987_Y646SFkax18Kzpgq9vlyqRd7ZJtyiPdiKW8YFYvnV_v-oIPSm-iS-vaVAG4BMCPFNv0F5xTLQw |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btv377 crossref_primary_10_3389_fonc_2020_00803 crossref_primary_10_1038_s41419_020_03354_4 crossref_primary_10_1016_j_jff_2017_07_003 crossref_primary_10_1038_sdata_2018_136 crossref_primary_10_3389_fimmu_2022_920669 crossref_primary_10_1093_nar_gkv810 crossref_primary_10_1111_jcmm_12685 crossref_primary_10_1038_s41391_018_0103_4 crossref_primary_10_1186_s12870_018_1423_1 crossref_primary_10_1186_s13046_017_0651_9 crossref_primary_10_1186_s13058_019_1157_5 crossref_primary_10_1038_onc_2016_3 crossref_primary_10_3389_fgene_2016_00127 crossref_primary_10_1038_srep13576 crossref_primary_10_1186_s12920_017_0263_4 crossref_primary_10_3390_biomedicines10092318 crossref_primary_10_3892_or_2016_4598 crossref_primary_10_3389_fgene_2016_00207 crossref_primary_10_1007_s13277_016_5079_x crossref_primary_10_1016_j_ygeno_2014_03_001 crossref_primary_10_1016_j_toxrep_2018_10_012 crossref_primary_10_3389_fmicb_2018_01439 crossref_primary_10_1002_cpz1_444 crossref_primary_10_1096_fj_202300737R crossref_primary_10_3892_ijo_2022_5412 crossref_primary_10_1007_s00204_018_2268_y crossref_primary_10_1016_j_tiv_2019_05_006 crossref_primary_10_1073_pnas_1501555112 crossref_primary_10_1016_j_toxrep_2014_12_013 crossref_primary_10_1038_s41598_018_21201_7 crossref_primary_10_3389_fmolb_2023_1237129 crossref_primary_10_1038_s41598_017_06355_0 crossref_primary_10_1186_s12885_019_5952_2 crossref_primary_10_1002_mnfr_201400597 crossref_primary_10_1093_bioinformatics_btab105 crossref_primary_10_18632_oncotarget_3564 crossref_primary_10_1016_j_tiv_2017_09_029 crossref_primary_10_1093_bioinformatics_btw245 crossref_primary_10_1164_rccm_201712_2526OC crossref_primary_10_1007_s00701_024_05922_5 crossref_primary_10_1002_bit_26347 crossref_primary_10_1109_TCBB_2016_2595583 crossref_primary_10_1093_bioinformatics_btv031 crossref_primary_10_1194_jlr_M074278 crossref_primary_10_1038_s41598_019_39628_x crossref_primary_10_1053_j_gastro_2018_08_032 crossref_primary_10_3390_cancers15010153 crossref_primary_10_1111_age_13242 crossref_primary_10_3390_ijms19113626 crossref_primary_10_1164_rccm_201510_2026OC crossref_primary_10_1007_s00125_017_4460_7 crossref_primary_10_3390_biomedicines11123168 crossref_primary_10_3233_JBR_200646 crossref_primary_10_1158_0008_5472_CAN_15_0536 crossref_primary_10_1186_s12920_020_0712_3 crossref_primary_10_1371_journal_pone_0186906 crossref_primary_10_1002_mnfr_201800424 crossref_primary_10_1016_j_canlet_2019_03_006 crossref_primary_10_1016_j_jaci_2015_11_025 crossref_primary_10_1534_g3_117_039909 crossref_primary_10_2174_1574893618666230221141815 crossref_primary_10_1093_bioinformatics_btx121 crossref_primary_10_1038_srep12296 crossref_primary_10_1016_j_bcp_2018_03_014 crossref_primary_10_1016_j_ccell_2017_08_010 crossref_primary_10_1038_nmeth_2745 crossref_primary_10_1016_j_amjmed_2018_03_008 crossref_primary_10_1073_pnas_1919748117 |
Cites_doi | 10.1038/nmeth1102 10.1001/archneur.65.7.877 10.1038/nrg2825 10.1038/msb.2011.28 10.1186/gb-2010-11-10-r106 10.1093/bioinformatics/btp120 10.1007/3-540-57868-4_57 10.1145/1656274.1656278 10.1093/bioinformatics/btp324 10.1038/nature07509 10.1093/bioinformatics/btp616 10.1093/biostatistics/kxr054 10.1101/gr.079558.108 10.1109/TIT.1967.1053964 10.1371/journal.pmed.1001093 10.1093/bioinformatics/bts713 10.1038/415530a 10.1111/1467-9868.00358 10.1093/bioinformatics/btp614 10.1073/pnas.0601180103 10.1371/journal.pcbi.1000589 10.1016/j.ygeno.2012.08.003 10.1056/NEJMoa041588 10.1186/gb-2007-8-5-r82 10.1093/biostatistics/kxp059 10.1056/NEJMra0907178 10.1186/gb-2007-8-8-r178 10.1093/bioinformatics/btp352 10.1093/nar/gkq1259 10.1093/bioinformatics/bti623 10.1038/nmeth.1226 10.1111/j.2517-6161.1977.tb01600.x 10.1093/bioinformatics/btg405 10.1038/nbt1239 10.1093/nar/gni179 10.1093/nar/gks042 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Oct 30, 2013 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Oct 30, 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1305823110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Virology and AIDS Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Universal exPression Codes |
EISSN | 1091-6490 |
EndPage | 17783 |
ExternalDocumentID | PMC3816418 3120533141 24128763 10_1073_pnas_1305823110 110_44_17778 23754389 US201600142144 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: 1R01HG005692 – fundername: NIGMS NIH HHS grantid: R01GM085601 – fundername: NHGRI NIH HHS grantid: R01 HG005692 – fundername: NCI NIH HHS grantid: T32 CA093247 – fundername: NCI NIH HHS grantid: 5T32CA093247 – fundername: NCI NIH HHS grantid: 1U01CA164720 – fundername: NIGMS NIH HHS grantid: R01 GM085601 – fundername: NCI NIH HHS grantid: U01 CA164720 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c525t-152869612f09d20c784a06f78e5bdf03e5b0048cedb2dd00b02b8bbc0b2516f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:07 EDT 2025 Fri Jul 11 04:38:25 EDT 2025 Fri Jul 11 00:03:48 EDT 2025 Mon Jun 30 07:47:18 EDT 2025 Thu Apr 03 07:06:36 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Tue Jul 01 03:39:54 EDT 2025 Wed Nov 11 00:30:40 EST 2020 Thu May 29 08:40:50 EDT 2025 Thu Apr 03 09:45:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c525t-152869612f09d20c784a06f78e5bdf03e5b0048cedb2dd00b02b8bbc0b2516f3 |
Notes | http://dx.doi.org/10.1073/pnas.1305823110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: S.R.P., A.H.B., and W.E.J. designed research; S.R.P. performed research; S.R.P., O.E.F., and W.E.J. contributed new analytic tools; S.R.P., M.R.W., and W.E.J. analyzed data; and S.R.P., A.H.B., and W.E.J. wrote the paper. Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved September 14, 2013 (received for review April 1, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/44/17778.full.pdf |
PMID | 24128763 |
PQID | 1449199113 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_23754389 crossref_citationtrail_10_1073_pnas_1305823110 pnas_primary_110_44_17778 fao_agris_US201600142144 proquest_miscellaneous_1447497929 proquest_journals_1449199113 crossref_primary_10_1073_pnas_1305823110 proquest_miscellaneous_1803117746 pubmed_primary_24128763 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3816418 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-29 |
PublicationDateYYYYMMDD | 2013-10-29 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences NATIONAL ACADEMY OF SCIENCES National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: NATIONAL ACADEMY OF SCIENCES – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 Dempster AP (e_1_3_3_26_2) 1977; 39 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Mahalanobis PC (e_1_3_3_37_2) 1936; 2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 Piccolo SR (e_1_3_3_36_2) 2012; 13 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 21931541 - PLoS Med. 2011 Sep;8(9):e1001093 22959562 - Genomics. 2012 Dec;100(6):337-44 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 20979621 - Genome Biol. 2010;11(10):R106 16964229 - Nat Biotechnol. 2006 Sep;24(9):1151-61 21654674 - Mol Syst Biol. 2011;7:497 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9 18978772 - Nature. 2008 Nov 27;456(7221):470-6 11823860 - Nature. 2002 Jan 31;415(6871):530-6 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62 23303507 - Bioinformatics. 2013 Mar 1;29(5):605-13 22285995 - Biostatistics. 2012 Apr;13(2):204-16 21177656 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1011-5 20097884 - Biostatistics. 2010 Apr;11(2):242-53 16284200 - Nucleic Acids Res. 2005;33(20):e175 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 17906632 - Nat Methods. 2007 Nov;4(11):911-3 20041221 - PLoS Comput Biol. 2009 Dec;5(12):e1000589 21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50 18516045 - Nat Methods. 2008 Jul;5(7):621-8 16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1 18625854 - Arch Neurol. 2008 Jul;65(7):877-83 19861355 - Bioinformatics. 2010 Jan 1;26(1):38-45 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 17727723 - Genome Biol. 2007;8(8):R178 17504534 - Genome Biol. 2007;8(5):R82 15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26 18550803 - Genome Res. 2008 Sep;18(9):1509-17 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 |
References_xml | – ident: e_1_3_3_1_2 doi: 10.1038/nmeth1102 – ident: e_1_3_3_24_2 doi: 10.1001/archneur.65.7.877 – ident: e_1_3_3_25_2 doi: 10.1038/nrg2825 – ident: e_1_3_3_30_2 doi: 10.1038/msb.2011.28 – ident: e_1_3_3_8_2 doi: 10.1186/gb-2010-11-10-r106 – volume: 2 start-page: 49 year: 1936 ident: e_1_3_3_37_2 article-title: On the generalised distance in statistics publication-title: Proc Natl Inst Sci India – ident: e_1_3_3_33_2 doi: 10.1093/bioinformatics/btp120 – ident: e_1_3_3_16_2 doi: 10.1007/3-540-57868-4_57 – ident: e_1_3_3_35_2 doi: 10.1145/1656274.1656278 – ident: e_1_3_3_18_2 doi: 10.1093/bioinformatics/btp324 – ident: e_1_3_3_15_2 doi: 10.1038/nature07509 – ident: e_1_3_3_19_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_3_14_2 doi: 10.1093/biostatistics/kxr054 – ident: e_1_3_3_11_2 doi: 10.1101/gr.079558.108 – ident: e_1_3_3_17_2 doi: 10.1109/TIT.1967.1053964 – ident: e_1_3_3_10_2 doi: 10.1371/journal.pmed.1001093 – ident: e_1_3_3_9_2 doi: 10.1093/bioinformatics/bts713 – ident: e_1_3_3_21_2 doi: 10.1038/415530a – ident: e_1_3_3_3_2 doi: 10.1111/1467-9868.00358 – ident: e_1_3_3_12_2 doi: 10.1093/bioinformatics/btp614 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.0601180103 – ident: e_1_3_3_4_2 doi: 10.1371/journal.pcbi.1000589 – ident: e_1_3_3_6_2 doi: 10.1016/j.ygeno.2012.08.003 – ident: e_1_3_3_22_2 doi: 10.1056/NEJMoa041588 – ident: e_1_3_3_28_2 doi: 10.1186/gb-2007-8-5-r82 – ident: e_1_3_3_7_2 doi: 10.1093/biostatistics/kxp059 – ident: e_1_3_3_39_2 – ident: e_1_3_3_23_2 doi: 10.1056/NEJMra0907178 – ident: e_1_3_3_29_2 doi: 10.1186/gb-2007-8-8-r178 – ident: e_1_3_3_34_2 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_3_2_2 doi: 10.1093/nar/gkq1259 – ident: e_1_3_3_38_2 doi: 10.1093/bioinformatics/bti623 – ident: e_1_3_3_5_2 doi: 10.1038/nmeth.1226 – volume: 39 start-page: 1 year: 1977 ident: e_1_3_3_26_2 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_3_3_20_2 doi: 10.1093/bioinformatics/btg405 – ident: e_1_3_3_13_2 doi: 10.1038/nbt1239 – ident: e_1_3_3_32_2 doi: 10.1093/nar/gni179 – ident: e_1_3_3_31_2 doi: 10.1093/nar/gks042 – volume: 13 start-page: 555 year: 2012 ident: e_1_3_3_36_2 article-title: ML-Flex: A flexible toolbox for performing classification analyses in parallel publication-title: J Mach Learn Res – reference: 16964229 - Nat Biotechnol. 2006 Sep;24(9):1151-61 – reference: 21654674 - Mol Syst Biol. 2011;7:497 – reference: 17906632 - Nat Methods. 2007 Nov;4(11):911-3 – reference: 16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1 – reference: 19861355 - Bioinformatics. 2010 Jan 1;26(1):38-45 – reference: 21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 22959562 - Genomics. 2012 Dec;100(6):337-44 – reference: 18978772 - Nature. 2008 Nov 27;456(7221):470-6 – reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8 – reference: 18625854 - Arch Neurol. 2008 Jul;65(7):877-83 – reference: 21931541 - PLoS Med. 2011 Sep;8(9):e1001093 – reference: 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97 – reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 – reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9 – reference: 20097884 - Biostatistics. 2010 Apr;11(2):242-53 – reference: 16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62 – reference: 23303507 - Bioinformatics. 2013 Mar 1;29(5):605-13 – reference: 20041221 - PLoS Comput Biol. 2009 Dec;5(12):e1000589 – reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 21177656 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1011-5 – reference: 17504534 - Genome Biol. 2007;8(5):R82 – reference: 16284200 - Nucleic Acids Res. 2005;33(20):e175 – reference: 17727723 - Genome Biol. 2007;8(8):R178 – reference: 15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 22285995 - Biostatistics. 2012 Apr;13(2):204-16 |
SSID | ssj0009580 |
Score | 2.3948338 |
Snippet | Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is... We present our Universal exPression Code (UPC) approach for deriving “barcodes,” which estimate the active/inactive state of genes in a sample. UPCs normalize... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17778 |
SubjectTerms | Algorithms Bar codes Base Composition Bioinformatics Biological markers Biological Sciences Biotechnology computer software Data normalization DNA Barcoding, Taxonomic - methods Gene expression Gene Expression Profiling - methods Genes Genes - genetics Genomics high-throughput nucleotide sequencing Integration microarray technology Models, Genetic Physical Sciences Ribonucleic acid RNA Software Technology Tissue samples transcriptional activation Transcriptional Activation - physiology |
Title | Multiplatform single-sample estimates of transcriptional activation |
URI | https://www.jstor.org/stable/23754389 http://www.pnas.org/content/110/44/17778.abstract https://www.ncbi.nlm.nih.gov/pubmed/24128763 https://www.proquest.com/docview/1449199113 https://www.proquest.com/docview/1447497929 https://www.proquest.com/docview/1803117746 https://pubmed.ncbi.nlm.nih.gov/PMC3816418 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYYKAg8TBUpTiJ89HHadqY0NZVohV9ixzHHpVKOtFMk_jruXPsfJSBBi9pFTt2lLvc_ezc_Y6Q91IoFUZ54alCxh4Lue_lKWceOAcZhUxIHmK-8-UkPp-zz4toMRjcdbNLqnwkft6bV_I_UoVzIFfMkv0HyTaDwgn4D_KFI0gYjg-S8WUdDcgrRJ5DXPWvpLfhSPg7RPaM7wgkdRQAeiRrH5AdQNiqZl1wOm2c2caGDkzsXuFxm3lizMFm6A2nk7aO8XQpkAG7EzrWBiN-XWqcaeP08WNB22hqe2Dj1R1c1XJ_Lldt0CU3aRRmh8LXsW5mG8NmDIAnZHWudGN1TTRrrV6MDW9GfpLgkhYOYcek6rMd_9y0_2b8wVphxeKSb7DGdYQfOM0kPZrtyVV2Nr-4yGani9kOeRTA-gJLX3xa-B225rTOXTI3bjmhkvDj1vA9OLOj-NrGtSJZLnS9b-GyHX_bATSzp-SJWYm4x7Va7ZGBLJ-RPStc98gQkn94Tk56eub29Mxt9MxdK3dLz9xWz16Q2dnp7OTcM8U3PBEFUeUBrkvjMeBfRcdFQEWSMk5jlaQS3mxFQ_hB6y9kkQdFQWlOgzzNc0FzQMyxCvfJbrku5QFxY56mrBC0KELGFGChdEwTUFpYO8CVQjlkZB9hJgwxPdZHWWU6QCIJM3yQWfvMHXLUXHBTc7L8uesByCTj1-Axs_mXAPkUqc-QJ9Ah-1pQzRABVoMG_O4QR4_SDA1jM5ZpPXTIoRVnZgwBTMfYGCMI_dAh75pmMNP47Y2Xcn2r-yRsnMBi5C99UvCwMA2LHfKy1pD25hgAScACDkl6utN0QJr4fku5_Kbp4jE0gPnpqwfM-5o8bl_gQ7Jb_biVbwB0V_lb_YL8Aupq1Xo |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplatform+single-sample+estimates+of+transcriptional+activation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Piccolo%2C+Stephen+R&rft.au=Withers%2C+Michelle+R&rft.au=Francis%2C+Owen+E&rft.au=Bild%2C+Andrea+H&rft.date=2013-10-29&rft.issn=0027-8424&rft.volume=110&rft.issue=44+p.17778-17783&rft.spage=17778&rft.epage=17783&rft_id=info:doi/10.1073%2Fpnas.1305823110&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F44.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F44.cover.gif |