Multiplatform single-sample estimates of transcriptional activation

Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 44; pp. 17778 - 17783
Main Authors Piccolo, Stephen R., Withers, Michelle R., Francis, Owen E., Bild, Andrea H., Johnson, W. Evan
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.10.2013
NATIONAL ACADEMY OF SCIENCES
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1305823110

Cover

Loading…
Abstract Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html .
AbstractList Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html .
Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only -- no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html. [PUBLICATION ABSTRACT]
We present our Universal exPression Code (UPC) approach for deriving “barcodes,” which estimate the active/inactive state of genes in a sample. UPCs normalize for technological variance and standardize data so they can be combined across microarray and RNA-sequencing experiments with high concordance. Because our method is applied to one sample at a time and thus bypasses the need to standardize samples together, it is distinctively suitable for situations in which samples arrive serially rather than in batches. We demonstrate our method’s utility in various biomedical research applications and compare against technology-specific approaches. Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html .
Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only--no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html.Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only--no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html.
Author Withers, Michelle R.
Piccolo, Stephen R.
Bild, Andrea H.
Francis, Owen E.
Johnson, W. Evan
Author_xml – sequence: 1
  givenname: Stephen R.
  surname: Piccolo
  fullname: Piccolo, Stephen R.
– sequence: 2
  givenname: Michelle R.
  surname: Withers
  fullname: Withers, Michelle R.
– sequence: 3
  givenname: Owen E.
  surname: Francis
  fullname: Francis, Owen E.
– sequence: 4
  givenname: Andrea H.
  surname: Bild
  fullname: Bild, Andrea H.
– sequence: 5
  givenname: W. Evan
  surname: Johnson
  fullname: Johnson, W. Evan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24128763$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycgEhcuaccfie1LJbTiSyriQDlbjuMsXnnjYDuV-O9xussWeoDTyJrfjN-bd4ZOxjBahJ5juMDA6eU06nSBKTSCUIzhEVphkLhumYQTtAIgvBaMsFN0ltIWAGQj4Ak6JQwTwVu6QuvPs89u8joPIe6q5MaNt3XSu8nbyqbsdjrbVIWhylGPyUQ3ZRdG7SttsrvVy-Mpejxon-yzQz1HN-_f3aw_1tdfPnxav72uTUOaXOOGiFa2mAwgewKGC6ahHbiwTdcPQEsBYMLYviN9D9AB6UTXGehIg9uBnqOr_dpp7na2N3YskryaYtEYf6qgnfq7M7rvahNuFRW4ZViUBW8OC2L4MRdzaueSsd7r0YY5KSygHJFz1v4fZYwzySWRBX39AN2GOZYL3VESS4kxLdTLP8UfVf9OogCXe8DEkFK0wxHBoJas1ZK1us-6TDQPJozLd4EU987_Y646SFkax18Kzpgq9vlyqRd7ZJtyiPdiKW8YFYvnV_v-oIPSm-iS-vaVAG4BMCPFNv0F5xTLQw
CitedBy_id crossref_primary_10_1093_bioinformatics_btv377
crossref_primary_10_3389_fonc_2020_00803
crossref_primary_10_1038_s41419_020_03354_4
crossref_primary_10_1016_j_jff_2017_07_003
crossref_primary_10_1038_sdata_2018_136
crossref_primary_10_3389_fimmu_2022_920669
crossref_primary_10_1093_nar_gkv810
crossref_primary_10_1111_jcmm_12685
crossref_primary_10_1038_s41391_018_0103_4
crossref_primary_10_1186_s12870_018_1423_1
crossref_primary_10_1186_s13046_017_0651_9
crossref_primary_10_1186_s13058_019_1157_5
crossref_primary_10_1038_onc_2016_3
crossref_primary_10_3389_fgene_2016_00127
crossref_primary_10_1038_srep13576
crossref_primary_10_1186_s12920_017_0263_4
crossref_primary_10_3390_biomedicines10092318
crossref_primary_10_3892_or_2016_4598
crossref_primary_10_3389_fgene_2016_00207
crossref_primary_10_1007_s13277_016_5079_x
crossref_primary_10_1016_j_ygeno_2014_03_001
crossref_primary_10_1016_j_toxrep_2018_10_012
crossref_primary_10_3389_fmicb_2018_01439
crossref_primary_10_1002_cpz1_444
crossref_primary_10_1096_fj_202300737R
crossref_primary_10_3892_ijo_2022_5412
crossref_primary_10_1007_s00204_018_2268_y
crossref_primary_10_1016_j_tiv_2019_05_006
crossref_primary_10_1073_pnas_1501555112
crossref_primary_10_1016_j_toxrep_2014_12_013
crossref_primary_10_1038_s41598_018_21201_7
crossref_primary_10_3389_fmolb_2023_1237129
crossref_primary_10_1038_s41598_017_06355_0
crossref_primary_10_1186_s12885_019_5952_2
crossref_primary_10_1002_mnfr_201400597
crossref_primary_10_1093_bioinformatics_btab105
crossref_primary_10_18632_oncotarget_3564
crossref_primary_10_1016_j_tiv_2017_09_029
crossref_primary_10_1093_bioinformatics_btw245
crossref_primary_10_1164_rccm_201712_2526OC
crossref_primary_10_1007_s00701_024_05922_5
crossref_primary_10_1002_bit_26347
crossref_primary_10_1109_TCBB_2016_2595583
crossref_primary_10_1093_bioinformatics_btv031
crossref_primary_10_1194_jlr_M074278
crossref_primary_10_1038_s41598_019_39628_x
crossref_primary_10_1053_j_gastro_2018_08_032
crossref_primary_10_3390_cancers15010153
crossref_primary_10_1111_age_13242
crossref_primary_10_3390_ijms19113626
crossref_primary_10_1164_rccm_201510_2026OC
crossref_primary_10_1007_s00125_017_4460_7
crossref_primary_10_3390_biomedicines11123168
crossref_primary_10_3233_JBR_200646
crossref_primary_10_1158_0008_5472_CAN_15_0536
crossref_primary_10_1186_s12920_020_0712_3
crossref_primary_10_1371_journal_pone_0186906
crossref_primary_10_1002_mnfr_201800424
crossref_primary_10_1016_j_canlet_2019_03_006
crossref_primary_10_1016_j_jaci_2015_11_025
crossref_primary_10_1534_g3_117_039909
crossref_primary_10_2174_1574893618666230221141815
crossref_primary_10_1093_bioinformatics_btx121
crossref_primary_10_1038_srep12296
crossref_primary_10_1016_j_bcp_2018_03_014
crossref_primary_10_1016_j_ccell_2017_08_010
crossref_primary_10_1038_nmeth_2745
crossref_primary_10_1016_j_amjmed_2018_03_008
crossref_primary_10_1073_pnas_1919748117
Cites_doi 10.1038/nmeth1102
10.1001/archneur.65.7.877
10.1038/nrg2825
10.1038/msb.2011.28
10.1186/gb-2010-11-10-r106
10.1093/bioinformatics/btp120
10.1007/3-540-57868-4_57
10.1145/1656274.1656278
10.1093/bioinformatics/btp324
10.1038/nature07509
10.1093/bioinformatics/btp616
10.1093/biostatistics/kxr054
10.1101/gr.079558.108
10.1109/TIT.1967.1053964
10.1371/journal.pmed.1001093
10.1093/bioinformatics/bts713
10.1038/415530a
10.1111/1467-9868.00358
10.1093/bioinformatics/btp614
10.1073/pnas.0601180103
10.1371/journal.pcbi.1000589
10.1016/j.ygeno.2012.08.003
10.1056/NEJMoa041588
10.1186/gb-2007-8-5-r82
10.1093/biostatistics/kxp059
10.1056/NEJMra0907178
10.1186/gb-2007-8-8-r178
10.1093/bioinformatics/btp352
10.1093/nar/gkq1259
10.1093/bioinformatics/bti623
10.1038/nmeth.1226
10.1111/j.2517-6161.1977.tb01600.x
10.1093/bioinformatics/btg405
10.1038/nbt1239
10.1093/nar/gni179
10.1093/nar/gks042
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Oct 30, 2013
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Oct 30, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1305823110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE

Virology and AIDS Abstracts
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Universal exPression Codes
EISSN 1091-6490
EndPage 17783
ExternalDocumentID PMC3816418
3120533141
24128763
10_1073_pnas_1305823110
110_44_17778
23754389
US201600142144
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: 1R01HG005692
– fundername: NIGMS NIH HHS
  grantid: R01GM085601
– fundername: NHGRI NIH HHS
  grantid: R01 HG005692
– fundername: NCI NIH HHS
  grantid: T32 CA093247
– fundername: NCI NIH HHS
  grantid: 5T32CA093247
– fundername: NCI NIH HHS
  grantid: 1U01CA164720
– fundername: NIGMS NIH HHS
  grantid: R01 GM085601
– fundername: NCI NIH HHS
  grantid: U01 CA164720
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c525t-152869612f09d20c784a06f78e5bdf03e5b0048cedb2dd00b02b8bbc0b2516f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:07 EDT 2025
Fri Jul 11 04:38:25 EDT 2025
Fri Jul 11 00:03:48 EDT 2025
Mon Jun 30 07:47:18 EDT 2025
Thu Apr 03 07:06:36 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Tue Jul 01 03:39:54 EDT 2025
Wed Nov 11 00:30:40 EST 2020
Thu May 29 08:40:50 EDT 2025
Thu Apr 03 09:45:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-152869612f09d20c784a06f78e5bdf03e5b0048cedb2dd00b02b8bbc0b2516f3
Notes http://dx.doi.org/10.1073/pnas.1305823110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.R.P., A.H.B., and W.E.J. designed research; S.R.P. performed research; S.R.P., O.E.F., and W.E.J. contributed new analytic tools; S.R.P., M.R.W., and W.E.J. analyzed data; and S.R.P., A.H.B., and W.E.J. wrote the paper.
Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved September 14, 2013 (received for review April 1, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/110/44/17778.full.pdf
PMID 24128763
PQID 1449199113
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_23754389
crossref_citationtrail_10_1073_pnas_1305823110
pnas_primary_110_44_17778
fao_agris_US201600142144
proquest_miscellaneous_1447497929
proquest_journals_1449199113
crossref_primary_10_1073_pnas_1305823110
proquest_miscellaneous_1803117746
pubmed_primary_24128763
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3816418
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-29
PublicationDateYYYYMMDD 2013-10-29
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
NATIONAL ACADEMY OF SCIENCES
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: NATIONAL ACADEMY OF SCIENCES
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
Dempster AP (e_1_3_3_26_2) 1977; 39
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Mahalanobis PC (e_1_3_3_37_2) 1936; 2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
Piccolo SR (e_1_3_3_36_2) 2012; 13
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
21931541 - PLoS Med. 2011 Sep;8(9):e1001093
22959562 - Genomics. 2012 Dec;100(6):337-44
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
20979621 - Genome Biol. 2010;11(10):R106
16964229 - Nat Biotechnol. 2006 Sep;24(9):1151-61
21654674 - Mol Syst Biol. 2011;7:497
20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9
18978772 - Nature. 2008 Nov 27;456(7221):470-6
11823860 - Nature. 2002 Jan 31;415(6871):530-6
22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62
23303507 - Bioinformatics. 2013 Mar 1;29(5):605-13
22285995 - Biostatistics. 2012 Apr;13(2):204-16
21177656 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1011-5
20097884 - Biostatistics. 2010 Apr;11(2):242-53
16284200 - Nucleic Acids Res. 2005;33(20):e175
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
17906632 - Nat Methods. 2007 Nov;4(11):911-3
20041221 - PLoS Comput Biol. 2009 Dec;5(12):e1000589
21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50
18516045 - Nat Methods. 2008 Jul;5(7):621-8
16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1
18625854 - Arch Neurol. 2008 Jul;65(7):877-83
19861355 - Bioinformatics. 2010 Jan 1;26(1):38-45
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
17727723 - Genome Biol. 2007;8(8):R178
17504534 - Genome Biol. 2007;8(5):R82
15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26
18550803 - Genome Res. 2008 Sep;18(9):1509-17
14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
References_xml – ident: e_1_3_3_1_2
  doi: 10.1038/nmeth1102
– ident: e_1_3_3_24_2
  doi: 10.1001/archneur.65.7.877
– ident: e_1_3_3_25_2
  doi: 10.1038/nrg2825
– ident: e_1_3_3_30_2
  doi: 10.1038/msb.2011.28
– ident: e_1_3_3_8_2
  doi: 10.1186/gb-2010-11-10-r106
– volume: 2
  start-page: 49
  year: 1936
  ident: e_1_3_3_37_2
  article-title: On the generalised distance in statistics
  publication-title: Proc Natl Inst Sci India
– ident: e_1_3_3_33_2
  doi: 10.1093/bioinformatics/btp120
– ident: e_1_3_3_16_2
  doi: 10.1007/3-540-57868-4_57
– ident: e_1_3_3_35_2
  doi: 10.1145/1656274.1656278
– ident: e_1_3_3_18_2
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_3_3_15_2
  doi: 10.1038/nature07509
– ident: e_1_3_3_19_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_3_14_2
  doi: 10.1093/biostatistics/kxr054
– ident: e_1_3_3_11_2
  doi: 10.1101/gr.079558.108
– ident: e_1_3_3_17_2
  doi: 10.1109/TIT.1967.1053964
– ident: e_1_3_3_10_2
  doi: 10.1371/journal.pmed.1001093
– ident: e_1_3_3_9_2
  doi: 10.1093/bioinformatics/bts713
– ident: e_1_3_3_21_2
  doi: 10.1038/415530a
– ident: e_1_3_3_3_2
  doi: 10.1111/1467-9868.00358
– ident: e_1_3_3_12_2
  doi: 10.1093/bioinformatics/btp614
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.0601180103
– ident: e_1_3_3_4_2
  doi: 10.1371/journal.pcbi.1000589
– ident: e_1_3_3_6_2
  doi: 10.1016/j.ygeno.2012.08.003
– ident: e_1_3_3_22_2
  doi: 10.1056/NEJMoa041588
– ident: e_1_3_3_28_2
  doi: 10.1186/gb-2007-8-5-r82
– ident: e_1_3_3_7_2
  doi: 10.1093/biostatistics/kxp059
– ident: e_1_3_3_39_2
– ident: e_1_3_3_23_2
  doi: 10.1056/NEJMra0907178
– ident: e_1_3_3_29_2
  doi: 10.1186/gb-2007-8-8-r178
– ident: e_1_3_3_34_2
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_3_3_2_2
  doi: 10.1093/nar/gkq1259
– ident: e_1_3_3_38_2
  doi: 10.1093/bioinformatics/bti623
– ident: e_1_3_3_5_2
  doi: 10.1038/nmeth.1226
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_3_3_26_2
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_3_3_20_2
  doi: 10.1093/bioinformatics/btg405
– ident: e_1_3_3_13_2
  doi: 10.1038/nbt1239
– ident: e_1_3_3_32_2
  doi: 10.1093/nar/gni179
– ident: e_1_3_3_31_2
  doi: 10.1093/nar/gks042
– volume: 13
  start-page: 555
  year: 2012
  ident: e_1_3_3_36_2
  article-title: ML-Flex: A flexible toolbox for performing classification analyses in parallel
  publication-title: J Mach Learn Res
– reference: 16964229 - Nat Biotechnol. 2006 Sep;24(9):1151-61
– reference: 21654674 - Mol Syst Biol. 2011;7:497
– reference: 17906632 - Nat Methods. 2007 Nov;4(11):911-3
– reference: 16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1
– reference: 19861355 - Bioinformatics. 2010 Jan 1;26(1):38-45
– reference: 21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 22959562 - Genomics. 2012 Dec;100(6):337-44
– reference: 18978772 - Nature. 2008 Nov 27;456(7221):470-6
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 18625854 - Arch Neurol. 2008 Jul;65(7):877-83
– reference: 21931541 - PLoS Med. 2011 Sep;8(9):e1001093
– reference: 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97
– reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
– reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9
– reference: 20097884 - Biostatistics. 2010 Apr;11(2):242-53
– reference: 16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62
– reference: 23303507 - Bioinformatics. 2013 Mar 1;29(5):605-13
– reference: 20041221 - PLoS Comput Biol. 2009 Dec;5(12):e1000589
– reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 21177656 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1011-5
– reference: 17504534 - Genome Biol. 2007;8(5):R82
– reference: 16284200 - Nucleic Acids Res. 2005;33(20):e175
– reference: 17727723 - Genome Biol. 2007;8(8):R178
– reference: 15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 22285995 - Biostatistics. 2012 Apr;13(2):204-16
SSID ssj0009580
Score 2.3948338
Snippet Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is...
We present our Universal exPression Code (UPC) approach for deriving “barcodes,” which estimate the active/inactive state of genes in a sample. UPCs normalize...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17778
SubjectTerms Algorithms
Bar codes
Base Composition
Bioinformatics
Biological markers
Biological Sciences
Biotechnology
computer software
Data normalization
DNA Barcoding, Taxonomic - methods
Gene expression
Gene Expression Profiling - methods
Genes
Genes - genetics
Genomics
high-throughput nucleotide sequencing
Integration
microarray technology
Models, Genetic
Physical Sciences
Ribonucleic acid
RNA
Software
Technology
Tissue samples
transcriptional activation
Transcriptional Activation - physiology
Title Multiplatform single-sample estimates of transcriptional activation
URI https://www.jstor.org/stable/23754389
http://www.pnas.org/content/110/44/17778.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24128763
https://www.proquest.com/docview/1449199113
https://www.proquest.com/docview/1447497929
https://www.proquest.com/docview/1803117746
https://pubmed.ncbi.nlm.nih.gov/PMC3816418
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYYKAg8TBUpTiJ89HHadqY0NZVohV9ixzHHpVKOtFMk_jruXPsfJSBBi9pFTt2lLvc_ezc_Y6Q91IoFUZ54alCxh4Lue_lKWceOAcZhUxIHmK-8-UkPp-zz4toMRjcdbNLqnwkft6bV_I_UoVzIFfMkv0HyTaDwgn4D_KFI0gYjg-S8WUdDcgrRJ5DXPWvpLfhSPg7RPaM7wgkdRQAeiRrH5AdQNiqZl1wOm2c2caGDkzsXuFxm3lizMFm6A2nk7aO8XQpkAG7EzrWBiN-XWqcaeP08WNB22hqe2Dj1R1c1XJ_Lldt0CU3aRRmh8LXsW5mG8NmDIAnZHWudGN1TTRrrV6MDW9GfpLgkhYOYcek6rMd_9y0_2b8wVphxeKSb7DGdYQfOM0kPZrtyVV2Nr-4yGani9kOeRTA-gJLX3xa-B225rTOXTI3bjmhkvDj1vA9OLOj-NrGtSJZLnS9b-GyHX_bATSzp-SJWYm4x7Va7ZGBLJ-RPStc98gQkn94Tk56eub29Mxt9MxdK3dLz9xWz16Q2dnp7OTcM8U3PBEFUeUBrkvjMeBfRcdFQEWSMk5jlaQS3mxFQ_hB6y9kkQdFQWlOgzzNc0FzQMyxCvfJbrku5QFxY56mrBC0KELGFGChdEwTUFpYO8CVQjlkZB9hJgwxPdZHWWU6QCIJM3yQWfvMHXLUXHBTc7L8uesByCTj1-Axs_mXAPkUqc-QJ9Ah-1pQzRABVoMG_O4QR4_SDA1jM5ZpPXTIoRVnZgwBTMfYGCMI_dAh75pmMNP47Y2Xcn2r-yRsnMBi5C99UvCwMA2LHfKy1pD25hgAScACDkl6utN0QJr4fku5_Kbp4jE0gPnpqwfM-5o8bl_gQ7Jb_biVbwB0V_lb_YL8Aupq1Xo
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplatform+single-sample+estimates+of+transcriptional+activation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Piccolo%2C+Stephen+R&rft.au=Withers%2C+Michelle+R&rft.au=Francis%2C+Owen+E&rft.au=Bild%2C+Andrea+H&rft.date=2013-10-29&rft.issn=0027-8424&rft.volume=110&rft.issue=44+p.17778-17783&rft.spage=17778&rft.epage=17783&rft_id=info:doi/10.1073%2Fpnas.1305823110&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F44.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F44.cover.gif