The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assurance protocol for MR neuroimaging data
Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 172; pp. 450 - 460 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses.
We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data.
We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.
•Quality assurance (QA) protocol for large, longitudinal, multi-center MR neuroimaging studies.•Dependence of QA statistics on MR-scanner type, hardware and software changes and external variables (e.g., time of day, temperature).•Consequences of phantom data variations for human MRI data.•Dependence of MR phantom placement on QA statistics. |
---|---|
AbstractList | Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions. Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions. •Quality assurance (QA) protocol for large, longitudinal, multi-center MR neuroimaging studies.•Dependence of QA statistics on MR-scanner type, hardware and software changes and external variables (e.g., time of day, temperature).•Consequences of phantom data variations for human MRI data.•Dependence of MR phantom placement on QA statistics. Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses.We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data.We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions. |
Author | Jansen, Andreas Dannlowski, Udo Möbius, Thomas W.D. Schuster, Verena Kircher, Tilo Bopp, Miriam H.A. Vogelbacher, Christoph Dempfle, Astrid Sommer, Jens |
Author_xml | – sequence: 1 givenname: Christoph surname: Vogelbacher fullname: Vogelbacher, Christoph organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany – sequence: 2 givenname: Thomas W.D. surname: Möbius fullname: Möbius, Thomas W.D. organization: Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany – sequence: 3 givenname: Jens surname: Sommer fullname: Sommer, Jens organization: Core-Unit Brainimaging, Faculty of Medicine, University Marburg, Marburg, Germany – sequence: 4 givenname: Verena surname: Schuster fullname: Schuster, Verena organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany – sequence: 5 givenname: Udo surname: Dannlowski fullname: Dannlowski, Udo organization: Department of Psychiatry and Psychotherapy, University Münster, Münster, Germany – sequence: 6 givenname: Tilo surname: Kircher fullname: Kircher, Tilo organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany – sequence: 7 givenname: Astrid surname: Dempfle fullname: Dempfle, Astrid organization: Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany – sequence: 8 givenname: Andreas surname: Jansen fullname: Jansen, Andreas email: jansena2@staff.uni-marburg.de organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany – sequence: 9 givenname: Miriam H.A. surname: Bopp fullname: Bopp, Miriam H.A. organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29410079$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vEzEQhi1URD_gLyBLXMphF89-eNccECHlS2qERMvZ8tqzqcNm3dreSvlv3PrHcJQWpJxy8hyeeTwz7yk5Gt2IhFBgOTDg71b5iJN3dq2WmBcM2pxBzhrxjJwAE3Um6qY42tZ1mbUA4pichrBijAmo2hfkuBAVsMSfkHB9g3ShfDf5ZbZ4-DOGiJ7O-h51tPdIL2xw3qAPdO5unI_0Kk5mQ88Xs_nV2_d0Ru8mNdi4oSqEyatRI731LjrtBto7Txc_6b9R7bikRkX1kjzv1RDw1eN7Rn59-Xw9_5Zd_vj6fT67zHRd1DEDaDlUddljxw2U2Cjel7zgiguArqp5zbHlxmjVpV2w140RoDTovmSVqbE8I-c7b5robsIQ5doGjcOgRnRTkCCEAFGUZZHQN3voyk1-TNPJghV1U7YCykS9fqSmbo1G3vq0lt_Ip3Mm4MMO0N6F4LGX2kYVrRujV3aQwOQ2P7mS__OT2_wkA7kTtHuCpz8OaP20a8V00nuLXgZtMQVirE9hSuPsIZKPexI92NFqNfzGzWGKv46V0gM |
CitedBy_id | crossref_primary_10_1016_j_jpsychires_2024_09_052 crossref_primary_10_1017_S0033291722001623 crossref_primary_10_1016_j_bpsc_2021_05_008 crossref_primary_10_1002_da_23260 crossref_primary_10_1093_schbul_sbac002 crossref_primary_10_1016_j_jad_2022_06_089 crossref_primary_10_1093_schbul_sbab037 crossref_primary_10_1017_S0033291721001094 crossref_primary_10_1038_s41598_023_29242_3 crossref_primary_10_1016_j_biopsych_2022_11_006 crossref_primary_10_1186_s40345_024_00354_7 crossref_primary_10_1016_j_neuroimage_2023_120349 crossref_primary_10_1093_brain_awaa454 crossref_primary_10_1186_s40345_021_00240_6 crossref_primary_10_1007_s00406_018_0943_x crossref_primary_10_3389_fneur_2019_00552 crossref_primary_10_1001_jamapsychiatry_2022_1780 crossref_primary_10_1002_hbm_25869 crossref_primary_10_1002_hbm_25100 crossref_primary_10_1038_s41380_023_02327_1 crossref_primary_10_3389_fnagi_2023_1085153 crossref_primary_10_1016_j_jad_2022_06_050 crossref_primary_10_1017_S0033291720002044 crossref_primary_10_1038_s41398_022_02113_7 crossref_primary_10_1038_s41398_024_02936_6 crossref_primary_10_1016_j_euroneuro_2021_02_006 crossref_primary_10_15252_embr_202154420 crossref_primary_10_1016_j_nicl_2021_102683 crossref_primary_10_1016_j_cortex_2023_05_021 crossref_primary_10_1038_s41380_022_01936_6 crossref_primary_10_1038_s41398_021_01317_7 crossref_primary_10_1038_s41398_024_03098_1 crossref_primary_10_1001_jamapsychiatry_2022_2464 crossref_primary_10_1002_da_23191 crossref_primary_10_1126_sciadv_abg9471 crossref_primary_10_1038_s41537_021_00157_0 crossref_primary_10_1016_j_euroneuro_2020_03_021 crossref_primary_10_1002_hbm_26543 crossref_primary_10_1038_s41380_024_02526_4 crossref_primary_10_1017_S0033291720002950 crossref_primary_10_1073_pnas_2218565120 crossref_primary_10_1038_s41386_024_01812_7 crossref_primary_10_1001_jamapsychiatry_2023_5083 crossref_primary_10_3389_fnins_2019_00688 crossref_primary_10_3389_fnsys_2020_00028 crossref_primary_10_1038_s41386_019_0472_y crossref_primary_10_1017_S0033291722001490 crossref_primary_10_1038_s41380_022_01687_4 crossref_primary_10_1038_s41386_025_02075_6 crossref_primary_10_1017_S0033291724001193 crossref_primary_10_1038_s41386_021_01020_7 crossref_primary_10_3389_fneur_2018_01055 crossref_primary_10_3389_fnins_2022_835964 crossref_primary_10_1002_hbm_25600 crossref_primary_10_1016_j_biopsych_2022_05_031 crossref_primary_10_1016_j_ynirp_2021_100062 crossref_primary_10_1093_schbul_sbz067 crossref_primary_10_1016_j_biopsych_2023_03_022 crossref_primary_10_1016_j_bpsc_2021_02_010 crossref_primary_10_1007_s00234_023_03256_0 crossref_primary_10_1038_s41386_020_0666_3 crossref_primary_10_1038_s41380_018_0236_9 crossref_primary_10_1016_j_neuroimage_2022_119298 crossref_primary_10_1017_S0033291722004007 crossref_primary_10_1038_s41380_021_01330_8 crossref_primary_10_1017_S003329172200188X crossref_primary_10_1038_s41380_024_02577_7 crossref_primary_10_1093_pnasnexus_pgad032 crossref_primary_10_1007_s00115_024_01756_9 crossref_primary_10_3390_diagnostics13172774 crossref_primary_10_1017_S0033291721001082 crossref_primary_10_1016_j_euroneuro_2021_10_084 crossref_primary_10_1093_schbul_sbad143 crossref_primary_10_1007_s00406_022_01454_0 crossref_primary_10_1016_j_neuroimage_2024_120914 crossref_primary_10_1002_mpr_1871 crossref_primary_10_1016_S2215_0366_24_00291_8 crossref_primary_10_1038_s41380_019_0603_1 |
Cites_doi | 10.1016/j.neuroimage.2009.11.006 10.1016/j.mri.2007.06.010 10.1002/(SICI)1522-2594(199906)41:6<1274::AID-MRM27>3.0.CO;2-1 10.1002/hbm.21279 10.1006/nimg.2002.1179 10.1016/j.neuroimage.2006.07.012 10.1118/1.3116776 10.1002/hbm.22475 10.1002/jmri.23572 10.1016/j.neuroimage.2009.05.045 10.1097/WCO.0b013e32832d92de 10.1002/jmri.20583 10.1007/s00330-012-2415-4 10.1109/TSMC.1979.4310076 10.1006/nimg.2001.0961 10.1016/j.neuroimage.2006.03.062 10.1016/j.pscychresns.2012.09.008 10.1016/j.neuroimage.2005.09.068 10.1016/j.neuroimage.2011.06.029 10.1002/hbm.20096 10.1016/j.neuroimage.2011.11.007 10.1002/hbm.21225 10.1371/journal.pone.0070343 10.1007/s10334-014-0443-6 10.1016/j.neuroimage.2007.09.066 10.1371/journal.pone.0143172 10.1038/nn.3083 10.1016/j.neuroimage.2010.02.084 10.6009/jjrt.2012_JSRT_68.9.1242 10.1002/hbm.20511 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 15, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2018.01.079 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 1095-9572 |
EndPage | 460 |
ExternalDocumentID | 29410079 10_1016_j_neuroimage_2018_01_079 S105381191830079X |
Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c525t-11861453feb6d13e7a6f3626a6911b45656e86ddcab007efc7d91ac1cf304d5e3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Mon Jul 21 12:04:31 EDT 2025 Wed Aug 13 02:48:12 EDT 2025 Mon Jul 21 06:06:35 EDT 2025 Tue Jul 01 03:01:55 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Fri Feb 23 02:47:27 EST 2024 Tue Aug 26 20:08:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DTI fMRI Bipolar disorder MRI quality assurance Major depression Multicenter study |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-11861453feb6d13e7a6f3626a6911b45656e86ddcab007efc7d91ac1cf304d5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29410079 |
PQID | 2025738913 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1999192332 proquest_journals_2025738913 pubmed_primary_29410079 crossref_citationtrail_10_1016_j_neuroimage_2018_01_079 crossref_primary_10_1016_j_neuroimage_2018_01_079 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_01_079 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_01_079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Kolb, Wehrl, Hofmann, Judenhofer, Eriksson, Ladebeck, Lichy, Byars, Michel, Schlemmer, Schmand, Claussen, Sossi, Pichler (bib16) 2012; 22 Kruggel, Turner, Muftuler (bib17) 2010; 49 Dietsche, Backes, Stratmann, Konrad, Kircher, Krug (bib5) 2014; 35 Friedman, Glover (bib9) 2006; 33 Otsu (bib21) 1979; 9 Ashburner, Friston (bib2) 2001; 14 Clarkson, Ourselin, Nielsen, Leung, Barnes, Whitwell, Gunter, Hill, Weiner, Jack, Fox (bib4) 2009; 47 Reig, Sánchez-González, Arango, Castro, González-Pinto, Ortuño, Crespo-Facorro, Bargalló, Desco (bib22) 2009; 30 Hariri, Tessitore, Mattay, Fera, Weinberger (bib12) 2002; 17 Stöcker, Schneider, Klein, Habel, Kellermann, Zilles, Shah (bib25) 2005; 25 Friedman, Glover, Krenz, Magnotta (bib8) 2006; 32 Meyer-Lindenberg, Tost (bib18) 2012; 15 Bendfeldt, Hofstetter, Kuster, Traud, Mueller-Lenke, Naegelin, Kappos, Gass, Nichols, Barkhof, Vrenken, Roosendaal, Geurts, Radue, Borgwardt (bib3) 2012; 33 Yendiki, Greve, Wallace, Vangel, Bockholt, Mueller, Magnotta, Andreasen, Manoach, Gollub (bib32) 2010; 53 Hellerbach, Schuster, Jansen, Sommer (bib14) 2013; 8 Simmons, Moore, Williams (bib24) 1999; 41 Tost, Bilek, Meyer-Lindenberg (bib29) 2012 Friedman, Glover (bib7) 2006; 23 Hellerbach, Einhäuser-Treyer (bib13) 2013 Ihalainen, Kuusela, Turunen, Heikkinen, Savolainen, Sipilä (bib15) 2015; 28 Tovar, Zhan, Rajan (bib30) 2015; 10 Van Horn, Toga (bib31) 2009; 22 Evans (bib6) 2006; 30 Abdulkadir, Mortamet, Vemuri, Jack, Krueger, Klöppel (bib1) 2011; 58 Takao, Hayashi, Kabasawa, Ohtomo (bib28) 2012; 33 Mri, Program (bib19) 2005; 5 Gunter, Bernstein, Borowski, Ward, Britson, Felmlee, Schuff, Weiner, Jack (bib11) 2009; 36 Suslow, Kugel, Ohrmann, Stuhrmann, Grotegerd, Redlich, Bauer, Dannlowski (bib27) 2013; 211 Olsrud, Nilsson, Mannfolk, Waites, Ståhlberg (bib20) 2008; 26 Saotome, Ishimori, Isobe, Satou, Shinoda, Ookubo, Hirano, Oosuka, Matsushita, Miyamoto, Sankai (bib23) 2012; 68 Glover, Mueller, Turner, Van Erp, Liu, Greve, Voyvodic, Rasmussen, Brown, Keator, Calhoun, Lee, Ford, Mathalon, Diaz, O'Leary, Gadde, Preda, Lim, Wible, Stern, Belger, McCarthy, Ozyurt, Potkin (bib10) 2012; 36 Stonnington, Tan, Klöppel, Chu, Draganski, Jack, Chen, Ashburner, Frackowiak (bib26) 2008; 39 Ashburner (10.1016/j.neuroimage.2018.01.079_bib2) 2001; 14 Glover (10.1016/j.neuroimage.2018.01.079_bib10) 2012; 36 Dietsche (10.1016/j.neuroimage.2018.01.079_bib5) 2014; 35 Stonnington (10.1016/j.neuroimage.2018.01.079_bib26) 2008; 39 Friedman (10.1016/j.neuroimage.2018.01.079_bib9) 2006; 33 Tost (10.1016/j.neuroimage.2018.01.079_bib29) 2012 Saotome (10.1016/j.neuroimage.2018.01.079_bib23) 2012; 68 Kolb (10.1016/j.neuroimage.2018.01.079_bib16) 2012; 22 Meyer-Lindenberg (10.1016/j.neuroimage.2018.01.079_bib18) 2012; 15 Clarkson (10.1016/j.neuroimage.2018.01.079_bib4) 2009; 47 Mri (10.1016/j.neuroimage.2018.01.079_bib19) 2005; 5 Abdulkadir (10.1016/j.neuroimage.2018.01.079_bib1) 2011; 58 Hellerbach (10.1016/j.neuroimage.2018.01.079_bib14) 2013; 8 Hellerbach (10.1016/j.neuroimage.2018.01.079_bib13) 2013 Hariri (10.1016/j.neuroimage.2018.01.079_bib12) 2002; 17 Suslow (10.1016/j.neuroimage.2018.01.079_bib27) 2013; 211 Kruggel (10.1016/j.neuroimage.2018.01.079_bib17) 2010; 49 Olsrud (10.1016/j.neuroimage.2018.01.079_bib20) 2008; 26 Bendfeldt (10.1016/j.neuroimage.2018.01.079_bib3) 2012; 33 Friedman (10.1016/j.neuroimage.2018.01.079_bib7) 2006; 23 Tovar (10.1016/j.neuroimage.2018.01.079_bib30) 2015; 10 Evans (10.1016/j.neuroimage.2018.01.079_bib6) 2006; 30 Friedman (10.1016/j.neuroimage.2018.01.079_bib8) 2006; 32 Yendiki (10.1016/j.neuroimage.2018.01.079_bib32) 2010; 53 Reig (10.1016/j.neuroimage.2018.01.079_bib22) 2009; 30 Van Horn (10.1016/j.neuroimage.2018.01.079_bib31) 2009; 22 Gunter (10.1016/j.neuroimage.2018.01.079_bib11) 2009; 36 Stöcker (10.1016/j.neuroimage.2018.01.079_bib25) 2005; 25 Simmons (10.1016/j.neuroimage.2018.01.079_bib24) 1999; 41 Ihalainen (10.1016/j.neuroimage.2018.01.079_bib15) 2015; 28 Otsu (10.1016/j.neuroimage.2018.01.079_bib21) 1979; 9 Takao (10.1016/j.neuroimage.2018.01.079_bib28) 2012; 33 |
References_xml | – volume: 32 start-page: 1656 year: 2006 end-page: 1668 ident: bib8 article-title: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization publication-title: Neuroimage – volume: 33 start-page: 466 year: 2012 end-page: 477 ident: bib28 article-title: Effect of scanner in longitudinal diffusion tensor imaging studies publication-title: Hum. Brain Mapp. – volume: 5 year: 2005 ident: bib19 article-title: Phantom test guidance for the ACR MRI accreditation program publication-title: Am. Coll. Radiol. – volume: 17 start-page: 317 year: 2002 end-page: 323 ident: bib12 article-title: The amygdala response to emotional stimuli: a comparison of faces and scenes publication-title: Neuroimage – volume: 22 start-page: 370 year: 2009 end-page: 378 ident: bib31 article-title: Multisite neuroimaging trials publication-title: Curr. Opin. Neurol. – volume: 15 start-page: 663 year: 2012 end-page: 668 ident: bib18 article-title: Neural mechanisms of social risk for psychiatric disorders publication-title: Nat. Neurosci. – volume: 41 start-page: 1274 year: 1999 end-page: 1278 ident: bib24 article-title: Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting publication-title: Magn. Reson. Med. – volume: 36 start-page: 2193 year: 2009 end-page: 2205 ident: bib11 article-title: Measurement of MRI scanner performance with the ADNI phantom publication-title: Med. Phys. – volume: 25 start-page: 237 year: 2005 end-page: 246 ident: bib25 article-title: Automated quality assurance routines for fMRI data applied to a multicenter study publication-title: Hum. Brain Mapp. – volume: 30 start-page: 355 year: 2009 end-page: 368 ident: bib22 article-title: Assessment of the increase in variability when combining volumetric data from different scanners publication-title: Hum. Brain Mapp. – year: 2013 ident: bib13 article-title: Phantomentwicklung und Einführung einer systematischen Qualitätssicherung bei multizentrischen Magnetresonanztomographie-Untersuchungen – volume: 53 start-page: 119 year: 2010 end-page: 131 ident: bib32 article-title: Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices publication-title: Neuroimage – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib21 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man. Cybern – volume: 30 start-page: 184 year: 2006 end-page: 202 ident: bib6 article-title: The NIH MRI study of normal brain development publication-title: Neuroimage – volume: 26 start-page: 279 year: 2008 end-page: 286 ident: bib20 article-title: A two-compartment gel phantom for optimization and quality assurance in clinical BOLD fMRI publication-title: Magn. Reson. Imaging – volume: 28 start-page: 23 year: 2015 end-page: 31 ident: bib15 article-title: Data quality in fMRI and simultaneous EEG-fMRI publication-title: MAGMA – volume: 211 start-page: 239 year: 2013 end-page: 245 ident: bib27 article-title: Neural correlates of affective priming effects based on masked facial emotion: an fMRI study publication-title: Psychiatry Res. Neuroimaging. – year: 2012 ident: bib29 article-title: Brain connectivity in psychiatric imaging genetics publication-title: Neuroimage – volume: 58 start-page: 785 year: 2011 end-page: 792 ident: bib1 article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier publication-title: Neuroimage – volume: 33 start-page: 471 year: 2006 end-page: 481 ident: bib9 article-title: Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences publication-title: Neuroimage – volume: 47 start-page: 1506 year: 2009 end-page: 1513 ident: bib4 article-title: Comparison of phantom and registration scaling corrections using the ADNI cohort publication-title: Neuroimage – volume: 35 start-page: 4293 year: 2014 end-page: 4302 ident: bib5 article-title: Altered neural function during episodic memory encoding and retrieval in major depression publication-title: Hum. Brain Mapp. – volume: 49 start-page: 2123 year: 2010 end-page: 2133 ident: bib17 article-title: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort publication-title: Neuroimage – volume: 39 start-page: 1180 year: 2008 end-page: 1185 ident: bib26 article-title: Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease publication-title: Neuroimage – volume: 14 start-page: 1238 year: 2001 end-page: 1243 ident: bib2 article-title: Why voxel-based morphometry should Be used publication-title: Neuroimage – volume: 68 start-page: 1242 year: 2012 end-page: 1249 ident: bib23 article-title: Comparison of diffusion tensor imaging-derived fractional anisotropy in multiple centers for identical human subjects publication-title: Nihon Hoshasen Gijutsu Gakkai Zasshi – volume: 22 start-page: 1776 year: 2012 end-page: 1788 ident: bib16 article-title: Technical performance evaluation of a human brain PET/MRI system publication-title: Eur. Radiol. – volume: 8 year: 2013 ident: bib14 article-title: MRI phantoms - are there alternatives to agar? publication-title: PLoS One – volume: 33 start-page: 1225 year: 2012 end-page: 1245 ident: bib3 article-title: Longitudinal gray matter changes in multiple sclerosis-Differential scanner and overall disease-related effects publication-title: Hum. Brain Mapp. – volume: 36 start-page: 39 year: 2012 end-page: 54 ident: bib10 article-title: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies publication-title: J. Magn. Reson. Imag. – volume: 23 start-page: 827 year: 2006 end-page: 839 ident: bib7 article-title: Report on a multicenter fMRI quality assurance protocol publication-title: J. Magn. Reson. Imag. – volume: 10 year: 2015 ident: bib30 article-title: A rotational cylindrical fMRI phantom for image quality control publication-title: PLoS One – volume: 49 start-page: 2123 year: 2010 ident: 10.1016/j.neuroimage.2018.01.079_bib17 article-title: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.006 – volume: 26 start-page: 279 year: 2008 ident: 10.1016/j.neuroimage.2018.01.079_bib20 article-title: A two-compartment gel phantom for optimization and quality assurance in clinical BOLD fMRI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.06.010 – volume: 41 start-page: 1274 year: 1999 ident: 10.1016/j.neuroimage.2018.01.079_bib24 article-title: Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199906)41:6<1274::AID-MRM27>3.0.CO;2-1 – volume: 33 start-page: 1225 year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib3 article-title: Longitudinal gray matter changes in multiple sclerosis-Differential scanner and overall disease-related effects publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21279 – volume: 17 start-page: 317 year: 2002 ident: 10.1016/j.neuroimage.2018.01.079_bib12 article-title: The amygdala response to emotional stimuli: a comparison of faces and scenes publication-title: Neuroimage doi: 10.1006/nimg.2002.1179 – volume: 33 start-page: 471 year: 2006 ident: 10.1016/j.neuroimage.2018.01.079_bib9 article-title: Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.07.012 – volume: 36 start-page: 2193 year: 2009 ident: 10.1016/j.neuroimage.2018.01.079_bib11 article-title: Measurement of MRI scanner performance with the ADNI phantom publication-title: Med. Phys. doi: 10.1118/1.3116776 – volume: 35 start-page: 4293 year: 2014 ident: 10.1016/j.neuroimage.2018.01.079_bib5 article-title: Altered neural function during episodic memory encoding and retrieval in major depression publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22475 – volume: 36 start-page: 39 year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib10 article-title: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.23572 – volume: 5 year: 2005 ident: 10.1016/j.neuroimage.2018.01.079_bib19 article-title: Phantom test guidance for the ACR MRI accreditation program publication-title: Am. Coll. Radiol. – volume: 47 start-page: 1506 year: 2009 ident: 10.1016/j.neuroimage.2018.01.079_bib4 article-title: Comparison of phantom and registration scaling corrections using the ADNI cohort publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.045 – volume: 22 start-page: 370 year: 2009 ident: 10.1016/j.neuroimage.2018.01.079_bib31 article-title: Multisite neuroimaging trials publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32832d92de – volume: 23 start-page: 827 year: 2006 ident: 10.1016/j.neuroimage.2018.01.079_bib7 article-title: Report on a multicenter fMRI quality assurance protocol publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.20583 – volume: 22 start-page: 1776 year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib16 article-title: Technical performance evaluation of a human brain PET/MRI system publication-title: Eur. Radiol. doi: 10.1007/s00330-012-2415-4 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.neuroimage.2018.01.079_bib21 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man. Cybern doi: 10.1109/TSMC.1979.4310076 – volume: 14 start-page: 1238 year: 2001 ident: 10.1016/j.neuroimage.2018.01.079_bib2 article-title: Why voxel-based morphometry should Be used publication-title: Neuroimage doi: 10.1006/nimg.2001.0961 – volume: 32 start-page: 1656 year: 2006 ident: 10.1016/j.neuroimage.2018.01.079_bib8 article-title: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.062 – volume: 211 start-page: 239 year: 2013 ident: 10.1016/j.neuroimage.2018.01.079_bib27 article-title: Neural correlates of affective priming effects based on masked facial emotion: an fMRI study publication-title: Psychiatry Res. Neuroimaging. doi: 10.1016/j.pscychresns.2012.09.008 – volume: 30 start-page: 184 year: 2006 ident: 10.1016/j.neuroimage.2018.01.079_bib6 article-title: The NIH MRI study of normal brain development publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.068 – volume: 58 start-page: 785 year: 2011 ident: 10.1016/j.neuroimage.2018.01.079_bib1 article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.029 – volume: 25 start-page: 237 year: 2005 ident: 10.1016/j.neuroimage.2018.01.079_bib25 article-title: Automated quality assurance routines for fMRI data applied to a multicenter study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20096 – year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib29 article-title: Brain connectivity in psychiatric imaging genetics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.007 – volume: 33 start-page: 466 year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib28 article-title: Effect of scanner in longitudinal diffusion tensor imaging studies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21225 – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2018.01.079_bib14 article-title: MRI phantoms - are there alternatives to agar? publication-title: PLoS One doi: 10.1371/journal.pone.0070343 – volume: 28 start-page: 23 year: 2015 ident: 10.1016/j.neuroimage.2018.01.079_bib15 article-title: Data quality in fMRI and simultaneous EEG-fMRI publication-title: MAGMA doi: 10.1007/s10334-014-0443-6 – volume: 39 start-page: 1180 year: 2008 ident: 10.1016/j.neuroimage.2018.01.079_bib26 article-title: Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.066 – volume: 10 year: 2015 ident: 10.1016/j.neuroimage.2018.01.079_bib30 article-title: A rotational cylindrical fMRI phantom for image quality control publication-title: PLoS One doi: 10.1371/journal.pone.0143172 – year: 2013 ident: 10.1016/j.neuroimage.2018.01.079_bib13 – volume: 15 start-page: 663 year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib18 article-title: Neural mechanisms of social risk for psychiatric disorders publication-title: Nat. Neurosci. doi: 10.1038/nn.3083 – volume: 53 start-page: 119 year: 2010 ident: 10.1016/j.neuroimage.2018.01.079_bib32 article-title: Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.084 – volume: 68 start-page: 1242 year: 2012 ident: 10.1016/j.neuroimage.2018.01.079_bib23 article-title: Comparison of diffusion tensor imaging-derived fractional anisotropy in multiple centers for identical human subjects publication-title: Nihon Hoshasen Gijutsu Gakkai Zasshi doi: 10.6009/jjrt.2012_JSRT_68.9.1242 – volume: 30 start-page: 355 year: 2009 ident: 10.1016/j.neuroimage.2018.01.079_bib22 article-title: Assessment of the increase in variability when combining volumetric data from different scanners publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20511 |
SSID | ssj0009148 |
Score | 2.5252688 |
Snippet | Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 450 |
SubjectTerms | Adult Affective disorders Basal ganglia Bipolar disorder Cohort analysis Cohort Studies Computer programs Consortia Data analysis DTI Female fMRI Functional magnetic resonance imaging Grants Humans Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Major depression Male Medical imaging Mood Disorders - diagnostic imaging Morphometry MRI quality assurance Multicenter Studies as Topic - instrumentation Multicenter Studies as Topic - methods Multicenter Studies as Topic - standards Multicenter study Neurobiology Neuroimaging Neuroimaging - instrumentation Neuroimaging - methods Neuroimaging - standards NMR Nuclear magnetic resonance Quality assurance Quality Assurance, Health Care - methods Quality Assurance, Health Care - standards Quality control Reproducibility of Results Scanners Scanning Software Statistics Substantia alba Substantia grisea Thalamus Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED40KRBkCdq86jYtWCBDMhAwLVKU26EwjAZBAXXIA_BG0BSZpGilpLKH_Ldu_WO9kyh5SQrP0hmW7vVR_PgdwLHXLguZtdwlWnMpCok5JwVHZOCcCkOFhsS2-J6eX8tvMzWLH9zqSKvsamJTqIvK0TdyWqQr3Wyqfbl_4DQ1inZX4wiNDXhJ0mVE6dIzvRLdFbI9CqcSnuENkcnT8rsavci7X5i1RPDKGvFOInQ93Z6eg59NGzp7BTsRP7JJ6_DX8MKXu7CVxx3yXdgm9NiKL-9BjUHAcksv7obnf_-UpIrAJg2FA6sc66Q3azatbhGHM2IVPrKTfDK9PP3EJqw9cvnIEGEvaQKHZ6TrUGHwMAS7LL9g_fNhC2REN92H67OvV9NzHqcscKdGasFxhYEtWiXBz9NCJF7bNJBGjU2xDs4bwOeztCicxQzVPjhdjIV1woVkKAvlkwPYLKvSvwEmbQhKBDVKAxbgQmdOWmVxTZVkeo6lZQC6e7nGRQlymoTx03Rcsx9m5RZDbjFDYdAtAxC95X0rw7GGzbjzn-mOmWJhNNgr1rD93NtGKNJCjDWtj7pwMbEk1GYVwAP42F_GZKYdGlv6alkb0oQgyJ2MBnDYhln_uKOxJEbL-O3_f_wdbNM_IYKDUEewufi99O8RNy3mH5rk-AcXeRgp priority: 102 providerName: ProQuest |
Title | The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assurance protocol for MR neuroimaging data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191830079X https://dx.doi.org/10.1016/j.neuroimage.2018.01.079 https://www.ncbi.nlm.nih.gov/pubmed/29410079 https://www.proquest.com/docview/2025738913 https://www.proquest.com/docview/1999192332 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamIU1c0GD86BiTkTjAIbSu7ThhpxBt6gappo5JvVmuY0MRpBNtD7vwl3HbP8Z7iZNp0pAqcWnUpk9K7Pe-91n-3jMhb5yyiU-MiSxXKhKsFBBzgkXADKyVfiDBENUW43h0Kc6mcrpF8rYWBmWVAfsbTK_ROvzSD6PZv5rP-xfADCDdwHoj4ZDo0ilWsAuFXv7-963MI2WiKYeTPMJ_BzVPo_Gqe0bOf0LkosgrqRt4oqjr_hT1Lwpap6KTXfIocEiaNY_5mGy56gnZKcIu-R5ZwtzTwuB4fY2Kmz8VNkOgWa3cAHCjbcfNJc0X34B-UxQTXtO3RZZfvPtAM9pUWl5TINZrPHjDUWznsACfocBxaTGh3StB5qOoMn1KLk-Ov-SjKByuEFk5lKsIFhaQmSX3bhaXjDtlYo-taUwM8DereZ5L4rK0BgJTOW9VmTJjmfV8IErp-DOyXS0q94JQYbyXzMth7AF3S5VYYaSBpRRP1AwQpUdUO57ahs7jeADGD91KzL7r25nQOBN6wDTMRI-wzvKq6b6xgU3aTpluq0sBDzWkiA1sjzrbO164ofVB6yE6IMES7gMo1pvBPfK6uw0xjBszpnKL9VJjKwhk2nzYI88bz-ped5gKFLKk-__1aC_JQ_yGsgcmD8j26tfavQI2tZod1uECn2qqDsmDLJ98Psfr6afRGK4fj8fnk7_5uCUZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJeEJRXoMAigQQHS13b67VBCIXQKqV1hEor9bbdrHehVWu3dSKUP8Uv4MYfY8avXADl0nM0Vpx5fZP99huAl1aa2MVaeyaQ0gt5FmLOhdxDZGCMcJsCDYltMY5Gh-HnI3G0Aj_buzBEq2xrYlWos8LQf-Q0pAtZHap9uLj0aGsUna62KzTqsNi18x84spXvdz6hf1_5_vbWwXDkNVsFPCN8MfUQUWNLEoGzkyjjgZU6cqTJoiPM-0kFcGwcZZnRGJHSOiOzhGvDjcPJPxM2wOfegNUwwFGmB6sft8Zf9hcyvzysL9-JwIs5TxruUM0oqxQqT86xThClLK7kQolC9veG-C_AWzW-7Ttwu0GsbFCH2F1Ysfk63EybM_l1WCO8Wss934MSw46lmlz1zUt__8pJh4ENKtII1lXWin2WbFh8R-TPiMc4Z6_TwfDrm7dswOpLnnOGmH5GOz8sIyWJAsOVIbxm6T7r3g-bLiOC6304vBYPPIBeXuT2EbBQOye4E37ksORnMjahFhqnuCCWEyxmfZDtj6tMI3pOuzfOVMtuO1ULtyhyi9rkCt3SB95ZXtTCH0vYJK3_VHuxFUuxwu60hO27zrYBPzWoWdJ6ow0X1RShUi1Spg8vuo-xfNCZkM5tMSsVqVAQyA_8Pjysw6x7XT8JiUOTPP7_w5_DrdFBuqf2dsa7T2CNvhXRK7jYgN70amafImqbTp41qcLg-Lqz8w_g81aA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlW9ICivhQJGAgkOFuskjhMQQqstq5aSCgGV9uZ6HRtaQVLIrtD-NcSNP8ZMXnsBtJeeo4mSzOtz_PkbgEdO2cQnxnAbKsUjkUeYc5HgiAyslX4o0ZDYFkfx_nH0ZiqnG_CzOwtDtMquJtaFOi8t_SOnRbpU9abaM9_SIt7tTV6df-M0QYp2WrtxGk2IHLrlD1y-VS8P9tDXj4Ng8vrjeJ-3Ewa4lYGcc0TX2J5k6N0szkXolIk96bOYGGvArAY7Lonz3BqMTuW8VXkqjBXWh8Moly7E-16CyyqUgnJMTdVK8FdEzTE8GfJEiLRlETXcslqr8vQrVgwilyW1cCiRyf7eGv8FfesWOLkKV1rsykZNsF2DDVfswFbW7s7vwDYh10b4-TpUGIAsM-S0Tzz7_asgRQY2qukjWGFZJ_tZsXH5GdcAjBiNS_YkG40_PH3ORqw57rlkiO4XNP3DMdKUKDFwGQJtlr1n_fth-2VEdb0Bxxfy_W_CZlEW7jawyHgvhZdB7LH45yqxkZEG13NhomZY1gaguo-rbSt_TlM4vuiO53amV27R5BY9FBrdMgDRW543EiBr2KSd_3R3xBWLssY-tYbti962hUENvFnTercLF92Wo0qvkmcAD_vLWEhod8gUrlxUmvQoCO6HwQBuNWHWv26QRsSmSe_8_-YPYAtzUr89ODq8C9v0UMSzEHIXNuffF-4ewrf57H6dJwxOLjox_wDveFlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Marburg-M%C3%BCnster+Affective+Disorders+Cohort+Study+%28MACS%29%3A+A+quality+assurance+protocol+for+MR+neuroimaging+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Vogelbacher%2C+Christoph&rft.au=M%C3%B6bius%2C+Thomas+W.D.&rft.au=Sommer%2C+Jens&rft.au=Schuster%2C+Verena&rft.date=2018-05-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=172&rft.spage=450&rft.epage=460&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.01.079&rft.externalDocID=S105381191830079X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |