The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assurance protocol for MR neuroimaging data

Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 172; pp. 450 - 460
Main Authors Vogelbacher, Christoph, Möbius, Thomas W.D., Sommer, Jens, Schuster, Verena, Dannlowski, Udo, Kircher, Tilo, Dempfle, Astrid, Jansen, Andreas, Bopp, Miriam H.A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions. •Quality assurance (QA) protocol for large, longitudinal, multi-center MR neuroimaging studies.•Dependence of QA statistics on MR-scanner type, hardware and software changes and external variables (e.g., time of day, temperature).•Consequences of phantom data variations for human MRI data.•Dependence of MR phantom placement on QA statistics.
AbstractList Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.
Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions. •Quality assurance (QA) protocol for large, longitudinal, multi-center MR neuroimaging studies.•Dependence of QA statistics on MR-scanner type, hardware and software changes and external variables (e.g., time of day, temperature).•Consequences of phantom data variations for human MRI data.•Dependence of MR phantom placement on QA statistics.
Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses.We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data.We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.
Author Jansen, Andreas
Dannlowski, Udo
Möbius, Thomas W.D.
Schuster, Verena
Kircher, Tilo
Bopp, Miriam H.A.
Vogelbacher, Christoph
Dempfle, Astrid
Sommer, Jens
Author_xml – sequence: 1
  givenname: Christoph
  surname: Vogelbacher
  fullname: Vogelbacher, Christoph
  organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
– sequence: 2
  givenname: Thomas W.D.
  surname: Möbius
  fullname: Möbius, Thomas W.D.
  organization: Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
– sequence: 3
  givenname: Jens
  surname: Sommer
  fullname: Sommer, Jens
  organization: Core-Unit Brainimaging, Faculty of Medicine, University Marburg, Marburg, Germany
– sequence: 4
  givenname: Verena
  surname: Schuster
  fullname: Schuster, Verena
  organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
– sequence: 5
  givenname: Udo
  surname: Dannlowski
  fullname: Dannlowski, Udo
  organization: Department of Psychiatry and Psychotherapy, University Münster, Münster, Germany
– sequence: 6
  givenname: Tilo
  surname: Kircher
  fullname: Kircher, Tilo
  organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
– sequence: 7
  givenname: Astrid
  surname: Dempfle
  fullname: Dempfle, Astrid
  organization: Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
– sequence: 8
  givenname: Andreas
  surname: Jansen
  fullname: Jansen, Andreas
  email: jansena2@staff.uni-marburg.de
  organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
– sequence: 9
  givenname: Miriam H.A.
  surname: Bopp
  fullname: Bopp, Miriam H.A.
  organization: Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29410079$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URD_gLyBLXMphF89-eNccECHlS2qERMvZ8tqzqcNm3dreSvlv3PrHcJQWpJxy8hyeeTwz7yk5Gt2IhFBgOTDg71b5iJN3dq2WmBcM2pxBzhrxjJwAE3Um6qY42tZ1mbUA4pichrBijAmo2hfkuBAVsMSfkHB9g3ShfDf5ZbZ4-DOGiJ7O-h51tPdIL2xw3qAPdO5unI_0Kk5mQ88Xs_nV2_d0Ru8mNdi4oSqEyatRI731LjrtBto7Txc_6b9R7bikRkX1kjzv1RDw1eN7Rn59-Xw9_5Zd_vj6fT67zHRd1DEDaDlUddljxw2U2Cjel7zgiguArqp5zbHlxmjVpV2w140RoDTovmSVqbE8I-c7b5robsIQ5doGjcOgRnRTkCCEAFGUZZHQN3voyk1-TNPJghV1U7YCykS9fqSmbo1G3vq0lt_Ip3Mm4MMO0N6F4LGX2kYVrRujV3aQwOQ2P7mS__OT2_wkA7kTtHuCpz8OaP20a8V00nuLXgZtMQVirE9hSuPsIZKPexI92NFqNfzGzWGKv46V0gM
CitedBy_id crossref_primary_10_1016_j_jpsychires_2024_09_052
crossref_primary_10_1017_S0033291722001623
crossref_primary_10_1016_j_bpsc_2021_05_008
crossref_primary_10_1002_da_23260
crossref_primary_10_1093_schbul_sbac002
crossref_primary_10_1016_j_jad_2022_06_089
crossref_primary_10_1093_schbul_sbab037
crossref_primary_10_1017_S0033291721001094
crossref_primary_10_1038_s41598_023_29242_3
crossref_primary_10_1016_j_biopsych_2022_11_006
crossref_primary_10_1186_s40345_024_00354_7
crossref_primary_10_1016_j_neuroimage_2023_120349
crossref_primary_10_1093_brain_awaa454
crossref_primary_10_1186_s40345_021_00240_6
crossref_primary_10_1007_s00406_018_0943_x
crossref_primary_10_3389_fneur_2019_00552
crossref_primary_10_1001_jamapsychiatry_2022_1780
crossref_primary_10_1002_hbm_25869
crossref_primary_10_1002_hbm_25100
crossref_primary_10_1038_s41380_023_02327_1
crossref_primary_10_3389_fnagi_2023_1085153
crossref_primary_10_1016_j_jad_2022_06_050
crossref_primary_10_1017_S0033291720002044
crossref_primary_10_1038_s41398_022_02113_7
crossref_primary_10_1038_s41398_024_02936_6
crossref_primary_10_1016_j_euroneuro_2021_02_006
crossref_primary_10_15252_embr_202154420
crossref_primary_10_1016_j_nicl_2021_102683
crossref_primary_10_1016_j_cortex_2023_05_021
crossref_primary_10_1038_s41380_022_01936_6
crossref_primary_10_1038_s41398_021_01317_7
crossref_primary_10_1038_s41398_024_03098_1
crossref_primary_10_1001_jamapsychiatry_2022_2464
crossref_primary_10_1002_da_23191
crossref_primary_10_1126_sciadv_abg9471
crossref_primary_10_1038_s41537_021_00157_0
crossref_primary_10_1016_j_euroneuro_2020_03_021
crossref_primary_10_1002_hbm_26543
crossref_primary_10_1038_s41380_024_02526_4
crossref_primary_10_1017_S0033291720002950
crossref_primary_10_1073_pnas_2218565120
crossref_primary_10_1038_s41386_024_01812_7
crossref_primary_10_1001_jamapsychiatry_2023_5083
crossref_primary_10_3389_fnins_2019_00688
crossref_primary_10_3389_fnsys_2020_00028
crossref_primary_10_1038_s41386_019_0472_y
crossref_primary_10_1017_S0033291722001490
crossref_primary_10_1038_s41380_022_01687_4
crossref_primary_10_1038_s41386_025_02075_6
crossref_primary_10_1017_S0033291724001193
crossref_primary_10_1038_s41386_021_01020_7
crossref_primary_10_3389_fneur_2018_01055
crossref_primary_10_3389_fnins_2022_835964
crossref_primary_10_1002_hbm_25600
crossref_primary_10_1016_j_biopsych_2022_05_031
crossref_primary_10_1016_j_ynirp_2021_100062
crossref_primary_10_1093_schbul_sbz067
crossref_primary_10_1016_j_biopsych_2023_03_022
crossref_primary_10_1016_j_bpsc_2021_02_010
crossref_primary_10_1007_s00234_023_03256_0
crossref_primary_10_1038_s41386_020_0666_3
crossref_primary_10_1038_s41380_018_0236_9
crossref_primary_10_1016_j_neuroimage_2022_119298
crossref_primary_10_1017_S0033291722004007
crossref_primary_10_1038_s41380_021_01330_8
crossref_primary_10_1017_S003329172200188X
crossref_primary_10_1038_s41380_024_02577_7
crossref_primary_10_1093_pnasnexus_pgad032
crossref_primary_10_1007_s00115_024_01756_9
crossref_primary_10_3390_diagnostics13172774
crossref_primary_10_1017_S0033291721001082
crossref_primary_10_1016_j_euroneuro_2021_10_084
crossref_primary_10_1093_schbul_sbad143
crossref_primary_10_1007_s00406_022_01454_0
crossref_primary_10_1016_j_neuroimage_2024_120914
crossref_primary_10_1002_mpr_1871
crossref_primary_10_1016_S2215_0366_24_00291_8
crossref_primary_10_1038_s41380_019_0603_1
Cites_doi 10.1016/j.neuroimage.2009.11.006
10.1016/j.mri.2007.06.010
10.1002/(SICI)1522-2594(199906)41:6<1274::AID-MRM27>3.0.CO;2-1
10.1002/hbm.21279
10.1006/nimg.2002.1179
10.1016/j.neuroimage.2006.07.012
10.1118/1.3116776
10.1002/hbm.22475
10.1002/jmri.23572
10.1016/j.neuroimage.2009.05.045
10.1097/WCO.0b013e32832d92de
10.1002/jmri.20583
10.1007/s00330-012-2415-4
10.1109/TSMC.1979.4310076
10.1006/nimg.2001.0961
10.1016/j.neuroimage.2006.03.062
10.1016/j.pscychresns.2012.09.008
10.1016/j.neuroimage.2005.09.068
10.1016/j.neuroimage.2011.06.029
10.1002/hbm.20096
10.1016/j.neuroimage.2011.11.007
10.1002/hbm.21225
10.1371/journal.pone.0070343
10.1007/s10334-014-0443-6
10.1016/j.neuroimage.2007.09.066
10.1371/journal.pone.0143172
10.1038/nn.3083
10.1016/j.neuroimage.2010.02.084
10.6009/jjrt.2012_JSRT_68.9.1242
10.1002/hbm.20511
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 15, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 15, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2018.01.079
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1095-9572
EndPage 460
ExternalDocumentID 29410079
10_1016_j_neuroimage_2018_01_079
S105381191830079X
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c525t-11861453feb6d13e7a6f3626a6911b45656e86ddcab007efc7d91ac1cf304d5e3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Mon Jul 21 12:04:31 EDT 2025
Wed Aug 13 02:48:12 EDT 2025
Mon Jul 21 06:06:35 EDT 2025
Tue Jul 01 03:01:55 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Fri Feb 23 02:47:27 EST 2024
Tue Aug 26 20:08:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords DTI
fMRI
Bipolar disorder
MRI quality assurance
Major depression
Multicenter study
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-11861453feb6d13e7a6f3626a6911b45656e86ddcab007efc7d91ac1cf304d5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29410079
PQID 2025738913
PQPubID 2031077
PageCount 11
ParticipantIDs proquest_miscellaneous_1999192332
proquest_journals_2025738913
pubmed_primary_29410079
crossref_citationtrail_10_1016_j_neuroimage_2018_01_079
crossref_primary_10_1016_j_neuroimage_2018_01_079
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_01_079
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_01_079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Kolb, Wehrl, Hofmann, Judenhofer, Eriksson, Ladebeck, Lichy, Byars, Michel, Schlemmer, Schmand, Claussen, Sossi, Pichler (bib16) 2012; 22
Kruggel, Turner, Muftuler (bib17) 2010; 49
Dietsche, Backes, Stratmann, Konrad, Kircher, Krug (bib5) 2014; 35
Friedman, Glover (bib9) 2006; 33
Otsu (bib21) 1979; 9
Ashburner, Friston (bib2) 2001; 14
Clarkson, Ourselin, Nielsen, Leung, Barnes, Whitwell, Gunter, Hill, Weiner, Jack, Fox (bib4) 2009; 47
Reig, Sánchez-González, Arango, Castro, González-Pinto, Ortuño, Crespo-Facorro, Bargalló, Desco (bib22) 2009; 30
Hariri, Tessitore, Mattay, Fera, Weinberger (bib12) 2002; 17
Stöcker, Schneider, Klein, Habel, Kellermann, Zilles, Shah (bib25) 2005; 25
Friedman, Glover, Krenz, Magnotta (bib8) 2006; 32
Meyer-Lindenberg, Tost (bib18) 2012; 15
Bendfeldt, Hofstetter, Kuster, Traud, Mueller-Lenke, Naegelin, Kappos, Gass, Nichols, Barkhof, Vrenken, Roosendaal, Geurts, Radue, Borgwardt (bib3) 2012; 33
Yendiki, Greve, Wallace, Vangel, Bockholt, Mueller, Magnotta, Andreasen, Manoach, Gollub (bib32) 2010; 53
Hellerbach, Schuster, Jansen, Sommer (bib14) 2013; 8
Simmons, Moore, Williams (bib24) 1999; 41
Tost, Bilek, Meyer-Lindenberg (bib29) 2012
Friedman, Glover (bib7) 2006; 23
Hellerbach, Einhäuser-Treyer (bib13) 2013
Ihalainen, Kuusela, Turunen, Heikkinen, Savolainen, Sipilä (bib15) 2015; 28
Tovar, Zhan, Rajan (bib30) 2015; 10
Van Horn, Toga (bib31) 2009; 22
Evans (bib6) 2006; 30
Abdulkadir, Mortamet, Vemuri, Jack, Krueger, Klöppel (bib1) 2011; 58
Takao, Hayashi, Kabasawa, Ohtomo (bib28) 2012; 33
Mri, Program (bib19) 2005; 5
Gunter, Bernstein, Borowski, Ward, Britson, Felmlee, Schuff, Weiner, Jack (bib11) 2009; 36
Suslow, Kugel, Ohrmann, Stuhrmann, Grotegerd, Redlich, Bauer, Dannlowski (bib27) 2013; 211
Olsrud, Nilsson, Mannfolk, Waites, Ståhlberg (bib20) 2008; 26
Saotome, Ishimori, Isobe, Satou, Shinoda, Ookubo, Hirano, Oosuka, Matsushita, Miyamoto, Sankai (bib23) 2012; 68
Glover, Mueller, Turner, Van Erp, Liu, Greve, Voyvodic, Rasmussen, Brown, Keator, Calhoun, Lee, Ford, Mathalon, Diaz, O'Leary, Gadde, Preda, Lim, Wible, Stern, Belger, McCarthy, Ozyurt, Potkin (bib10) 2012; 36
Stonnington, Tan, Klöppel, Chu, Draganski, Jack, Chen, Ashburner, Frackowiak (bib26) 2008; 39
Ashburner (10.1016/j.neuroimage.2018.01.079_bib2) 2001; 14
Glover (10.1016/j.neuroimage.2018.01.079_bib10) 2012; 36
Dietsche (10.1016/j.neuroimage.2018.01.079_bib5) 2014; 35
Stonnington (10.1016/j.neuroimage.2018.01.079_bib26) 2008; 39
Friedman (10.1016/j.neuroimage.2018.01.079_bib9) 2006; 33
Tost (10.1016/j.neuroimage.2018.01.079_bib29) 2012
Saotome (10.1016/j.neuroimage.2018.01.079_bib23) 2012; 68
Kolb (10.1016/j.neuroimage.2018.01.079_bib16) 2012; 22
Meyer-Lindenberg (10.1016/j.neuroimage.2018.01.079_bib18) 2012; 15
Clarkson (10.1016/j.neuroimage.2018.01.079_bib4) 2009; 47
Mri (10.1016/j.neuroimage.2018.01.079_bib19) 2005; 5
Abdulkadir (10.1016/j.neuroimage.2018.01.079_bib1) 2011; 58
Hellerbach (10.1016/j.neuroimage.2018.01.079_bib14) 2013; 8
Hellerbach (10.1016/j.neuroimage.2018.01.079_bib13) 2013
Hariri (10.1016/j.neuroimage.2018.01.079_bib12) 2002; 17
Suslow (10.1016/j.neuroimage.2018.01.079_bib27) 2013; 211
Kruggel (10.1016/j.neuroimage.2018.01.079_bib17) 2010; 49
Olsrud (10.1016/j.neuroimage.2018.01.079_bib20) 2008; 26
Bendfeldt (10.1016/j.neuroimage.2018.01.079_bib3) 2012; 33
Friedman (10.1016/j.neuroimage.2018.01.079_bib7) 2006; 23
Tovar (10.1016/j.neuroimage.2018.01.079_bib30) 2015; 10
Evans (10.1016/j.neuroimage.2018.01.079_bib6) 2006; 30
Friedman (10.1016/j.neuroimage.2018.01.079_bib8) 2006; 32
Yendiki (10.1016/j.neuroimage.2018.01.079_bib32) 2010; 53
Reig (10.1016/j.neuroimage.2018.01.079_bib22) 2009; 30
Van Horn (10.1016/j.neuroimage.2018.01.079_bib31) 2009; 22
Gunter (10.1016/j.neuroimage.2018.01.079_bib11) 2009; 36
Stöcker (10.1016/j.neuroimage.2018.01.079_bib25) 2005; 25
Simmons (10.1016/j.neuroimage.2018.01.079_bib24) 1999; 41
Ihalainen (10.1016/j.neuroimage.2018.01.079_bib15) 2015; 28
Otsu (10.1016/j.neuroimage.2018.01.079_bib21) 1979; 9
Takao (10.1016/j.neuroimage.2018.01.079_bib28) 2012; 33
References_xml – volume: 32
  start-page: 1656
  year: 2006
  end-page: 1668
  ident: bib8
  article-title: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization
  publication-title: Neuroimage
– volume: 33
  start-page: 466
  year: 2012
  end-page: 477
  ident: bib28
  article-title: Effect of scanner in longitudinal diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
– volume: 5
  year: 2005
  ident: bib19
  article-title: Phantom test guidance for the ACR MRI accreditation program
  publication-title: Am. Coll. Radiol.
– volume: 17
  start-page: 317
  year: 2002
  end-page: 323
  ident: bib12
  article-title: The amygdala response to emotional stimuli: a comparison of faces and scenes
  publication-title: Neuroimage
– volume: 22
  start-page: 370
  year: 2009
  end-page: 378
  ident: bib31
  article-title: Multisite neuroimaging trials
  publication-title: Curr. Opin. Neurol.
– volume: 15
  start-page: 663
  year: 2012
  end-page: 668
  ident: bib18
  article-title: Neural mechanisms of social risk for psychiatric disorders
  publication-title: Nat. Neurosci.
– volume: 41
  start-page: 1274
  year: 1999
  end-page: 1278
  ident: bib24
  article-title: Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 2193
  year: 2009
  end-page: 2205
  ident: bib11
  article-title: Measurement of MRI scanner performance with the ADNI phantom
  publication-title: Med. Phys.
– volume: 25
  start-page: 237
  year: 2005
  end-page: 246
  ident: bib25
  article-title: Automated quality assurance routines for fMRI data applied to a multicenter study
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 355
  year: 2009
  end-page: 368
  ident: bib22
  article-title: Assessment of the increase in variability when combining volumetric data from different scanners
  publication-title: Hum. Brain Mapp.
– year: 2013
  ident: bib13
  article-title: Phantomentwicklung und Einführung einer systematischen Qualitätssicherung bei multizentrischen Magnetresonanztomographie-Untersuchungen
– volume: 53
  start-page: 119
  year: 2010
  end-page: 131
  ident: bib32
  article-title: Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices
  publication-title: Neuroimage
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib21
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man. Cybern
– volume: 30
  start-page: 184
  year: 2006
  end-page: 202
  ident: bib6
  article-title: The NIH MRI study of normal brain development
  publication-title: Neuroimage
– volume: 26
  start-page: 279
  year: 2008
  end-page: 286
  ident: bib20
  article-title: A two-compartment gel phantom for optimization and quality assurance in clinical BOLD fMRI
  publication-title: Magn. Reson. Imaging
– volume: 28
  start-page: 23
  year: 2015
  end-page: 31
  ident: bib15
  article-title: Data quality in fMRI and simultaneous EEG-fMRI
  publication-title: MAGMA
– volume: 211
  start-page: 239
  year: 2013
  end-page: 245
  ident: bib27
  article-title: Neural correlates of affective priming effects based on masked facial emotion: an fMRI study
  publication-title: Psychiatry Res. Neuroimaging.
– year: 2012
  ident: bib29
  article-title: Brain connectivity in psychiatric imaging genetics
  publication-title: Neuroimage
– volume: 58
  start-page: 785
  year: 2011
  end-page: 792
  ident: bib1
  article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
  publication-title: Neuroimage
– volume: 33
  start-page: 471
  year: 2006
  end-page: 481
  ident: bib9
  article-title: Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences
  publication-title: Neuroimage
– volume: 47
  start-page: 1506
  year: 2009
  end-page: 1513
  ident: bib4
  article-title: Comparison of phantom and registration scaling corrections using the ADNI cohort
  publication-title: Neuroimage
– volume: 35
  start-page: 4293
  year: 2014
  end-page: 4302
  ident: bib5
  article-title: Altered neural function during episodic memory encoding and retrieval in major depression
  publication-title: Hum. Brain Mapp.
– volume: 49
  start-page: 2123
  year: 2010
  end-page: 2133
  ident: bib17
  article-title: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort
  publication-title: Neuroimage
– volume: 39
  start-page: 1180
  year: 2008
  end-page: 1185
  ident: bib26
  article-title: Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease
  publication-title: Neuroimage
– volume: 14
  start-page: 1238
  year: 2001
  end-page: 1243
  ident: bib2
  article-title: Why voxel-based morphometry should Be used
  publication-title: Neuroimage
– volume: 68
  start-page: 1242
  year: 2012
  end-page: 1249
  ident: bib23
  article-title: Comparison of diffusion tensor imaging-derived fractional anisotropy in multiple centers for identical human subjects
  publication-title: Nihon Hoshasen Gijutsu Gakkai Zasshi
– volume: 22
  start-page: 1776
  year: 2012
  end-page: 1788
  ident: bib16
  article-title: Technical performance evaluation of a human brain PET/MRI system
  publication-title: Eur. Radiol.
– volume: 8
  year: 2013
  ident: bib14
  article-title: MRI phantoms - are there alternatives to agar?
  publication-title: PLoS One
– volume: 33
  start-page: 1225
  year: 2012
  end-page: 1245
  ident: bib3
  article-title: Longitudinal gray matter changes in multiple sclerosis-Differential scanner and overall disease-related effects
  publication-title: Hum. Brain Mapp.
– volume: 36
  start-page: 39
  year: 2012
  end-page: 54
  ident: bib10
  article-title: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies
  publication-title: J. Magn. Reson. Imag.
– volume: 23
  start-page: 827
  year: 2006
  end-page: 839
  ident: bib7
  article-title: Report on a multicenter fMRI quality assurance protocol
  publication-title: J. Magn. Reson. Imag.
– volume: 10
  year: 2015
  ident: bib30
  article-title: A rotational cylindrical fMRI phantom for image quality control
  publication-title: PLoS One
– volume: 49
  start-page: 2123
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.079_bib17
  article-title: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.006
– volume: 26
  start-page: 279
  year: 2008
  ident: 10.1016/j.neuroimage.2018.01.079_bib20
  article-title: A two-compartment gel phantom for optimization and quality assurance in clinical BOLD fMRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.06.010
– volume: 41
  start-page: 1274
  year: 1999
  ident: 10.1016/j.neuroimage.2018.01.079_bib24
  article-title: Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1274::AID-MRM27>3.0.CO;2-1
– volume: 33
  start-page: 1225
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib3
  article-title: Longitudinal gray matter changes in multiple sclerosis-Differential scanner and overall disease-related effects
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21279
– volume: 17
  start-page: 317
  year: 2002
  ident: 10.1016/j.neuroimage.2018.01.079_bib12
  article-title: The amygdala response to emotional stimuli: a comparison of faces and scenes
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1179
– volume: 33
  start-page: 471
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.079_bib9
  article-title: Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.07.012
– volume: 36
  start-page: 2193
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.079_bib11
  article-title: Measurement of MRI scanner performance with the ADNI phantom
  publication-title: Med. Phys.
  doi: 10.1118/1.3116776
– volume: 35
  start-page: 4293
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.079_bib5
  article-title: Altered neural function during episodic memory encoding and retrieval in major depression
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22475
– volume: 36
  start-page: 39
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib10
  article-title: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.23572
– volume: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2018.01.079_bib19
  article-title: Phantom test guidance for the ACR MRI accreditation program
  publication-title: Am. Coll. Radiol.
– volume: 47
  start-page: 1506
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.079_bib4
  article-title: Comparison of phantom and registration scaling corrections using the ADNI cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.045
– volume: 22
  start-page: 370
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.079_bib31
  article-title: Multisite neuroimaging trials
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32832d92de
– volume: 23
  start-page: 827
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.079_bib7
  article-title: Report on a multicenter fMRI quality assurance protocol
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.20583
– volume: 22
  start-page: 1776
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib16
  article-title: Technical performance evaluation of a human brain PET/MRI system
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-012-2415-4
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.neuroimage.2018.01.079_bib21
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man. Cybern
  doi: 10.1109/TSMC.1979.4310076
– volume: 14
  start-page: 1238
  year: 2001
  ident: 10.1016/j.neuroimage.2018.01.079_bib2
  article-title: Why voxel-based morphometry should Be used
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0961
– volume: 32
  start-page: 1656
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.079_bib8
  article-title: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.062
– volume: 211
  start-page: 239
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.079_bib27
  article-title: Neural correlates of affective priming effects based on masked facial emotion: an fMRI study
  publication-title: Psychiatry Res. Neuroimaging.
  doi: 10.1016/j.pscychresns.2012.09.008
– volume: 30
  start-page: 184
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.079_bib6
  article-title: The NIH MRI study of normal brain development
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.068
– volume: 58
  start-page: 785
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.079_bib1
  article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.029
– volume: 25
  start-page: 237
  year: 2005
  ident: 10.1016/j.neuroimage.2018.01.079_bib25
  article-title: Automated quality assurance routines for fMRI data applied to a multicenter study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20096
– year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib29
  article-title: Brain connectivity in psychiatric imaging genetics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.007
– volume: 33
  start-page: 466
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib28
  article-title: Effect of scanner in longitudinal diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21225
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.079_bib14
  article-title: MRI phantoms - are there alternatives to agar?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070343
– volume: 28
  start-page: 23
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.079_bib15
  article-title: Data quality in fMRI and simultaneous EEG-fMRI
  publication-title: MAGMA
  doi: 10.1007/s10334-014-0443-6
– volume: 39
  start-page: 1180
  year: 2008
  ident: 10.1016/j.neuroimage.2018.01.079_bib26
  article-title: Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.066
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.079_bib30
  article-title: A rotational cylindrical fMRI phantom for image quality control
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143172
– year: 2013
  ident: 10.1016/j.neuroimage.2018.01.079_bib13
– volume: 15
  start-page: 663
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib18
  article-title: Neural mechanisms of social risk for psychiatric disorders
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3083
– volume: 53
  start-page: 119
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.079_bib32
  article-title: Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.084
– volume: 68
  start-page: 1242
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.079_bib23
  article-title: Comparison of diffusion tensor imaging-derived fractional anisotropy in multiple centers for identical human subjects
  publication-title: Nihon Hoshasen Gijutsu Gakkai Zasshi
  doi: 10.6009/jjrt.2012_JSRT_68.9.1242
– volume: 30
  start-page: 355
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.079_bib22
  article-title: Assessment of the increase in variability when combining volumetric data from different scanners
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20511
SSID ssj0009148
Score 2.5252688
Snippet Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 450
SubjectTerms Adult
Affective disorders
Basal ganglia
Bipolar disorder
Cohort analysis
Cohort Studies
Computer programs
Consortia
Data analysis
DTI
Female
fMRI
Functional magnetic resonance imaging
Grants
Humans
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Major depression
Male
Medical imaging
Mood Disorders - diagnostic imaging
Morphometry
MRI quality assurance
Multicenter Studies as Topic - instrumentation
Multicenter Studies as Topic - methods
Multicenter Studies as Topic - standards
Multicenter study
Neurobiology
Neuroimaging
Neuroimaging - instrumentation
Neuroimaging - methods
Neuroimaging - standards
NMR
Nuclear magnetic resonance
Quality assurance
Quality Assurance, Health Care - methods
Quality Assurance, Health Care - standards
Quality control
Reproducibility of Results
Scanners
Scanning
Software
Statistics
Substantia alba
Substantia grisea
Thalamus
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED40KRBkCdq86jYtWCBDMhAwLVKU26EwjAZBAXXIA_BG0BSZpGilpLKH_Ldu_WO9kyh5SQrP0hmW7vVR_PgdwLHXLguZtdwlWnMpCok5JwVHZOCcCkOFhsS2-J6eX8tvMzWLH9zqSKvsamJTqIvK0TdyWqQr3Wyqfbl_4DQ1inZX4wiNDXhJ0mVE6dIzvRLdFbI9CqcSnuENkcnT8rsavci7X5i1RPDKGvFOInQ93Z6eg59NGzp7BTsRP7JJ6_DX8MKXu7CVxx3yXdgm9NiKL-9BjUHAcksv7obnf_-UpIrAJg2FA6sc66Q3azatbhGHM2IVPrKTfDK9PP3EJqw9cvnIEGEvaQKHZ6TrUGHwMAS7LL9g_fNhC2REN92H67OvV9NzHqcscKdGasFxhYEtWiXBz9NCJF7bNJBGjU2xDs4bwOeztCicxQzVPjhdjIV1woVkKAvlkwPYLKvSvwEmbQhKBDVKAxbgQmdOWmVxTZVkeo6lZQC6e7nGRQlymoTx03Rcsx9m5RZDbjFDYdAtAxC95X0rw7GGzbjzn-mOmWJhNNgr1rD93NtGKNJCjDWtj7pwMbEk1GYVwAP42F_GZKYdGlv6alkb0oQgyJ2MBnDYhln_uKOxJEbL-O3_f_wdbNM_IYKDUEewufi99O8RNy3mH5rk-AcXeRgp
  priority: 102
  providerName: ProQuest
Title The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assurance protocol for MR neuroimaging data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191830079X
https://dx.doi.org/10.1016/j.neuroimage.2018.01.079
https://www.ncbi.nlm.nih.gov/pubmed/29410079
https://www.proquest.com/docview/2025738913
https://www.proquest.com/docview/1999192332
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamIU1c0GD86BiTkTjAIbSu7ThhpxBt6gappo5JvVmuY0MRpBNtD7vwl3HbP8Z7iZNp0pAqcWnUpk9K7Pe-91n-3jMhb5yyiU-MiSxXKhKsFBBzgkXADKyVfiDBENUW43h0Kc6mcrpF8rYWBmWVAfsbTK_ROvzSD6PZv5rP-xfADCDdwHoj4ZDo0ilWsAuFXv7-963MI2WiKYeTPMJ_BzVPo_Gqe0bOf0LkosgrqRt4oqjr_hT1Lwpap6KTXfIocEiaNY_5mGy56gnZKcIu-R5ZwtzTwuB4fY2Kmz8VNkOgWa3cAHCjbcfNJc0X34B-UxQTXtO3RZZfvPtAM9pUWl5TINZrPHjDUWznsACfocBxaTGh3StB5qOoMn1KLk-Ov-SjKByuEFk5lKsIFhaQmSX3bhaXjDtlYo-taUwM8DereZ5L4rK0BgJTOW9VmTJjmfV8IErp-DOyXS0q94JQYbyXzMth7AF3S5VYYaSBpRRP1AwQpUdUO57ahs7jeADGD91KzL7r25nQOBN6wDTMRI-wzvKq6b6xgU3aTpluq0sBDzWkiA1sjzrbO164ofVB6yE6IMES7gMo1pvBPfK6uw0xjBszpnKL9VJjKwhk2nzYI88bz-ped5gKFLKk-__1aC_JQ_yGsgcmD8j26tfavQI2tZod1uECn2qqDsmDLJ98Psfr6afRGK4fj8fnk7_5uCUZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJeEJRXoMAigQQHS13b67VBCIXQKqV1hEor9bbdrHehVWu3dSKUP8Uv4MYfY8avXADl0nM0Vpx5fZP99huAl1aa2MVaeyaQ0gt5FmLOhdxDZGCMcJsCDYltMY5Gh-HnI3G0Aj_buzBEq2xrYlWos8LQf-Q0pAtZHap9uLj0aGsUna62KzTqsNi18x84spXvdz6hf1_5_vbWwXDkNVsFPCN8MfUQUWNLEoGzkyjjgZU6cqTJoiPM-0kFcGwcZZnRGJHSOiOzhGvDjcPJPxM2wOfegNUwwFGmB6sft8Zf9hcyvzysL9-JwIs5TxruUM0oqxQqT86xThClLK7kQolC9veG-C_AWzW-7Ttwu0GsbFCH2F1Ysfk63EybM_l1WCO8Wss934MSw46lmlz1zUt__8pJh4ENKtII1lXWin2WbFh8R-TPiMc4Z6_TwfDrm7dswOpLnnOGmH5GOz8sIyWJAsOVIbxm6T7r3g-bLiOC6304vBYPPIBeXuT2EbBQOye4E37ksORnMjahFhqnuCCWEyxmfZDtj6tMI3pOuzfOVMtuO1ULtyhyi9rkCt3SB95ZXtTCH0vYJK3_VHuxFUuxwu60hO27zrYBPzWoWdJ6ow0X1RShUi1Spg8vuo-xfNCZkM5tMSsVqVAQyA_8Pjysw6x7XT8JiUOTPP7_w5_DrdFBuqf2dsa7T2CNvhXRK7jYgN70amafImqbTp41qcLg-Lqz8w_g81aA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlW9ICivhQJGAgkOFuskjhMQQqstq5aSCgGV9uZ6HRtaQVLIrtD-NcSNP8ZMXnsBtJeeo4mSzOtz_PkbgEdO2cQnxnAbKsUjkUeYc5HgiAyslX4o0ZDYFkfx_nH0ZiqnG_CzOwtDtMquJtaFOi8t_SOnRbpU9abaM9_SIt7tTV6df-M0QYp2WrtxGk2IHLrlD1y-VS8P9tDXj4Ng8vrjeJ-3Ewa4lYGcc0TX2J5k6N0szkXolIk96bOYGGvArAY7Lonz3BqMTuW8VXkqjBXWh8Moly7E-16CyyqUgnJMTdVK8FdEzTE8GfJEiLRlETXcslqr8vQrVgwilyW1cCiRyf7eGv8FfesWOLkKV1rsykZNsF2DDVfswFbW7s7vwDYh10b4-TpUGIAsM-S0Tzz7_asgRQY2qukjWGFZJ_tZsXH5GdcAjBiNS_YkG40_PH3ORqw57rlkiO4XNP3DMdKUKDFwGQJtlr1n_fth-2VEdb0Bxxfy_W_CZlEW7jawyHgvhZdB7LH45yqxkZEG13NhomZY1gaguo-rbSt_TlM4vuiO53amV27R5BY9FBrdMgDRW543EiBr2KSd_3R3xBWLssY-tYbti962hUENvFnTercLF92Wo0qvkmcAD_vLWEhod8gUrlxUmvQoCO6HwQBuNWHWv26QRsSmSe_8_-YPYAtzUr89ODq8C9v0UMSzEHIXNuffF-4ewrf57H6dJwxOLjox_wDveFlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Marburg-M%C3%BCnster+Affective+Disorders+Cohort+Study+%28MACS%29%3A+A+quality+assurance+protocol+for+MR+neuroimaging+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Vogelbacher%2C+Christoph&rft.au=M%C3%B6bius%2C+Thomas+W.D.&rft.au=Sommer%2C+Jens&rft.au=Schuster%2C+Verena&rft.date=2018-05-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=172&rft.spage=450&rft.epage=460&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.01.079&rft.externalDocID=S105381191830079X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon