Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of...
Saved in:
Published in | Journal of biogeography Vol. 42; no. 7; pp. 1255 - 1266 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.07.2015
John Wiley & Sons Ltd Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0305-0270 1365-2699 |
DOI | 10.1111/jbi.12485 |
Cover
Loading…
Abstract | Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, SSDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a 'probability ranking' rule based on species richness predictions and rough probabilities from SDMs, and a 'trait range' rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the 'probability ranking' rule allowed slight but significant improvements in the predictions of community composition. Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints. |
---|---|
AbstractList | AIM: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, S‐SDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. LOCATION: The western Swiss Alps. METHODS: Two implementations of the SESAM framework were tested: a ‘probability ranking’ rule based on species richness predictions and rough probabilities from SDMs, and a ‘trait range’ rule that uses the predicted upper and lower bound of community‐level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. RESULTS: We showed that all independent constraints contributed to reduce species richness overprediction. Only the ‘probability ranking’ rule allowed slight but significant improvements in the predictions of community composition. MAIN CONCLUSIONS: We tested various implementations of the SESAM framework by integrating macroecological constraints into S‐SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints. Aim Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, S‐SDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location The western Swiss Alps. Methods Two implementations of the SESAM framework were tested: a ‘probability ranking’ rule based on species richness predictions and rough probabilities from SDMs, and a ‘trait range’ rule that uses the predicted upper and lower bound of community‐level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results We showed that all independent constraints contributed to reduce species richness overprediction. Only the ‘probability ranking’ rule allowed slight but significant improvements in the predictions of community composition. Main conclusions We tested various implementations of the SESAM framework by integrating macroecological constraints into S‐SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints. Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, SSDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a 'probability ranking' rule based on species richness predictions and rough probabilities from SDMs, and a 'trait range' rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the 'probability ranking' rule allowed slight but significant improvements in the predictions of community composition. Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints. |
Author | Fernandes, Rui F. Pottier, Julien D'Amen, Manuela Pellissier, Loïc Guisan, Antoine Dubuis, Anne |
Author_xml | – sequence: 1 givenname: Manuela surname: D'Amen fullname: D'Amen, Manuela organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland – sequence: 2 givenname: Anne surname: Dubuis fullname: Dubuis, Anne organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland – sequence: 3 givenname: Rui F. surname: Fernandes fullname: Fernandes, Rui F. organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland – sequence: 4 givenname: Julien surname: Pottier fullname: Pottier, Julien organization: INRA, Grassland Ecosystem Research Unit (UREP), 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France – sequence: 5 givenname: Loïc surname: Pellissier fullname: Pellissier, Loïc organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland – sequence: 6 givenname: Antoine surname: Guisan fullname: Guisan, Antoine email: Correspondence: Antoine Guisan, Department of Ecology and Evolution, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland., antoine.guisan@unil.ch organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland |
BackLink | https://hal.inrae.fr/hal-02640356$$DView record in HAL |
BookMark | eNp1kc1u1DAUhS1UJKYtCx4AyRIbukjr_yTLUkqnZQSbli4tx3FaT5N48E2APgDvjdO0g0DghS3d853rq3t20U4feofQK0oOaTpH68ofUiYK-QwtKFcyY6osd9CCcCIzwnLyAu0CrAkhpeRigX5ege9vMGyc9Q5w9Pa2dwDY9DVuxt4OPvSmxUM0fgC8ia72DzXAQ8A2vZPSYwPguqo1N-4PpomhwzAYe-fq7R-1TyZfjROCu1C7FvbR88a04F4-vnvo6sPp5ckyW30-Oz85XmVWMimzwhbKNSXJG0mNkYyUylZWUFrwJue5LTgtROVYumtlSiUqxllFy1pWzhYV53voYO57a1q9ib4z8V4H4_XyeKWnGmFKEC7VN5rYtzO7ieHr6GDQnQfr2tb0LoygaU4JY4SVJKFv_kLXYYxpb4lSRVkoxuVEHc2UjQEgukZbP5hpC9MOW02JniLUKUL9EOHvcbeOp5n_xT52_-5bd_9_UF-8O39yvJ4daxhC3DqEIIRRkSc9m_WUl_ux1U280yptW-rrT2f6einIl8v3VH_kvwDdQMcW |
CODEN | JBIODN |
CitedBy_id | crossref_primary_10_1002_ece3_10007 crossref_primary_10_1002_ece3_2332 crossref_primary_10_1016_j_ecolmodel_2018_10_023 crossref_primary_10_1111_ecog_05811 crossref_primary_10_1016_j_ecolmodel_2020_108956 crossref_primary_10_1111_ddi_12607 crossref_primary_10_1111_2041_210X_13915 crossref_primary_10_1016_j_scitotenv_2020_139674 crossref_primary_10_1111_2041_210X_13312 crossref_primary_10_1016_j_ecolmodel_2022_110248 crossref_primary_10_1111_2041_210X_14203 crossref_primary_10_1016_j_biocon_2016_07_026 crossref_primary_10_1002_ecs2_3864 crossref_primary_10_1111_icad_12240 crossref_primary_10_1016_j_ecoinf_2018_09_002 crossref_primary_10_1111_geb_12580 crossref_primary_10_1038_s41598_019_39133_1 crossref_primary_10_1111_2041_210X_13041 crossref_primary_10_1111_ddi_12450 crossref_primary_10_1111_ddi_12890 crossref_primary_10_1002_ecs2_2838 crossref_primary_10_1016_j_ecolind_2019_105970 crossref_primary_10_1016_j_dsr2_2018_06_011 crossref_primary_10_1111_ddi_13505 crossref_primary_10_1111_jbi_13608 crossref_primary_10_3389_ffgc_2022_1022082 crossref_primary_10_1098_rstb_2023_0335 crossref_primary_10_1111_1365_2745_12801 crossref_primary_10_1111_ecog_03148 crossref_primary_10_1111_gcb_13628 crossref_primary_10_22201_ib_20078706e_2019_90_2829 crossref_primary_10_1002_ece3_9810 crossref_primary_10_1111_geb_13827 crossref_primary_10_1007_s10531_025_03040_x crossref_primary_10_1016_j_biocon_2023_110197 crossref_primary_10_1890_15_0962_1 crossref_primary_10_1016_j_tree_2017_05_003 crossref_primary_10_1098_rstb_2021_0063 crossref_primary_10_1111_ecog_07346 crossref_primary_10_1007_s10531_020_02018_1 crossref_primary_10_1111_jbi_13535 crossref_primary_10_3389_ffgc_2019_00069 crossref_primary_10_1016_j_ecolind_2023_110306 crossref_primary_10_1111_ddi_70006 crossref_primary_10_3390_rs13132490 crossref_primary_10_1111_jbi_15072 crossref_primary_10_1007_s00267_023_01812_1 crossref_primary_10_1111_gcb_15637 crossref_primary_10_1111_geb_12967 crossref_primary_10_3389_fmars_2016_00202 crossref_primary_10_1016_j_foreco_2017_12_046 crossref_primary_10_1111_ele_12526 crossref_primary_10_1002_eap_2934 crossref_primary_10_1111_ddi_12548 crossref_primary_10_3389_fmars_2020_00131 crossref_primary_10_1111_ddi_13834 crossref_primary_10_1111_jbi_12825 crossref_primary_10_1002_aqc_3720 crossref_primary_10_1111_aec_12658 crossref_primary_10_1016_j_gecco_2018_e00513 crossref_primary_10_1111_2041_210X_12841 crossref_primary_10_3897_natureconservation_41_54265 crossref_primary_10_3390_land10010054 crossref_primary_10_1111_brv_12222 crossref_primary_10_1016_j_landurbplan_2020_103770 crossref_primary_10_1111_geb_12678 crossref_primary_10_1111_oik_09063 crossref_primary_10_1038_s41467_021_22506_4 crossref_primary_10_1007_s10531_018_1670_3 crossref_primary_10_1111_geb_12357 crossref_primary_10_1111_jbi_13948 crossref_primary_10_2989_1814232X_2020_1737573 crossref_primary_10_1111_ele_13980 crossref_primary_10_1111_ecog_02671 crossref_primary_10_1111_ecog_02990 crossref_primary_10_1111_oik_02792 crossref_primary_10_1111_1365_2745_13037 crossref_primary_10_15451_ec2022_06_11_15_1_24 crossref_primary_10_1111_1365_2664_13182 crossref_primary_10_1017_S0030605320000204 crossref_primary_10_1111_jbi_13078 crossref_primary_10_1111_2041_210X_12731 crossref_primary_10_1016_j_ecoinf_2019_03_005 crossref_primary_10_1111_jvs_12898 crossref_primary_10_1111_ecog_06272 crossref_primary_10_1007_s10584_019_02491_w crossref_primary_10_1016_j_onehlt_2021_100299 crossref_primary_10_1111_tbed_14656 crossref_primary_10_1111_1365_2435_12666 crossref_primary_10_1111_gcb_17121 |
Cites_doi | 10.1111/jvs.12002 10.1111/j.0906-7590.2005.03957.x 10.1371/journal.pone.0032586 10.1126/science.1131344 10.1016/j.biocon.2012.09.020 10.1016/j.ecolmodel.2010.11.030 10.1007/s11258-010-9794-x 10.1016/j.tree.2010.03.002 10.1657/1938-4246-41.3.347 10.1111/j.1469-185X.2011.00187.x 10.1111/j.0030-1299.2006.14194.x 10.1111/j.1600-0587.2009.05832.x 10.1111/j.1654-1103.2009.01145.x 10.1111/j.1365-2745.2004.00838.x 10.1890/10-0173.1 10.1111/j.1600-0587.2011.07140.x 10.1890/12-1482.1 10.1890/03-8006 10.1016/j.tree.2008.09.004 10.1111/j.1461-0248.2009.01353.x 10.1111/j.1365-2486.2012.02772.x 10.1111/ele.12189 10.1111/j.1600-0587.2008.05742.x 10.1007/s10441-012-9144-6 10.1111/gcb.12231 10.1111/j.1365-2745.2010.01651.x 10.1111/j.1365-2699.2011.02663.x 10.1111/j.1365-2699.2012.02684.x 10.1023/A:1004327224729 10.1034/j.1600-0706.2001.930112.x 10.1890/04-0922 10.1890/10-0394.1 10.1086/368223 10.1111/j.1600-0587.2009.05856.x 10.1038/nature04534 10.1111/j.1365-2699.2005.01265.x 10.1111/j.1365-2699.2010.02341.x 10.1071/BT02124 10.1111/j.1461-0248.2011.01675.x 10.1177/0309133313512667 10.1111/j.1654-109X.2007.tb00507.x 10.1111/j.1600-0706.2009.17770.x 10.2307/3235676 10.1111/j.1466-8238.2012.00790.x 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 10.1111/j.1365-2664.2006.01214.x 10.1111/j.1461-0248.2012.01852.x 10.1111/j.1365-2486.2012.02760.x 10.1111/j.1600-0587.2013.00237.x 10.1111/j.1600-0587.2011.07047.x 10.1111/j.1365-2699.2011.02550.x 10.1016/j.biocon.2012.11.025 10.1111/j.1469-185X.2012.00235.x 10.1002/ece3.843 10.2307/3544109 10.1098/rsbl.2009.0669 10.1111/j.0030-1299.2005.13632.x 10.1111/j.1461-0248.2010.01444.x 10.1111/j.1600-0587.2011.06919.x 10.2307/3546599 10.1111/j.1600-0587.2010.06134.x 10.1086/285144 10.1111/j.1472-4642.2011.00792.x 10.1111/j.1365-2699.2010.02416.x 10.1890/12-1322.1 10.1111/j.1365-2664.2006.01149.x 10.2307/2389954 10.1111/geb.12102 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons Ltd. 2015 John Wiley & Sons Ltd Copyright © 2015 John Wiley & Sons Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons Ltd. – notice: 2015 John Wiley & Sons Ltd – notice: Copyright © 2015 John Wiley & Sons Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC |
DOI | 10.1111/jbi.12485 |
DatabaseName | Istex CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 1266 |
ExternalDocumentID | oai_HAL_hal_02640356v1 3720078001 10_1111_jbi_12485 JBI12485 44002147 ark_67375_WNG_WH40VTD1_K |
Genre | article |
GeographicLocations | Alps region |
GeographicLocations_xml | – name: Alps region |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 31003A‐125145 – fundername: FP6 Ecochange project of the European Commission funderid: GOCE‐CT‐2007–036866 – fundername: Marie Curie Intra‐European Fellowship funderid: FP7‐PEOPLE‐2012‐IEF; SESAM‐ZOOL 327987 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c5255-8c86ef907f51aa52096cbc41183f737c83184be2184d6a964b232b19d5bec8b33 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Fri May 09 12:21:14 EDT 2025 Fri Jul 11 18:24:06 EDT 2025 Fri Jul 25 12:14:51 EDT 2025 Tue Jul 01 01:14:10 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Wed Jan 22 16:57:24 EST 2025 Thu Jul 03 22:32:05 EDT 2025 Wed Oct 30 10:00:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | sesam framework mem species distribution models community ecology functional ecology stacked sdm swiss alps macroecological models sdm |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5255-8c86ef907f51aa52096cbc41183f737c83184be2184d6a964b232b19d5bec8b33 |
Notes | Marie Curie Intra-European Fellowship - No. FP7-PEOPLE-2012-IEF; No. SESAM-ZOOL 327987 ark:/67375/WNG-WH40VTD1-K Appendix S1 Assemblage evaluation metrics and supplementary results. Appendix S2 Evaluation results for SDMs and MEMs. Appendix S3 Comparison of the assemblage predictions coming from the application of trait range rule with three pairs of percentiles. ArticleID:JBI12485 istex:CCBBB5033C87FFACD6D6AD0B873A97201D32F2F3 FP6 Ecochange project of the European Commission - No. GOCE-CT-2007-036866 Swiss National Science Foundation - No. 31003A-125145 Editor: Miles Silman ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4223-3609 0000-0002-2289-8259 0000-0002-3998-4815 |
OpenAccessLink | https://serval.unil.ch/resource/serval:BIB_D712019FA27F.P001/REF.pdf |
PQID | 1689862350 |
PQPubID | 1086398 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_02640356v1 proquest_miscellaneous_1710220290 proquest_journals_1689862350 crossref_citationtrail_10_1111_jbi_12485 crossref_primary_10_1111_jbi_12485 wiley_primary_10_1111_jbi_12485_JBI12485 jstor_primary_44002147 istex_primary_ark_67375_WNG_WH40VTD1_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationTitleAlternate | J. Biogeogr |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112. Dubuis, A., Rossier, L., Pottier, J., Pellissier, L. & Guisan, A. (2013) Predicting current and future community patterns of plant functional traits. Ecography, 36, 1158-1168. Mokany, K., Harwood, T.D., Williams, K.J. & Ferrier, S. (2012) Dynamic macroecology and the future for biodiversity. Global Change Biology, 18, 3149-3159. Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G. & Poorter, H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. Dunstan, P.K., Foster, S.D. & Darnell, R. (2011) Model based grouping of species across environmental gradients. Ecological Modelling, 222, 955-963. Wennekes, P., Rosindell, J. & Etienne, R. (2012) The neutral-niche debate: a philosophical perspective. Acta Biotheoretica, 60, 257-271. Thuiller, W., Albert, C.H., Dubuis, A., Randin, C. & Guisan, A. (2010) Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biology Letters, 6, 120-123. Hortal, J., De Marco, P., Santos, A.M.C. & Diniz-Filho, J.A.F. (2012) Integrating biogeographical processes and local community assembly. Journal of Biogeography, 39, 627-628. Baselga, A. & Araújo, M.B. (2009) Individualistic vs community modelling of species distributions under climate change. Ecography, 32, 55-65. Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. (2012) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science, 24, 593-606. Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49. Pellissier, L., Rohr, R.P., Ndiribe, C., Pradervand, J.-N., Salamin, N., Guisan, A. & Wisz, M. (2013) Combining food web and species distribution models for improved community projections. Ecology and Evolution, 3, 4572-4583. Keddy, P.A. (1992b) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164. Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444. Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006) Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82. Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586. Sonnier, G., Shipley, B. & Navas, M. (2010a) Plant traits, species pools and the prediction of relative abundance in plant communities : a maximum entropy approach. Journal of Vegetation Science, 21, 318-331. Aranda, S.C. & Lobo, J.M. (2011) How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography, 34, 31-38. Clark, J.S. (2009) Beyond neutral science. Trends in Ecology and Evolution, 24, 8-15. Ovaskainen, O., Hottola, J. & Siitonen, J. (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373. Westoby, M. (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. Fernandes, J.A., Cheung, W.W., Jennings, S., Butenschon, M., de Mora, L., Frolicher, T.L. & Grant, A. (2013) Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biology, 19, 2596-2607. Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography, 35, 684-692. Francis, A.P. & Currie, D.J. (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536. Pellissier, L., Fournier, B., Guisan, A. & Vittoz, P. (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 211, 351-365. Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I. & LeRoy Poff, N. (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283. Moles, A.T. & Westoby, M. (2006) Seed size and plant strategy across the whole life cycle. Oikos, 113, 91-105. Shipley, B. (2010) Community assembly, natural selection and maximum entropy models. Oikos, 119, 604-609. Moser, D., Dullinger, S., Englisch, T., Niklfeld, H., Plutzar, C., Sauberer, N., Zechmeister, H.G. & Grabherr, G. (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32, 1117-1127. Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews of the Cambridge Philosophical Society, 88, 15-30. Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131. Gotelli, N.J., Buckley, N.J. & Wiens, J.A. (1997) Co-occurrence of Australian land birds: Diamond's assembly rules revisited. Oikos, 80, 311-324. Guisan, A., Tingley, R., Baumgartner, J.B. et al. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435. Pakeman, R.J. & Quested, H.M. (2007) Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science, 10, 91-96. Keddy, P.A. (1992a) A pragmatic approach to functional ecology. Functional Ecology, 6, 621-626. Laughlin, D.C., Joshi, C., van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299. Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178. Baselga, A. & Araújo, M.B. (2010) Do community-level models describe community variation effectively? Journal of Biogeography, 37, 1842-1850. Liu, C.R., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ. Mokany, K., Harwood, T.D., Overton, J.M., Barker, G.M. & Ferrier, S. (2011) Combining α- and β-diversity models to fill gaps in our knowledge of biodiversity. Ecology Letters, 14, 1043-1051. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. Shipley, B., Vile, D. & Garnier, E. (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812-814. Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P. & Guisan, A. (2013) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52-63. Austin, M.P. & Van Niel, K.P. (2010) Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38, 1-8. Le Roux, P.C., Lenoir, J., Pellissier, L., Wisz, M.S. & Luoto, M. (2013) Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low-energy system. Ecology, 94, 671-682. McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185. Hui, F.C.K., Warton, D.I., Foster, S.D. & Dunstan, P.K. (2013) To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models. Ecology, 94, 1913-1919. Ozinga, W.A., Schaminée, J.H.J., Bekker, R.M., Bonn, S., Poschlod, P. & Tackelberg, O. (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108, 555-561. Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404. Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. Götzenberger, L., De Bello, F., Anne Bråthen, K., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K. & Zobel, M. (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 87, 111-127. Shipley, B., Laughlin, D.C., Sonnier, G. & Ottinowski, R. (2011) A strong test of a maximum entropy model of trait-based community assembly. Ecology, 92, 507-517. Araújo, M.B., Rozenfeld, A., Rahbek, C. & Marquet, P.A. 1997; 80 2012; 60 2010; 98 2001; 93 2013; 3 2009; 41 2010; 13 2013; 22 2012; 18 2012; 15 2011; 14 2011; 17 1998; 199 2003; 51 2005; 28 2014; 23 2013; 19 2009; 12 1992b; 3 2010; 25 2013; 16 2001 2010; 119 2006; 21 2013; 94 2013; 159 2003; 161 2005; 108 2006; 440 2013; 158 2005; 75 2005; 32 2012; 24 2003; 84 2010; 6 2009; 24 2010; 38 2010; 37 2013; 88 2011; 34 2012; 39 1988; 240 2006; 314 2012; 35 2011; 38 2007; 10 1991; 137 1992a; 6 2006; 113 2013; 36 2009; 32 2006; 43 2010a; 21 2011; 92 2010; 211 2014; 38 1983; 41 2012; 7 2010; 91 2010b; 21 2011; 222 2012; 87 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hubbell S.P. (e_1_2_7_34_1) 2001 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Dubuis A. (e_1_2_7_18_1) 2012; 24 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography, 35, 684-692. – reference: Aranda, S.C. & Lobo, J.M. (2011) How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography, 34, 31-38. – reference: Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006) Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82. – reference: Shipley, B. (2010) Community assembly, natural selection and maximum entropy models. Oikos, 119, 604-609. – reference: Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49. – reference: Götzenberger, L., De Bello, F., Anne Bråthen, K., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K. & Zobel, M. (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 87, 111-127. – reference: Pellissier, L., Fournier, B., Guisan, A. & Vittoz, P. (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 211, 351-365. – reference: Albouy, C., Guilhaumon, F., Araújo, M.B., Mouillot, D. & Leprieur, F. (2012) Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages. Global Change Biology, 18, 2995-3003. – reference: Baselga, A. & Araújo, M.B. (2009) Individualistic vs community modelling of species distributions under climate change. Ecography, 32, 55-65. – reference: Le Roux, P.C., Lenoir, J., Pellissier, L., Wisz, M.S. & Luoto, M. (2013) Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low-energy system. Ecology, 94, 671-682. – reference: Shipley, B., Vile, D. & Garnier, E. (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812-814. – reference: Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178. – reference: Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C.F. (2014) Very high-resolution environmental predictors in species distribution models: moving beyond topography? Progress in Physical Geography, 38, 79-96. – reference: Clark, J.S. (2009) Beyond neutral science. Trends in Ecology and Evolution, 24, 8-15. – reference: Mokany, K., Harwood, T.D., Williams, K.J. & Ferrier, S. (2012) Dynamic macroecology and the future for biodiversity. Global Change Biology, 18, 3149-3159. – reference: Peres-Neto, P.R., Olden, J.D. & Jackson, D.A. (2001) Environmentally constrained null models: site suitability as occupancy criterion. Oikos, 93, 110-120. – reference: Ozinga, W.A., Schaminée, J.H.J., Bekker, R.M., Bonn, S., Poschlod, P. & Tackelberg, O. (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108, 555-561. – reference: Keddy, P.A. (1992a) A pragmatic approach to functional ecology. Functional Ecology, 6, 621-626. – reference: Thuiller, W., Albert, C.H., Dubuis, A., Randin, C. & Guisan, A. (2010) Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biology Letters, 6, 120-123. – reference: Wright, D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506. – reference: Laughlin, D.C., Joshi, C., van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299. – reference: Hortal, J., De Marco, P., Santos, A.M.C. & Diniz-Filho, J.A.F. (2012) Integrating biogeographical processes and local community assembly. Journal of Biogeography, 39, 627-628. – reference: Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33. – reference: Guisan, A., Tingley, R., Baumgartner, J.B. et al. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435. – reference: Fernandes, J.A., Cheung, W.W., Jennings, S., Butenschon, M., de Mora, L., Frolicher, T.L. & Grant, A. (2013) Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biology, 19, 2596-2607. – reference: Moles, A.T. & Westoby, M. (2006) Seed size and plant strategy across the whole life cycle. Oikos, 113, 91-105. – reference: Austin, M.P. & Van Niel, K.P. (2010) Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38, 1-8. – reference: Hui, F.C.K., Warton, D.I., Foster, S.D. & Dunstan, P.K. (2013) To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models. Ecology, 94, 1913-1919. – reference: Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. (2012) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science, 24, 593-606. – reference: Ovaskainen, O., Hottola, J. & Siitonen, J. (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521. – reference: Araújo, M.B., Rozenfeld, A., Rahbek, C. & Marquet, P.A. (2011) Using species co-occurrence networks to assess the impacts of climate change. Ecography, 34, 897-908. – reference: Douma, J.C., Witte, J.-P.M., Aerts, R., Bartholomeus, R.P., Ordoñez, J.C., Venterink, H.O., Wassen, M.J. & van Bodegom, P.M. (2012) Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models. Ecography, 35, 294-305. – reference: Faleiro, F.V., Machado, R.B. & Loyola, R.D. (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation, 158, 248-257. – reference: Francis, A.P. & Currie, D.J. (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536. – reference: Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I. & LeRoy Poff, N. (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283. – reference: Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews of the Cambridge Philosophical Society, 88, 15-30. – reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. – reference: Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112. – reference: Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ. – reference: Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G. & Poorter, H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. – reference: Gilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. & Holt, R.D. (2010) A framework for community interactions under climate change. Trends in Ecology and Evolution, 25, 325-331. – reference: Leach, K., Zalat, S. & Gilbert, F. (2013) Egypt's Protected Area network under future climate change. Biological Conservation, 159, 490-500. – reference: Sonnier, G., Shipley, B. & Navas, M.L. (2010b) Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science, 21, 318-331. – reference: Mokany, K., Harwood, T.D., Overton, J.M., Barker, G.M. & Ferrier, S. (2011) Combining α- and β-diversity models to fill gaps in our knowledge of biodiversity. Ecology Letters, 14, 1043-1051. – reference: Pellissier, L., Rohr, R.P., Ndiribe, C., Pradervand, J.-N., Salamin, N., Guisan, A. & Wisz, M. (2013) Combining food web and species distribution models for improved community projections. Ecology and Evolution, 3, 4572-4583. – reference: Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P. & Guisan, A. (2013) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52-63. – reference: Wennekes, P., Rosindell, J. & Etienne, R. (2012) The neutral-niche debate: a philosophical perspective. Acta Biotheoretica, 60, 257-271. – reference: Hooper, D.U., Chapin, F.S., III, Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J. & Wardle, D.A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35. – reference: Randin, C.F., Vuissoz, G., Liston, G.E., Vittoz, P. & Guisan, A. (2009) Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps. Arctic, Antarctic, and Alpine Research, 41, 347-361. – reference: Gotelli, N.J., Buckley, N.J. & Wiens, J.A. (1997) Co-occurrence of Australian land birds: Diamond's assembly rules revisited. Oikos, 80, 311-324. – reference: Shipley, B., Laughlin, D.C., Sonnier, G. & Ottinowski, R. (2011) A strong test of a maximum entropy model of trait-based community assembly. Ecology, 92, 507-517. – reference: Sonnier, G., Shipley, B. & Navas, M. (2010a) Plant traits, species pools and the prediction of relative abundance in plant communities : a maximum entropy approach. Journal of Vegetation Science, 21, 318-331. – reference: Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. – reference: Dunstan, P.K., Foster, S.D. & Darnell, R. (2011) Model based grouping of species across environmental gradients. Ecological Modelling, 222, 955-963. – reference: Keddy, P.A. (1992b) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164. – reference: Pakeman, R.J. & Quested, H.M. (2007) Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science, 10, 91-96. – reference: Dubuis, A., Rossier, L., Pottier, J., Pellissier, L. & Guisan, A. (2013) Predicting current and future community patterns of plant functional traits. Ecography, 36, 1158-1168. – reference: Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404. – reference: Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444. – reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. – reference: Moser, D., Dullinger, S., Englisch, T., Niklfeld, H., Plutzar, C., Sauberer, N., Zechmeister, H.G. & Grabherr, G. (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32, 1117-1127. – reference: Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373. – reference: Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. & Lavorel, S. (2010) Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. – reference: Baselga, A. & Araújo, M.B. (2010) Do community-level models describe community variation effectively? Journal of Biogeography, 37, 1842-1850. – reference: Gotelli, N.J., Anderson, M.J., Arita, H.T. et al. (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873-886. – reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185. – reference: Liu, C.R., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. – reference: Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131. – reference: Westoby, M. (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. – reference: Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586. – volume: 34 start-page: 897 year: 2011 end-page: 908 article-title: Using species co‐occurrence networks to assess the impacts of climate change publication-title: Ecography – volume: 39 start-page: 627 year: 2012 end-page: 628 article-title: Integrating biogeographical processes and local community assembly publication-title: Journal of Biogeography – volume: 75 start-page: 3 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge publication-title: Ecological Monographs – volume: 10 start-page: 91 year: 2007 end-page: 96 article-title: Sampling plant functional traits: what proportion of the species need to be measured? publication-title: Applied Vegetation Science – volume: 16 start-page: 1424 year: 2013 end-page: 1435 article-title: Predicting species distributions for conservation decisions publication-title: Ecology Letters – volume: 43 start-page: 1223 year: 2006 end-page: 1232 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) publication-title: Journal of Applied Ecology – volume: 35 start-page: 294 year: 2012 end-page: 305 article-title: Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models publication-title: Ecography – year: 2001 – volume: 14 start-page: 1043 year: 2011 end-page: 1051 article-title: Combining α‐ and β‐diversity models to fill gaps in our knowledge of biodiversity publication-title: Ecology Letters – volume: 35 start-page: 684 year: 2012 end-page: 692 article-title: Climate‐based empirical models show biased predictions of butterfly communities along environmental gradients publication-title: Ecography – volume: 159 start-page: 490 year: 2013 end-page: 500 article-title: Egypt's Protected Area network under future climate change publication-title: Biological Conservation – volume: 18 start-page: 3149 year: 2012 end-page: 3159 article-title: Dynamic macroecology and the future for biodiversity publication-title: Global Change Biology – volume: 38 start-page: 1433 year: 2011 end-page: 1444 article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages publication-title: Journal of Biogeography – volume: 93 start-page: 110 year: 2001 end-page: 120 article-title: Environmentally constrained null models: site suitability as occupancy criterion publication-title: Oikos – volume: 41 start-page: 347 year: 2009 end-page: 361 article-title: Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps publication-title: Arctic, Antarctic, and Alpine Research – volume: 43 start-page: 393 year: 2006 end-page: 404 article-title: Spatial modelling of biodiversity at the community level publication-title: Journal of Applied Ecology – volume: 3 start-page: 157 year: 1992b end-page: 164 article-title: Assembly and response rules: two goals for predictive community ecology publication-title: Journal of Vegetation Science – volume: 13 start-page: 267 year: 2010 end-page: 283 article-title: A structured and dynamic framework to advance traits‐based theory and prediction in ecology publication-title: Ecology Letters – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling publication-title: Biological Reviews of the Cambridge Philosophical Society – volume: 314 start-page: 812 year: 2006 end-page: 814 article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity publication-title: Science – volume: 92 start-page: 507 year: 2011 end-page: 517 article-title: A strong test of a maximum entropy model of trait‐based community assembly publication-title: Ecology – volume: 199 start-page: 213 year: 1998 end-page: 227 article-title: A leaf‐height‐seed (LHS) plant ecology strategy scheme publication-title: Plant and Soil – volume: 21 start-page: 318 year: 2010b end-page: 331 article-title: Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities publication-title: Journal of Vegetation Science – volume: 60 start-page: 257 year: 2012 end-page: 271 article-title: The neutral–niche debate: a philosophical perspective publication-title: Acta Biotheoretica – volume: 18 start-page: 2995 year: 2012 end-page: 3003 article-title: Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages publication-title: Global Change Biology – volume: 440 start-page: 80 year: 2006 end-page: 82 article-title: Coral reef diversity refutes the neutral theory of biodiversity publication-title: Nature – volume: 12 start-page: 873 year: 2009 end-page: 886 article-title: Patterns and causes of species richness: a general simulation model for macroecology publication-title: Ecology Letters – volume: 24 start-page: 593 year: 2012 end-page: 606 article-title: Improving the prediction of plant species distribution and community composition by adding edaphic to topo‐climatic variables publication-title: Journal of Vegetation Science – volume: 6 start-page: 621 year: 1992a end-page: 626 article-title: A pragmatic approach to functional ecology publication-title: Functional Ecology – volume: 36 start-page: 1158 year: 2013 end-page: 1168 article-title: Predicting current and future community patterns of plant functional traits publication-title: Ecography – volume: 32 start-page: 369 year: 2009 end-page: 373 article-title: BIOMOD – a platform for ensemble forecasting of species distributions publication-title: Ecography – volume: 51 start-page: 335 year: 2003 end-page: 380 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Australian Journal of Botany – volume: 17 start-page: 1122 year: 2011 end-page: 1131 article-title: Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches publication-title: Diversity and Distributions – volume: 240 start-page: 1285 year: 1988 end-page: 1293 article-title: Measuring the accuracy of diagnostic systems publication-title: Science – volume: 32 start-page: 22 year: 2009 end-page: 33 article-title: Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods publication-title: Ecography – volume: 87 start-page: 111 year: 2012 end-page: 127 article-title: Ecological assembly rules in plant communities—approaches, patterns and prospects publication-title: Biological Reviews – volume: 7 start-page: e32586 year: 2012 article-title: Do stacked species distribution models reflect altitudinal diversity patterns? publication-title: PLoS ONE – volume: 21 start-page: 318 year: 2010a end-page: 331 article-title: Plant traits, species pools and the prediction of relative abundance in plant communities : a maximum entropy approach publication-title: Journal of Vegetation Science – volume: 222 start-page: 955 year: 2011 end-page: 963 article-title: Model based grouping of species across environmental gradients publication-title: Ecological Modelling – volume: 32 start-page: 1117 year: 2005 end-page: 1127 article-title: Environmental determinants of vascular plant species richness in the Austrian Alps publication-title: Journal of Biogeography – volume: 137 start-page: 27 year: 1991 end-page: 49 article-title: Energy and large‐scale patterns of animal‐ and plant‐species richness publication-title: The American Naturalist – volume: 158 start-page: 248 year: 2013 end-page: 257 article-title: Defining spatial conservation priorities in the face of land‐use and climate change publication-title: Biological Conservation – volume: 3 start-page: 4572 year: 2013 end-page: 4583 article-title: Combining food web and species distribution models for improved community projections publication-title: Ecology and Evolution – volume: 98 start-page: 604 year: 2010 end-page: 613 article-title: Intraspecific functional variability: extent, structure and sources of variation publication-title: Journal of Ecology – volume: 34 start-page: 31 year: 2011 end-page: 38 article-title: How well does presence‐only‐based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora publication-title: Ecography – volume: 119 start-page: 604 year: 2010 end-page: 609 article-title: Community assembly, natural selection and maximum entropy models publication-title: Oikos – volume: 39 start-page: 2163 year: 2012 end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: Journal of Biogeography – volume: 38 start-page: 79 year: 2014 end-page: 96 article-title: Very high‐resolution environmental predictors in species distribution models: moving beyond topography? publication-title: Progress in Physical Geography – volume: 6 start-page: 120 year: 2010 end-page: 123 article-title: Variation in habitat suitability does not always relate to variation in species’ plant functional traits publication-title: Biology Letters – volume: 91 start-page: 2514 year: 2010 end-page: 2521 article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions publication-title: Ecology – volume: 84 start-page: 3105 year: 2003 end-page: 3117 article-title: Energy, water, and broad‐scale geographic patterns of species richness publication-title: Ecology – volume: 113 start-page: 91 year: 2006 end-page: 105 article-title: Seed size and plant strategy across the whole life cycle publication-title: Oikos – volume: 32 start-page: 55 year: 2009 end-page: 65 article-title: Individualistic vs community modelling of species distributions under climate change publication-title: Ecography – volume: 23 start-page: 99 year: 2014 end-page: 112 article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models publication-title: Global Ecology and Biogeography – volume: 22 start-page: 52 year: 2013 end-page: 63 article-title: The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients publication-title: Global Ecology and Biogeography – volume: 15 start-page: 1291 year: 2012 end-page: 1299 article-title: A predictive model of community assembly that incorporates intraspecific trait variation publication-title: Ecology Letters – volume: 94 start-page: 671 year: 2013 end-page: 682 article-title: Horizontal, but not vertical, biotic interactions affect fine‐scale plant distribution patterns in a low‐energy system publication-title: Ecology – volume: 38 start-page: 1 year: 2010 end-page: 8 article-title: Improving species distribution models for climate change studies: variable selection and scale publication-title: Journal of Biogeography – volume: 161 start-page: 523 year: 2003 end-page: 536 article-title: A globally consistent richness–climate relationship for angiosperms publication-title: The American Naturalist – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology and Evolution – volume: 24 start-page: 8 year: 2009 end-page: 15 article-title: Beyond neutral science publication-title: Trends in Ecology and Evolution – volume: 94 start-page: 1913 year: 2013 end-page: 1919 article-title: To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models publication-title: Ecology – volume: 25 start-page: 325 year: 2010 end-page: 331 article-title: A framework for community interactions under climate change publication-title: Trends in Ecology and Evolution – volume: 28 start-page: 385 year: 2005 end-page: 393 article-title: Selecting thresholds of occurrence in the prediction of species distributions publication-title: Ecography – volume: 37 start-page: 1842 year: 2010 end-page: 1850 article-title: Do community‐level models describe community variation effectively? publication-title: Journal of Biogeography – volume: 108 start-page: 555 year: 2005 end-page: 561 article-title: Predictability of plant species composition from environmental conditions is constrained by dispersal limitation publication-title: Oikos – volume: 19 start-page: 2596 year: 2013 end-page: 2607 article-title: Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model publication-title: Global Change Biology – volume: 211 start-page: 351 year: 2010 end-page: 365 article-title: Plant traits co‐vary with altitude in grasslands and forests in the European Alps publication-title: Plant Ecology – volume: 41 start-page: 496 year: 1983 end-page: 506 article-title: Species‐energy theory: an extension of species‐area theory publication-title: Oikos – volume: 80 start-page: 311 year: 1997 end-page: 324 article-title: Co‐occurrence of Australian land birds: Diamond's assembly rules revisited publication-title: Oikos – volume: 24 start-page: 593 year: 2012 ident: e_1_2_7_18_1 article-title: Improving the prediction of plant species distribution and community composition by adding edaphic to topo‐climatic variables publication-title: Journal of Vegetation Science doi: 10.1111/jvs.12002 – ident: e_1_2_7_42_1 doi: 10.1111/j.0906-7590.2005.03957.x – ident: e_1_2_7_43_1 doi: 10.1371/journal.pone.0032586 – ident: e_1_2_7_60_1 doi: 10.1126/science.1131344 – ident: e_1_2_7_21_1 doi: 10.1016/j.biocon.2012.09.020 – ident: e_1_2_7_20_1 doi: 10.1016/j.ecolmodel.2010.11.030 – ident: e_1_2_7_52_1 doi: 10.1007/s11258-010-9794-x – ident: e_1_2_7_25_1 doi: 10.1016/j.tree.2010.03.002 – ident: e_1_2_7_58_1 doi: 10.1657/1938-4246-41.3.347 – ident: e_1_2_7_28_1 doi: 10.1111/j.1469-185X.2011.00187.x – ident: e_1_2_7_47_1 doi: 10.1111/j.0030-1299.2006.14194.x – ident: e_1_2_7_4_1 doi: 10.1111/j.1600-0587.2009.05832.x – ident: e_1_2_7_63_1 doi: 10.1111/j.1654-1103.2009.01145.x – ident: e_1_2_7_44_1 doi: 10.1111/j.1365-2745.2004.00838.x – ident: e_1_2_7_49_1 doi: 10.1890/10-0173.1 – ident: e_1_2_7_16_1 doi: 10.1111/j.1600-0587.2011.07140.x – ident: e_1_2_7_40_1 doi: 10.1890/12-1482.1 – ident: e_1_2_7_31_1 doi: 10.1890/03-8006 – ident: e_1_2_7_12_1 doi: 10.1016/j.tree.2008.09.004 – ident: e_1_2_7_27_1 doi: 10.1111/j.1461-0248.2009.01353.x – volume-title: The unified neutral theory of biodiversity and biogeography year: 2001 ident: e_1_2_7_34_1 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-2486.2012.02772.x – ident: e_1_2_7_30_1 doi: 10.1111/ele.12189 – ident: e_1_2_7_65_1 doi: 10.1111/j.1600-0587.2008.05742.x – ident: e_1_2_7_68_1 doi: 10.1007/s10441-012-9144-6 – ident: e_1_2_7_22_1 doi: 10.1111/gcb.12231 – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2745.2010.01651.x – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-2699.2011.02663.x – ident: e_1_2_7_62_1 doi: 10.1111/j.1654-1103.2009.01145.x – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2699.2012.02684.x – ident: e_1_2_7_69_1 doi: 10.1023/A:1004327224729 – ident: e_1_2_7_55_1 doi: 10.1034/j.1600-0706.2001.930112.x – ident: e_1_2_7_32_1 doi: 10.1890/04-0922 – ident: e_1_2_7_61_1 doi: 10.1890/10-0394.1 – ident: e_1_2_7_24_1 doi: 10.1086/368223 – ident: e_1_2_7_9_1 doi: 10.1111/j.1600-0587.2009.05856.x – ident: e_1_2_7_15_1 doi: 10.1038/nature04534 – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2699.2005.01265.x – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-2699.2010.02341.x – ident: e_1_2_7_13_1 doi: 10.1071/BT02124 – ident: e_1_2_7_45_1 doi: 10.1111/j.1461-0248.2011.01675.x – ident: e_1_2_7_57_1 doi: 10.1177/0309133313512667 – ident: e_1_2_7_51_1 doi: 10.1111/j.1654-109X.2007.tb00507.x – ident: e_1_2_7_59_1 doi: 10.1111/j.1600-0706.2009.17770.x – ident: e_1_2_7_37_1 doi: 10.2307/3235676 – ident: e_1_2_7_56_1 doi: 10.1111/j.1466-8238.2012.00790.x – ident: e_1_2_7_64_1 doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1461-0248.2012.01852.x – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-2486.2012.02760.x – ident: e_1_2_7_19_1 doi: 10.1111/j.1600-0587.2013.00237.x – ident: e_1_2_7_53_1 doi: 10.1111/j.1600-0587.2011.07047.x – ident: e_1_2_7_29_1 doi: 10.1111/j.1365-2699.2011.02550.x – ident: e_1_2_7_41_1 doi: 10.1016/j.biocon.2012.11.025 – ident: e_1_2_7_70_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_7_54_1 doi: 10.1002/ece3.843 – ident: e_1_2_7_71_1 doi: 10.2307/3544109 – ident: e_1_2_7_66_1 doi: 10.1098/rsbl.2009.0669 – ident: e_1_2_7_50_1 doi: 10.1111/j.0030-1299.2005.13632.x – ident: e_1_2_7_67_1 doi: 10.1111/j.1461-0248.2010.01444.x – ident: e_1_2_7_7_1 doi: 10.1111/j.1600-0587.2011.06919.x – ident: e_1_2_7_26_1 doi: 10.2307/3546599 – ident: e_1_2_7_6_1 doi: 10.1111/j.1600-0587.2010.06134.x – ident: e_1_2_7_14_1 doi: 10.1086/285144 – ident: e_1_2_7_17_1 doi: 10.1111/j.1472-4642.2011.00792.x – ident: e_1_2_7_8_1 doi: 10.1111/j.1365-2699.2010.02416.x – ident: e_1_2_7_35_1 doi: 10.1890/12-1322.1 – ident: e_1_2_7_23_1 doi: 10.1111/j.1365-2664.2006.01149.x – ident: e_1_2_7_36_1 doi: 10.2307/2389954 – ident: e_1_2_7_11_1 doi: 10.1111/geb.12102 |
SSID | ssj0009534 |
Score | 2.453733 |
Snippet | Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem... Aim Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem... Aim Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem... AIM: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem... |
SourceID | hal proquest crossref wiley jstor istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1255 |
SubjectTerms | Alps region biogeography Community composition Community ecology community structure Ecological function ecosystems filters functional ecology global change Grasslands leaf area Life Sciences macroecological models MEM prediction probability SDM SESAM framework species distribution models Species distribution models and analyses species diversity Species richness stacked-SDM Swiss Alps |
Title | Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models |
URI | https://api.istex.fr/ark:/67375/WNG-WH40VTD1-K/fulltext.pdf https://www.jstor.org/stable/44002147 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12485 https://www.proquest.com/docview/1689862350 https://www.proquest.com/docview/1710220290 https://hal.inrae.fr/hal-02640356 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgSXlq-KQEEGIdRLVnFi50OcWmhZCvSAWtoDkmU7Xm3Vkq12sxXl3v_dGedDuwgkxM3aTLTr7HjyXvL8BuC1Js9ya-NQGO6QoFgRFoXW4cgiNkZ8FEUlEcUvB-nwSOyfyJMVeNvthWn8IfoHbrQyfL2mBa7NbHGRm9MBJ0MurL-k1SJA9DVeMNxNGusoEqfFWdS6CnkVT3fm0r3o1piUkLfp4v7sxIlLsHMRvPq7z946fO9-dyM6ORvMazOwv36zdPzPid2HtRaVsu0mjR7Aiqsewp2mT-UVjnZtO7rbNk0fXz2Cay83YLRXE-k2w4I6prrJdFUyul02TxkZNaGoZ-xiSq-EfJazesIs4VJqT8EQvbsf5hzr2lIM7XthCF2xypT9d5Rk89t26GK-ic_sMRzt7R6-G4ZtV4fQSuQvYW7z1I2Qk48k15pUOKk1ViDRSUZZktkcq4wwjqhnmeoiFQZBn-FFKTHdcpMkG7BaTSr3BJgtED8mzpYaYR-PHYE9UcbS4ima6zyAre7_Vba1PKepnaue-phT5a91AK_60IvG5-OPQZgk_XFy5h5uf1b0GVJZESUyveQBvPE51Ifp6Rmp5zKpjg8-qOOhiL4dvufqUwAbPsn6QCG8g10WwGaXdaqtKDPF07xA9pnIKICX_WGsBfSCR1duMscYgotxFBcYs-VT7O9zUfs7H_3g6b-HPoN7iBdlo1behNV6OnfPEZPV5oVffDe2QDD7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVQuvCtSChiEUC9Z5eG8JC6FtqTtdg9oS3upLNvxaqu22Wo3iyh3_jczzkO7CCTEzUomSpyMx9_njL8BeCdJs1zrwOXKN0hQNHezTEp3pBEbIz7yvIKI4skgzk_50Xl0vgIf2r0wtT5Et-BGI8PGaxrgtCC9OMrVZc8nRa5VWKeK3lS_YO9LsCC5G9biUZSeFiReoytk83jaS5dmo9Ux5UKu0-v93qYnLgHPRfhq55-Dh3DRPnmddnLVm1eqp3_8Jur4v117BA8aYMp2a096DCumfAL36lKVd9ja101ro6mbPr57Cj9txgGj7ZrIuBnG1DGFTibLgtGMWS80MqpDUc3Y7ZT-CllHZ9WEaYKmVKGCIYA3N-oaQ9uSDW19YYheMdAU3T0KUvptinQxW8dn9gxOD_aHn3K3Kezg6ggpjJvqNDYjpOWjyJeSEnFirTRHrhOOkjDRKQYargyxzyKWWcwV4j7lZ0WEHpeqMNyEtXJSmufAdIYQMjS6kIj8_MAQ3uNFEGm8RPoydWCn_cBCN6rn1LVr0bEfdSnsu3bgbWd6W0t9_NEIvaQ7T-Lc-W5f0DFks9wLo_ib78B760SdmZxeUQJdEomzwWdxlnPv63DPF8cObFov6ww5tyJ2iQPbrduJJqjMhB-nGRLQMPIceNOdxnBA_3hkaSZztCHEGHhBhjY71sf-3hdx9PHQNrb-3fQ1bOTDk77oHw6OX8B9hI9Rnby8DWvVdG5eIkSr1Cs7En8Bow81FQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB71ENAX7gqXAgtCqC-OfKwv8VRoQ3oQIdTSPlRa7a7XStXiRImDKO_8b2bWhxIEEuJtFY9lrzMz-3327DcAryVplmsduFz5BgmK5m6WSekWGrEx4iPPy4kofhzGg1N-eB6dr8Dbdi9MrQ_RvXCjyLD5mgJ8kheLQa4uez4Jcq3COo8xWAgRfQ4WFHfDWjuKqtOCxGtkhWwZT3vq0mK0OqJSyHV6ut_b6sQl3LmIXu3y078HF-2N11UnV715pXr6x2-ajv85s_twt4GlbLf2owewYsqHcKtuVHmDo33djO40XdNHN4_gp603YLRZE_k2w4w6osTJZJkzWi_r14yMulBUMzaZ0jch6-asGjNNwJT6UzCE7-arusbEtmRDG18YYldMM3l3jZx0fpsWXcx28Zk9htP-_sn7gdu0dXB1hATGTXUamwJJeRH5UlIZTqyV5sh0wiIJE51imuHKEPfMY5nFXCHqU36WR-hvqQrDTVgrx6V5AkxnCCBDo3OJuM8PDKE9ngeRxlOkL1MHdtr_V-hG85ymdi067qMuhX3WDrzqTCe10McfjdBJuuMkzT3YPRb0G3JZ7oVR_M134I31oc5MTq-ofC6JxNnwgzgbcO_LyZ4vjhzYtE7WGXJuJewSB7ZbrxNNSpkJP04zpJ9h5DnwsjuMyYC-8MjSjOdoQ3gx8IIMbXasi_19LuLw3YEdbP276Qu4_WmvL44PhkdPYQOxY1RXLm_DWjWdm2eIzyr13MbhL_sjM80 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+species+richness+and+functional+traits+predictions+to+constrain+assemblage+predictions+from+stacked+species+distribution+models&rft.jtitle=Journal+of+biogeography&rft.au=d%27Amen%2C+Manuela&rft.au=Dubuis%2C+Anne&rft.au=Fernandes%2C+Rui+F.&rft.au=Pottier%2C+Julien&rft.date=2015-07-01&rft.pub=Wiley&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=42&rft.issue=7&rft.spage=1255&rft.epage=1266&rft_id=info:doi/10.1111%2Fjbi.12485&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02640356v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |