Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models

Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 42; no. 7; pp. 1255 - 1266
Main Authors D'Amen, Manuela, Dubuis, Anne, Fernandes, Rui F., Pottier, Julien, Pellissier, Loïc, Guisan, Antoine
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.07.2015
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text
ISSN0305-0270
1365-2699
DOI10.1111/jbi.12485

Cover

Loading…
Abstract Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, SSDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a 'probability ranking' rule based on species richness predictions and rough probabilities from SDMs, and a 'trait range' rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the 'probability ranking' rule allowed slight but significant improvements in the predictions of community composition. Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
AbstractList AIM: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, S‐SDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. LOCATION: The western Swiss Alps. METHODS: Two implementations of the SESAM framework were tested: a ‘probability ranking’ rule based on species richness predictions and rough probabilities from SDMs, and a ‘trait range’ rule that uses the predicted upper and lower bound of community‐level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. RESULTS: We showed that all independent constraints contributed to reduce species richness overprediction. Only the ‘probability ranking’ rule allowed slight but significant improvements in the predictions of community composition. MAIN CONCLUSIONS: We tested various implementations of the SESAM framework by integrating macroecological constraints into S‐SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Aim Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, S‐SDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location The western Swiss Alps. Methods Two implementations of the SESAM framework were tested: a ‘probability ranking’ rule based on species richness predictions and rough probabilities from SDMs, and a ‘trait range’ rule that uses the predicted upper and lower bound of community‐level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results We showed that all independent constraints contributed to reduce species richness overprediction. Only the ‘probability ranking’ rule allowed slight but significant improvements in the predictions of community composition. Main conclusions We tested various implementations of the SESAM framework by integrating macroecological constraints into S‐SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, SSDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a 'probability ranking' rule based on species richness predictions and rough probabilities from SDMs, and a 'trait range' rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the 'probability ranking' rule allowed slight but significant improvements in the predictions of community composition. Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Author Fernandes, Rui F.
Pottier, Julien
D'Amen, Manuela
Pellissier, Loïc
Guisan, Antoine
Dubuis, Anne
Author_xml – sequence: 1
  givenname: Manuela
  surname: D'Amen
  fullname: D'Amen, Manuela
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
– sequence: 2
  givenname: Anne
  surname: Dubuis
  fullname: Dubuis, Anne
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
– sequence: 3
  givenname: Rui F.
  surname: Fernandes
  fullname: Fernandes, Rui F.
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
– sequence: 4
  givenname: Julien
  surname: Pottier
  fullname: Pottier, Julien
  organization: INRA, Grassland Ecosystem Research Unit (UREP), 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France
– sequence: 5
  givenname: Loïc
  surname: Pellissier
  fullname: Pellissier, Loïc
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
– sequence: 6
  givenname: Antoine
  surname: Guisan
  fullname: Guisan, Antoine
  email: Correspondence: Antoine Guisan, Department of Ecology and Evolution, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland., antoine.guisan@unil.ch
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
BackLink https://hal.inrae.fr/hal-02640356$$DView record in HAL
BookMark eNp1kc1u1DAUhS1UJKYtCx4AyRIbukjr_yTLUkqnZQSbli4tx3FaT5N48E2APgDvjdO0g0DghS3d853rq3t20U4feofQK0oOaTpH68ofUiYK-QwtKFcyY6osd9CCcCIzwnLyAu0CrAkhpeRigX5ege9vMGyc9Q5w9Pa2dwDY9DVuxt4OPvSmxUM0fgC8ia72DzXAQ8A2vZPSYwPguqo1N-4PpomhwzAYe-fq7R-1TyZfjROCu1C7FvbR88a04F4-vnvo6sPp5ckyW30-Oz85XmVWMimzwhbKNSXJG0mNkYyUylZWUFrwJue5LTgtROVYumtlSiUqxllFy1pWzhYV53voYO57a1q9ib4z8V4H4_XyeKWnGmFKEC7VN5rYtzO7ieHr6GDQnQfr2tb0LoygaU4JY4SVJKFv_kLXYYxpb4lSRVkoxuVEHc2UjQEgukZbP5hpC9MOW02JniLUKUL9EOHvcbeOp5n_xT52_-5bd_9_UF-8O39yvJ4daxhC3DqEIIRRkSc9m_WUl_ux1U280yptW-rrT2f6einIl8v3VH_kvwDdQMcW
CODEN JBIODN
CitedBy_id crossref_primary_10_1002_ece3_10007
crossref_primary_10_1002_ece3_2332
crossref_primary_10_1016_j_ecolmodel_2018_10_023
crossref_primary_10_1111_ecog_05811
crossref_primary_10_1016_j_ecolmodel_2020_108956
crossref_primary_10_1111_ddi_12607
crossref_primary_10_1111_2041_210X_13915
crossref_primary_10_1016_j_scitotenv_2020_139674
crossref_primary_10_1111_2041_210X_13312
crossref_primary_10_1016_j_ecolmodel_2022_110248
crossref_primary_10_1111_2041_210X_14203
crossref_primary_10_1016_j_biocon_2016_07_026
crossref_primary_10_1002_ecs2_3864
crossref_primary_10_1111_icad_12240
crossref_primary_10_1016_j_ecoinf_2018_09_002
crossref_primary_10_1111_geb_12580
crossref_primary_10_1038_s41598_019_39133_1
crossref_primary_10_1111_2041_210X_13041
crossref_primary_10_1111_ddi_12450
crossref_primary_10_1111_ddi_12890
crossref_primary_10_1002_ecs2_2838
crossref_primary_10_1016_j_ecolind_2019_105970
crossref_primary_10_1016_j_dsr2_2018_06_011
crossref_primary_10_1111_ddi_13505
crossref_primary_10_1111_jbi_13608
crossref_primary_10_3389_ffgc_2022_1022082
crossref_primary_10_1098_rstb_2023_0335
crossref_primary_10_1111_1365_2745_12801
crossref_primary_10_1111_ecog_03148
crossref_primary_10_1111_gcb_13628
crossref_primary_10_22201_ib_20078706e_2019_90_2829
crossref_primary_10_1002_ece3_9810
crossref_primary_10_1111_geb_13827
crossref_primary_10_1007_s10531_025_03040_x
crossref_primary_10_1016_j_biocon_2023_110197
crossref_primary_10_1890_15_0962_1
crossref_primary_10_1016_j_tree_2017_05_003
crossref_primary_10_1098_rstb_2021_0063
crossref_primary_10_1111_ecog_07346
crossref_primary_10_1007_s10531_020_02018_1
crossref_primary_10_1111_jbi_13535
crossref_primary_10_3389_ffgc_2019_00069
crossref_primary_10_1016_j_ecolind_2023_110306
crossref_primary_10_1111_ddi_70006
crossref_primary_10_3390_rs13132490
crossref_primary_10_1111_jbi_15072
crossref_primary_10_1007_s00267_023_01812_1
crossref_primary_10_1111_gcb_15637
crossref_primary_10_1111_geb_12967
crossref_primary_10_3389_fmars_2016_00202
crossref_primary_10_1016_j_foreco_2017_12_046
crossref_primary_10_1111_ele_12526
crossref_primary_10_1002_eap_2934
crossref_primary_10_1111_ddi_12548
crossref_primary_10_3389_fmars_2020_00131
crossref_primary_10_1111_ddi_13834
crossref_primary_10_1111_jbi_12825
crossref_primary_10_1002_aqc_3720
crossref_primary_10_1111_aec_12658
crossref_primary_10_1016_j_gecco_2018_e00513
crossref_primary_10_1111_2041_210X_12841
crossref_primary_10_3897_natureconservation_41_54265
crossref_primary_10_3390_land10010054
crossref_primary_10_1111_brv_12222
crossref_primary_10_1016_j_landurbplan_2020_103770
crossref_primary_10_1111_geb_12678
crossref_primary_10_1111_oik_09063
crossref_primary_10_1038_s41467_021_22506_4
crossref_primary_10_1007_s10531_018_1670_3
crossref_primary_10_1111_geb_12357
crossref_primary_10_1111_jbi_13948
crossref_primary_10_2989_1814232X_2020_1737573
crossref_primary_10_1111_ele_13980
crossref_primary_10_1111_ecog_02671
crossref_primary_10_1111_ecog_02990
crossref_primary_10_1111_oik_02792
crossref_primary_10_1111_1365_2745_13037
crossref_primary_10_15451_ec2022_06_11_15_1_24
crossref_primary_10_1111_1365_2664_13182
crossref_primary_10_1017_S0030605320000204
crossref_primary_10_1111_jbi_13078
crossref_primary_10_1111_2041_210X_12731
crossref_primary_10_1016_j_ecoinf_2019_03_005
crossref_primary_10_1111_jvs_12898
crossref_primary_10_1111_ecog_06272
crossref_primary_10_1007_s10584_019_02491_w
crossref_primary_10_1016_j_onehlt_2021_100299
crossref_primary_10_1111_tbed_14656
crossref_primary_10_1111_1365_2435_12666
crossref_primary_10_1111_gcb_17121
Cites_doi 10.1111/jvs.12002
10.1111/j.0906-7590.2005.03957.x
10.1371/journal.pone.0032586
10.1126/science.1131344
10.1016/j.biocon.2012.09.020
10.1016/j.ecolmodel.2010.11.030
10.1007/s11258-010-9794-x
10.1016/j.tree.2010.03.002
10.1657/1938-4246-41.3.347
10.1111/j.1469-185X.2011.00187.x
10.1111/j.0030-1299.2006.14194.x
10.1111/j.1600-0587.2009.05832.x
10.1111/j.1654-1103.2009.01145.x
10.1111/j.1365-2745.2004.00838.x
10.1890/10-0173.1
10.1111/j.1600-0587.2011.07140.x
10.1890/12-1482.1
10.1890/03-8006
10.1016/j.tree.2008.09.004
10.1111/j.1461-0248.2009.01353.x
10.1111/j.1365-2486.2012.02772.x
10.1111/ele.12189
10.1111/j.1600-0587.2008.05742.x
10.1007/s10441-012-9144-6
10.1111/gcb.12231
10.1111/j.1365-2745.2010.01651.x
10.1111/j.1365-2699.2011.02663.x
10.1111/j.1365-2699.2012.02684.x
10.1023/A:1004327224729
10.1034/j.1600-0706.2001.930112.x
10.1890/04-0922
10.1890/10-0394.1
10.1086/368223
10.1111/j.1600-0587.2009.05856.x
10.1038/nature04534
10.1111/j.1365-2699.2005.01265.x
10.1111/j.1365-2699.2010.02341.x
10.1071/BT02124
10.1111/j.1461-0248.2011.01675.x
10.1177/0309133313512667
10.1111/j.1654-109X.2007.tb00507.x
10.1111/j.1600-0706.2009.17770.x
10.2307/3235676
10.1111/j.1466-8238.2012.00790.x
10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
10.1111/j.1365-2664.2006.01214.x
10.1111/j.1461-0248.2012.01852.x
10.1111/j.1365-2486.2012.02760.x
10.1111/j.1600-0587.2013.00237.x
10.1111/j.1600-0587.2011.07047.x
10.1111/j.1365-2699.2011.02550.x
10.1016/j.biocon.2012.11.025
10.1111/j.1469-185X.2012.00235.x
10.1002/ece3.843
10.2307/3544109
10.1098/rsbl.2009.0669
10.1111/j.0030-1299.2005.13632.x
10.1111/j.1461-0248.2010.01444.x
10.1111/j.1600-0587.2011.06919.x
10.2307/3546599
10.1111/j.1600-0587.2010.06134.x
10.1086/285144
10.1111/j.1472-4642.2011.00792.x
10.1111/j.1365-2699.2010.02416.x
10.1890/12-1322.1
10.1111/j.1365-2664.2006.01149.x
10.2307/2389954
10.1111/geb.12102
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons Ltd.
2015 John Wiley & Sons Ltd
Copyright © 2015 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons Ltd.
– notice: 2015 John Wiley & Sons Ltd
– notice: Copyright © 2015 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
DOI 10.1111/jbi.12485
DatabaseName Istex
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
EndPage 1266
ExternalDocumentID oai_HAL_hal_02640356v1
3720078001
10_1111_jbi_12485
JBI12485
44002147
ark_67375_WNG_WH40VTD1_K
Genre article
GeographicLocations Alps region
GeographicLocations_xml – name: Alps region
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 31003A‐125145
– fundername: FP6 Ecochange project of the European Commission
  funderid: GOCE‐CT‐2007–036866
– fundername: Marie Curie Intra‐European Fellowship
  funderid: FP7‐PEOPLE‐2012‐IEF; SESAM‐ZOOL 327987
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AI.
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WRC
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
ID FETCH-LOGICAL-c5255-8c86ef907f51aa52096cbc41183f737c83184be2184d6a964b232b19d5bec8b33
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Fri May 09 12:21:14 EDT 2025
Fri Jul 11 18:24:06 EDT 2025
Fri Jul 25 12:14:51 EDT 2025
Tue Jul 01 01:14:10 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Wed Jan 22 16:57:24 EST 2025
Thu Jul 03 22:32:05 EDT 2025
Wed Oct 30 10:00:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords sesam framework
mem
species distribution models
community ecology
functional ecology
stacked sdm
swiss alps
macroecological models
sdm
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5255-8c86ef907f51aa52096cbc41183f737c83184be2184d6a964b232b19d5bec8b33
Notes Marie Curie Intra-European Fellowship - No. FP7-PEOPLE-2012-IEF; No. SESAM-ZOOL 327987
ark:/67375/WNG-WH40VTD1-K
Appendix S1 Assemblage evaluation metrics and supplementary results. Appendix S2 Evaluation results for SDMs and MEMs. Appendix S3 Comparison of the assemblage predictions coming from the application of trait range rule with three pairs of percentiles.
ArticleID:JBI12485
istex:CCBBB5033C87FFACD6D6AD0B873A97201D32F2F3
FP6 Ecochange project of the European Commission - No. GOCE-CT-2007-036866
Swiss National Science Foundation - No. 31003A-125145
Editor: Miles Silman
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4223-3609
0000-0002-2289-8259
0000-0002-3998-4815
OpenAccessLink https://serval.unil.ch/resource/serval:BIB_D712019FA27F.P001/REF.pdf
PQID 1689862350
PQPubID 1086398
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_02640356v1
proquest_miscellaneous_1710220290
proquest_journals_1689862350
crossref_citationtrail_10_1111_jbi_12485
crossref_primary_10_1111_jbi_12485
wiley_primary_10_1111_jbi_12485_JBI12485
jstor_primary_44002147
istex_primary_ark_67375_WNG_WH40VTD1_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationTitleAlternate J. Biogeogr
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112.
Dubuis, A., Rossier, L., Pottier, J., Pellissier, L. & Guisan, A. (2013) Predicting current and future community patterns of plant functional traits. Ecography, 36, 1158-1168.
Mokany, K., Harwood, T.D., Williams, K.J. & Ferrier, S. (2012) Dynamic macroecology and the future for biodiversity. Global Change Biology, 18, 3149-3159.
Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G. & Poorter, H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
Dunstan, P.K., Foster, S.D. & Darnell, R. (2011) Model based grouping of species across environmental gradients. Ecological Modelling, 222, 955-963.
Wennekes, P., Rosindell, J. & Etienne, R. (2012) The neutral-niche debate: a philosophical perspective. Acta Biotheoretica, 60, 257-271.
Thuiller, W., Albert, C.H., Dubuis, A., Randin, C. & Guisan, A. (2010) Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biology Letters, 6, 120-123.
Hortal, J., De Marco, P., Santos, A.M.C. & Diniz-Filho, J.A.F. (2012) Integrating biogeographical processes and local community assembly. Journal of Biogeography, 39, 627-628.
Baselga, A. & Araújo, M.B. (2009) Individualistic vs community modelling of species distributions under climate change. Ecography, 32, 55-65.
Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. (2012) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science, 24, 593-606.
Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
Pellissier, L., Rohr, R.P., Ndiribe, C., Pradervand, J.-N., Salamin, N., Guisan, A. & Wisz, M. (2013) Combining food web and species distribution models for improved community projections. Ecology and Evolution, 3, 4572-4583.
Keddy, P.A. (1992b) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164.
Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444.
Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006) Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82.
Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586.
Sonnier, G., Shipley, B. & Navas, M. (2010a) Plant traits, species pools and the prediction of relative abundance in plant communities : a maximum entropy approach. Journal of Vegetation Science, 21, 318-331.
Aranda, S.C. & Lobo, J.M. (2011) How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography, 34, 31-38.
Clark, J.S. (2009) Beyond neutral science. Trends in Ecology and Evolution, 24, 8-15.
Ovaskainen, O., Hottola, J. & Siitonen, J. (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
Westoby, M. (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
Fernandes, J.A., Cheung, W.W., Jennings, S., Butenschon, M., de Mora, L., Frolicher, T.L. & Grant, A. (2013) Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biology, 19, 2596-2607.
Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography, 35, 684-692.
Francis, A.P. & Currie, D.J. (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536.
Pellissier, L., Fournier, B., Guisan, A. & Vittoz, P. (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 211, 351-365.
Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I. & LeRoy Poff, N. (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283.
Moles, A.T. & Westoby, M. (2006) Seed size and plant strategy across the whole life cycle. Oikos, 113, 91-105.
Shipley, B. (2010) Community assembly, natural selection and maximum entropy models. Oikos, 119, 604-609.
Moser, D., Dullinger, S., Englisch, T., Niklfeld, H., Plutzar, C., Sauberer, N., Zechmeister, H.G. & Grabherr, G. (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32, 1117-1127.
Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews of the Cambridge Philosophical Society, 88, 15-30.
Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131.
Gotelli, N.J., Buckley, N.J. & Wiens, J.A. (1997) Co-occurrence of Australian land birds: Diamond's assembly rules revisited. Oikos, 80, 311-324.
Guisan, A., Tingley, R., Baumgartner, J.B. et al. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435.
Pakeman, R.J. & Quested, H.M. (2007) Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science, 10, 91-96.
Keddy, P.A. (1992a) A pragmatic approach to functional ecology. Functional Ecology, 6, 621-626.
Laughlin, D.C., Joshi, C., van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299.
Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178.
Baselga, A. & Araújo, M.B. (2010) Do community-level models describe community variation effectively? Journal of Biogeography, 37, 1842-1850.
Liu, C.R., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ.
Mokany, K., Harwood, T.D., Overton, J.M., Barker, G.M. & Ferrier, S. (2011) Combining α- and β-diversity models to fill gaps in our knowledge of biodiversity. Ecology Letters, 14, 1043-1051.
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
Shipley, B., Vile, D. & Garnier, E. (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812-814.
Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P. & Guisan, A. (2013) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52-63.
Austin, M.P. & Van Niel, K.P. (2010) Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38, 1-8.
Le Roux, P.C., Lenoir, J., Pellissier, L., Wisz, M.S. & Luoto, M. (2013) Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low-energy system. Ecology, 94, 671-682.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
Hui, F.C.K., Warton, D.I., Foster, S.D. & Dunstan, P.K. (2013) To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models. Ecology, 94, 1913-1919.
Ozinga, W.A., Schaminée, J.H.J., Bekker, R.M., Bonn, S., Poschlod, P. & Tackelberg, O. (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108, 555-561.
Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404.
Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
Götzenberger, L., De Bello, F., Anne Bråthen, K., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K. & Zobel, M. (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 87, 111-127.
Shipley, B., Laughlin, D.C., Sonnier, G. & Ottinowski, R. (2011) A strong test of a maximum entropy model of trait-based community assembly. Ecology, 92, 507-517.
Araújo, M.B., Rozenfeld, A., Rahbek, C. & Marquet, P.A.
1997; 80
2012; 60
2010; 98
2001; 93
2013; 3
2009; 41
2010; 13
2013; 22
2012; 18
2012; 15
2011; 14
2011; 17
1998; 199
2003; 51
2005; 28
2014; 23
2013; 19
2009; 12
1992b; 3
2010; 25
2013; 16
2001
2010; 119
2006; 21
2013; 94
2013; 159
2003; 161
2005; 108
2006; 440
2013; 158
2005; 75
2005; 32
2012; 24
2003; 84
2010; 6
2009; 24
2010; 38
2010; 37
2013; 88
2011; 34
2012; 39
1988; 240
2006; 314
2012; 35
2011; 38
2007; 10
1991; 137
1992a; 6
2006; 113
2013; 36
2009; 32
2006; 43
2010a; 21
2011; 92
2010; 211
2014; 38
1983; 41
2012; 7
2010; 91
2010b; 21
2011; 222
2012; 87
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hubbell S.P. (e_1_2_7_34_1) 2001
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Dubuis A. (e_1_2_7_18_1) 2012; 24
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography, 35, 684-692.
– reference: Aranda, S.C. & Lobo, J.M. (2011) How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography, 34, 31-38.
– reference: Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006) Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82.
– reference: Shipley, B. (2010) Community assembly, natural selection and maximum entropy models. Oikos, 119, 604-609.
– reference: Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
– reference: Götzenberger, L., De Bello, F., Anne Bråthen, K., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K. & Zobel, M. (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 87, 111-127.
– reference: Pellissier, L., Fournier, B., Guisan, A. & Vittoz, P. (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 211, 351-365.
– reference: Albouy, C., Guilhaumon, F., Araújo, M.B., Mouillot, D. & Leprieur, F. (2012) Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages. Global Change Biology, 18, 2995-3003.
– reference: Baselga, A. & Araújo, M.B. (2009) Individualistic vs community modelling of species distributions under climate change. Ecography, 32, 55-65.
– reference: Le Roux, P.C., Lenoir, J., Pellissier, L., Wisz, M.S. & Luoto, M. (2013) Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low-energy system. Ecology, 94, 671-682.
– reference: Shipley, B., Vile, D. & Garnier, E. (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812-814.
– reference: Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178.
– reference: Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C.F. (2014) Very high-resolution environmental predictors in species distribution models: moving beyond topography? Progress in Physical Geography, 38, 79-96.
– reference: Clark, J.S. (2009) Beyond neutral science. Trends in Ecology and Evolution, 24, 8-15.
– reference: Mokany, K., Harwood, T.D., Williams, K.J. & Ferrier, S. (2012) Dynamic macroecology and the future for biodiversity. Global Change Biology, 18, 3149-3159.
– reference: Peres-Neto, P.R., Olden, J.D. & Jackson, D.A. (2001) Environmentally constrained null models: site suitability as occupancy criterion. Oikos, 93, 110-120.
– reference: Ozinga, W.A., Schaminée, J.H.J., Bekker, R.M., Bonn, S., Poschlod, P. & Tackelberg, O. (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108, 555-561.
– reference: Keddy, P.A. (1992a) A pragmatic approach to functional ecology. Functional Ecology, 6, 621-626.
– reference: Thuiller, W., Albert, C.H., Dubuis, A., Randin, C. & Guisan, A. (2010) Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biology Letters, 6, 120-123.
– reference: Wright, D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506.
– reference: Laughlin, D.C., Joshi, C., van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299.
– reference: Hortal, J., De Marco, P., Santos, A.M.C. & Diniz-Filho, J.A.F. (2012) Integrating biogeographical processes and local community assembly. Journal of Biogeography, 39, 627-628.
– reference: Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33.
– reference: Guisan, A., Tingley, R., Baumgartner, J.B. et al. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435.
– reference: Fernandes, J.A., Cheung, W.W., Jennings, S., Butenschon, M., de Mora, L., Frolicher, T.L. & Grant, A. (2013) Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biology, 19, 2596-2607.
– reference: Moles, A.T. & Westoby, M. (2006) Seed size and plant strategy across the whole life cycle. Oikos, 113, 91-105.
– reference: Austin, M.P. & Van Niel, K.P. (2010) Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38, 1-8.
– reference: Hui, F.C.K., Warton, D.I., Foster, S.D. & Dunstan, P.K. (2013) To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models. Ecology, 94, 1913-1919.
– reference: Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. (2012) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science, 24, 593-606.
– reference: Ovaskainen, O., Hottola, J. & Siitonen, J. (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521.
– reference: Araújo, M.B., Rozenfeld, A., Rahbek, C. & Marquet, P.A. (2011) Using species co-occurrence networks to assess the impacts of climate change. Ecography, 34, 897-908.
– reference: Douma, J.C., Witte, J.-P.M., Aerts, R., Bartholomeus, R.P., Ordoñez, J.C., Venterink, H.O., Wassen, M.J. & van Bodegom, P.M. (2012) Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models. Ecography, 35, 294-305.
– reference: Faleiro, F.V., Machado, R.B. & Loyola, R.D. (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation, 158, 248-257.
– reference: Francis, A.P. & Currie, D.J. (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536.
– reference: Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I. & LeRoy Poff, N. (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283.
– reference: Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews of the Cambridge Philosophical Society, 88, 15-30.
– reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
– reference: Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112.
– reference: Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ.
– reference: Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G. & Poorter, H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
– reference: Gilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. & Holt, R.D. (2010) A framework for community interactions under climate change. Trends in Ecology and Evolution, 25, 325-331.
– reference: Leach, K., Zalat, S. & Gilbert, F. (2013) Egypt's Protected Area network under future climate change. Biological Conservation, 159, 490-500.
– reference: Sonnier, G., Shipley, B. & Navas, M.L. (2010b) Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science, 21, 318-331.
– reference: Mokany, K., Harwood, T.D., Overton, J.M., Barker, G.M. & Ferrier, S. (2011) Combining α- and β-diversity models to fill gaps in our knowledge of biodiversity. Ecology Letters, 14, 1043-1051.
– reference: Pellissier, L., Rohr, R.P., Ndiribe, C., Pradervand, J.-N., Salamin, N., Guisan, A. & Wisz, M. (2013) Combining food web and species distribution models for improved community projections. Ecology and Evolution, 3, 4572-4583.
– reference: Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P. & Guisan, A. (2013) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52-63.
– reference: Wennekes, P., Rosindell, J. & Etienne, R. (2012) The neutral-niche debate: a philosophical perspective. Acta Biotheoretica, 60, 257-271.
– reference: Hooper, D.U., Chapin, F.S., III, Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J. & Wardle, D.A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
– reference: Randin, C.F., Vuissoz, G., Liston, G.E., Vittoz, P. & Guisan, A. (2009) Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps. Arctic, Antarctic, and Alpine Research, 41, 347-361.
– reference: Gotelli, N.J., Buckley, N.J. & Wiens, J.A. (1997) Co-occurrence of Australian land birds: Diamond's assembly rules revisited. Oikos, 80, 311-324.
– reference: Shipley, B., Laughlin, D.C., Sonnier, G. & Ottinowski, R. (2011) A strong test of a maximum entropy model of trait-based community assembly. Ecology, 92, 507-517.
– reference: Sonnier, G., Shipley, B. & Navas, M. (2010a) Plant traits, species pools and the prediction of relative abundance in plant communities : a maximum entropy approach. Journal of Vegetation Science, 21, 318-331.
– reference: Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
– reference: Dunstan, P.K., Foster, S.D. & Darnell, R. (2011) Model based grouping of species across environmental gradients. Ecological Modelling, 222, 955-963.
– reference: Keddy, P.A. (1992b) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164.
– reference: Pakeman, R.J. & Quested, H.M. (2007) Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science, 10, 91-96.
– reference: Dubuis, A., Rossier, L., Pottier, J., Pellissier, L. & Guisan, A. (2013) Predicting current and future community patterns of plant functional traits. Ecography, 36, 1158-1168.
– reference: Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404.
– reference: Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444.
– reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
– reference: Moser, D., Dullinger, S., Englisch, T., Niklfeld, H., Plutzar, C., Sauberer, N., Zechmeister, H.G. & Grabherr, G. (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32, 1117-1127.
– reference: Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
– reference: Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. & Lavorel, S. (2010) Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613.
– reference: Baselga, A. & Araújo, M.B. (2010) Do community-level models describe community variation effectively? Journal of Biogeography, 37, 1842-1850.
– reference: Gotelli, N.J., Anderson, M.J., Arita, H.T. et al. (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873-886.
– reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
– reference: Liu, C.R., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
– reference: Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131.
– reference: Westoby, M. (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
– reference: Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586.
– volume: 34
  start-page: 897
  year: 2011
  end-page: 908
  article-title: Using species co‐occurrence networks to assess the impacts of climate change
  publication-title: Ecography
– volume: 39
  start-page: 627
  year: 2012
  end-page: 628
  article-title: Integrating biogeographical processes and local community assembly
  publication-title: Journal of Biogeography
– volume: 75
  start-page: 3
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge
  publication-title: Ecological Monographs
– volume: 10
  start-page: 91
  year: 2007
  end-page: 96
  article-title: Sampling plant functional traits: what proportion of the species need to be measured?
  publication-title: Applied Vegetation Science
– volume: 16
  start-page: 1424
  year: 2013
  end-page: 1435
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 35
  start-page: 294
  year: 2012
  end-page: 305
  article-title: Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models
  publication-title: Ecography
– year: 2001
– volume: 14
  start-page: 1043
  year: 2011
  end-page: 1051
  article-title: Combining α‐ and β‐diversity models to fill gaps in our knowledge of biodiversity
  publication-title: Ecology Letters
– volume: 35
  start-page: 684
  year: 2012
  end-page: 692
  article-title: Climate‐based empirical models show biased predictions of butterfly communities along environmental gradients
  publication-title: Ecography
– volume: 159
  start-page: 490
  year: 2013
  end-page: 500
  article-title: Egypt's Protected Area network under future climate change
  publication-title: Biological Conservation
– volume: 18
  start-page: 3149
  year: 2012
  end-page: 3159
  article-title: Dynamic macroecology and the future for biodiversity
  publication-title: Global Change Biology
– volume: 38
  start-page: 1433
  year: 2011
  end-page: 1444
  article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages
  publication-title: Journal of Biogeography
– volume: 93
  start-page: 110
  year: 2001
  end-page: 120
  article-title: Environmentally constrained null models: site suitability as occupancy criterion
  publication-title: Oikos
– volume: 41
  start-page: 347
  year: 2009
  end-page: 361
  article-title: Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 43
  start-page: 393
  year: 2006
  end-page: 404
  article-title: Spatial modelling of biodiversity at the community level
  publication-title: Journal of Applied Ecology
– volume: 3
  start-page: 157
  year: 1992b
  end-page: 164
  article-title: Assembly and response rules: two goals for predictive community ecology
  publication-title: Journal of Vegetation Science
– volume: 13
  start-page: 267
  year: 2010
  end-page: 283
  article-title: A structured and dynamic framework to advance traits‐based theory and prediction in ecology
  publication-title: Ecology Letters
– volume: 88
  start-page: 15
  year: 2013
  end-page: 30
  article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling
  publication-title: Biological Reviews of the Cambridge Philosophical Society
– volume: 314
  start-page: 812
  year: 2006
  end-page: 814
  article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity
  publication-title: Science
– volume: 92
  start-page: 507
  year: 2011
  end-page: 517
  article-title: A strong test of a maximum entropy model of trait‐based community assembly
  publication-title: Ecology
– volume: 199
  start-page: 213
  year: 1998
  end-page: 227
  article-title: A leaf‐height‐seed (LHS) plant ecology strategy scheme
  publication-title: Plant and Soil
– volume: 21
  start-page: 318
  year: 2010b
  end-page: 331
  article-title: Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities
  publication-title: Journal of Vegetation Science
– volume: 60
  start-page: 257
  year: 2012
  end-page: 271
  article-title: The neutral–niche debate: a philosophical perspective
  publication-title: Acta Biotheoretica
– volume: 18
  start-page: 2995
  year: 2012
  end-page: 3003
  article-title: Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages
  publication-title: Global Change Biology
– volume: 440
  start-page: 80
  year: 2006
  end-page: 82
  article-title: Coral reef diversity refutes the neutral theory of biodiversity
  publication-title: Nature
– volume: 12
  start-page: 873
  year: 2009
  end-page: 886
  article-title: Patterns and causes of species richness: a general simulation model for macroecology
  publication-title: Ecology Letters
– volume: 24
  start-page: 593
  year: 2012
  end-page: 606
  article-title: Improving the prediction of plant species distribution and community composition by adding edaphic to topo‐climatic variables
  publication-title: Journal of Vegetation Science
– volume: 6
  start-page: 621
  year: 1992a
  end-page: 626
  article-title: A pragmatic approach to functional ecology
  publication-title: Functional Ecology
– volume: 36
  start-page: 1158
  year: 2013
  end-page: 1168
  article-title: Predicting current and future community patterns of plant functional traits
  publication-title: Ecography
– volume: 32
  start-page: 369
  year: 2009
  end-page: 373
  article-title: BIOMOD – a platform for ensemble forecasting of species distributions
  publication-title: Ecography
– volume: 51
  start-page: 335
  year: 2003
  end-page: 380
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 17
  start-page: 1122
  year: 2011
  end-page: 1131
  article-title: Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches
  publication-title: Diversity and Distributions
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
– volume: 32
  start-page: 22
  year: 2009
  end-page: 33
  article-title: Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods
  publication-title: Ecography
– volume: 87
  start-page: 111
  year: 2012
  end-page: 127
  article-title: Ecological assembly rules in plant communities—approaches, patterns and prospects
  publication-title: Biological Reviews
– volume: 7
  start-page: e32586
  year: 2012
  article-title: Do stacked species distribution models reflect altitudinal diversity patterns?
  publication-title: PLoS ONE
– volume: 21
  start-page: 318
  year: 2010a
  end-page: 331
  article-title: Plant traits, species pools and the prediction of relative abundance in plant communities : a maximum entropy approach
  publication-title: Journal of Vegetation Science
– volume: 222
  start-page: 955
  year: 2011
  end-page: 963
  article-title: Model based grouping of species across environmental gradients
  publication-title: Ecological Modelling
– volume: 32
  start-page: 1117
  year: 2005
  end-page: 1127
  article-title: Environmental determinants of vascular plant species richness in the Austrian Alps
  publication-title: Journal of Biogeography
– volume: 137
  start-page: 27
  year: 1991
  end-page: 49
  article-title: Energy and large‐scale patterns of animal‐ and plant‐species richness
  publication-title: The American Naturalist
– volume: 158
  start-page: 248
  year: 2013
  end-page: 257
  article-title: Defining spatial conservation priorities in the face of land‐use and climate change
  publication-title: Biological Conservation
– volume: 3
  start-page: 4572
  year: 2013
  end-page: 4583
  article-title: Combining food web and species distribution models for improved community projections
  publication-title: Ecology and Evolution
– volume: 98
  start-page: 604
  year: 2010
  end-page: 613
  article-title: Intraspecific functional variability: extent, structure and sources of variation
  publication-title: Journal of Ecology
– volume: 34
  start-page: 31
  year: 2011
  end-page: 38
  article-title: How well does presence‐only‐based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora
  publication-title: Ecography
– volume: 119
  start-page: 604
  year: 2010
  end-page: 609
  article-title: Community assembly, natural selection and maximum entropy models
  publication-title: Oikos
– volume: 39
  start-page: 2163
  year: 2012
  end-page: 2178
  article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents
  publication-title: Journal of Biogeography
– volume: 38
  start-page: 79
  year: 2014
  end-page: 96
  article-title: Very high‐resolution environmental predictors in species distribution models: moving beyond topography?
  publication-title: Progress in Physical Geography
– volume: 6
  start-page: 120
  year: 2010
  end-page: 123
  article-title: Variation in habitat suitability does not always relate to variation in species’ plant functional traits
  publication-title: Biology Letters
– volume: 91
  start-page: 2514
  year: 2010
  end-page: 2521
  article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions
  publication-title: Ecology
– volume: 84
  start-page: 3105
  year: 2003
  end-page: 3117
  article-title: Energy, water, and broad‐scale geographic patterns of species richness
  publication-title: Ecology
– volume: 113
  start-page: 91
  year: 2006
  end-page: 105
  article-title: Seed size and plant strategy across the whole life cycle
  publication-title: Oikos
– volume: 32
  start-page: 55
  year: 2009
  end-page: 65
  article-title: Individualistic vs community modelling of species distributions under climate change
  publication-title: Ecography
– volume: 23
  start-page: 99
  year: 2014
  end-page: 112
  article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models
  publication-title: Global Ecology and Biogeography
– volume: 22
  start-page: 52
  year: 2013
  end-page: 63
  article-title: The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients
  publication-title: Global Ecology and Biogeography
– volume: 15
  start-page: 1291
  year: 2012
  end-page: 1299
  article-title: A predictive model of community assembly that incorporates intraspecific trait variation
  publication-title: Ecology Letters
– volume: 94
  start-page: 671
  year: 2013
  end-page: 682
  article-title: Horizontal, but not vertical, biotic interactions affect fine‐scale plant distribution patterns in a low‐energy system
  publication-title: Ecology
– volume: 38
  start-page: 1
  year: 2010
  end-page: 8
  article-title: Improving species distribution models for climate change studies: variable selection and scale
  publication-title: Journal of Biogeography
– volume: 161
  start-page: 523
  year: 2003
  end-page: 536
  article-title: A globally consistent richness–climate relationship for angiosperms
  publication-title: The American Naturalist
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology and Evolution
– volume: 24
  start-page: 8
  year: 2009
  end-page: 15
  article-title: Beyond neutral science
  publication-title: Trends in Ecology and Evolution
– volume: 94
  start-page: 1913
  year: 2013
  end-page: 1919
  article-title: To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models
  publication-title: Ecology
– volume: 25
  start-page: 325
  year: 2010
  end-page: 331
  article-title: A framework for community interactions under climate change
  publication-title: Trends in Ecology and Evolution
– volume: 28
  start-page: 385
  year: 2005
  end-page: 393
  article-title: Selecting thresholds of occurrence in the prediction of species distributions
  publication-title: Ecography
– volume: 37
  start-page: 1842
  year: 2010
  end-page: 1850
  article-title: Do community‐level models describe community variation effectively?
  publication-title: Journal of Biogeography
– volume: 108
  start-page: 555
  year: 2005
  end-page: 561
  article-title: Predictability of plant species composition from environmental conditions is constrained by dispersal limitation
  publication-title: Oikos
– volume: 19
  start-page: 2596
  year: 2013
  end-page: 2607
  article-title: Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model
  publication-title: Global Change Biology
– volume: 211
  start-page: 351
  year: 2010
  end-page: 365
  article-title: Plant traits co‐vary with altitude in grasslands and forests in the European Alps
  publication-title: Plant Ecology
– volume: 41
  start-page: 496
  year: 1983
  end-page: 506
  article-title: Species‐energy theory: an extension of species‐area theory
  publication-title: Oikos
– volume: 80
  start-page: 311
  year: 1997
  end-page: 324
  article-title: Co‐occurrence of Australian land birds: Diamond's assembly rules revisited
  publication-title: Oikos
– volume: 24
  start-page: 593
  year: 2012
  ident: e_1_2_7_18_1
  article-title: Improving the prediction of plant species distribution and community composition by adding edaphic to topo‐climatic variables
  publication-title: Journal of Vegetation Science
  doi: 10.1111/jvs.12002
– ident: e_1_2_7_42_1
  doi: 10.1111/j.0906-7590.2005.03957.x
– ident: e_1_2_7_43_1
  doi: 10.1371/journal.pone.0032586
– ident: e_1_2_7_60_1
  doi: 10.1126/science.1131344
– ident: e_1_2_7_21_1
  doi: 10.1016/j.biocon.2012.09.020
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ecolmodel.2010.11.030
– ident: e_1_2_7_52_1
  doi: 10.1007/s11258-010-9794-x
– ident: e_1_2_7_25_1
  doi: 10.1016/j.tree.2010.03.002
– ident: e_1_2_7_58_1
  doi: 10.1657/1938-4246-41.3.347
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1469-185X.2011.00187.x
– ident: e_1_2_7_47_1
  doi: 10.1111/j.0030-1299.2006.14194.x
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1600-0587.2009.05832.x
– ident: e_1_2_7_63_1
  doi: 10.1111/j.1654-1103.2009.01145.x
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1365-2745.2004.00838.x
– ident: e_1_2_7_49_1
  doi: 10.1890/10-0173.1
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1600-0587.2011.07140.x
– ident: e_1_2_7_40_1
  doi: 10.1890/12-1482.1
– ident: e_1_2_7_31_1
  doi: 10.1890/03-8006
– ident: e_1_2_7_12_1
  doi: 10.1016/j.tree.2008.09.004
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1461-0248.2009.01353.x
– volume-title: The unified neutral theory of biodiversity and biogeography
  year: 2001
  ident: e_1_2_7_34_1
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2486.2012.02772.x
– ident: e_1_2_7_30_1
  doi: 10.1111/ele.12189
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1600-0587.2008.05742.x
– ident: e_1_2_7_68_1
  doi: 10.1007/s10441-012-9144-6
– ident: e_1_2_7_22_1
  doi: 10.1111/gcb.12231
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1365-2745.2010.01651.x
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-2699.2011.02663.x
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1654-1103.2009.01145.x
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2699.2012.02684.x
– ident: e_1_2_7_69_1
  doi: 10.1023/A:1004327224729
– ident: e_1_2_7_55_1
  doi: 10.1034/j.1600-0706.2001.930112.x
– ident: e_1_2_7_32_1
  doi: 10.1890/04-0922
– ident: e_1_2_7_61_1
  doi: 10.1890/10-0394.1
– ident: e_1_2_7_24_1
  doi: 10.1086/368223
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1600-0587.2009.05856.x
– ident: e_1_2_7_15_1
  doi: 10.1038/nature04534
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1365-2699.2005.01265.x
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-2699.2010.02341.x
– ident: e_1_2_7_13_1
  doi: 10.1071/BT02124
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1461-0248.2011.01675.x
– ident: e_1_2_7_57_1
  doi: 10.1177/0309133313512667
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1654-109X.2007.tb00507.x
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1600-0706.2009.17770.x
– ident: e_1_2_7_37_1
  doi: 10.2307/3235676
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1466-8238.2012.00790.x
– ident: e_1_2_7_64_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-2664.2006.01214.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1461-0248.2012.01852.x
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-2486.2012.02760.x
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1600-0587.2013.00237.x
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1600-0587.2011.07047.x
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-2699.2011.02550.x
– ident: e_1_2_7_41_1
  doi: 10.1016/j.biocon.2012.11.025
– ident: e_1_2_7_70_1
  doi: 10.1111/j.1469-185X.2012.00235.x
– ident: e_1_2_7_54_1
  doi: 10.1002/ece3.843
– ident: e_1_2_7_71_1
  doi: 10.2307/3544109
– ident: e_1_2_7_66_1
  doi: 10.1098/rsbl.2009.0669
– ident: e_1_2_7_50_1
  doi: 10.1111/j.0030-1299.2005.13632.x
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1461-0248.2010.01444.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1600-0587.2011.06919.x
– ident: e_1_2_7_26_1
  doi: 10.2307/3546599
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1600-0587.2010.06134.x
– ident: e_1_2_7_14_1
  doi: 10.1086/285144
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1472-4642.2011.00792.x
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1365-2699.2010.02416.x
– ident: e_1_2_7_35_1
  doi: 10.1890/12-1322.1
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2664.2006.01149.x
– ident: e_1_2_7_36_1
  doi: 10.2307/2389954
– ident: e_1_2_7_11_1
  doi: 10.1111/geb.12102
SSID ssj0009534
Score 2.453733
Snippet Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem...
Aim Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem...
Aim Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem...
AIM: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem...
SourceID hal
proquest
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1255
SubjectTerms Alps region
biogeography
Community composition
Community ecology
community structure
Ecological function
ecosystems
filters
functional ecology
global change
Grasslands
leaf area
Life Sciences
macroecological models
MEM
prediction
probability
SDM
SESAM framework
species distribution models
Species distribution models and analyses
species diversity
Species richness
stacked-SDM
Swiss Alps
Title Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
URI https://api.istex.fr/ark:/67375/WNG-WH40VTD1-K/fulltext.pdf
https://www.jstor.org/stable/44002147
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12485
https://www.proquest.com/docview/1689862350
https://www.proquest.com/docview/1710220290
https://hal.inrae.fr/hal-02640356
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgSXlq-KQEEGIdRLVnFi50OcWmhZCvSAWtoDkmU7Xm3Vkq12sxXl3v_dGedDuwgkxM3aTLTr7HjyXvL8BuC1Js9ya-NQGO6QoFgRFoXW4cgiNkZ8FEUlEcUvB-nwSOyfyJMVeNvthWn8IfoHbrQyfL2mBa7NbHGRm9MBJ0MurL-k1SJA9DVeMNxNGusoEqfFWdS6CnkVT3fm0r3o1piUkLfp4v7sxIlLsHMRvPq7z946fO9-dyM6ORvMazOwv36zdPzPid2HtRaVsu0mjR7Aiqsewp2mT-UVjnZtO7rbNk0fXz2Cay83YLRXE-k2w4I6prrJdFUyul02TxkZNaGoZ-xiSq-EfJazesIs4VJqT8EQvbsf5hzr2lIM7XthCF2xypT9d5Rk89t26GK-ic_sMRzt7R6-G4ZtV4fQSuQvYW7z1I2Qk48k15pUOKk1ViDRSUZZktkcq4wwjqhnmeoiFQZBn-FFKTHdcpMkG7BaTSr3BJgtED8mzpYaYR-PHYE9UcbS4ima6zyAre7_Vba1PKepnaue-phT5a91AK_60IvG5-OPQZgk_XFy5h5uf1b0GVJZESUyveQBvPE51Ifp6Rmp5zKpjg8-qOOhiL4dvufqUwAbPsn6QCG8g10WwGaXdaqtKDPF07xA9pnIKICX_WGsBfSCR1duMscYgotxFBcYs-VT7O9zUfs7H_3g6b-HPoN7iBdlo1behNV6OnfPEZPV5oVffDe2QDD7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVQuvCtSChiEUC9Z5eG8JC6FtqTtdg9oS3upLNvxaqu22Wo3iyh3_jczzkO7CCTEzUomSpyMx9_njL8BeCdJs1zrwOXKN0hQNHezTEp3pBEbIz7yvIKI4skgzk_50Xl0vgIf2r0wtT5Et-BGI8PGaxrgtCC9OMrVZc8nRa5VWKeK3lS_YO9LsCC5G9biUZSeFiReoytk83jaS5dmo9Ux5UKu0-v93qYnLgHPRfhq55-Dh3DRPnmddnLVm1eqp3_8Jur4v117BA8aYMp2a096DCumfAL36lKVd9ja101ro6mbPr57Cj9txgGj7ZrIuBnG1DGFTibLgtGMWS80MqpDUc3Y7ZT-CllHZ9WEaYKmVKGCIYA3N-oaQ9uSDW19YYheMdAU3T0KUvptinQxW8dn9gxOD_aHn3K3Kezg6ggpjJvqNDYjpOWjyJeSEnFirTRHrhOOkjDRKQYargyxzyKWWcwV4j7lZ0WEHpeqMNyEtXJSmufAdIYQMjS6kIj8_MAQ3uNFEGm8RPoydWCn_cBCN6rn1LVr0bEfdSnsu3bgbWd6W0t9_NEIvaQ7T-Lc-W5f0DFks9wLo_ib78B760SdmZxeUQJdEomzwWdxlnPv63DPF8cObFov6ww5tyJ2iQPbrduJJqjMhB-nGRLQMPIceNOdxnBA_3hkaSZztCHEGHhBhjY71sf-3hdx9PHQNrb-3fQ1bOTDk77oHw6OX8B9hI9Rnby8DWvVdG5eIkSr1Cs7En8Bow81FQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB71ENAX7gqXAgtCqC-OfKwv8VRoQ3oQIdTSPlRa7a7XStXiRImDKO_8b2bWhxIEEuJtFY9lrzMz-3327DcAryVplmsduFz5BgmK5m6WSekWGrEx4iPPy4kofhzGg1N-eB6dr8Dbdi9MrQ_RvXCjyLD5mgJ8kheLQa4uez4Jcq3COo8xWAgRfQ4WFHfDWjuKqtOCxGtkhWwZT3vq0mK0OqJSyHV6ut_b6sQl3LmIXu3y078HF-2N11UnV715pXr6x2-ajv85s_twt4GlbLf2owewYsqHcKtuVHmDo33djO40XdNHN4_gp603YLRZE_k2w4w6osTJZJkzWi_r14yMulBUMzaZ0jch6-asGjNNwJT6UzCE7-arusbEtmRDG18YYldMM3l3jZx0fpsWXcx28Zk9htP-_sn7gdu0dXB1hATGTXUamwJJeRH5UlIZTqyV5sh0wiIJE51imuHKEPfMY5nFXCHqU36WR-hvqQrDTVgrx6V5AkxnCCBDo3OJuM8PDKE9ngeRxlOkL1MHdtr_V-hG85ymdi067qMuhX3WDrzqTCe10McfjdBJuuMkzT3YPRb0G3JZ7oVR_M134I31oc5MTq-ofC6JxNnwgzgbcO_LyZ4vjhzYtE7WGXJuJewSB7ZbrxNNSpkJP04zpJ9h5DnwsjuMyYC-8MjSjOdoQ3gx8IIMbXasi_19LuLw3YEdbP276Qu4_WmvL44PhkdPYQOxY1RXLm_DWjWdm2eIzyr13MbhL_sjM80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+species+richness+and+functional+traits+predictions+to+constrain+assemblage+predictions+from+stacked+species+distribution+models&rft.jtitle=Journal+of+biogeography&rft.au=d%27Amen%2C+Manuela&rft.au=Dubuis%2C+Anne&rft.au=Fernandes%2C+Rui+F.&rft.au=Pottier%2C+Julien&rft.date=2015-07-01&rft.pub=Wiley&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=42&rft.issue=7&rft.spage=1255&rft.epage=1266&rft_id=info:doi/10.1111%2Fjbi.12485&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02640356v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon