Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease
Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from...
Saved in:
Published in | Annals of neurology Vol. 74; no. 5; pp. 655 - 668 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).
Methods
Using quantitative polymerase chain reaction techniques, we measured circulating cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1–42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.
Results
Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell‐free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD‐related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers.
Interpretation
Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013;74:655–668 |
---|---|
AbstractList | Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid [beta] sub(1-42), total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013; 74:655-668 Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid [beta]1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013;74:655-668 [PUBLICATION ABSTRACT] To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).OBJECTIVETo identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.METHODSUsing quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers.RESULTSAsymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers.Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD.INTERPRETATIONLow content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1–42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell‐free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD‐related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013;74:655–668 To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. |
Author | Sanchez-Valle, Raquel Llado, Albert Serra, Nuria Podlesniy, Petar Figueiro-Silva, Joana Antonell, Anna Lleo, Alberto Trullas, Ramon Molinuevo, Jose Luis Alcolea, Daniel |
Author_xml | – sequence: 1 givenname: Petar surname: Podlesniy fullname: Podlesniy, Petar organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain – sequence: 2 givenname: Joana surname: Figueiro-Silva fullname: Figueiro-Silva, Joana organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain – sequence: 3 givenname: Albert surname: Llado fullname: Llado, Albert organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain – sequence: 4 givenname: Anna surname: Antonell fullname: Antonell, Anna organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain – sequence: 5 givenname: Raquel surname: Sanchez-Valle fullname: Sanchez-Valle, Raquel organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain – sequence: 6 givenname: Daniel surname: Alcolea fullname: Alcolea, Daniel organization: Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain – sequence: 7 givenname: Alberto surname: Lleo fullname: Lleo, Alberto organization: Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain – sequence: 8 givenname: Jose Luis surname: Molinuevo fullname: Molinuevo, Jose Luis organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain – sequence: 9 givenname: Nuria surname: Serra fullname: Serra, Nuria organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain – sequence: 10 givenname: Ramon surname: Trullas fullname: Trullas, Ramon email: ramon.trullas@iibb.csic.es organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23794434$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0T9v1DAYBnALFdFrYeALoEgsMKT1_5zHqAcF6XQMQBkYLMd5o7o49mEnKuXT4-u1HSqBWGzJ-j0enucIHYQYAKGXBJ8QjOmpCeaEMiXEE7QggpF6Sbk6QAvMJK8FYfwQHeV8hTFWkuBn6JCyRnHO-AJ9X8frykKCLsW8dcH4avCz6ysbg4UwJTO5GKo4VKObor2MoU-uoNWmrVyotgmsd8HZ8tT635fgRkhV7zKYDM_R08H4DC_u7mP09f27L2cf6vWn849n7bq2ggpRM8XwQAdDjVR02XAGfFDQMa46STuMGVU9M2To2bKX0Kmm6QUM5WxMZ6kEdoze7P_dpvhzhjzp0WUL3psAcc6acEUlUU1p4j8olkqxJS_09SN6FedUCtopqTBXku_Uqzs1dyP0epvcaNKNvm-4gLd7YEvBOcHwQAjWu_V0WU_frlfs6SNr3XQ7QNnB-X8lrp2Hm79_rdtNe5-o9wmXJ_j1kDDph5YNa4T-tjnXF3S12lyIz1qxP4DtuMo |
CitedBy_id | crossref_primary_10_31857_S0320972521060051 crossref_primary_10_1007_s12035_020_01926_1 crossref_primary_10_3390_diagnostics13010073 crossref_primary_10_1007_s12035_022_03164_z crossref_primary_10_1007_s13365_016_0497_5 crossref_primary_10_3390_biom11020195 crossref_primary_10_3389_fgene_2016_00051 crossref_primary_10_1016_j_mito_2016_12_003 crossref_primary_10_1038_s41573_024_01105_0 crossref_primary_10_1007_s12035_024_04412_0 crossref_primary_10_1007_s13365_015_0384_5 crossref_primary_10_1371_journal_pone_0150672 crossref_primary_10_1002_ana_25509 crossref_primary_10_1097_SHK_0000000000000160 crossref_primary_10_3390_antiox10121971 crossref_primary_10_1016_j_tranon_2019_05_015 crossref_primary_10_1007_s12017_019_08588_w crossref_primary_10_1016_j_arr_2014_07_004 crossref_primary_10_1097_BRS_0000000000003849 crossref_primary_10_1016_j_tips_2020_09_011 crossref_primary_10_1016_j_freeradbiomed_2017_08_021 crossref_primary_10_1038_s41401_019_0239_3 crossref_primary_10_3390_ijms25052818 crossref_primary_10_1016_j_mito_2022_05_004 crossref_primary_10_1016_j_humgen_2023_201198 crossref_primary_10_1517_17460441_2014_909404 crossref_primary_10_1016_j_bbi_2015_10_010 crossref_primary_10_1016_j_heliyon_2022_e09239 crossref_primary_10_1007_s12035_021_02673_7 crossref_primary_10_1002_ana_24709 crossref_primary_10_1177_1352458517699874 crossref_primary_10_1007_s11064_020_03192_y crossref_primary_10_1016_j_mito_2021_02_006 crossref_primary_10_1016_j_bbadis_2013_09_010 crossref_primary_10_3390_ijms21186749 crossref_primary_10_1016_j_jalz_2016_09_003 crossref_primary_10_1186_s13195_018_0354_2 crossref_primary_10_3233_JAD_150043 crossref_primary_10_1212_WNL_0000000000207157 crossref_primary_10_1111_jnc_13762 crossref_primary_10_11613_BM_2020_030504 crossref_primary_10_1586_14737175_2015_1058160 crossref_primary_10_1111_gbb_12565 crossref_primary_10_1016_j_jalz_2017_12_005 crossref_primary_10_1016_j_pneurobio_2016_03_003 crossref_primary_10_1016_j_bbrc_2019_09_094 crossref_primary_10_1016_j_neurobiolaging_2016_12_009 crossref_primary_10_3233_JAD_150345 crossref_primary_10_1177_0963689717721217 crossref_primary_10_3389_fimmu_2019_01064 crossref_primary_10_3389_fnmol_2023_1210091 crossref_primary_10_1016_j_jad_2017_06_001 crossref_primary_10_1186_s12979_023_00342_y crossref_primary_10_1007_s13167_021_00237_2 crossref_primary_10_1371_journal_pone_0154582 crossref_primary_10_1016_j_mito_2018_07_008 crossref_primary_10_1096_fj_202000959RR crossref_primary_10_1111_ene_16493 crossref_primary_10_1016_j_jns_2020_116886 crossref_primary_10_1016_j_mito_2015_09_002 crossref_primary_10_3390_ijms25116062 crossref_primary_10_3390_ijms19072035 crossref_primary_10_1016_j_jns_2016_04_016 crossref_primary_10_1016_j_mito_2017_08_007 crossref_primary_10_1134_S0006297921060055 crossref_primary_10_1007_s40142_018_0132_2 crossref_primary_10_1007_s12035_018_1422_0 crossref_primary_10_1186_s12974_017_0848_z crossref_primary_10_1186_s13024_025_00815_2 crossref_primary_10_2217_fnl_15_41 crossref_primary_10_1007_s00216_017_0217_x crossref_primary_10_1038_nrneurol_2013_134 crossref_primary_10_3233_ADR_220047 crossref_primary_10_1016_j_apmt_2017_12_012 crossref_primary_10_2217_fnl_15_44 crossref_primary_10_3390_genes12050743 crossref_primary_10_20517_and_2024_24 crossref_primary_10_1089_ars_2015_6532 crossref_primary_10_1111_ene_70014 crossref_primary_10_1016_j_mito_2022_02_003 crossref_primary_10_3389_fnagi_2021_755665 crossref_primary_10_1111_jnc_14635 crossref_primary_10_1080_17520363_2025_2468151 crossref_primary_10_3390_ijms242317027 crossref_primary_10_1096_fj_202400463R crossref_primary_10_1186_s12974_018_1162_0 crossref_primary_10_1039_C5MT00052A crossref_primary_10_1177_1352458518786055 crossref_primary_10_1016_j_nbt_2022_10_001 crossref_primary_10_1038_s41419_017_0215_0 crossref_primary_10_3390_genes13101789 crossref_primary_10_1101_gr_250480_119 crossref_primary_10_1016_j_bbamcr_2022_119326 crossref_primary_10_3390_ijms22042007 crossref_primary_10_1016_j_bbi_2016_05_016 crossref_primary_10_1016_j_neurobiolaging_2014_01_015 crossref_primary_10_1016_j_neuropharm_2024_110217 crossref_primary_10_1038_s41598_020_72190_5 crossref_primary_10_1016_j_ibneur_2023_04_002 crossref_primary_10_1093_labmed_lmad063 crossref_primary_10_3390_cells8040328 crossref_primary_10_1016_j_arr_2025_102699 crossref_primary_10_1016_j_pneurobio_2022_102289 crossref_primary_10_1002_acn3_322 crossref_primary_10_1002_prm2_12036 crossref_primary_10_1007_s12035_023_03841_7 crossref_primary_10_1371_journal_pone_0180045 crossref_primary_10_1186_s40659_018_0184_5 crossref_primary_10_1084_jem_20160776 crossref_primary_10_3389_fphys_2018_01695 crossref_primary_10_5483_BMBRep_2020_53_1_274 crossref_primary_10_1016_j_clinbiochem_2015_03_015 crossref_primary_10_1021_acschemneuro_2c00512 crossref_primary_10_1007_s12035_023_03289_9 crossref_primary_10_3390_antiox10121917 crossref_primary_10_3390_ijms25126335 crossref_primary_10_1038_nmeth_2849 crossref_primary_10_1186_s13024_020_00362_y crossref_primary_10_3389_fnins_2021_666958 crossref_primary_10_1080_10408363_2017_1420032 crossref_primary_10_1016_j_mehy_2015_04_022 crossref_primary_10_1002_1873_3468_14021 crossref_primary_10_3390_cells11152364 crossref_primary_10_1002_ana_24107 crossref_primary_10_1002_ana_24106 crossref_primary_10_1111_febs_16563 crossref_primary_10_1016_j_mito_2022_03_003 crossref_primary_10_3389_fimmu_2017_00508 crossref_primary_10_3390_ijms241814163 crossref_primary_10_3390_life13091923 crossref_primary_10_1016_j_jneuroim_2019_577107 crossref_primary_10_1371_journal_pone_0270714 crossref_primary_10_1007_s00109_020_01967_y crossref_primary_10_1038_s41380_024_02670_x crossref_primary_10_1371_journal_pone_0101412 crossref_primary_10_4103_1673_5374_382222 crossref_primary_10_3390_cells10102575 crossref_primary_10_1002_ana_24515 crossref_primary_10_1186_s41232_022_00216_8 crossref_primary_10_1021_ac403061n crossref_primary_10_3389_fnagi_2014_00311 crossref_primary_10_1038_s41398_023_02721_x crossref_primary_10_1186_s13195_023_01322_6 crossref_primary_10_1134_S0006297916100011 crossref_primary_10_3390_ijms22137030 crossref_primary_10_1007_s12031_025_02317_8 crossref_primary_10_1038_s41598_017_08270_w crossref_primary_10_1016_j_jalz_2017_11_013 crossref_primary_10_1111_bph_13181 crossref_primary_10_3390_ijms24098181 crossref_primary_10_1089_ars_2019_7763 crossref_primary_10_1016_j_mito_2018_12_001 crossref_primary_10_3390_ijms15057865 crossref_primary_10_1080_13543784_2020_1795127 crossref_primary_10_1186_s40035_021_00261_2 crossref_primary_10_3390_genes15050617 crossref_primary_10_3389_fneur_2019_00645 crossref_primary_10_1016_j_mito_2014_10_005 crossref_primary_10_1093_clinchem_hvab091 crossref_primary_10_3390_diagnostics12122975 crossref_primary_10_3109_19401736_2014_913168 crossref_primary_10_3390_ijms22084084 crossref_primary_10_3390_ijms21176298 crossref_primary_10_1172_JCI158453 crossref_primary_10_1371_journal_pone_0222278 crossref_primary_10_1016_j_jalz_2015_12_011 crossref_primary_10_1080_15622975_2021_1938214 |
Cites_doi | 10.1001/archneur.62.5.758 10.1212/01.wnl.0000219668.47116.e6 10.1212/01.wnl.0000311445.21321.fc 10.1016/j.ymeth.2010.01.033 10.3233/JAD-2010-100351 10.1016/j.jalz.2011.03.003 10.1001/archneur.60.12.1696 10.1002/ana.20730 10.1096/fj.10-157230 10.1515/CCLM.2011.082 10.1126/science.1197623 10.1001/archneurol.2008.596 10.1212/WNL.34.7.939 10.1111/j.1471-4159.2011.07581.x 10.1101/sqb.2011.76.010462 10.3233/JAD-2010-100207 10.1016/j.mito.2009.03.003 10.3233/JAD-2010-100339 10.1016/j.bbagen.2011.08.008 10.1212/WNL.51.6.1546 10.1016/S1474-4422(09)70299-6 10.1373/clinchem.2008.112797 10.2353/ajpath.2009.090219 10.1212/01.WNL.0000046581.81650.D0 |
ContentType | Journal Article |
Copyright | 2013 American Neurological Association 2013 American Neurological Association. |
Copyright_xml | – notice: 2013 American Neurological Association – notice: 2013 American Neurological Association. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
DOI | 10.1002/ana.23955 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 668 |
ExternalDocumentID | 3160042821 23794434 10_1002_ana_23955 ANA23955 ark_67375_WNG_V2DDNV5S_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRZS ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K K9. 7X8 |
ID | FETCH-LOGICAL-c5255-3930f2fa2a6928743e4f9eb349b62b00329d3a1fd38d6eb977d5ef77d7abc26e3 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Fri Jul 11 04:11:49 EDT 2025 Thu Jul 10 23:39:23 EDT 2025 Fri Jul 25 12:09:53 EDT 2025 Thu Apr 03 06:59:49 EDT 2025 Tue Jul 01 02:24:03 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Wed Jan 22 16:49:39 EST 2025 Wed Oct 30 10:00:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 American Neurological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5255-3930f2fa2a6928743e4f9eb349b62b00329d3a1fd38d6eb977d5ef77d7abc26e3 |
Notes | ArticleID:ANA23955 istex:E0317CD5D71E7718038C1AC1596366B8790A21E2 ark:/67375/WNG-V2DDNV5S-9 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10261/89279 |
PMID | 23794434 |
PQID | 1469049644 |
PQPubID | 946345 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1492619751 proquest_miscellaneous_1490699384 proquest_journals_1469049644 pubmed_primary_23794434 crossref_primary_10_1002_ana_23955 crossref_citationtrail_10_1002_ana_23955 wiley_primary_10_1002_ana_23955_ANA23955 istex_primary_ark_67375_WNG_V2DDNV5S_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2013 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Minneapolis |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hertze J, Minthon L, Zetterberg H, et al. Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis 2010;21:1119-1128. Galvin JE, Powlishta KK, Wilkins K, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol 2005;62:758-765. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:280-292. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611-622. Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010;9:119-128. Guo W, Jiang L, Bhasin S, et al. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 2009;9:261-265. Wallace DC. Bioenergetic origins of complexity and disease. Cold Spring Harb Symp Quant Biol 2011;76:1-16. Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006;59:512-519. Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008;70:1827-1835. Tapiola T, Alafuzoff I, Herukka SK, et al. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66:382-389. Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66:1837-1844. Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 2010;330:1774. Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 2012;120:419-429. Coskun P, Wyrembak J, Schriner S, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 2012;1820:553-564. Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546-1554. Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010;20(suppl 2):S265-S279. Coskun PE, Wyrembak J, Derbereva O, et al. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and Down syndrome dementia. J Alzheimers Dis 2010;20(suppl 2):S293-S310. Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60:1696-1702. Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003;60:652-656. Mattsson N. CSF biomarkers in neurodegenerative diseases. Clin Chem Lab Med 2011;49:345-352. Hunter SE, Jung D, Di Giulio RT, et al. The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 2010;51:444-451. Area-Gomez E, de Groof AJ, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009;175:1810-1816. Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011;25:78-88. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944. 2009; 66 2009; 55 2010; 21 2010; 20 2012; 120 2006; 66 1984; 34 2006; 59 2012; 1820 2005; 62 2010; 330 2009; 9 2011; 76 2009; 175 2011; 25 2003; 60 2011; 49 1998; 51 2008; 70 2011; 7 2010; 51 2010; 9 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_24_1 e_1_2_8_14_1 e_1_2_8_25_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 24424574 - Ann Neurol. 2014 Mar;75(3):458-60 24431101 - Ann Neurol. 2014 Mar;75(3):460-1 23835537 - Nat Rev Neurol. 2013 Aug;9(8):420 |
References_xml | – reference: Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008;70:1827-1835. – reference: Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 2012;120:419-429. – reference: Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006;59:512-519. – reference: Wallace DC. Bioenergetic origins of complexity and disease. Cold Spring Harb Symp Quant Biol 2011;76:1-16. – reference: Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010;9:119-128. – reference: Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66:1837-1844. – reference: Coskun P, Wyrembak J, Schriner S, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 2012;1820:553-564. – reference: Tapiola T, Alafuzoff I, Herukka SK, et al. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66:382-389. – reference: McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944. – reference: Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:280-292. – reference: Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546-1554. – reference: Guo W, Jiang L, Bhasin S, et al. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 2009;9:261-265. – reference: Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 2010;330:1774. – reference: Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003;60:652-656. – reference: Coskun PE, Wyrembak J, Derbereva O, et al. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and Down syndrome dementia. J Alzheimers Dis 2010;20(suppl 2):S293-S310. – reference: Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010;20(suppl 2):S265-S279. – reference: Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611-622. – reference: Hunter SE, Jung D, Di Giulio RT, et al. The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 2010;51:444-451. – reference: Mattsson N. CSF biomarkers in neurodegenerative diseases. Clin Chem Lab Med 2011;49:345-352. – reference: Galvin JE, Powlishta KK, Wilkins K, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol 2005;62:758-765. – reference: Hertze J, Minthon L, Zetterberg H, et al. Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis 2010;21:1119-1128. – reference: Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011;25:78-88. – reference: Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60:1696-1702. – reference: Area-Gomez E, de Groof AJ, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009;175:1810-1816. – volume: 66 start-page: 1837 year: 2006 end-page: 1844 article-title: Neuropathology of older persons without cognitive impairment from two community‐based studies publication-title: Neurology – volume: 7 start-page: 280 year: 2011 end-page: 292 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 9 start-page: 119 year: 2010 end-page: 128 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol – volume: 59 start-page: 512 year: 2006 end-page: 519 article-title: Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans publication-title: Ann Neurol – volume: 55 start-page: 611 year: 2009 end-page: 622 article-title: The MIQE guidelines: minimum information for publication of quantitative real‐time PCR experiments publication-title: Clin Chem – volume: 20 start-page: S265 issue: suppl 2 year: 2010 end-page: S279 article-title: The Alzheimer's disease mitochondrial cascade hypothesis publication-title: J Alzheimers Dis – volume: 34 start-page: 939 year: 1984 end-page: 944 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease publication-title: Neurology – volume: 20 start-page: S293 issue: suppl 2 year: 2010 end-page: S310 article-title: Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and Down syndrome dementia publication-title: J Alzheimers Dis – volume: 76 start-page: 1 year: 2011 end-page: 16 article-title: Bioenergetic origins of complexity and disease publication-title: Cold Spring Harb Symp Quant Biol – volume: 60 start-page: 1696 year: 2003 end-page: 1702 article-title: Cerebrospinal fluid tau and beta‐amyloid: how well do these biomarkers reflect autopsy‐confirmed dementia diagnoses? publication-title: Arch Neurol – volume: 330 start-page: 1774 year: 2010 article-title: Decreased clearance of CNS beta‐amyloid in Alzheimer's disease publication-title: Science – volume: 120 start-page: 419 year: 2012 end-page: 429 article-title: Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease publication-title: J Neurochem – volume: 51 start-page: 444 year: 2010 end-page: 451 article-title: The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number publication-title: Methods – volume: 21 start-page: 1119 year: 2010 end-page: 1128 article-title: Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow‐up study of 4.7 years publication-title: J Alzheimers Dis – volume: 9 start-page: 261 year: 2009 end-page: 265 article-title: DNA extraction procedures meaningfully influence qPCR‐based mtDNA copy number determination publication-title: Mitochondrion – volume: 66 start-page: 382 year: 2009 end-page: 389 article-title: Cerebrospinal fluid {beta}‐amyloid 42 and tau proteins as biomarkers of Alzheimer‐type pathologic changes in the brain publication-title: Arch Neurol – volume: 25 start-page: 78 year: 2011 end-page: 88 article-title: Mitochondrial gamma‐secretase participates in the metabolism of mitochondria‐associated amyloid precursor protein publication-title: FASEB J – volume: 70 start-page: 1827 year: 2008 end-page: 1835 article-title: CSF biomarkers in frontotemporal lobar degeneration with known pathology publication-title: Neurology – volume: 1820 start-page: 553 year: 2012 end-page: 564 article-title: A mitochondrial etiology of Alzheimer and Parkinson disease publication-title: Biochim Biophys Acta – volume: 51 start-page: 1546 year: 1998 end-page: 1554 article-title: Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria publication-title: Neurology – volume: 175 start-page: 1810 year: 2009 end-page: 1816 article-title: Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria publication-title: Am J Pathol – volume: 62 start-page: 758 year: 2005 end-page: 765 article-title: Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study publication-title: Arch Neurol – volume: 49 start-page: 345 year: 2011 end-page: 352 article-title: CSF biomarkers in neurodegenerative diseases publication-title: Clin Chem Lab Med – volume: 60 start-page: 652 year: 2003 end-page: 656 article-title: CSF Abeta 42 levels correlate with amyloid‐neuropathology in a population‐based autopsy study publication-title: Neurology – ident: e_1_2_8_9_1 doi: 10.1001/archneur.62.5.758 – ident: e_1_2_8_10_1 doi: 10.1212/01.wnl.0000219668.47116.e6 – ident: e_1_2_8_13_1 doi: 10.1212/01.wnl.0000311445.21321.fc – ident: e_1_2_8_18_1 doi: 10.1016/j.ymeth.2010.01.033 – ident: e_1_2_8_21_1 doi: 10.3233/JAD-2010-100351 – ident: e_1_2_8_3_1 doi: 10.1016/j.jalz.2011.03.003 – ident: e_1_2_8_4_1 doi: 10.1001/archneur.60.12.1696 – ident: e_1_2_8_7_1 doi: 10.1002/ana.20730 – ident: e_1_2_8_24_1 doi: 10.1096/fj.10-157230 – ident: e_1_2_8_11_1 doi: 10.1515/CCLM.2011.082 – ident: e_1_2_8_12_1 doi: 10.1126/science.1197623 – ident: e_1_2_8_8_1 doi: 10.1001/archneurol.2008.596 – ident: e_1_2_8_16_1 doi: 10.1212/WNL.34.7.939 – ident: e_1_2_8_22_1 doi: 10.1111/j.1471-4159.2011.07581.x – ident: e_1_2_8_25_1 doi: 10.1101/sqb.2011.76.010462 – ident: e_1_2_8_5_1 doi: 10.3233/JAD-2010-100207 – ident: e_1_2_8_19_1 doi: 10.1016/j.mito.2009.03.003 – ident: e_1_2_8_14_1 doi: 10.3233/JAD-2010-100339 – ident: e_1_2_8_15_1 doi: 10.1016/j.bbagen.2011.08.008 – ident: e_1_2_8_20_1 doi: 10.1212/WNL.51.6.1546 – ident: e_1_2_8_2_1 doi: 10.1016/S1474-4422(09)70299-6 – ident: e_1_2_8_17_1 doi: 10.1373/clinchem.2008.112797 – ident: e_1_2_8_23_1 doi: 10.2353/ajpath.2009.090219 – ident: e_1_2_8_6_1 doi: 10.1212/01.WNL.0000046581.81650.D0 – reference: 24431101 - Ann Neurol. 2014 Mar;75(3):460-1 – reference: 24424574 - Ann Neurol. 2014 Mar;75(3):458-60 – reference: 23835537 - Nat Rev Neurol. 2013 Aug;9(8):420 |
SSID | ssj0009610 |
Score | 2.515182 |
Snippet | Objective
To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).
Methods
Using quantitative polymerase chain... To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Using quantitative polymerase chain reaction techniques, we... Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain... To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).OBJECTIVETo identify a novel biochemical marker that precedes... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 655 |
SubjectTerms | Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - genetics Amyloid beta-Protein Precursor - cerebrospinal fluid Animals Biomarkers - cerebrospinal fluid Cognitive Dysfunction - cerebrospinal fluid Cognitive Dysfunction - genetics Deoxyribonucleic acid DNA DNA, Mitochondrial - cerebrospinal fluid Female Humans Male Medical research Mice Mice, Transgenic Mitochondrial DNA Peptide Fragments - cerebrospinal fluid Phosphorylation Presenilin-1 - genetics Prodromal Symptoms tau Proteins - cerebrospinal fluid Transgenic animals |
Title | Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease |
URI | https://api.istex.fr/ark:/67375/WNG-V2DDNV5S-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.23955 https://www.ncbi.nlm.nih.gov/pubmed/23794434 https://www.proquest.com/docview/1469049644 https://www.proquest.com/docview/1490699384 https://www.proquest.com/docview/1492619751 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KBfGL78dqlSgi_bLXuyT7CH5aPGsRux_U1oJCSHYTPHrdK9c7lP71zmQfpVJF_LIs7ATymJn8ZpP5DcBLn-cqRyQcZ9zaWNa-inNlbGxEZlWdIgK3lO-8X6Z7B_L9UXK0Aa_7XJiWH2L44UaWEfw1GbixZzsXpKGmMSMuVEIJ5nRXiwDRxwvqKJUGJgI6ZouTiZA9q9CY7wwtL-1F12haf14FNC_j1rDx7N6Cb32X2_smx6P1yo6q89_YHP9zTLfhZgdIWdFq0B3YcM1duL7fHbnfg68fFj9Y5ZYYO1OJEZL18_WsZhUlPDYd6y5beHaCzgGdaVOTTrNpWbBZw07Ro3bJl6yYn393sxO3ZN2x0H042H37-c1e3FVkiKsEY49YKDH23BtuUkVE-cJJrzAcl8qmnBwEV7UwE1-LvE6dRWxZJ87jMzO24qkTD2CzWTTuEbDaWcmzcU58bTLn1mBklflMSjtxThgRwXa_Nrrq6MqpasZct0TLXONk6TBZEbwYRE9bjo6rhF6FBR4kzPKYLrVlif5SvtOHfDotD5NPWkWw1WuA7uz5jAIkhbEUgscIng-f0RLpeMU0brEmGTVOEe7lf5ehkDVLJhE8bLVr6BAX6BulwNbbQUf-PBZdlEV4efzvok_gBqdKHiGNcgs2V8u1e4p4amWfBcP5Bd-HGcY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC9ovvh-rVaOI9Mte75LsI-CXxbOeercftC8QCcluQo9e98p5h9K_3kz2USpVxC_LQiaQx8zkN5ud3wC8smkqUoeEw4RqHfLSFmEqlA4VS7QoY4fANeY7T_J4tM8_HkVHa_CmzYWp-SG6D25oGd5fo4HjB-mdC9ZQVakeZSKKrsEGVvT2AdXnC_IoEXsuArxoC10rb3mF-nSn63rpNNrAhf15FdS8jFz90bN7C761g67_ODnprZa6V5z_xuf4v7O6DTcbTEqyWonuwJqp7sL1SXPrfg--juc_SGEWLnzGKiMoa2eraUkKzHmsGuJdMrfk1PkH50-rEtWaDPOMTCty5pxqk39Jstn5sZmemgVpbobuw_7uu723o7ApyhAWkQs_QiZY31KrqIoFcuUzw61wETkXOqboI6gomRrYkqVlbLSDl2VkrHsmShc0NuwBrFfzyjwCUhrNadJPkbKNp1QrF1wlNuFcD4xhigWw3W6OLBrGciycMZM11zKVbrGkX6wAXnaiZzVNx1VCr_0OdxJqcYL_tSWRPMzfywM6HOYH0RcpAthqVUA2Jv0dYyThwimHHwN40TU7Y8QbFlWZ-QplRD92iC_9uwxGrUk0COBhrV7dgChz7pEz13vbK8mf5yKzPPMvj_9d9DncGO1NxnL8If_0BDYpFvbwWZVbsL5crMxTB6-W-pm3ol9rFh3h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_OOzj84vtRPTWKyH3pXjdJH8FPxbqeeldEvQcohKRJcLm97rLuotxfb6bt9jg5RfxSCp1AHjOT33QyvwA8d1kmMo-Ew5RqHXLjqjATSoeKpVqYxCNwjfXO-2Wye8DfHcfHa_ByVQvT8kP0P9zQMhp_jQY-M27nnDRU1WpAmYjjK7DBkyhDlS4-nnNHiaShIsA8WxgPGV_RCkV0p296YTPawHn9eRnSvAhcm51ndB2-rvrcHjg5GSwXelCd_Ubn-J-DugHXOkRK8laFbsKarW_B5n6Xc78NX_amP0hl5z54xjtGUNZNlmNDKqx4rDvaXTJ15NR7B-9Na4NKTYoyJ-OazLxL7aovST45-2bHp3ZOurzQHTgYvf78ajfsrmQIq9gHHyETLHLUKaoSgUz5zHInfDzOhU4oeggqDFNDZ1hmEqs9uDSxdf6ZKl3RxLK7sF5Pa3sfiLGa0zTKkLCNZ1QrH1qlLuVcD61ligWwvVobWXV85XhtxkS2TMtU-smSzWQF8KwXnbUkHZcJvWgWuJdQ8xM81ZbG8qh8Iw9pUZSH8ScpAthaaYDsDPo7RkjCB1MePQbwtP_sTRHzK6q20yXKiCjxeC_7uwzGrGk8DOBeq119hyjzzpEz33q70ZE_j0XmZd68PPh30Sew-aEYyb235fuHcJXirR5NSeUWrC_mS_vIY6uFftzY0C8XDByZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cerebrospinal+fluid+concentration+of+mitochondrial+DNA+in+preclinical+Alzheimer+disease&rft.jtitle=Annals+of+neurology&rft.au=Podlesniy%2C+Petar&rft.au=Figueiro-Silva%2C+Joana&rft.au=Llado%2C+Albert&rft.au=Antonell%2C+Anna&rft.date=2013-11-01&rft.eissn=1531-8249&rft.volume=74&rft.issue=5&rft.spage=655&rft_id=info:doi/10.1002%2Fana.23955&rft_id=info%3Apmid%2F23794434&rft.externalDocID=23794434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |