Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease

Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 74; no. 5; pp. 655 - 668
Main Authors Podlesniy, Petar, Figueiro-Silva, Joana, Llado, Albert, Antonell, Anna, Sanchez-Valle, Raquel, Alcolea, Daniel, Lleo, Alberto, Molinuevo, Jose Luis, Serra, Nuria, Trullas, Ramon
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1–42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell‐free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD‐related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013;74:655–668
AbstractList Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid [beta] sub(1-42), total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013; 74:655-668
Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid [beta]1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013;74:655-668 [PUBLICATION ABSTRACT]
To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).OBJECTIVETo identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.METHODSUsing quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers.RESULTSAsymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers.Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD.INTERPRETATIONLow content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD.
Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain reaction techniques, we measured circulating cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1–42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Results Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell‐free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD‐related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Interpretation Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD. Ann Neurol 2013;74:655–668
To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid β1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD.
Author Sanchez-Valle, Raquel
Llado, Albert
Serra, Nuria
Podlesniy, Petar
Figueiro-Silva, Joana
Antonell, Anna
Lleo, Alberto
Trullas, Ramon
Molinuevo, Jose Luis
Alcolea, Daniel
Author_xml – sequence: 1
  givenname: Petar
  surname: Podlesniy
  fullname: Podlesniy, Petar
  organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain
– sequence: 2
  givenname: Joana
  surname: Figueiro-Silva
  fullname: Figueiro-Silva, Joana
  organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain
– sequence: 3
  givenname: Albert
  surname: Llado
  fullname: Llado, Albert
  organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
– sequence: 4
  givenname: Anna
  surname: Antonell
  fullname: Antonell, Anna
  organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
– sequence: 5
  givenname: Raquel
  surname: Sanchez-Valle
  fullname: Sanchez-Valle, Raquel
  organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
– sequence: 6
  givenname: Daniel
  surname: Alcolea
  fullname: Alcolea, Daniel
  organization: Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
– sequence: 7
  givenname: Alberto
  surname: Lleo
  fullname: Lleo, Alberto
  organization: Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
– sequence: 8
  givenname: Jose Luis
  surname: Molinuevo
  fullname: Molinuevo, Jose Luis
  organization: Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
– sequence: 9
  givenname: Nuria
  surname: Serra
  fullname: Serra, Nuria
  organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain
– sequence: 10
  givenname: Ramon
  surname: Trullas
  fullname: Trullas, Ramon
  email: ramon.trullas@iibb.csic.es
  organization: Neurobiology Unit, Instituto de Investigaciones Biomedicas de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23794434$$D View this record in MEDLINE/PubMed
BookMark eNqN0T9v1DAYBnALFdFrYeALoEgsMKT1_5zHqAcF6XQMQBkYLMd5o7o49mEnKuXT4-u1HSqBWGzJ-j0enucIHYQYAKGXBJ8QjOmpCeaEMiXEE7QggpF6Sbk6QAvMJK8FYfwQHeV8hTFWkuBn6JCyRnHO-AJ9X8frykKCLsW8dcH4avCz6ysbg4UwJTO5GKo4VKObor2MoU-uoNWmrVyotgmsd8HZ8tT635fgRkhV7zKYDM_R08H4DC_u7mP09f27L2cf6vWn849n7bq2ggpRM8XwQAdDjVR02XAGfFDQMa46STuMGVU9M2To2bKX0Kmm6QUM5WxMZ6kEdoze7P_dpvhzhjzp0WUL3psAcc6acEUlUU1p4j8olkqxJS_09SN6FedUCtopqTBXku_Uqzs1dyP0epvcaNKNvm-4gLd7YEvBOcHwQAjWu_V0WU_frlfs6SNr3XQ7QNnB-X8lrp2Hm79_rdtNe5-o9wmXJ_j1kDDph5YNa4T-tjnXF3S12lyIz1qxP4DtuMo
CitedBy_id crossref_primary_10_31857_S0320972521060051
crossref_primary_10_1007_s12035_020_01926_1
crossref_primary_10_3390_diagnostics13010073
crossref_primary_10_1007_s12035_022_03164_z
crossref_primary_10_1007_s13365_016_0497_5
crossref_primary_10_3390_biom11020195
crossref_primary_10_3389_fgene_2016_00051
crossref_primary_10_1016_j_mito_2016_12_003
crossref_primary_10_1038_s41573_024_01105_0
crossref_primary_10_1007_s12035_024_04412_0
crossref_primary_10_1007_s13365_015_0384_5
crossref_primary_10_1371_journal_pone_0150672
crossref_primary_10_1002_ana_25509
crossref_primary_10_1097_SHK_0000000000000160
crossref_primary_10_3390_antiox10121971
crossref_primary_10_1016_j_tranon_2019_05_015
crossref_primary_10_1007_s12017_019_08588_w
crossref_primary_10_1016_j_arr_2014_07_004
crossref_primary_10_1097_BRS_0000000000003849
crossref_primary_10_1016_j_tips_2020_09_011
crossref_primary_10_1016_j_freeradbiomed_2017_08_021
crossref_primary_10_1038_s41401_019_0239_3
crossref_primary_10_3390_ijms25052818
crossref_primary_10_1016_j_mito_2022_05_004
crossref_primary_10_1016_j_humgen_2023_201198
crossref_primary_10_1517_17460441_2014_909404
crossref_primary_10_1016_j_bbi_2015_10_010
crossref_primary_10_1016_j_heliyon_2022_e09239
crossref_primary_10_1007_s12035_021_02673_7
crossref_primary_10_1002_ana_24709
crossref_primary_10_1177_1352458517699874
crossref_primary_10_1007_s11064_020_03192_y
crossref_primary_10_1016_j_mito_2021_02_006
crossref_primary_10_1016_j_bbadis_2013_09_010
crossref_primary_10_3390_ijms21186749
crossref_primary_10_1016_j_jalz_2016_09_003
crossref_primary_10_1186_s13195_018_0354_2
crossref_primary_10_3233_JAD_150043
crossref_primary_10_1212_WNL_0000000000207157
crossref_primary_10_1111_jnc_13762
crossref_primary_10_11613_BM_2020_030504
crossref_primary_10_1586_14737175_2015_1058160
crossref_primary_10_1111_gbb_12565
crossref_primary_10_1016_j_jalz_2017_12_005
crossref_primary_10_1016_j_pneurobio_2016_03_003
crossref_primary_10_1016_j_bbrc_2019_09_094
crossref_primary_10_1016_j_neurobiolaging_2016_12_009
crossref_primary_10_3233_JAD_150345
crossref_primary_10_1177_0963689717721217
crossref_primary_10_3389_fimmu_2019_01064
crossref_primary_10_3389_fnmol_2023_1210091
crossref_primary_10_1016_j_jad_2017_06_001
crossref_primary_10_1186_s12979_023_00342_y
crossref_primary_10_1007_s13167_021_00237_2
crossref_primary_10_1371_journal_pone_0154582
crossref_primary_10_1016_j_mito_2018_07_008
crossref_primary_10_1096_fj_202000959RR
crossref_primary_10_1111_ene_16493
crossref_primary_10_1016_j_jns_2020_116886
crossref_primary_10_1016_j_mito_2015_09_002
crossref_primary_10_3390_ijms25116062
crossref_primary_10_3390_ijms19072035
crossref_primary_10_1016_j_jns_2016_04_016
crossref_primary_10_1016_j_mito_2017_08_007
crossref_primary_10_1134_S0006297921060055
crossref_primary_10_1007_s40142_018_0132_2
crossref_primary_10_1007_s12035_018_1422_0
crossref_primary_10_1186_s12974_017_0848_z
crossref_primary_10_1186_s13024_025_00815_2
crossref_primary_10_2217_fnl_15_41
crossref_primary_10_1007_s00216_017_0217_x
crossref_primary_10_1038_nrneurol_2013_134
crossref_primary_10_3233_ADR_220047
crossref_primary_10_1016_j_apmt_2017_12_012
crossref_primary_10_2217_fnl_15_44
crossref_primary_10_3390_genes12050743
crossref_primary_10_20517_and_2024_24
crossref_primary_10_1089_ars_2015_6532
crossref_primary_10_1111_ene_70014
crossref_primary_10_1016_j_mito_2022_02_003
crossref_primary_10_3389_fnagi_2021_755665
crossref_primary_10_1111_jnc_14635
crossref_primary_10_1080_17520363_2025_2468151
crossref_primary_10_3390_ijms242317027
crossref_primary_10_1096_fj_202400463R
crossref_primary_10_1186_s12974_018_1162_0
crossref_primary_10_1039_C5MT00052A
crossref_primary_10_1177_1352458518786055
crossref_primary_10_1016_j_nbt_2022_10_001
crossref_primary_10_1038_s41419_017_0215_0
crossref_primary_10_3390_genes13101789
crossref_primary_10_1101_gr_250480_119
crossref_primary_10_1016_j_bbamcr_2022_119326
crossref_primary_10_3390_ijms22042007
crossref_primary_10_1016_j_bbi_2016_05_016
crossref_primary_10_1016_j_neurobiolaging_2014_01_015
crossref_primary_10_1016_j_neuropharm_2024_110217
crossref_primary_10_1038_s41598_020_72190_5
crossref_primary_10_1016_j_ibneur_2023_04_002
crossref_primary_10_1093_labmed_lmad063
crossref_primary_10_3390_cells8040328
crossref_primary_10_1016_j_arr_2025_102699
crossref_primary_10_1016_j_pneurobio_2022_102289
crossref_primary_10_1002_acn3_322
crossref_primary_10_1002_prm2_12036
crossref_primary_10_1007_s12035_023_03841_7
crossref_primary_10_1371_journal_pone_0180045
crossref_primary_10_1186_s40659_018_0184_5
crossref_primary_10_1084_jem_20160776
crossref_primary_10_3389_fphys_2018_01695
crossref_primary_10_5483_BMBRep_2020_53_1_274
crossref_primary_10_1016_j_clinbiochem_2015_03_015
crossref_primary_10_1021_acschemneuro_2c00512
crossref_primary_10_1007_s12035_023_03289_9
crossref_primary_10_3390_antiox10121917
crossref_primary_10_3390_ijms25126335
crossref_primary_10_1038_nmeth_2849
crossref_primary_10_1186_s13024_020_00362_y
crossref_primary_10_3389_fnins_2021_666958
crossref_primary_10_1080_10408363_2017_1420032
crossref_primary_10_1016_j_mehy_2015_04_022
crossref_primary_10_1002_1873_3468_14021
crossref_primary_10_3390_cells11152364
crossref_primary_10_1002_ana_24107
crossref_primary_10_1002_ana_24106
crossref_primary_10_1111_febs_16563
crossref_primary_10_1016_j_mito_2022_03_003
crossref_primary_10_3389_fimmu_2017_00508
crossref_primary_10_3390_ijms241814163
crossref_primary_10_3390_life13091923
crossref_primary_10_1016_j_jneuroim_2019_577107
crossref_primary_10_1371_journal_pone_0270714
crossref_primary_10_1007_s00109_020_01967_y
crossref_primary_10_1038_s41380_024_02670_x
crossref_primary_10_1371_journal_pone_0101412
crossref_primary_10_4103_1673_5374_382222
crossref_primary_10_3390_cells10102575
crossref_primary_10_1002_ana_24515
crossref_primary_10_1186_s41232_022_00216_8
crossref_primary_10_1021_ac403061n
crossref_primary_10_3389_fnagi_2014_00311
crossref_primary_10_1038_s41398_023_02721_x
crossref_primary_10_1186_s13195_023_01322_6
crossref_primary_10_1134_S0006297916100011
crossref_primary_10_3390_ijms22137030
crossref_primary_10_1007_s12031_025_02317_8
crossref_primary_10_1038_s41598_017_08270_w
crossref_primary_10_1016_j_jalz_2017_11_013
crossref_primary_10_1111_bph_13181
crossref_primary_10_3390_ijms24098181
crossref_primary_10_1089_ars_2019_7763
crossref_primary_10_1016_j_mito_2018_12_001
crossref_primary_10_3390_ijms15057865
crossref_primary_10_1080_13543784_2020_1795127
crossref_primary_10_1186_s40035_021_00261_2
crossref_primary_10_3390_genes15050617
crossref_primary_10_3389_fneur_2019_00645
crossref_primary_10_1016_j_mito_2014_10_005
crossref_primary_10_1093_clinchem_hvab091
crossref_primary_10_3390_diagnostics12122975
crossref_primary_10_3109_19401736_2014_913168
crossref_primary_10_3390_ijms22084084
crossref_primary_10_3390_ijms21176298
crossref_primary_10_1172_JCI158453
crossref_primary_10_1371_journal_pone_0222278
crossref_primary_10_1016_j_jalz_2015_12_011
crossref_primary_10_1080_15622975_2021_1938214
Cites_doi 10.1001/archneur.62.5.758
10.1212/01.wnl.0000219668.47116.e6
10.1212/01.wnl.0000311445.21321.fc
10.1016/j.ymeth.2010.01.033
10.3233/JAD-2010-100351
10.1016/j.jalz.2011.03.003
10.1001/archneur.60.12.1696
10.1002/ana.20730
10.1096/fj.10-157230
10.1515/CCLM.2011.082
10.1126/science.1197623
10.1001/archneurol.2008.596
10.1212/WNL.34.7.939
10.1111/j.1471-4159.2011.07581.x
10.1101/sqb.2011.76.010462
10.3233/JAD-2010-100207
10.1016/j.mito.2009.03.003
10.3233/JAD-2010-100339
10.1016/j.bbagen.2011.08.008
10.1212/WNL.51.6.1546
10.1016/S1474-4422(09)70299-6
10.1373/clinchem.2008.112797
10.2353/ajpath.2009.090219
10.1212/01.WNL.0000046581.81650.D0
ContentType Journal Article
Copyright 2013 American Neurological Association
2013 American Neurological Association.
Copyright_xml – notice: 2013 American Neurological Association
– notice: 2013 American Neurological Association.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
DOI 10.1002/ana.23955
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 668
ExternalDocumentID 3160042821
23794434
10_1002_ana_23955
ANA23955
ark_67375_WNG_V2DDNV5S_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
K9.
7X8
ID FETCH-LOGICAL-c5255-3930f2fa2a6928743e4f9eb349b62b00329d3a1fd38d6eb977d5ef77d7abc26e3
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Fri Jul 11 04:11:49 EDT 2025
Thu Jul 10 23:39:23 EDT 2025
Fri Jul 25 12:09:53 EDT 2025
Thu Apr 03 06:59:49 EDT 2025
Tue Jul 01 02:24:03 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Wed Jan 22 16:49:39 EST 2025
Wed Oct 30 10:00:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5255-3930f2fa2a6928743e4f9eb349b62b00329d3a1fd38d6eb977d5ef77d7abc26e3
Notes ArticleID:ANA23955
istex:E0317CD5D71E7718038C1AC1596366B8790A21E2
ark:/67375/WNG-V2DDNV5S-9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10261/89279
PMID 23794434
PQID 1469049644
PQPubID 946345
PageCount 14
ParticipantIDs proquest_miscellaneous_1492619751
proquest_miscellaneous_1490699384
proquest_journals_1469049644
pubmed_primary_23794434
crossref_primary_10_1002_ana_23955
crossref_citationtrail_10_1002_ana_23955
wiley_primary_10_1002_ana_23955_ANA23955
istex_primary_ark_67375_WNG_V2DDNV5S_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2013
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hertze J, Minthon L, Zetterberg H, et al. Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis 2010;21:1119-1128.
Galvin JE, Powlishta KK, Wilkins K, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol 2005;62:758-765.
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:280-292.
Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611-622.
Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010;9:119-128.
Guo W, Jiang L, Bhasin S, et al. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 2009;9:261-265.
Wallace DC. Bioenergetic origins of complexity and disease. Cold Spring Harb Symp Quant Biol 2011;76:1-16.
Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006;59:512-519.
Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008;70:1827-1835.
Tapiola T, Alafuzoff I, Herukka SK, et al. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66:382-389.
Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66:1837-1844.
Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 2010;330:1774.
Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 2012;120:419-429.
Coskun P, Wyrembak J, Schriner S, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 2012;1820:553-564.
Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546-1554.
Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010;20(suppl 2):S265-S279.
Coskun PE, Wyrembak J, Derbereva O, et al. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and Down syndrome dementia. J Alzheimers Dis 2010;20(suppl 2):S293-S310.
Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60:1696-1702.
Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003;60:652-656.
Mattsson N. CSF biomarkers in neurodegenerative diseases. Clin Chem Lab Med 2011;49:345-352.
Hunter SE, Jung D, Di Giulio RT, et al. The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 2010;51:444-451.
Area-Gomez E, de Groof AJ, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009;175:1810-1816.
Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011;25:78-88.
McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944.
2009; 66
2009; 55
2010; 21
2010; 20
2012; 120
2006; 66
1984; 34
2006; 59
2012; 1820
2005; 62
2010; 330
2009; 9
2011; 76
2009; 175
2011; 25
2003; 60
2011; 49
1998; 51
2008; 70
2011; 7
2010; 51
2010; 9
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_25_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
24424574 - Ann Neurol. 2014 Mar;75(3):458-60
24431101 - Ann Neurol. 2014 Mar;75(3):460-1
23835537 - Nat Rev Neurol. 2013 Aug;9(8):420
References_xml – reference: Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008;70:1827-1835.
– reference: Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 2012;120:419-429.
– reference: Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006;59:512-519.
– reference: Wallace DC. Bioenergetic origins of complexity and disease. Cold Spring Harb Symp Quant Biol 2011;76:1-16.
– reference: Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010;9:119-128.
– reference: Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66:1837-1844.
– reference: Coskun P, Wyrembak J, Schriner S, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 2012;1820:553-564.
– reference: Tapiola T, Alafuzoff I, Herukka SK, et al. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66:382-389.
– reference: McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944.
– reference: Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:280-292.
– reference: Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546-1554.
– reference: Guo W, Jiang L, Bhasin S, et al. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 2009;9:261-265.
– reference: Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 2010;330:1774.
– reference: Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003;60:652-656.
– reference: Coskun PE, Wyrembak J, Derbereva O, et al. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and Down syndrome dementia. J Alzheimers Dis 2010;20(suppl 2):S293-S310.
– reference: Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010;20(suppl 2):S265-S279.
– reference: Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611-622.
– reference: Hunter SE, Jung D, Di Giulio RT, et al. The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 2010;51:444-451.
– reference: Mattsson N. CSF biomarkers in neurodegenerative diseases. Clin Chem Lab Med 2011;49:345-352.
– reference: Galvin JE, Powlishta KK, Wilkins K, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol 2005;62:758-765.
– reference: Hertze J, Minthon L, Zetterberg H, et al. Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis 2010;21:1119-1128.
– reference: Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011;25:78-88.
– reference: Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60:1696-1702.
– reference: Area-Gomez E, de Groof AJ, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009;175:1810-1816.
– volume: 66
  start-page: 1837
  year: 2006
  end-page: 1844
  article-title: Neuropathology of older persons without cognitive impairment from two community‐based studies
  publication-title: Neurology
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol
– volume: 59
  start-page: 512
  year: 2006
  end-page: 519
  article-title: Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans
  publication-title: Ann Neurol
– volume: 55
  start-page: 611
  year: 2009
  end-page: 622
  article-title: The MIQE guidelines: minimum information for publication of quantitative real‐time PCR experiments
  publication-title: Clin Chem
– volume: 20
  start-page: S265
  issue: suppl 2
  year: 2010
  end-page: S279
  article-title: The Alzheimer's disease mitochondrial cascade hypothesis
  publication-title: J Alzheimers Dis
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
– volume: 20
  start-page: S293
  issue: suppl 2
  year: 2010
  end-page: S310
  article-title: Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and Down syndrome dementia
  publication-title: J Alzheimers Dis
– volume: 76
  start-page: 1
  year: 2011
  end-page: 16
  article-title: Bioenergetic origins of complexity and disease
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 60
  start-page: 1696
  year: 2003
  end-page: 1702
  article-title: Cerebrospinal fluid tau and beta‐amyloid: how well do these biomarkers reflect autopsy‐confirmed dementia diagnoses?
  publication-title: Arch Neurol
– volume: 330
  start-page: 1774
  year: 2010
  article-title: Decreased clearance of CNS beta‐amyloid in Alzheimer's disease
  publication-title: Science
– volume: 120
  start-page: 419
  year: 2012
  end-page: 429
  article-title: Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease
  publication-title: J Neurochem
– volume: 51
  start-page: 444
  year: 2010
  end-page: 451
  article-title: The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number
  publication-title: Methods
– volume: 21
  start-page: 1119
  year: 2010
  end-page: 1128
  article-title: Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow‐up study of 4.7 years
  publication-title: J Alzheimers Dis
– volume: 9
  start-page: 261
  year: 2009
  end-page: 265
  article-title: DNA extraction procedures meaningfully influence qPCR‐based mtDNA copy number determination
  publication-title: Mitochondrion
– volume: 66
  start-page: 382
  year: 2009
  end-page: 389
  article-title: Cerebrospinal fluid {beta}‐amyloid 42 and tau proteins as biomarkers of Alzheimer‐type pathologic changes in the brain
  publication-title: Arch Neurol
– volume: 25
  start-page: 78
  year: 2011
  end-page: 88
  article-title: Mitochondrial gamma‐secretase participates in the metabolism of mitochondria‐associated amyloid precursor protein
  publication-title: FASEB J
– volume: 70
  start-page: 1827
  year: 2008
  end-page: 1835
  article-title: CSF biomarkers in frontotemporal lobar degeneration with known pathology
  publication-title: Neurology
– volume: 1820
  start-page: 553
  year: 2012
  end-page: 564
  article-title: A mitochondrial etiology of Alzheimer and Parkinson disease
  publication-title: Biochim Biophys Acta
– volume: 51
  start-page: 1546
  year: 1998
  end-page: 1554
  article-title: Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria
  publication-title: Neurology
– volume: 175
  start-page: 1810
  year: 2009
  end-page: 1816
  article-title: Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria
  publication-title: Am J Pathol
– volume: 62
  start-page: 758
  year: 2005
  end-page: 765
  article-title: Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study
  publication-title: Arch Neurol
– volume: 49
  start-page: 345
  year: 2011
  end-page: 352
  article-title: CSF biomarkers in neurodegenerative diseases
  publication-title: Clin Chem Lab Med
– volume: 60
  start-page: 652
  year: 2003
  end-page: 656
  article-title: CSF Abeta 42 levels correlate with amyloid‐neuropathology in a population‐based autopsy study
  publication-title: Neurology
– ident: e_1_2_8_9_1
  doi: 10.1001/archneur.62.5.758
– ident: e_1_2_8_10_1
  doi: 10.1212/01.wnl.0000219668.47116.e6
– ident: e_1_2_8_13_1
  doi: 10.1212/01.wnl.0000311445.21321.fc
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ymeth.2010.01.033
– ident: e_1_2_8_21_1
  doi: 10.3233/JAD-2010-100351
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jalz.2011.03.003
– ident: e_1_2_8_4_1
  doi: 10.1001/archneur.60.12.1696
– ident: e_1_2_8_7_1
  doi: 10.1002/ana.20730
– ident: e_1_2_8_24_1
  doi: 10.1096/fj.10-157230
– ident: e_1_2_8_11_1
  doi: 10.1515/CCLM.2011.082
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1197623
– ident: e_1_2_8_8_1
  doi: 10.1001/archneurol.2008.596
– ident: e_1_2_8_16_1
  doi: 10.1212/WNL.34.7.939
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1471-4159.2011.07581.x
– ident: e_1_2_8_25_1
  doi: 10.1101/sqb.2011.76.010462
– ident: e_1_2_8_5_1
  doi: 10.3233/JAD-2010-100207
– ident: e_1_2_8_19_1
  doi: 10.1016/j.mito.2009.03.003
– ident: e_1_2_8_14_1
  doi: 10.3233/JAD-2010-100339
– ident: e_1_2_8_15_1
  doi: 10.1016/j.bbagen.2011.08.008
– ident: e_1_2_8_20_1
  doi: 10.1212/WNL.51.6.1546
– ident: e_1_2_8_2_1
  doi: 10.1016/S1474-4422(09)70299-6
– ident: e_1_2_8_17_1
  doi: 10.1373/clinchem.2008.112797
– ident: e_1_2_8_23_1
  doi: 10.2353/ajpath.2009.090219
– ident: e_1_2_8_6_1
  doi: 10.1212/01.WNL.0000046581.81650.D0
– reference: 24431101 - Ann Neurol. 2014 Mar;75(3):460-1
– reference: 24424574 - Ann Neurol. 2014 Mar;75(3):458-60
– reference: 23835537 - Nat Rev Neurol. 2013 Aug;9(8):420
SSID ssj0009610
Score 2.515182
Snippet Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain...
To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Using quantitative polymerase chain reaction techniques, we...
Objective To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). Methods Using quantitative polymerase chain...
To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD).OBJECTIVETo identify a novel biochemical marker that precedes...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 655
SubjectTerms Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - genetics
Amyloid beta-Protein Precursor - cerebrospinal fluid
Animals
Biomarkers - cerebrospinal fluid
Cognitive Dysfunction - cerebrospinal fluid
Cognitive Dysfunction - genetics
Deoxyribonucleic acid
DNA
DNA, Mitochondrial - cerebrospinal fluid
Female
Humans
Male
Medical research
Mice
Mice, Transgenic
Mitochondrial DNA
Peptide Fragments - cerebrospinal fluid
Phosphorylation
Presenilin-1 - genetics
Prodromal Symptoms
tau Proteins - cerebrospinal fluid
Transgenic animals
Title Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease
URI https://api.istex.fr/ark:/67375/WNG-V2DDNV5S-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.23955
https://www.ncbi.nlm.nih.gov/pubmed/23794434
https://www.proquest.com/docview/1469049644
https://www.proquest.com/docview/1490699384
https://www.proquest.com/docview/1492619751
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KBfGL78dqlSgi_bLXuyT7CH5aPGsRux_U1oJCSHYTPHrdK9c7lP71zmQfpVJF_LIs7ATymJn8ZpP5DcBLn-cqRyQcZ9zaWNa-inNlbGxEZlWdIgK3lO-8X6Z7B_L9UXK0Aa_7XJiWH2L44UaWEfw1GbixZzsXpKGmMSMuVEIJ5nRXiwDRxwvqKJUGJgI6ZouTiZA9q9CY7wwtL-1F12haf14FNC_j1rDx7N6Cb32X2_smx6P1yo6q89_YHP9zTLfhZgdIWdFq0B3YcM1duL7fHbnfg68fFj9Y5ZYYO1OJEZL18_WsZhUlPDYd6y5beHaCzgGdaVOTTrNpWbBZw07Ro3bJl6yYn393sxO3ZN2x0H042H37-c1e3FVkiKsEY49YKDH23BtuUkVE-cJJrzAcl8qmnBwEV7UwE1-LvE6dRWxZJ87jMzO24qkTD2CzWTTuEbDaWcmzcU58bTLn1mBklflMSjtxThgRwXa_Nrrq6MqpasZct0TLXONk6TBZEbwYRE9bjo6rhF6FBR4kzPKYLrVlif5SvtOHfDotD5NPWkWw1WuA7uz5jAIkhbEUgscIng-f0RLpeMU0brEmGTVOEe7lf5ehkDVLJhE8bLVr6BAX6BulwNbbQUf-PBZdlEV4efzvok_gBqdKHiGNcgs2V8u1e4p4amWfBcP5Bd-HGcY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC9ovvh-rVaOI9Mte75LsI-CXxbOeercftC8QCcluQo9e98p5h9K_3kz2USpVxC_LQiaQx8zkN5ud3wC8smkqUoeEw4RqHfLSFmEqlA4VS7QoY4fANeY7T_J4tM8_HkVHa_CmzYWp-SG6D25oGd5fo4HjB-mdC9ZQVakeZSKKrsEGVvT2AdXnC_IoEXsuArxoC10rb3mF-nSn63rpNNrAhf15FdS8jFz90bN7C761g67_ODnprZa6V5z_xuf4v7O6DTcbTEqyWonuwJqp7sL1SXPrfg--juc_SGEWLnzGKiMoa2eraUkKzHmsGuJdMrfk1PkH50-rEtWaDPOMTCty5pxqk39Jstn5sZmemgVpbobuw_7uu723o7ApyhAWkQs_QiZY31KrqIoFcuUzw61wETkXOqboI6gomRrYkqVlbLSDl2VkrHsmShc0NuwBrFfzyjwCUhrNadJPkbKNp1QrF1wlNuFcD4xhigWw3W6OLBrGciycMZM11zKVbrGkX6wAXnaiZzVNx1VCr_0OdxJqcYL_tSWRPMzfywM6HOYH0RcpAthqVUA2Jv0dYyThwimHHwN40TU7Y8QbFlWZ-QplRD92iC_9uwxGrUk0COBhrV7dgChz7pEz13vbK8mf5yKzPPMvj_9d9DncGO1NxnL8If_0BDYpFvbwWZVbsL5crMxTB6-W-pm3ol9rFh3h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_OOzj84vtRPTWKyH3pXjdJH8FPxbqeeldEvQcohKRJcLm97rLuotxfb6bt9jg5RfxSCp1AHjOT33QyvwA8d1kmMo-Ew5RqHXLjqjATSoeKpVqYxCNwjfXO-2Wye8DfHcfHa_ByVQvT8kP0P9zQMhp_jQY-M27nnDRU1WpAmYjjK7DBkyhDlS4-nnNHiaShIsA8WxgPGV_RCkV0p296YTPawHn9eRnSvAhcm51ndB2-rvrcHjg5GSwXelCd_Ubn-J-DugHXOkRK8laFbsKarW_B5n6Xc78NX_amP0hl5z54xjtGUNZNlmNDKqx4rDvaXTJ15NR7B-9Na4NKTYoyJ-OazLxL7aovST45-2bHp3ZOurzQHTgYvf78ajfsrmQIq9gHHyETLHLUKaoSgUz5zHInfDzOhU4oeggqDFNDZ1hmEqs9uDSxdf6ZKl3RxLK7sF5Pa3sfiLGa0zTKkLCNZ1QrH1qlLuVcD61ligWwvVobWXV85XhtxkS2TMtU-smSzWQF8KwXnbUkHZcJvWgWuJdQ8xM81ZbG8qh8Iw9pUZSH8ScpAthaaYDsDPo7RkjCB1MePQbwtP_sTRHzK6q20yXKiCjxeC_7uwzGrGk8DOBeq119hyjzzpEz33q70ZE_j0XmZd68PPh30Sew-aEYyb235fuHcJXirR5NSeUWrC_mS_vIY6uFftzY0C8XDByZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cerebrospinal+fluid+concentration+of+mitochondrial+DNA+in+preclinical+Alzheimer+disease&rft.jtitle=Annals+of+neurology&rft.au=Podlesniy%2C+Petar&rft.au=Figueiro-Silva%2C+Joana&rft.au=Llado%2C+Albert&rft.au=Antonell%2C+Anna&rft.date=2013-11-01&rft.eissn=1531-8249&rft.volume=74&rft.issue=5&rft.spage=655&rft_id=info:doi/10.1002%2Fana.23955&rft_id=info%3Apmid%2F23794434&rft.externalDocID=23794434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon