Polymer-Dispersed Bicontinuous Cubic Glycolipid Nanoparticles

We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside (β‐XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small‐angle X‐ray diffraction (SSAXD) permitted the identif...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology progress Vol. 21; no. 1; pp. 255 - 262
Main Authors Abraham, Thomas, Hato, Masakatsu, Hirai, Mitsuhiro
Format Journal Article
LanguageEnglish
Published USA American Chemical Society 2005
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside (β‐XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small‐angle X‐ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co‐dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 μm. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 μm to 660 nm. At 3 h of mixing time, the increase of polymer content, from ∼5 to ∼10 wt %, reduced the particle mean diameter from 1.0 μm to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a β‐XP‐water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate‐buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system.
AbstractList We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl-beta-D-xyloside (beta-XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small-angle X-ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co-dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 microm. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 microm to 660 nm. At 3 h of mixing time, the increase of polymer content, from approximately 5 to approximately 10 wt %, reduced the particle mean diameter from 1.0 microm to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a beta-XP-water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate-buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system.
We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl- beta -D-xyloside ( beta -XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small-angle X-ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co-dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 mu m. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 mu m to 660 nm. At 3 h of mixing time, the increase of polymer content, from similar to 5 to similar to 10 wt %, reduced the particle mean diameter from 1.0 mu m to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a beta -XP-water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate-buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system.
We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside (β‐XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small‐angle X‐ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co‐dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 μm. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 μm to 660 nm. At 3 h of mixing time, the increase of polymer content, from ∼5 to ∼10 wt %, reduced the particle mean diameter from 1.0 μm to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a β‐XP‐water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate‐buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system.
Author Hirai, Mitsuhiro
Abraham, Thomas
Hato, Masakatsu
Author_xml – sequence: 1
  givenname: Thomas
  surname: Abraham
  fullname: Abraham, Thomas
  email: tabraham@ualberta.ca
  organization: Bionanomaterial and Surface Interactions Group, Nanotechnology Research Institute, AIST, Tsukuba Central 5, Tsukuba 305-8565, Japan
– sequence: 2
  givenname: Masakatsu
  surname: Hato
  fullname: Hato, Masakatsu
  organization: Bionanomaterial and Surface Interactions Group, Nanotechnology Research Institute, AIST, Tsukuba Central 5, Tsukuba 305-8565, Japan
– sequence: 3
  givenname: Mitsuhiro
  surname: Hirai
  fullname: Hirai, Mitsuhiro
  organization: Department of Physics, Gunma University, 4-2 Aramaki, Maebashi 371-8510, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16527345$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15903264$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PGzEQhi0URALlwB9AuVCph6Xjr7V96IGkkFYKaYSoerS8Xq9kcHYXO6t2_z2LEoVTxWkuzzvPzHuKRnVTO4QuMFxjIPhr0QJTkjN2hCaYE8hyoHSEJlLwPBOKyjE6TekJACTk5ASNMVdASc4m6Nu6Cf3Gxey7T62LyZXTmbdNvfV113RpOu8Kb6eL0Nsm-NaX05Wpm9bErbfBpU_ouDIhufP9PEO_724f5z-y5a_Fz_nNMrOccJbllCtpC6i4BIy5NESUBBRjznBRKpBCMKqsFYazkhUVLwxQUWArgRXEOnqGPu_2trF56Vza6o1P1oVgajdcqXMhGQOJPwSxoGTQ8QH8sgNtbFKKrtJt9BsTe41Bv5WqD6UO7OV-aVdsXPlO7lscgKs9YJI1oYqmtj69czkngrI3Kd5xf31w_f-Neva4fjjIs13Gp637d8iY-Dx8TQXXf1aLIT7L77Faa0VfASx_nJE
CODEN BIPRET
CitedBy_id crossref_primary_10_1248_cpb_c19_00370
crossref_primary_10_1016_j_eurpolymj_2015_05_009
crossref_primary_10_1021_acs_langmuir_5b03769
crossref_primary_10_1071_CH05173
crossref_primary_10_4155_tde_15_81
crossref_primary_10_1021_acsnano_8b07961
crossref_primary_10_1021_la104736u
crossref_primary_10_1002_macp_200800040
crossref_primary_10_1021_la900386q
crossref_primary_10_1039_b609510k
crossref_primary_10_1016_j_jconrel_2016_08_011
crossref_primary_10_1080_08982100802691983
crossref_primary_10_1021_acs_langmuir_8b02368
crossref_primary_10_1021_la303938k
crossref_primary_10_1016_j_jcis_2020_01_041
crossref_primary_10_1039_C1CS15148G
crossref_primary_10_1016_j_colsurfa_2018_07_032
crossref_primary_10_1021_la203061f
crossref_primary_10_1016_j_cis_2008_07_007
crossref_primary_10_1016_j_molliq_2024_124738
crossref_primary_10_1021_acs_jpcb_0c10629
crossref_primary_10_1039_D0ME00076K
crossref_primary_10_1016_j_actbio_2018_12_009
crossref_primary_10_1111_j_1365_2818_2006_01544_x
crossref_primary_10_1021_acs_langmuir_7b03541
crossref_primary_10_1007_s00249_009_0493_2
crossref_primary_10_1517_17425247_2010_511172
crossref_primary_10_1016_j_colsurfb_2017_07_026
crossref_primary_10_1021_la903927w
crossref_primary_10_1021_jp902883q
crossref_primary_10_1371_journal_pone_0003747
crossref_primary_10_3390_polym14153118
crossref_primary_10_1021_acs_langmuir_5b02797
Cites_doi 10.1021/j100358a010
10.1016/S1359-0294(98)80069-1
10.1016/j.colsurfb.2004.02.015
10.1021/la010161w
10.1016/S0001-8686(98)00085-2
10.1038/386129a0
10.1021/la0116185
10.1021/la970566+
10.1016/0304-4157(90)90002-T
10.1016/S0169-409X(01)00108-9
10.1021/jp953007p
10.1016/S0070-2161(08)60205-1
10.1016/0009-3084(94)90094-9
10.1016/S1359-0294(00)00040-6
10.1021/la010224a
10.1016/S1359-0294(00)00020-0
10.1007/978-1-4899-2516-9
10.1524/zkri.1997.212.7.486
10.1021/la0101245
10.1016/S0006-3495(94)80938-5
10.1073/pnas.93.25.14532
10.1021/la961037t
10.1021/j100085a028
ContentType Journal Article
Copyright Copyright © 2005 American Institute of Chemical Engineers (AIChE)
2005 INIST-CNRS
Copyright_xml – notice: Copyright © 2005 American Institute of Chemical Engineers (AIChE)
– notice: 2005 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1021/bp0498544
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage 262
ExternalDocumentID 10_1021_bp0498544
15903264
16527345
BTPR498544
ark_67375_WNG_10B6M19P_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A00
A8Z
AABXI
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABTAH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGXLV
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
ESTFP
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
P4E
PALCI
QRW
RIWAO
RJQFR
ROL
RWI
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WSB
WXSBR
WYJ
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
08R
AAJUZ
AAPBV
AAVGM
ABCVL
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c5254-63598cb0f5801158a27d20944ea57d90877439cc7a54d4bf5ba037b1c804b2ce3
IEDL.DBID DR2
ISSN 8756-7938
IngestDate Fri Aug 16 23:17:17 EDT 2024
Fri Aug 16 09:51:20 EDT 2024
Fri Aug 23 00:26:01 EDT 2024
Sat Sep 28 07:43:53 EDT 2024
Sun Oct 22 16:07:58 EDT 2023
Sat Aug 24 00:52:41 EDT 2024
Wed Oct 30 09:53:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoparticle
Polymer
Glycolipid
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5254-63598cb0f5801158a27d20944ea57d90877439cc7a54d4bf5ba037b1c804b2ce3
Notes ArticleID:BTPR498544
istex:BE190C555EB0A5EA17C8B627FB8DA2BD31A78722
ark:/67375/WNG-10B6M19P-9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://doi.org/10.1021/bp0498544
PMID 15903264
PQID 17320875
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67844081
proquest_miscellaneous_17320875
crossref_primary_10_1021_bp0498544
pubmed_primary_15903264
pascalfrancis_primary_16527345
wiley_primary_10_1021_bp0498544_BTPR498544
istex_primary_ark_67375_WNG_10B6M19P_9
PublicationCentury 2000
PublicationDate 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace USA
PublicationPlace_xml – name: USA
– name: Washington, DC
– name: New York, NY
– name: United States
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Progress
PublicationYear 2005
Publisher American Chemical Society
American Institute of Chemical Engineers
Publisher_xml – name: American Chemical Society
– name: American Institute of Chemical Engineers
References Hato, M.; Minamikawa, H.; Salkar, R. A.; Matsutani, S. Alkylglycosides with an isoprenoid-type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures. Langmuir 2002, 18, 3425-3429.
Gustafsson, J. H.; Wahren, H. L.; Almgren, M.; Larsson, K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilc polymer. Langmuir 1997, 13, 6964-6971.
Minamikawa, H.; Hato, M. Phase behavior of synthetic phytanyl-chained glycolipid/water systems. Langmuir 1997, 13, 2564-2571.
Larsson, K. Aqueous dispersions of cubic lipid-water phases. Curr. Opin. Colloid Interface Sci. 2000, 5, 64-69.
Abraham, T.; Hato, M.; Hirai, M. Glycolipid based cubic nanoparticles: Preparation and structural aspects. Colloids Surf., B 2004, 35, 107-117.
Landau, E. M.; Rosenbusch, J. P. A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14532-14535.
Washington, C.; King, S. M. ; Heenan. R. H. Structure of block copolymers adsorbed to perfluorocarbon emulsions. J. Phy. Chem. 1996, 100, 7603-7609.
Seddon J. M. Structureof the inverted hexagonal (HII) phase, and nonlamellar phase transitions of lipids. Biochim. Biophys. Acta 1990, 1031, 1-69.
De Kruijff, B. Lipids beyond the bilayer. Nature 1997, 386, 129-130.
Luzzati, V.; Delacroix, H.; Gulik, A.; Gulik-Krzywicki, T.; Mariani, P.; Vargas, R. Curr. Top. Membr. 1997, 44, 3-24.
Templer R. H. Thermodynamicand theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr. Opin. Colloid Interface Sci. 1998, 3, 255-263.
Nakano, M.; Sugita, A.; Matsuoka, H.; Handa, T. Small-angle X-ray scattering and 13C NMR investigation on the internal structure of cubosomes. Langmuir 2001, 17, 3917-3922.
Silvander, M. Steric stabilization of liposomes-A review. Prog. Colloid Polym. Sci. 2002, 120, 25.
Spicer, P. T.; Hayden, K. L.; Lynch, M. L.; Ofori-Boateng, A.; Burns, J. L. Novel process for producing cubic crystalline nanoparticles (cubosomes). Langmuir 2001, 17, 5748-5756.
Shah, J. C.; Sadhale, Y.; Chilukuri, D. M. Cubic phase gels as drug delivery systems. Adv. Drug Delivery Rev. 2001, 47, 229-250.
Hato, M.; Minamikawa, H.; Tamada, K.; Baba, T.; Tanabe, Y. Self-assembly of synthetic glycolipid/water systems. Adv. Colloid Interface Sci. 1999, 80, 233-270.
Drummond, C. J.; Fong, C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Opin. Colloid interface Sci. 2000, 4, 449-456.
Jacob, M.; Andersson, S. Finite periodicity and crystal structure. Z. Kristallogr. 1997, 212, 486-492.
Landh, T. Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20 °C. J. Phys. Chem. 1994, 98, 8453-8467.
Minamikawa, H.; Murakami, T.; Hato, M. Synthesis of 1,3-di-O-alkyl-2-O-(β-glycosyl) glycerols bearing oligosaccharides as hydrophilic groups. Chem. Phys. Lipids 1994, 72, 111-118.
Kuhl, T. L.; Leckband, D. E.; Lasic, D. D.; Israelachvili, J. N. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys. J. 1994, 66, 1479.
Johnsson, M.; Bergstrand, N.; Edwards, K.; Stålgren, J. J. R. Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability. Langmuir2001, 17, 3902-3911.
Larsson, K. Cubic lipid-water phases: structures and biomembrane aspects. J. Phys. Chem. 1989, 93, 7304-7314.
1997; 212
2002; 18
1997; 44
2000; 5
2000; 4
1996; 93
1994; 66
1996
1996; 100
1970
1999; 80
2001; 47
1990; 1031
1988; 1
1989; 93
2001
2002; 120
1990
1997; 386
1997; 13
2004; 35
1998; 3
2001; 17
1994; 72
1994; 98
Gustafsson (10.1021/bp0498544-BIB16|cit16) 1997; 13
Kates (10.1021/bp0498544-BIB29|cit29) 1990
Drummond (10.1021/bp0498544-BIB8|cit8) 2000; 4
Larsson (10.1021/bp0498544-BIB5|cit5) 1989; 93
Shah (10.1021/bp0498544-BIB9|cit9) 2001; 47
De Kruijff (10.1021/bp0498544-BIB4|cit4) 1997; 386
10.1021/bp0498544-BIB7|cit7
Jacob (10.1021/bp0498544-BIB12|cit12) 1997; 212
Minamikawa (10.1021/bp0498544-BIB20|cit20) 1997; 13
Templer (10.1021/bp0498544-BIB13|cit13) 1998; 3
10.1021/bp0498544-BIB15|cit15
Hyde (10.1021/bp0498544-BIB23|cit23) 2001
Johnsson (10.1021/bp0498544-BIB24|cit24) 2001; 17
Hato (10.1021/bp0498544-BIB2|cit2) 2002; 18
10.1021/bp0498544-BIB6|cit6
Kuhl (10.1021/bp0498544-BIB21|cit21) 1994; 66
Silvander (10.1021/bp0498544-BIB25|cit25) 2002; 120
Hato (10.1021/bp0498544-BIB27|cit27) 1999; 80
Smith (10.1021/bp0498544-BIB28|cit28) 1988; 1
Washington (10.1021/bp0498544-BIB26|cit26) 1996; 100
Abraham (10.1021/bp0498544-BIB30|cit30) 2004; 35
Spicer (10.1021/bp0498544-BIB17|cit17) 2001; 17
Luzzati (10.1021/bp0498544-BIB10|cit10) 1997; 44
Minamikawa (10.1021/bp0498544-BIB19|cit19) 1994; 72
Landh (10.1021/bp0498544-BIB22|cit22) 1994; 98
Larsson (10.1021/bp0498544-BIB1|cit1) 2000; 5
Seddon (10.1021/bp0498544-BIB14|cit14) 1990; 1031
Landau (10.1021/bp0498544-BIB3|cit3) 1996; 93
10.1021/bp0498544-BIB11|cit11
Nakano (10.1021/bp0498544-BIB18|cit18) 2001; 17
References_xml – volume: 1031
  start-page: 1
  year: 1990
  end-page: 69
  article-title: Structureof the inverted hexagonal (H ) phase, and nonlamellar phase transitions of lipids
  publication-title: Biochim. Biophys. Acta
– volume: 120
  start-page: 25
  year: 2002
  article-title: Steric stabilization of liposomes‐A review
  publication-title: Prog. Colloid Polym. Sci.
– volume: 44
  start-page: 3
  year: 1997
  end-page: 24
  publication-title: Curr. Top. Membr.
– year: 2001
– volume: 3
  start-page: 255
  year: 1998
  end-page: 263
  article-title: Thermodynamicand theoretical aspects of cubic mesophases in nature and biological amphiphiles
  publication-title: Curr. Opin. Colloid Interface Sci.
– year: 1996
– volume: 80
  start-page: 233
  year: 1999
  end-page: 270
  article-title: Self‐assembly of synthetic glycolipid/water systems
  publication-title: Adv. Colloid Interface Sci.
– volume: 98
  start-page: 8453
  year: 1994
  end-page: 8467
  article-title: Phase behavior in the system pine oil monoglycerides‐poloxamer 407‐water at 20 °C
  publication-title: J. Phys. Chem.
– volume: 72
  start-page: 111
  year: 1994
  end-page: 118
  article-title: Synthesis of 1,3‐di‐ ‐alkyl‐2‐ ‐(β‐glycosyl) glycerols bearing oligosaccharides as hydrophilic groups
  publication-title: Chem. Phys. Lipids
– year: 1990
– volume: 212
  start-page: 486
  year: 1997
  end-page: 492
  article-title: Finite periodicity and crystal structure
  publication-title: Z. Kristallogr.
– volume: 18
  start-page: 3425
  year: 2002
  end-page: 3429
  article-title: Alkylglycosides with an isoprenoid‐type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures
  publication-title: Langmuir
– volume: 4
  start-page: 449
  year: 2000
  end-page: 456
  article-title: Surfactant self‐assembly objects as novel drug delivery vehicles
  publication-title: Curr. Opin. Colloid interface Sci.
– volume: 1
  year: 1988
– volume: 100
  start-page: 7603
  year: 1996
  end-page: 7609
  article-title: ; Heenan. R. H. Structure of block copolymers adsorbed to perfluorocarbon emulsions
  publication-title: J. Phy. Chem.
– volume: 386
  start-page: 129
  year: 1997
  end-page: 130
  article-title: Lipids beyond the bilayer
  publication-title: Nature
– volume: 13
  start-page: 2564
  year: 1997
  end-page: 2571
  article-title: Phase behavior of synthetic phytanyl‐chained glycolipid/water systems
  publication-title: Langmuir
– volume: 66
  start-page: 1479
  year: 1994
  article-title: Modulation of interaction forces between bilayers exposing short‐chained ethylene oxide headgroups
  publication-title: Biophys. J.
– volume: 93
  start-page: 7304
  year: 1989
  end-page: 7314
  article-title: Cubic lipid‐water phases: structures and biomembrane aspects
  publication-title: J. Phys. Chem.
– volume: 17
  start-page: 3902
  year: 2001
  end-page: 3911
  article-title: Adsorption of a PEO‐PPO–PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability
  publication-title: Langmuir
– year: 1970
– volume: 47
  start-page: 229
  year: 2001
  end-page: 250
  article-title: Cubic phase gels as drug delivery systems
  publication-title: Adv. Drug Delivery Rev.
– volume: 17
  start-page: 5748
  year: 2001
  end-page: 5756
  article-title: Novel process for producing cubic crystalline nanoparticles (cubosomes)
  publication-title: Langmuir
– volume: 5
  start-page: 64
  year: 2000
  end-page: 69
  article-title: Aqueous dispersions of cubic lipid‐water phases
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 17
  start-page: 3917
  year: 2001
  end-page: 3922
  article-title: Small‐angle X‐ray scattering and C NMR investigation on the internal structure of cubosomes
  publication-title: Langmuir
– volume: 35
  start-page: 107
  year: 2004
  end-page: 117
  article-title: Glycolipid based cubic nanoparticles: Preparation and structural aspects
  publication-title: Colloids Surf., B
– volume: 93
  start-page: 14532
  year: 1996
  end-page: 14535
  article-title: A novel concept for the crystallization of membrane proteins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 13
  start-page: 6964
  year: 1997
  end-page: 6971
  article-title: Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilc polymer
  publication-title: Langmuir
– volume: 93
  start-page: 7304
  year: 1989
  ident: 10.1021/bp0498544-BIB5|cit5
  article-title: Cubic lipid-water phases: structures and biomembrane aspects
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100358a010
  contributor:
    fullname: Larsson
– volume: 3
  start-page: 255
  year: 1998
  ident: 10.1021/bp0498544-BIB13|cit13
  article-title: Thermodynamicand theoretical aspects of cubic mesophases in nature and biological amphiphiles
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(98)80069-1
  contributor:
    fullname: Templer
– volume: 35
  start-page: 107
  year: 2004
  ident: 10.1021/bp0498544-BIB30|cit30
  article-title: Glycolipid based cubic nanoparticles: Preparation and structural aspects
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2004.02.015
  contributor:
    fullname: Abraham
– ident: 10.1021/bp0498544-BIB15|cit15
– volume: 17
  start-page: 5748
  year: 2001
  ident: 10.1021/bp0498544-BIB17|cit17
  article-title: Novel process for producing cubic crystalline nanoparticles (cubosomes)
  publication-title: Langmuir
  doi: 10.1021/la010161w
  contributor:
    fullname: Spicer
– volume: 120
  start-page: 25
  year: 2002
  ident: 10.1021/bp0498544-BIB25|cit25
  article-title: Steric stabilization of liposomes-A review
  publication-title: Prog. Colloid Polym. Sci.
  contributor:
    fullname: Silvander
– volume: 80
  start-page: 233
  year: 1999
  ident: 10.1021/bp0498544-BIB27|cit27
  article-title: Self-assembly of synthetic glycolipid/water systems
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(98)00085-2
  contributor:
    fullname: Hato
– ident: 10.1021/bp0498544-BIB6|cit6
– volume: 386
  start-page: 129
  year: 1997
  ident: 10.1021/bp0498544-BIB4|cit4
  article-title: Lipids beyond the bilayer
  publication-title: Nature
  doi: 10.1038/386129a0
  contributor:
    fullname: De Kruijff
– volume: 18
  start-page: 3425
  year: 2002
  ident: 10.1021/bp0498544-BIB2|cit2
  article-title: Alkylglycosides with an isoprenoid-type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures
  publication-title: Langmuir
  doi: 10.1021/la0116185
  contributor:
    fullname: Hato
– volume: 13
  start-page: 6964
  year: 1997
  ident: 10.1021/bp0498544-BIB16|cit16
  article-title: Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilc polymer
  publication-title: Langmuir
  doi: 10.1021/la970566+
  contributor:
    fullname: Gustafsson
– volume: 1031
  start-page: 1
  year: 1990
  ident: 10.1021/bp0498544-BIB14|cit14
  article-title: Structureof the inverted hexagonal (HII) phase, and nonlamellar phase transitions of lipids
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(90)90002-T
  contributor:
    fullname: Seddon
– ident: 10.1021/bp0498544-BIB7|cit7
– volume: 47
  start-page: 229
  year: 2001
  ident: 10.1021/bp0498544-BIB9|cit9
  article-title: Cubic phase gels as drug delivery systems
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(01)00108-9
  contributor:
    fullname: Shah
– volume: 100
  start-page: 7603
  year: 1996
  ident: 10.1021/bp0498544-BIB26|cit26
  article-title: ; Heenan. R. H. Structure of block copolymers adsorbed to perfluorocarbon emulsions
  publication-title: J. Phy. Chem.
  doi: 10.1021/jp953007p
  contributor:
    fullname: Washington
– volume: 44
  start-page: 3
  year: 1997
  ident: 10.1021/bp0498544-BIB10|cit10
  publication-title: Curr. Top. Membr.
  doi: 10.1016/S0070-2161(08)60205-1
  contributor:
    fullname: Luzzati
– volume: 72
  start-page: 111
  year: 1994
  ident: 10.1021/bp0498544-BIB19|cit19
  article-title: Synthesis of 1,3-di-O-alkyl-2-O-(β-glycosyl) glycerols bearing oligosaccharides as hydrophilic groups
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(94)90094-9
  contributor:
    fullname: Minamikawa
– volume: 5
  start-page: 64
  year: 2000
  ident: 10.1021/bp0498544-BIB1|cit1
  article-title: Aqueous dispersions of cubic lipid-water phases
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(00)00040-6
  contributor:
    fullname: Larsson
– ident: 10.1021/bp0498544-BIB11|cit11
– volume: 17
  start-page: 3917
  year: 2001
  ident: 10.1021/bp0498544-BIB18|cit18
  article-title: Small-angle X-ray scattering and 13C NMR investigation on the internal structure of cubosomes
  publication-title: Langmuir
  doi: 10.1021/la010224a
  contributor:
    fullname: Nakano
– volume-title: Handbook of Applied Surface and Colloid Chemistry
  year: 2001
  ident: 10.1021/bp0498544-BIB23|cit23
  contributor:
    fullname: Hyde
– volume: 1
  volume-title: Microbial Lipids
  year: 1988
  ident: 10.1021/bp0498544-BIB28|cit28
  contributor:
    fullname: Smith
– volume: 4
  start-page: 449
  year: 2000
  ident: 10.1021/bp0498544-BIB8|cit8
  article-title: Surfactant self-assembly objects as novel drug delivery vehicles
  publication-title: Curr. Opin. Colloid interface Sci.
  doi: 10.1016/S1359-0294(00)00020-0
  contributor:
    fullname: Drummond
– volume-title: Handbook of Lipid Research 6, Glycolipids, Phosphoglycolipids and Sulfoglycoglycerolipids
  year: 1990
  ident: 10.1021/bp0498544-BIB29|cit29
  doi: 10.1007/978-1-4899-2516-9
  contributor:
    fullname: Kates
– volume: 212
  start-page: 486
  year: 1997
  ident: 10.1021/bp0498544-BIB12|cit12
  article-title: Finite periodicity and crystal structure
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.1997.212.7.486
  contributor:
    fullname: Jacob
– volume: 17
  start-page: 3902
  year: 2001
  ident: 10.1021/bp0498544-BIB24|cit24
  article-title: Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability
  publication-title: Langmuir
  doi: 10.1021/la0101245
  contributor:
    fullname: Johnsson
– volume: 66
  start-page: 1479
  year: 1994
  ident: 10.1021/bp0498544-BIB21|cit21
  article-title: Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80938-5
  contributor:
    fullname: Kuhl
– volume: 93
  start-page: 14532
  year: 1996
  ident: 10.1021/bp0498544-BIB3|cit3
  article-title: A novel concept for the crystallization of membrane proteins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.25.14532
  contributor:
    fullname: Landau
– volume: 13
  start-page: 2564
  year: 1997
  ident: 10.1021/bp0498544-BIB20|cit20
  article-title: Phase behavior of synthetic phytanyl-chained glycolipid/water systems
  publication-title: Langmuir
  doi: 10.1021/la961037t
  contributor:
    fullname: Minamikawa
– volume: 98
  start-page: 8453
  year: 1994
  ident: 10.1021/bp0498544-BIB22|cit22
  article-title: Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20 °C
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100085a028
  contributor:
    fullname: Landh
SSID ssj0008062
Score 1.9974002
Snippet We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside...
We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl-beta-D-xyloside...
We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl- beta -D-xyloside...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 255
SubjectTerms Biological and medical sciences
Biotechnology
Biotechnology - instrumentation
Biotechnology - methods
Chemical Phenomena
Chemistry, Physical
Colloids - chemistry
Equipment Design
Fundamental and applied biological sciences. Psychology
Glycolipids - chemistry
Materials Testing
Nanostructures - chemistry
Particle Size
Polymers - chemistry
Synchrotrons
X-Ray Diffraction - methods
Title Polymer-Dispersed Bicontinuous Cubic Glycolipid Nanoparticles
URI https://api.istex.fr/ark:/67375/WNG-10B6M19P-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1021%2Fbp0498544
https://www.ncbi.nlm.nih.gov/pubmed/15903264
https://search.proquest.com/docview/17320875
https://search.proquest.com/docview/67844081
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hemkPbSm0pOURIcShUmgeduKIA2J5Cgm0QqByqBTZjiNF0OxqdyOVnvgJ_Y39Jcw4m122gkO55TCx4nn5sz35BmAzTo1WLFeeQnzssVxITxjGvSguolyaQDFtq3zP45MrdnrNr-dgp_0XpuGHmBy4UWTYfE0BLtVwTDZAQa76CG4FZ8QFGkQJlXMdXEypo4Rvm4kiHI899EHRsgqFwbfJmzNr0StS6y-qjZRDVE_R9LV4CnjO4li7EB29gx_tFJr6k5vteqS29e9_2B1fOMf38HYMUN29xqMWYM5UH-DNI9rCRdjt9m7vfprB3_s_ByUxjQ9N7nZKqnovq7pXD939WpXaPb69Qzcr-2XuYhLH3fm4CG8Jro4OL_dPvHEjBk9z3EB6MdH8aeUXXBCCFDJM8hD3hcxInuQpcQoirtE6kZzlTBVcST9KVKCFz1SoTfQR5qteZZbBxRwiQ8kVAjnOiogJJsghfJZILQ0zDmy0Jsn6Dd9GZu_JwyCbaMOBLWusiYQc3FCBWsKz7-fHKNyJz4K0m6UOrM1YczpkTMRzjDuw3po3w7iiyxJZGVRUFiRRSGz_z0vgMk_tugMHPjV-MR2dpz7CYvzOr9a6z88k61x2L5rHz_8j_AVeWw5Zexa0AvOjQW1WER2N1JoNgweYOAhm
link.rule.ids 315,783,787,1378,4031,27935,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gA98G4JjzZCiANS2jzsxJGQENvXAu1qVW1FLyiyHUeKWrKr3Y1EOfET-I38EmaczS5b0QPccphY8bz82Z58A_AqTo1WLFeeQnzssVxITxjGvSguolyaQDFtq3x7cfeMfTzn5yvwtv0XpuGHmB-4UWTYfE0BTgfSM7YBinI1QnQrOGO3YA3DPaLGDfunC_Io4dt2ogjIYw-9ULS8QmGwO391aTVaI8V-o-pIOUEFFU1ni79Bz2Uka5eiw3vwpZ1EU4FysVNP1Y7-fo3f8X9neR_uzjCq-75xqgewYqqHsP4Hc-EjeNcfXl59NeNfP37ul0Q2PjG52ymp8L2s6mE9cfdqVWr36PIKPa0clbmLeRw36LM6vMdwdngw2Ot6s14Mnua4h_RiYvrTyi-4IBApZJjkIW4NmZE8yVOiFURoo3UiOcuZKriSfpSoQAufqVCbaANWq2FlnoCLaUSGkivEcpwVERNMkE_4LJFaGmYceNnaJBs1lBuZvSoPg2yuDQdeW2vNJeT4gmrUEp597h2hcCc-CdJ-ljqwtWTOxZAxcc8x7sB2a98MQ4vuS2RlUFFZkEQhEf7fLIErPXXsDhzYbBxjMTpPfUTG-J1vrHlvnknWGfRPm8en_yK8Dbe7g5Pj7PhD79MzuGMpZe3R0HNYnY5r8wLB0lRt2Zj4DQyYDH4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVkL0wJtiHq2FEAckFz9m7bU4INKSllcUVa3oAcnalyWrxYmSWKKc-An8Rn4Js-s4IYge4ObDeOWd1367O_4G4GmaGyVRy0ASPg5QcxFwgyxI0jLRwkQSlavyHaSHJ_julJ2uwcvuX5iWH2Jx4GYjw-VrG-BjXc7JBmyQyzGBW84Qr8AGpoR8LSI6WnJH8dB1EyU8ngbkhLyjFYqjF4tXVxajDavXr7Y4UkxJP2Xb2OJvyHMVyLqVqH8DPndzaAtQznabmdxV3_6gd_zPSd6E63OE6r9uXeoWrJn6Nmz-xlt4B14NR-cXX8zk5_cf-5WlGp8a7fcqW_Ze1c2omfp7jayUf3B-QX5WjSvtUxan7fm8Cu8unPTfHO8dBvNODIFitIMMUsvzp2RYMm4hJBdxpmPaGKIRLNO5JRUkYKNUJhhqlCWTIkwyGSkeooyVSe7Bej2qzX3wKYmIWDBJSI5hmSBHbj0ixEwoYdB48KQzSTFuCTcKd1EeR8VCGx48c8ZaSIjJma1Qy1jxaXBAwr30Y5QPi9yD7RVrLodMLfMcMg92OvMWFFj2tkTUhhRVRFkSW7r_yyVonbf9uiMPtlq_WI7O8pBwMX3nc2fdy2dS9I6HR-3jg38R3oGrw_1-8eHt4P1DuOb4ZN250CNYn00a85iQ0kxuu4j4Bd3FCy0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer-Dispersed+Bicontinuous+Cubic+Glycolipid+Nanoparticles&rft.jtitle=Biotechnology+progress&rft.au=Abraham%2C+T&rft.au=Hato%2C+Masakatsu&rft.au=Hirai%2C+Mitsuhiro&rft.date=2005&rft.issn=8756-7938&rft.volume=21&rft.issue=1&rft.spage=255&rft.epage=262&rft_id=info:doi/10.1021%2Fbp0498544&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon