Polymer-Dispersed Bicontinuous Cubic Glycolipid Nanoparticles
We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside (β‐XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small‐angle X‐ray diffraction (SSAXD) permitted the identif...
Saved in:
Published in | Biotechnology progress Vol. 21; no. 1; pp. 255 - 262 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
USA
American Chemical Society
2005
American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside (β‐XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small‐angle X‐ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co‐dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 μm. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 μm to 660 nm. At 3 h of mixing time, the increase of polymer content, from ∼5 to ∼10 wt %, reduced the particle mean diameter from 1.0 μm to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a β‐XP‐water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate‐buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system. |
---|---|
AbstractList | We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl-beta-D-xyloside (beta-XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small-angle X-ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co-dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 microm. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 microm to 660 nm. At 3 h of mixing time, the increase of polymer content, from approximately 5 to approximately 10 wt %, reduced the particle mean diameter from 1.0 microm to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a beta-XP-water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate-buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system. We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl- beta -D-xyloside ( beta -XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small-angle X-ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co-dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 mu m. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 mu m to 660 nm. At 3 h of mixing time, the increase of polymer content, from similar to 5 to similar to 10 wt %, reduced the particle mean diameter from 1.0 mu m to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a beta -XP-water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate-buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system. We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside (β‐XP), into bicontinuous cubic nanoparticles in water medium. The use of synchrotron small‐angle X‐ray diffraction (SSAXD) permitted the identification of the exact structure of these dispersed particles in the colloidal state. Dynamic light scattering method was used to obtain particle size distributions. The dispersion quality and the dispersion time can be improved by co‐dissolving the lipid and the polymer in a common solvent. The mean volume diameter of these dispersed colloidal particles depends on the mixing time and polymer concentration. About 5 wt % (0.18 mol %) of polymer to lipid weight was found to be sufficient to produce stable colloidal dispersions. At this polymer content and at 3 h of stirring time, the mean volume diameter of cubic colloidal particles was found to be 1.0 μm. Increase of dispersion time to 6 h reduced the colloidal particle size from 1.0 μm to 660 nm. At 3 h of mixing time, the increase of polymer content, from ∼5 to ∼10 wt %, reduced the particle mean diameter from 1.0 μm to 675 nm. Irrespective of these dispersion times and polymer contents, the dispersed colloidal particles exhibit predominately the Pn3m cubic phase structure, the same as that of a β‐XP‐water binary mixture, although a weak coexistence of Im3m cubic phase is identified in these colloidal particles. This coexistence is found to have the characteristics of a Bonnet relation, which forms convincing evidence for the infinite periodic minimal surface descriptions (IPMS). Considering the biotechnological significance, the preparation of these colloidal dispersions was carried out in a phosphate‐buffered saline (PBS) system. These cubic colloidal dispersions exhibited good stability and the cubic phase structure remained intact in the PBS system. |
Author | Hirai, Mitsuhiro Abraham, Thomas Hato, Masakatsu |
Author_xml | – sequence: 1 givenname: Thomas surname: Abraham fullname: Abraham, Thomas email: tabraham@ualberta.ca organization: Bionanomaterial and Surface Interactions Group, Nanotechnology Research Institute, AIST, Tsukuba Central 5, Tsukuba 305-8565, Japan – sequence: 2 givenname: Masakatsu surname: Hato fullname: Hato, Masakatsu organization: Bionanomaterial and Surface Interactions Group, Nanotechnology Research Institute, AIST, Tsukuba Central 5, Tsukuba 305-8565, Japan – sequence: 3 givenname: Mitsuhiro surname: Hirai fullname: Hirai, Mitsuhiro organization: Department of Physics, Gunma University, 4-2 Aramaki, Maebashi 371-8510, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16527345$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15903264$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PGzEQhi0URALlwB9AuVCph6Xjr7V96IGkkFYKaYSoerS8Xq9kcHYXO6t2_z2LEoVTxWkuzzvPzHuKRnVTO4QuMFxjIPhr0QJTkjN2hCaYE8hyoHSEJlLwPBOKyjE6TekJACTk5ASNMVdASc4m6Nu6Cf3Gxey7T62LyZXTmbdNvfV113RpOu8Kb6eL0Nsm-NaX05Wpm9bErbfBpU_ouDIhufP9PEO_724f5z-y5a_Fz_nNMrOccJbllCtpC6i4BIy5NESUBBRjznBRKpBCMKqsFYazkhUVLwxQUWArgRXEOnqGPu_2trF56Vza6o1P1oVgajdcqXMhGQOJPwSxoGTQ8QH8sgNtbFKKrtJt9BsTe41Bv5WqD6UO7OV-aVdsXPlO7lscgKs9YJI1oYqmtj69czkngrI3Kd5xf31w_f-Neva4fjjIs13Gp637d8iY-Dx8TQXXf1aLIT7L77Faa0VfASx_nJE |
CODEN | BIPRET |
CitedBy_id | crossref_primary_10_1248_cpb_c19_00370 crossref_primary_10_1016_j_eurpolymj_2015_05_009 crossref_primary_10_1021_acs_langmuir_5b03769 crossref_primary_10_1071_CH05173 crossref_primary_10_4155_tde_15_81 crossref_primary_10_1021_acsnano_8b07961 crossref_primary_10_1021_la104736u crossref_primary_10_1002_macp_200800040 crossref_primary_10_1021_la900386q crossref_primary_10_1039_b609510k crossref_primary_10_1016_j_jconrel_2016_08_011 crossref_primary_10_1080_08982100802691983 crossref_primary_10_1021_acs_langmuir_8b02368 crossref_primary_10_1021_la303938k crossref_primary_10_1016_j_jcis_2020_01_041 crossref_primary_10_1039_C1CS15148G crossref_primary_10_1016_j_colsurfa_2018_07_032 crossref_primary_10_1021_la203061f crossref_primary_10_1016_j_cis_2008_07_007 crossref_primary_10_1016_j_molliq_2024_124738 crossref_primary_10_1021_acs_jpcb_0c10629 crossref_primary_10_1039_D0ME00076K crossref_primary_10_1016_j_actbio_2018_12_009 crossref_primary_10_1111_j_1365_2818_2006_01544_x crossref_primary_10_1021_acs_langmuir_7b03541 crossref_primary_10_1007_s00249_009_0493_2 crossref_primary_10_1517_17425247_2010_511172 crossref_primary_10_1016_j_colsurfb_2017_07_026 crossref_primary_10_1021_la903927w crossref_primary_10_1021_jp902883q crossref_primary_10_1371_journal_pone_0003747 crossref_primary_10_3390_polym14153118 crossref_primary_10_1021_acs_langmuir_5b02797 |
Cites_doi | 10.1021/j100358a010 10.1016/S1359-0294(98)80069-1 10.1016/j.colsurfb.2004.02.015 10.1021/la010161w 10.1016/S0001-8686(98)00085-2 10.1038/386129a0 10.1021/la0116185 10.1021/la970566+ 10.1016/0304-4157(90)90002-T 10.1016/S0169-409X(01)00108-9 10.1021/jp953007p 10.1016/S0070-2161(08)60205-1 10.1016/0009-3084(94)90094-9 10.1016/S1359-0294(00)00040-6 10.1021/la010224a 10.1016/S1359-0294(00)00020-0 10.1007/978-1-4899-2516-9 10.1524/zkri.1997.212.7.486 10.1021/la0101245 10.1016/S0006-3495(94)80938-5 10.1073/pnas.93.25.14532 10.1021/la961037t 10.1021/j100085a028 |
ContentType | Journal Article |
Copyright | Copyright © 2005 American Institute of Chemical Engineers (AIChE) 2005 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2005 American Institute of Chemical Engineers (AIChE) – notice: 2005 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1021/bp0498544 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-6033 |
EndPage | 262 |
ExternalDocumentID | 10_1021_bp0498544 15903264 16527345 BTPR498544 ark_67375_WNG_10B6M19P_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 05W 0R~ 1L6 1OB 1OC 1WB 23N 31~ 33P 3SF 3WU 4.4 52U 52V 53G 55A 5GY 5VS 66C 6J9 8-1 A00 A8Z AABXI AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABHMW ABJNI ABQWH ABTAH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACJ ACMXC ACPOU ACPRK ACS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGXLV AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BAANH BDRZF BFHJK BHBCM BLYAC BMXJE BNHUX BOGZA BRXPI BSCLL C45 CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EDH EJD EMOBN ESTFP F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HHY HVGLF HZ~ I-F IHE ITG ITH IX1 JG~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NDZJH NNB O9- OIG OVD P2P P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SUPJJ SV3 TAE TEORI TN5 TUS W99 WBKPD WIH WIJ WIK WOHZO WSB WXSBR WYJ XV2 Y6R ZCA ZY4 ZZTAW ~02 ~KM ~S- 08R AAJUZ AAPBV AAVGM ABCVL ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IQODW XFK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c5254-63598cb0f5801158a27d20944ea57d90877439cc7a54d4bf5ba037b1c804b2ce3 |
IEDL.DBID | DR2 |
ISSN | 8756-7938 |
IngestDate | Fri Aug 16 23:17:17 EDT 2024 Fri Aug 16 09:51:20 EDT 2024 Fri Aug 23 00:26:01 EDT 2024 Sat Sep 28 07:43:53 EDT 2024 Sun Oct 22 16:07:58 EDT 2023 Sat Aug 24 00:52:41 EDT 2024 Wed Oct 30 09:53:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoparticle Polymer Glycolipid |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5254-63598cb0f5801158a27d20944ea57d90877439cc7a54d4bf5ba037b1c804b2ce3 |
Notes | ArticleID:BTPR498544 istex:BE190C555EB0A5EA17C8B627FB8DA2BD31A78722 ark:/67375/WNG-10B6M19P-9 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://doi.org/10.1021/bp0498544 |
PMID | 15903264 |
PQID | 17320875 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_67844081 proquest_miscellaneous_17320875 crossref_primary_10_1021_bp0498544 pubmed_primary_15903264 pascalfrancis_primary_16527345 wiley_primary_10_1021_bp0498544_BTPR498544 istex_primary_ark_67375_WNG_10B6M19P_9 |
PublicationCentury | 2000 |
PublicationDate | 2005 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005 |
PublicationDecade | 2000 |
PublicationPlace | USA |
PublicationPlace_xml | – name: USA – name: Washington, DC – name: New York, NY – name: United States |
PublicationTitle | Biotechnology progress |
PublicationTitleAlternate | Biotechnol Progress |
PublicationYear | 2005 |
Publisher | American Chemical Society American Institute of Chemical Engineers |
Publisher_xml | – name: American Chemical Society – name: American Institute of Chemical Engineers |
References | Hato, M.; Minamikawa, H.; Salkar, R. A.; Matsutani, S. Alkylglycosides with an isoprenoid-type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures. Langmuir 2002, 18, 3425-3429. Gustafsson, J. H.; Wahren, H. L.; Almgren, M.; Larsson, K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilc polymer. Langmuir 1997, 13, 6964-6971. Minamikawa, H.; Hato, M. Phase behavior of synthetic phytanyl-chained glycolipid/water systems. Langmuir 1997, 13, 2564-2571. Larsson, K. Aqueous dispersions of cubic lipid-water phases. Curr. Opin. Colloid Interface Sci. 2000, 5, 64-69. Abraham, T.; Hato, M.; Hirai, M. Glycolipid based cubic nanoparticles: Preparation and structural aspects. Colloids Surf., B 2004, 35, 107-117. Landau, E. M.; Rosenbusch, J. P. A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14532-14535. Washington, C.; King, S. M. ; Heenan. R. H. Structure of block copolymers adsorbed to perfluorocarbon emulsions. J. Phy. Chem. 1996, 100, 7603-7609. Seddon J. M. Structureof the inverted hexagonal (HII) phase, and nonlamellar phase transitions of lipids. Biochim. Biophys. Acta 1990, 1031, 1-69. De Kruijff, B. Lipids beyond the bilayer. Nature 1997, 386, 129-130. Luzzati, V.; Delacroix, H.; Gulik, A.; Gulik-Krzywicki, T.; Mariani, P.; Vargas, R. Curr. Top. Membr. 1997, 44, 3-24. Templer R. H. Thermodynamicand theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr. Opin. Colloid Interface Sci. 1998, 3, 255-263. Nakano, M.; Sugita, A.; Matsuoka, H.; Handa, T. Small-angle X-ray scattering and 13C NMR investigation on the internal structure of cubosomes. Langmuir 2001, 17, 3917-3922. Silvander, M. Steric stabilization of liposomes-A review. Prog. Colloid Polym. Sci. 2002, 120, 25. Spicer, P. T.; Hayden, K. L.; Lynch, M. L.; Ofori-Boateng, A.; Burns, J. L. Novel process for producing cubic crystalline nanoparticles (cubosomes). Langmuir 2001, 17, 5748-5756. Shah, J. C.; Sadhale, Y.; Chilukuri, D. M. Cubic phase gels as drug delivery systems. Adv. Drug Delivery Rev. 2001, 47, 229-250. Hato, M.; Minamikawa, H.; Tamada, K.; Baba, T.; Tanabe, Y. Self-assembly of synthetic glycolipid/water systems. Adv. Colloid Interface Sci. 1999, 80, 233-270. Drummond, C. J.; Fong, C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Opin. Colloid interface Sci. 2000, 4, 449-456. Jacob, M.; Andersson, S. Finite periodicity and crystal structure. Z. Kristallogr. 1997, 212, 486-492. Landh, T. Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20 °C. J. Phys. Chem. 1994, 98, 8453-8467. Minamikawa, H.; Murakami, T.; Hato, M. Synthesis of 1,3-di-O-alkyl-2-O-(β-glycosyl) glycerols bearing oligosaccharides as hydrophilic groups. Chem. Phys. Lipids 1994, 72, 111-118. Kuhl, T. L.; Leckband, D. E.; Lasic, D. D.; Israelachvili, J. N. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys. J. 1994, 66, 1479. Johnsson, M.; Bergstrand, N.; Edwards, K.; Stålgren, J. J. R. Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability. Langmuir2001, 17, 3902-3911. Larsson, K. Cubic lipid-water phases: structures and biomembrane aspects. J. Phys. Chem. 1989, 93, 7304-7314. 1997; 212 2002; 18 1997; 44 2000; 5 2000; 4 1996; 93 1994; 66 1996 1996; 100 1970 1999; 80 2001; 47 1990; 1031 1988; 1 1989; 93 2001 2002; 120 1990 1997; 386 1997; 13 2004; 35 1998; 3 2001; 17 1994; 72 1994; 98 Gustafsson (10.1021/bp0498544-BIB16|cit16) 1997; 13 Kates (10.1021/bp0498544-BIB29|cit29) 1990 Drummond (10.1021/bp0498544-BIB8|cit8) 2000; 4 Larsson (10.1021/bp0498544-BIB5|cit5) 1989; 93 Shah (10.1021/bp0498544-BIB9|cit9) 2001; 47 De Kruijff (10.1021/bp0498544-BIB4|cit4) 1997; 386 10.1021/bp0498544-BIB7|cit7 Jacob (10.1021/bp0498544-BIB12|cit12) 1997; 212 Minamikawa (10.1021/bp0498544-BIB20|cit20) 1997; 13 Templer (10.1021/bp0498544-BIB13|cit13) 1998; 3 10.1021/bp0498544-BIB15|cit15 Hyde (10.1021/bp0498544-BIB23|cit23) 2001 Johnsson (10.1021/bp0498544-BIB24|cit24) 2001; 17 Hato (10.1021/bp0498544-BIB2|cit2) 2002; 18 10.1021/bp0498544-BIB6|cit6 Kuhl (10.1021/bp0498544-BIB21|cit21) 1994; 66 Silvander (10.1021/bp0498544-BIB25|cit25) 2002; 120 Hato (10.1021/bp0498544-BIB27|cit27) 1999; 80 Smith (10.1021/bp0498544-BIB28|cit28) 1988; 1 Washington (10.1021/bp0498544-BIB26|cit26) 1996; 100 Abraham (10.1021/bp0498544-BIB30|cit30) 2004; 35 Spicer (10.1021/bp0498544-BIB17|cit17) 2001; 17 Luzzati (10.1021/bp0498544-BIB10|cit10) 1997; 44 Minamikawa (10.1021/bp0498544-BIB19|cit19) 1994; 72 Landh (10.1021/bp0498544-BIB22|cit22) 1994; 98 Larsson (10.1021/bp0498544-BIB1|cit1) 2000; 5 Seddon (10.1021/bp0498544-BIB14|cit14) 1990; 1031 Landau (10.1021/bp0498544-BIB3|cit3) 1996; 93 10.1021/bp0498544-BIB11|cit11 Nakano (10.1021/bp0498544-BIB18|cit18) 2001; 17 |
References_xml | – volume: 1031 start-page: 1 year: 1990 end-page: 69 article-title: Structureof the inverted hexagonal (H ) phase, and nonlamellar phase transitions of lipids publication-title: Biochim. Biophys. Acta – volume: 120 start-page: 25 year: 2002 article-title: Steric stabilization of liposomes‐A review publication-title: Prog. Colloid Polym. Sci. – volume: 44 start-page: 3 year: 1997 end-page: 24 publication-title: Curr. Top. Membr. – year: 2001 – volume: 3 start-page: 255 year: 1998 end-page: 263 article-title: Thermodynamicand theoretical aspects of cubic mesophases in nature and biological amphiphiles publication-title: Curr. Opin. Colloid Interface Sci. – year: 1996 – volume: 80 start-page: 233 year: 1999 end-page: 270 article-title: Self‐assembly of synthetic glycolipid/water systems publication-title: Adv. Colloid Interface Sci. – volume: 98 start-page: 8453 year: 1994 end-page: 8467 article-title: Phase behavior in the system pine oil monoglycerides‐poloxamer 407‐water at 20 °C publication-title: J. Phys. Chem. – volume: 72 start-page: 111 year: 1994 end-page: 118 article-title: Synthesis of 1,3‐di‐ ‐alkyl‐2‐ ‐(β‐glycosyl) glycerols bearing oligosaccharides as hydrophilic groups publication-title: Chem. Phys. Lipids – year: 1990 – volume: 212 start-page: 486 year: 1997 end-page: 492 article-title: Finite periodicity and crystal structure publication-title: Z. Kristallogr. – volume: 18 start-page: 3425 year: 2002 end-page: 3429 article-title: Alkylglycosides with an isoprenoid‐type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures publication-title: Langmuir – volume: 4 start-page: 449 year: 2000 end-page: 456 article-title: Surfactant self‐assembly objects as novel drug delivery vehicles publication-title: Curr. Opin. Colloid interface Sci. – volume: 1 year: 1988 – volume: 100 start-page: 7603 year: 1996 end-page: 7609 article-title: ; Heenan. R. H. Structure of block copolymers adsorbed to perfluorocarbon emulsions publication-title: J. Phy. Chem. – volume: 386 start-page: 129 year: 1997 end-page: 130 article-title: Lipids beyond the bilayer publication-title: Nature – volume: 13 start-page: 2564 year: 1997 end-page: 2571 article-title: Phase behavior of synthetic phytanyl‐chained glycolipid/water systems publication-title: Langmuir – volume: 66 start-page: 1479 year: 1994 article-title: Modulation of interaction forces between bilayers exposing short‐chained ethylene oxide headgroups publication-title: Biophys. J. – volume: 93 start-page: 7304 year: 1989 end-page: 7314 article-title: Cubic lipid‐water phases: structures and biomembrane aspects publication-title: J. Phys. Chem. – volume: 17 start-page: 3902 year: 2001 end-page: 3911 article-title: Adsorption of a PEO‐PPO–PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability publication-title: Langmuir – year: 1970 – volume: 47 start-page: 229 year: 2001 end-page: 250 article-title: Cubic phase gels as drug delivery systems publication-title: Adv. Drug Delivery Rev. – volume: 17 start-page: 5748 year: 2001 end-page: 5756 article-title: Novel process for producing cubic crystalline nanoparticles (cubosomes) publication-title: Langmuir – volume: 5 start-page: 64 year: 2000 end-page: 69 article-title: Aqueous dispersions of cubic lipid‐water phases publication-title: Curr. Opin. Colloid Interface Sci. – volume: 17 start-page: 3917 year: 2001 end-page: 3922 article-title: Small‐angle X‐ray scattering and C NMR investigation on the internal structure of cubosomes publication-title: Langmuir – volume: 35 start-page: 107 year: 2004 end-page: 117 article-title: Glycolipid based cubic nanoparticles: Preparation and structural aspects publication-title: Colloids Surf., B – volume: 93 start-page: 14532 year: 1996 end-page: 14535 article-title: A novel concept for the crystallization of membrane proteins publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 13 start-page: 6964 year: 1997 end-page: 6971 article-title: Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilc polymer publication-title: Langmuir – volume: 93 start-page: 7304 year: 1989 ident: 10.1021/bp0498544-BIB5|cit5 article-title: Cubic lipid-water phases: structures and biomembrane aspects publication-title: J. Phys. Chem. doi: 10.1021/j100358a010 contributor: fullname: Larsson – volume: 3 start-page: 255 year: 1998 ident: 10.1021/bp0498544-BIB13|cit13 article-title: Thermodynamicand theoretical aspects of cubic mesophases in nature and biological amphiphiles publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(98)80069-1 contributor: fullname: Templer – volume: 35 start-page: 107 year: 2004 ident: 10.1021/bp0498544-BIB30|cit30 article-title: Glycolipid based cubic nanoparticles: Preparation and structural aspects publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2004.02.015 contributor: fullname: Abraham – ident: 10.1021/bp0498544-BIB15|cit15 – volume: 17 start-page: 5748 year: 2001 ident: 10.1021/bp0498544-BIB17|cit17 article-title: Novel process for producing cubic crystalline nanoparticles (cubosomes) publication-title: Langmuir doi: 10.1021/la010161w contributor: fullname: Spicer – volume: 120 start-page: 25 year: 2002 ident: 10.1021/bp0498544-BIB25|cit25 article-title: Steric stabilization of liposomes-A review publication-title: Prog. Colloid Polym. Sci. contributor: fullname: Silvander – volume: 80 start-page: 233 year: 1999 ident: 10.1021/bp0498544-BIB27|cit27 article-title: Self-assembly of synthetic glycolipid/water systems publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(98)00085-2 contributor: fullname: Hato – ident: 10.1021/bp0498544-BIB6|cit6 – volume: 386 start-page: 129 year: 1997 ident: 10.1021/bp0498544-BIB4|cit4 article-title: Lipids beyond the bilayer publication-title: Nature doi: 10.1038/386129a0 contributor: fullname: De Kruijff – volume: 18 start-page: 3425 year: 2002 ident: 10.1021/bp0498544-BIB2|cit2 article-title: Alkylglycosides with an isoprenoid-type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures publication-title: Langmuir doi: 10.1021/la0116185 contributor: fullname: Hato – volume: 13 start-page: 6964 year: 1997 ident: 10.1021/bp0498544-BIB16|cit16 article-title: Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilc polymer publication-title: Langmuir doi: 10.1021/la970566+ contributor: fullname: Gustafsson – volume: 1031 start-page: 1 year: 1990 ident: 10.1021/bp0498544-BIB14|cit14 article-title: Structureof the inverted hexagonal (HII) phase, and nonlamellar phase transitions of lipids publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(90)90002-T contributor: fullname: Seddon – ident: 10.1021/bp0498544-BIB7|cit7 – volume: 47 start-page: 229 year: 2001 ident: 10.1021/bp0498544-BIB9|cit9 article-title: Cubic phase gels as drug delivery systems publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(01)00108-9 contributor: fullname: Shah – volume: 100 start-page: 7603 year: 1996 ident: 10.1021/bp0498544-BIB26|cit26 article-title: ; Heenan. R. H. Structure of block copolymers adsorbed to perfluorocarbon emulsions publication-title: J. Phy. Chem. doi: 10.1021/jp953007p contributor: fullname: Washington – volume: 44 start-page: 3 year: 1997 ident: 10.1021/bp0498544-BIB10|cit10 publication-title: Curr. Top. Membr. doi: 10.1016/S0070-2161(08)60205-1 contributor: fullname: Luzzati – volume: 72 start-page: 111 year: 1994 ident: 10.1021/bp0498544-BIB19|cit19 article-title: Synthesis of 1,3-di-O-alkyl-2-O-(β-glycosyl) glycerols bearing oligosaccharides as hydrophilic groups publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(94)90094-9 contributor: fullname: Minamikawa – volume: 5 start-page: 64 year: 2000 ident: 10.1021/bp0498544-BIB1|cit1 article-title: Aqueous dispersions of cubic lipid-water phases publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(00)00040-6 contributor: fullname: Larsson – ident: 10.1021/bp0498544-BIB11|cit11 – volume: 17 start-page: 3917 year: 2001 ident: 10.1021/bp0498544-BIB18|cit18 article-title: Small-angle X-ray scattering and 13C NMR investigation on the internal structure of cubosomes publication-title: Langmuir doi: 10.1021/la010224a contributor: fullname: Nakano – volume-title: Handbook of Applied Surface and Colloid Chemistry year: 2001 ident: 10.1021/bp0498544-BIB23|cit23 contributor: fullname: Hyde – volume: 1 volume-title: Microbial Lipids year: 1988 ident: 10.1021/bp0498544-BIB28|cit28 contributor: fullname: Smith – volume: 4 start-page: 449 year: 2000 ident: 10.1021/bp0498544-BIB8|cit8 article-title: Surfactant self-assembly objects as novel drug delivery vehicles publication-title: Curr. Opin. Colloid interface Sci. doi: 10.1016/S1359-0294(00)00020-0 contributor: fullname: Drummond – volume-title: Handbook of Lipid Research 6, Glycolipids, Phosphoglycolipids and Sulfoglycoglycerolipids year: 1990 ident: 10.1021/bp0498544-BIB29|cit29 doi: 10.1007/978-1-4899-2516-9 contributor: fullname: Kates – volume: 212 start-page: 486 year: 1997 ident: 10.1021/bp0498544-BIB12|cit12 article-title: Finite periodicity and crystal structure publication-title: Z. Kristallogr. doi: 10.1524/zkri.1997.212.7.486 contributor: fullname: Jacob – volume: 17 start-page: 3902 year: 2001 ident: 10.1021/bp0498544-BIB24|cit24 article-title: Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability publication-title: Langmuir doi: 10.1021/la0101245 contributor: fullname: Johnsson – volume: 66 start-page: 1479 year: 1994 ident: 10.1021/bp0498544-BIB21|cit21 article-title: Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80938-5 contributor: fullname: Kuhl – volume: 93 start-page: 14532 year: 1996 ident: 10.1021/bp0498544-BIB3|cit3 article-title: A novel concept for the crystallization of membrane proteins publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.25.14532 contributor: fullname: Landau – volume: 13 start-page: 2564 year: 1997 ident: 10.1021/bp0498544-BIB20|cit20 article-title: Phase behavior of synthetic phytanyl-chained glycolipid/water systems publication-title: Langmuir doi: 10.1021/la961037t contributor: fullname: Minamikawa – volume: 98 start-page: 8453 year: 1994 ident: 10.1021/bp0498544-BIB22|cit22 article-title: Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20 °C publication-title: J. Phys. Chem. doi: 10.1021/j100085a028 contributor: fullname: Landh |
SSID | ssj0008062 |
Score | 1.9974002 |
Snippet | We found that certain amphiphilic polymers such as PEO‐PPO‐PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1‐O‐phytanyl‐β‐d‐xyloside... We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl-beta-D-xyloside... We found that certain amphiphilic polymers such as PEO-PPO-PEO triblock copolymer (PL) can directly disperse a cubic glycolipid, 1-O-phytanyl- beta -D-xyloside... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 255 |
SubjectTerms | Biological and medical sciences Biotechnology Biotechnology - instrumentation Biotechnology - methods Chemical Phenomena Chemistry, Physical Colloids - chemistry Equipment Design Fundamental and applied biological sciences. Psychology Glycolipids - chemistry Materials Testing Nanostructures - chemistry Particle Size Polymers - chemistry Synchrotrons X-Ray Diffraction - methods |
Title | Polymer-Dispersed Bicontinuous Cubic Glycolipid Nanoparticles |
URI | https://api.istex.fr/ark:/67375/WNG-10B6M19P-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1021%2Fbp0498544 https://www.ncbi.nlm.nih.gov/pubmed/15903264 https://search.proquest.com/docview/17320875 https://search.proquest.com/docview/67844081 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hemkPbSm0pOURIcShUmgeduKIA2J5Cgm0QqByqBTZjiNF0OxqdyOVnvgJ_Y39Jcw4m122gkO55TCx4nn5sz35BmAzTo1WLFeeQnzssVxITxjGvSguolyaQDFtq3zP45MrdnrNr-dgp_0XpuGHmBy4UWTYfE0BLtVwTDZAQa76CG4FZ8QFGkQJlXMdXEypo4Rvm4kiHI899EHRsgqFwbfJmzNr0StS6y-qjZRDVE_R9LV4CnjO4li7EB29gx_tFJr6k5vteqS29e9_2B1fOMf38HYMUN29xqMWYM5UH-DNI9rCRdjt9m7vfprB3_s_ByUxjQ9N7nZKqnovq7pXD939WpXaPb69Qzcr-2XuYhLH3fm4CG8Jro4OL_dPvHEjBk9z3EB6MdH8aeUXXBCCFDJM8hD3hcxInuQpcQoirtE6kZzlTBVcST9KVKCFz1SoTfQR5qteZZbBxRwiQ8kVAjnOiogJJsghfJZILQ0zDmy0Jsn6Dd9GZu_JwyCbaMOBLWusiYQc3FCBWsKz7-fHKNyJz4K0m6UOrM1YczpkTMRzjDuw3po3w7iiyxJZGVRUFiRRSGz_z0vgMk_tugMHPjV-MR2dpz7CYvzOr9a6z88k61x2L5rHz_8j_AVeWw5Zexa0AvOjQW1WER2N1JoNgweYOAhm |
link.rule.ids | 315,783,787,1378,4031,27935,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gA98G4JjzZCiANS2jzsxJGQENvXAu1qVW1FLyiyHUeKWrKr3Y1EOfET-I38EmaczS5b0QPccphY8bz82Z58A_AqTo1WLFeeQnzssVxITxjGvSguolyaQDFtq3x7cfeMfTzn5yvwtv0XpuGHmB-4UWTYfE0BTgfSM7YBinI1QnQrOGO3YA3DPaLGDfunC_Io4dt2ogjIYw-9ULS8QmGwO391aTVaI8V-o-pIOUEFFU1ni79Bz2Uka5eiw3vwpZ1EU4FysVNP1Y7-fo3f8X9neR_uzjCq-75xqgewYqqHsP4Hc-EjeNcfXl59NeNfP37ul0Q2PjG52ymp8L2s6mE9cfdqVWr36PIKPa0clbmLeRw36LM6vMdwdngw2Ot6s14Mnua4h_RiYvrTyi-4IBApZJjkIW4NmZE8yVOiFURoo3UiOcuZKriSfpSoQAufqVCbaANWq2FlnoCLaUSGkivEcpwVERNMkE_4LJFaGmYceNnaJBs1lBuZvSoPg2yuDQdeW2vNJeT4gmrUEp597h2hcCc-CdJ-ljqwtWTOxZAxcc8x7sB2a98MQ4vuS2RlUFFZkEQhEf7fLIErPXXsDhzYbBxjMTpPfUTG-J1vrHlvnknWGfRPm8en_yK8Dbe7g5Pj7PhD79MzuGMpZe3R0HNYnY5r8wLB0lRt2Zj4DQyYDH4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVkL0wJtiHq2FEAckFz9m7bU4INKSllcUVa3oAcnalyWrxYmSWKKc-An8Rn4Js-s4IYge4ObDeOWd1367O_4G4GmaGyVRy0ASPg5QcxFwgyxI0jLRwkQSlavyHaSHJ_julJ2uwcvuX5iWH2Jx4GYjw-VrG-BjXc7JBmyQyzGBW84Qr8AGpoR8LSI6WnJH8dB1EyU8ngbkhLyjFYqjF4tXVxajDavXr7Y4UkxJP2Xb2OJvyHMVyLqVqH8DPndzaAtQznabmdxV3_6gd_zPSd6E63OE6r9uXeoWrJn6Nmz-xlt4B14NR-cXX8zk5_cf-5WlGp8a7fcqW_Ze1c2omfp7jayUf3B-QX5WjSvtUxan7fm8Cu8unPTfHO8dBvNODIFitIMMUsvzp2RYMm4hJBdxpmPaGKIRLNO5JRUkYKNUJhhqlCWTIkwyGSkeooyVSe7Bej2qzX3wKYmIWDBJSI5hmSBHbj0ixEwoYdB48KQzSTFuCTcKd1EeR8VCGx48c8ZaSIjJma1Qy1jxaXBAwr30Y5QPi9yD7RVrLodMLfMcMg92OvMWFFj2tkTUhhRVRFkSW7r_yyVonbf9uiMPtlq_WI7O8pBwMX3nc2fdy2dS9I6HR-3jg38R3oGrw_1-8eHt4P1DuOb4ZN250CNYn00a85iQ0kxuu4j4Bd3FCy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer-Dispersed+Bicontinuous+Cubic+Glycolipid+Nanoparticles&rft.jtitle=Biotechnology+progress&rft.au=Abraham%2C+T&rft.au=Hato%2C+Masakatsu&rft.au=Hirai%2C+Mitsuhiro&rft.date=2005&rft.issn=8756-7938&rft.volume=21&rft.issue=1&rft.spage=255&rft.epage=262&rft_id=info:doi/10.1021%2Fbp0498544&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon |