Gentamicin-induced readthrough of stop codons in duchenne muscular dystrophy
Objective The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving t...
Saved in:
Published in | Annals of neurology Vol. 67; no. 6; pp. 771 - 780 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2010
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD).
Methods
Two DMD cohorts received 14‐day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre‐ and post‐treatment biopsies were assessed for dystrophin levels, as were clinical outcomes.
Results
In the 14‐day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug‐induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen‐specific interferon‐γ enzyme‐linked immunospot assay detected an immunogenic dystrophin epitope.
Interpretation
The results support efforts to achieve drug‐induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T‐cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. ANN NEUROL 2010;67:771–780 |
---|---|
AbstractList | Objective The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Methods Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. Results In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon- enzyme-linked immunospot assay detected an immunogenic dystrophin epitope. Interpretation The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. ANN NEUROL 2010; 67:771-780. The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope. The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. Objective The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Methods Two DMD cohorts received 14‐day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre‐ and post‐treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. Results In the 14‐day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug‐induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen‐specific interferon‐γ enzyme‐linked immunospot assay detected an immunogenic dystrophin epitope. Interpretation The results support efforts to achieve drug‐induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T‐cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. ANN NEUROL 2010;67:771–780 The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD).OBJECTIVEThe objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD).Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes.METHODSTwo DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes.In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope.RESULTSIn the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope.The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy.INTERPRETATIONThe results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. |
Author | Sahenk, Zarife Mahan, John D. Sivakumar, Kumaraswamy Dasouki, Majed Mendell, Jerry R. Banwell, Brenda Barohn, Richard J. Watts, Victoria Viollet, Laurence Walker, Christopher M. King, Wendy Lewis, Sarah Shilling, Christopher J. Hayes, John Al-Dahhak, Roula Rodino-Klapac, Louise R. Kota, Janaiah Wall, Cheryl Serrano-Munuera, Carmen Flanigan, Kevin M. Malik, Vinod Bien-Willner, Ricardo Campbell, Katherine J. |
Author_xml | – sequence: 1 givenname: Vinod surname: Malik fullname: Malik, Vinod organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 2 givenname: Louise R. surname: Rodino-Klapac fullname: Rodino-Klapac, Louise R. organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 3 givenname: Laurence surname: Viollet fullname: Viollet, Laurence organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 4 givenname: Cheryl surname: Wall fullname: Wall, Cheryl organization: Department of Neurology, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 5 givenname: Wendy surname: King fullname: King, Wendy organization: Department of Neurology, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 6 givenname: Roula surname: Al-Dahhak fullname: Al-Dahhak, Roula organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 7 givenname: Sarah surname: Lewis fullname: Lewis, Sarah organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 8 givenname: Christopher J. surname: Shilling fullname: Shilling, Christopher J. organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 9 givenname: Janaiah surname: Kota fullname: Kota, Janaiah organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 10 givenname: Carmen surname: Serrano-Munuera fullname: Serrano-Munuera, Carmen organization: Department of Neurology, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 11 givenname: John surname: Hayes fullname: Hayes, John organization: Department of Pediatrics, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 12 givenname: John D. surname: Mahan fullname: Mahan, John D. organization: Department of Pediatrics, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 13 givenname: Katherine J. surname: Campbell fullname: Campbell, Katherine J. organization: Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 14 givenname: Brenda surname: Banwell fullname: Banwell, Brenda organization: Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada – sequence: 15 givenname: Majed surname: Dasouki fullname: Dasouki, Majed organization: Department of Neurology, University of Kansas, Kansas City, KS – sequence: 16 givenname: Victoria surname: Watts fullname: Watts, Victoria organization: Department of Neurology, University of Kansas, Kansas City, KS – sequence: 17 givenname: Kumaraswamy surname: Sivakumar fullname: Sivakumar, Kumaraswamy organization: Neuromuscular Research Center, Scottsdale, AZ – sequence: 18 givenname: Ricardo surname: Bien-Willner fullname: Bien-Willner, Ricardo organization: Neuromuscular Research Center, Scottsdale, AZ – sequence: 19 givenname: Kevin M. surname: Flanigan fullname: Flanigan, Kevin M. organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 20 givenname: Zarife surname: Sahenk fullname: Sahenk, Zarife organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 21 givenname: Richard J. surname: Barohn fullname: Barohn, Richard J. organization: Department of Neurology, University of Kansas, Kansas City, KS – sequence: 22 givenname: Christopher M. surname: Walker fullname: Walker, Christopher M. organization: Department of Pediatrics, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH – sequence: 23 givenname: Jerry R. surname: Mendell fullname: Mendell, Jerry R. email: HUJerry.Mendell@nationwidechildrens.org organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22868568$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20517938$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c2O0zAUBWALDWI6AwteAGWDEIvM-Cd2nGVVoCBVAwgQS-vGvqGGxC52Iujbk6EtSAjEypvvHF35XJCzEAMS8pDRK0Ypv4YAV5xTXt0hCyYFKzWvmjOyoEJVpWSiOicXOX-mlDaK0XvknFPJ6kboBdmsMYwweOtD6YObLLoiIbhxm-L0aVvErshj3BU2uhhy4UMxmy2GgMUwZTv1kAq3z2OKu-3-PrnbQZ_xwfG9JB9ePH-_elluXq9frZab0kou54uUlJVqHGikWgDrrK0ttEIqVrdOOeZUy5gG3SKVKB1XqHXHedtxaDqK4pI8OfTuUvw6YR7N4LPFvoeAccqmlpWUVNTi_1IIxmvdNLN8dJRTO6Azu-QHSHtz-qoZPD4CyBb6LkGwPv92XCst1a27PjibYs4JO2P9CKOPYUzge8OouR3NzKOZn6PNiad_JE6lf7PH9m--x_2_oVneLE-J8pDwecTvvxKQvhhVi1qajzdr8-7Zm0a9rdZmJX4AoiO0RA |
CODEN | ANNED3 |
CitedBy_id | crossref_primary_10_1074_jbc_M113_533588 crossref_primary_10_3389_fcell_2021_689533 crossref_primary_10_1016_j_ymthe_2020_03_006 crossref_primary_10_1172_JCI92707 crossref_primary_10_1007_s40267_023_00986_2 crossref_primary_10_1097_WCO_0b013e328357f44c crossref_primary_10_1038_oby_2011_202 crossref_primary_10_1002_mgg3_144 crossref_primary_10_1016_j_nmd_2018_06_009 crossref_primary_10_1371_journal_pone_0020733 crossref_primary_10_1007_s00441_012_1340_9 crossref_primary_10_1097_CND_0b013e3181f10d59 crossref_primary_10_1007_s00115_010_2970_3 crossref_primary_10_1093_hmg_ddt342 crossref_primary_10_3390_ijms22010344 crossref_primary_10_1016_j_isci_2024_109413 crossref_primary_10_1016_j_yjmcc_2014_01_009 crossref_primary_10_1111_ceo_13912 crossref_primary_10_1093_nar_gkw638 crossref_primary_10_3390_ph17030314 crossref_primary_10_1002_wrna_1739 crossref_primary_10_1007_s11940_018_0513_6 crossref_primary_10_1073_pnas_1402670111 crossref_primary_10_1073_pnas_1620982114 crossref_primary_10_25208_vdv16737 crossref_primary_10_1016_j_yexcr_2020_112033 crossref_primary_10_1007_s00109_011_0787_6 crossref_primary_10_1080_21678707_2016_1207519 crossref_primary_10_1007_s12015_019_09916_0 crossref_primary_10_3390_molecules200611317 crossref_primary_10_1080_14656566_2020_1732350 crossref_primary_10_1039_C4MD00081A crossref_primary_10_1097_FPC_0b013e328349daba crossref_primary_10_1016_j_neulet_2012_04_078 crossref_primary_10_29328_journal_jgmgt_1001003 crossref_primary_10_3390_molecules20058823 crossref_primary_10_1016_j_nmd_2011_04_012 crossref_primary_10_1007_s40259_016_0157_6 crossref_primary_10_1089_hum_2013_092 crossref_primary_10_1016_j_molmed_2012_09_004 crossref_primary_10_1016_j_molmed_2012_09_008 crossref_primary_10_1016_j_ejmech_2020_112436 crossref_primary_10_1146_annurev_genom_090314_025003 crossref_primary_10_3390_ijms21196997 crossref_primary_10_1002_pmic_201500158 crossref_primary_10_1517_14728214_2012_691965 crossref_primary_10_1007_s13167_011_0077_y crossref_primary_10_1016_j_arcmed_2020_10_021 crossref_primary_10_15406_jabb_2024_11_00375 crossref_primary_10_1111_j_1749_6632_2010_05836_x crossref_primary_10_1016_j_nmd_2014_05_006 crossref_primary_10_3389_fmed_2022_859930 crossref_primary_10_3390_cancers16162836 crossref_primary_10_1080_15476286_2016_1219832 crossref_primary_10_1016_j_tcmj_2014_02_002 crossref_primary_10_1038_nrneurol_2012_15_c1 crossref_primary_10_1002_ana_23528 crossref_primary_10_1016_j_bmcl_2022_128989 crossref_primary_10_1002_mus_24332 crossref_primary_10_1517_14712598_2012_693469 crossref_primary_10_2478_v10134_010_0034_7 crossref_primary_10_1177_1756285612472386 crossref_primary_10_3390_biom13060988 crossref_primary_10_3892_ijmm_2013_1601 crossref_primary_10_1016_j_carres_2020_108058 crossref_primary_10_1080_15476286_2015_1068497 crossref_primary_10_1371_journal_pone_0232654 crossref_primary_10_1007_s00018_013_1396_z crossref_primary_10_1002_sctm_21_0054 crossref_primary_10_1016_j_biopha_2023_114968 crossref_primary_10_1016_j_nmd_2014_09_004 crossref_primary_10_1111_brv_12657 crossref_primary_10_1113_expphysiol_2010_053025 crossref_primary_10_1051_medsci_2012282018 crossref_primary_10_1540_jsmr_59_67 crossref_primary_10_1007_s00109_010_0704_4 crossref_primary_10_1002_jcb_22979 crossref_primary_10_1021_acs_orglett_0c01107 crossref_primary_10_1517_14712598_2014_866087 crossref_primary_10_3390_ijerph20064732 crossref_primary_10_1038_s41573_023_00775_6 crossref_primary_10_1093_nar_gkq1277 crossref_primary_10_3390_ijms20236053 crossref_primary_10_17650_2222_8721_2024_14_2_44_52 crossref_primary_10_1016_j_nmd_2012_06_348 crossref_primary_10_1016_j_jbc_2021_101546 crossref_primary_10_3390_ijms25115572 crossref_primary_10_1186_s13023_017_0703_4 crossref_primary_10_1093_hmg_ddr265 crossref_primary_10_3390_biology3040752 crossref_primary_10_1007_s11427_024_2613_y crossref_primary_10_1002_jnr_23790 crossref_primary_10_1016_j_nmd_2011_05_011 crossref_primary_10_1016_j_matbio_2023_08_005 crossref_primary_10_3390_ijms16035334 crossref_primary_10_1016_j_nmd_2014_01_015 crossref_primary_10_1126_scitranslmed_aan0713 crossref_primary_10_1093_jb_mvaa041 crossref_primary_10_1038_jhg_2016_7 crossref_primary_10_1038_srep46126 crossref_primary_10_1002_jgm_2747 crossref_primary_10_1007_s00109_019_01847_0 crossref_primary_10_1089_hgtb_2013_092 crossref_primary_10_1146_annurev_genom_091212_153527 crossref_primary_10_1080_13543784_2021_1868434 crossref_primary_10_1371_journal_pone_0060478 crossref_primary_10_1016_j_heares_2011_05_008 crossref_primary_10_1186_s12919_020_00191_3 crossref_primary_10_1002_path_3020 crossref_primary_10_1111_febs_12178 crossref_primary_10_3390_jpm9010001 crossref_primary_10_1113_EP085308 crossref_primary_10_3109_10409238_2012_694846 crossref_primary_10_1016_j_jaci_2016_06_002 crossref_primary_10_1111_j_1365_2990_2012_01250_x crossref_primary_10_1017_S0317167100011896 crossref_primary_10_1016_j_jcf_2019_12_001 crossref_primary_10_1038_mt_2011_59 crossref_primary_10_1080_14712598_2022_2150543 crossref_primary_10_1093_nar_gkaa136 crossref_primary_10_1038_s41572_021_00248_3 crossref_primary_10_1042_BJ20110648 crossref_primary_10_1165_rcmb_2013_0282OC crossref_primary_10_1111_j_1582_4934_2011_01498_x crossref_primary_10_1007_s12519_021_00469_2 crossref_primary_10_1002_jms_4437 crossref_primary_10_1038_s41551_021_00774_1 crossref_primary_10_3389_fphys_2020_611294 crossref_primary_10_1016_j_nmd_2013_11_016 crossref_primary_10_1186_s10020_018_0024_7 crossref_primary_10_7759_cureus_35498 crossref_primary_10_1016_j_jbc_2022_102592 crossref_primary_10_1371_journal_pone_0199573 crossref_primary_10_1002_emmm_201201438 crossref_primary_10_1002_mus_23738 crossref_primary_10_1371_journal_pone_0031937 crossref_primary_10_1002_jvc2_343 crossref_primary_10_1016_j_mrrev_2014_05_001 crossref_primary_10_1038_nrg3555 crossref_primary_10_3390_cancers12030765 crossref_primary_10_1021_acsinfecdis_3c00233 crossref_primary_10_3390_jcm7090291 crossref_primary_10_1080_15476286_2019_1632633 crossref_primary_10_3389_fphys_2023_1183101 crossref_primary_10_1002_mus_22097 crossref_primary_10_1002_ana_23989 crossref_primary_10_1016_j_pediatrneurol_2014_08_002 crossref_primary_10_17116_klinderma202120061102 crossref_primary_10_1093_hmg_ddu509 crossref_primary_10_1002_phar_1909 crossref_primary_10_1146_annurev_genom_090314_050024 crossref_primary_10_1016_j_jid_2017_10_014 crossref_primary_10_1517_21678707_2015_1057117 crossref_primary_10_1039_C4MD00163J crossref_primary_10_1001_jamadermatol_2021_5630 crossref_primary_10_1186_2044_5040_3_14 crossref_primary_10_3389_fgeed_2022_863651 crossref_primary_10_1093_hmg_ddr105 crossref_primary_10_3390_jpm9010016 crossref_primary_10_1002_acn3_51149 crossref_primary_10_1016_j_ymthe_2019_06_008 crossref_primary_10_1093_hmg_ddy171 crossref_primary_10_5535_arm_2017_41_2_306 crossref_primary_10_1038_s41582_019_0203_3 crossref_primary_10_3390_diseases4040032 crossref_primary_10_1016_j_hlpt_2014_08_007 crossref_primary_10_1124_pharmrev_120_000011 crossref_primary_10_1002_wnan_1472 crossref_primary_10_1517_21678707_2013_746939 crossref_primary_10_1242_dmm_050502 crossref_primary_10_1016_j_gene_2017_06_057 crossref_primary_10_1038_nrd3459 crossref_primary_10_1016_j_coph_2019_02_003 crossref_primary_10_3892_ijmm_2019_4360 crossref_primary_10_1038_mt_2011_90 crossref_primary_10_1093_bjd_ljae420 crossref_primary_10_1038_s41598_017_17982_y crossref_primary_10_1096_fj_12_224170 crossref_primary_10_1590_0004_282x20190088 crossref_primary_10_3390_genes11080837 crossref_primary_10_1016_j_alit_2017_10_002 crossref_primary_10_1080_00207454_2018_1430694 crossref_primary_10_1016_j_ejphar_2021_174569 crossref_primary_10_1016_j_omtn_2018_02_008 crossref_primary_10_1016_j_neuroscience_2018_11_034 crossref_primary_10_1016_j_pcl_2015_03_008 crossref_primary_10_1002_mus_23304 crossref_primary_10_1007_s43440_020_00134_x crossref_primary_10_1242_dmm_037655 crossref_primary_10_1177_1756285610388693 crossref_primary_10_23868_201912026 crossref_primary_10_1097_PAT_0b013e32834b1dad crossref_primary_10_1038_ejhg_2013_82 crossref_primary_10_1007_s11926_011_0178_6 crossref_primary_10_5692_clinicalneurol_54_1074 crossref_primary_10_1002_ar_22578 crossref_primary_10_1016_j_omtn_2023_06_018 crossref_primary_10_3390_genes8040108 crossref_primary_10_1016_j_ajpath_2011_03_050 crossref_primary_10_1159_000499906 crossref_primary_10_1371_journal_pone_0015286 crossref_primary_10_1002_mus_25396 |
Cites_doi | 10.1073/pnas.54.4.1076 10.1172/JCI7866 10.1006/jmbi.1995.0438 10.1111/j.1469-0691.2005.01217.x 10.1016/S0022-3468(98)90540-1 10.1038/nm0496-467 10.1172/JCI8055 10.1002/mus.880060204 10.1097/01.mlg.0000161355.28073.f5 10.1002/ana.1023 10.1016/j.nmd.2007.07.005 10.2174/138161207779313731 10.1056/NEJM198906153202405 10.1093/hmg/9.17.2507 10.1172/JCI28523 10.1086/374176 10.1093/ptj/84.2.151 10.1097/00125817-200209000-00004 10.1002/mus.21420 10.1212/WNL.57.4.645 10.1093/hmg/ddl015 10.1056/NEJMoa073108 10.1002/1531-8249(200008)48:2<164::AID-ANA5>3.0.CO;2-B 10.1016/j.ymthe.2004.07.025 10.1073/pnas.51.5.883 10.1212/WNL.44.3_Part_1.442 10.1056/NEJM199901073400104 10.1038/sj.ejhg.5201478 10.1073/pnas.202300099 10.1093/hmg/4.8.1245 10.1038/nm1197-1280 10.1177/0091270006297140 10.1001/archneur.1987.00520200012009 10.1002/j.1460-2075.1995.tb06985.x |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Neurological Association 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 American Neurological Association – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 7TK 7TM 8FD FR3 H94 P64 |
DOI | 10.1002/ana.22024 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 780 |
ExternalDocumentID | 20517938 22868568 10_1002_ana_22024 ANA22024 ark_67375_WNG_SDP96Q4G_C |
Genre | article Clinical Trial Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Muscular Dystrophy Association – fundername: National Center for Research Resources of the NIH – fundername: University of Kansas Medical Center (General Clinical Research Center) funderid: M01 RR 023940 – fundername: NIH (National Institute of Neurological Disorders and Stroke) funderid: 7R01 NS043186 – fundername: Jesse's Journey – fundername: NCRR NIH HHS grantid: M01 RR 023940 – fundername: NINDS NIH HHS grantid: 7R01 NS043186 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRZS ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 7TK 7TM 8FD FR3 H94 P64 |
ID | FETCH-LOGICAL-c5254-5655469da8e083a1fcc7cab35617bd6d1d6b118a8be05e5d26e88f22bf2a9f0e3 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Fri Jul 11 01:20:31 EDT 2025 Fri Jul 11 13:06:16 EDT 2025 Mon Jul 21 05:39:13 EDT 2025 Mon Jul 21 09:16:36 EDT 2025 Tue Jul 01 02:23:59 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Aug 20 07:27:21 EDT 2025 Wed Oct 30 10:01:31 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Neuromuscular diseases Nervous system diseases Codon Duchenne muscular dystrophy Gentamicin Genetic disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5254-5655469da8e083a1fcc7cab35617bd6d1d6b118a8be05e5d26e88f22bf2a9f0e3 |
Notes | ark:/67375/WNG-SDP96Q4G-C University of Kansas Medical Center (General Clinical Research Center) - No. M01 RR 023940 Jesse's Journey istex:9C4EBA2F26D9C882B183AE1B279A3545178A1DF2 NIH (National Institute of Neurological Disorders and Stroke) - No. 7R01 NS043186 National Center for Research Resources of the NIH Muscular Dystrophy Association ArticleID:ANA22024 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ana.22024 |
PMID | 20517938 |
PQID | 733127899 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_754550373 proquest_miscellaneous_733127899 pubmed_primary_20517938 pascalfrancis_primary_22868568 crossref_citationtrail_10_1002_ana_22024 crossref_primary_10_1002_ana_22024 wiley_primary_10_1002_ana_22024_ANA22024 istex_primary_ark_67375_WNG_SDP96Q4G_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2010 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: June 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Flanigan KM, von Niederhausern A, Dunn DM, et al. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet 2003; 72: 931-939. Bass KD, Larkin SE, Paap C, Haase GM. Pharmacokinetics of once-daily gentamicin dosing in pediatric patients. J Pediatr Surg 1998; 33: 1104-1107. Canton R, Cobos N, de Gracia J, et al. Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. Clin Microbiol Infect 2005; 11: 690-703. Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des 2007; 13: 119-126. Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med 1989; 320: 1592-1597. Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003; 22: 15-21. Ahmad A, Brinson M, Hodges BL, et al. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum Mol Genet 2000; 9: 2507-2515. Yoshimura M, Sakamoto M, Ikemoto M, et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821-828. Mendell JR, Campbell K, Rodino-Klapac L, et al. Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy. N Engl J Med. In press. Howard MT, Shirts BH, Petros LM, et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000; 48: 164-169. Tawil R, McDermott MP, Mendell JR, et al. Facioscapulohumeral muscular dystrophy (FSHD): design of natural history study and results of baseline testing. FSH-DY Group. Neurology 1994; 44: 442-446. Kaufman RJ. Correction of genetic disease by making sense from nonsense. J Clin Invest 1999; 104: 367-368. DelloRusso C, Scott JM, Hartigan-O'Connor D, et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 2002; 99: 12979-12984. Hirawat S, Welch EM, Elfring GL, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol 2007; 47: 430-444. Disset A, Bourgeois CF, Benmalek N, et al. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15: 999-1013. Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251: 334-345. Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 1999; 340: 23-30. Neri M, Torelli S, Brown S, et al. Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 2007; 17: 913-918. van Deutekom JC, Janson AA, Ginjaar LB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677-2686. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996; 2: 467-469. Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001; 49: 706-711. Tang HY, Hutcheson E, Neill S, et al. Genetic susceptibility to aminoglycoside ototoxicity: how many are at risk? Genet Med 2002; 4: 336-345. Mendell JR, Buzin CH, Feng J, et al. Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 2001; 57: 645-650. Poole ES, Brown CM, Tate WP. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 1995; 14: 151-158. Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci U S A 1964; 51: 883-890. Brooke MH, Fenichel GM, Griggs RC, et al. Clinical investigation in Duchenne dystrophy: 2. Determination of the "power" of therapeutic trials based on the natural history. Muscle Nerve 1983; 6: 91-103. Viollet L, Gailey S, Thornton DJ, et al. Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy. Muscle Nerve 2009; 40: 438-442. Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4: 1245-1250. Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007; 117: 683-692. Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280-1284. Gurtler N, Schmuziger N, Kim Y, et al. Audiologic testing and molecular analysis of 12S rRNA in patients receiving aminoglycosides. Laryngoscope 2005; 115: 640-644. Hamed SA. Drug evaluation: PTC-124-a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs 2006; 9: 783-789. Anderson WF, Gorini L, Breckenridge L. Role of ribosomes in streptomycin-activated suppression. Proc Natl Acad Sci U S A 1965; 54: 1076-1083. Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999; 104: 375-381. Schubert MC, Tusa RJ, Grine LE, Herdman SJ. Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction. Phys Ther 2004; 84: 151-158. Tuffery-Giraud S, Saquet C, Thorel D, et al. Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005; 13: 1254-1260. Mendell JR, Province MA, Moxley RT III, et al. Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls. Arch Neurol 1987; 44: 808-811. 2007; 17 1965; 54 2004; 84 2009; 40 2000; 48 1995; 14 1983; 6 2005; 115 2000; 9 2006; 9 2002; 99 2006; 15 1999; 340 1994; 44 2002; 4 2001; 49 2003; 72 1999; 104 1997; 3 1995; 251 1995; 4 2007; 13 2004; 10 2007; 357 1987; 44 2007; 117 1989; 320 1996; 2 2001; 57 2005; 11 1964; 51 1998; 33 2007; 47 2003; 22 2005; 13 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_28_2 e_1_2_7_29_2 Politano L (e_1_2_7_11_2) 2003; 22 Mendell JR (e_1_2_7_25_2) e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 Hamed SA (e_1_2_7_27_2) 2006; 9 |
References_xml | – reference: van Deutekom JC, Janson AA, Ginjaar LB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677-2686. – reference: Canton R, Cobos N, de Gracia J, et al. Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. Clin Microbiol Infect 2005; 11: 690-703. – reference: Disset A, Bourgeois CF, Benmalek N, et al. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15: 999-1013. – reference: Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des 2007; 13: 119-126. – reference: Brooke MH, Fenichel GM, Griggs RC, et al. Clinical investigation in Duchenne dystrophy: 2. Determination of the "power" of therapeutic trials based on the natural history. Muscle Nerve 1983; 6: 91-103. – reference: Gurtler N, Schmuziger N, Kim Y, et al. Audiologic testing and molecular analysis of 12S rRNA in patients receiving aminoglycosides. Laryngoscope 2005; 115: 640-644. – reference: Schubert MC, Tusa RJ, Grine LE, Herdman SJ. Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction. Phys Ther 2004; 84: 151-158. – reference: DelloRusso C, Scott JM, Hartigan-O'Connor D, et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 2002; 99: 12979-12984. – reference: Mendell JR, Campbell K, Rodino-Klapac L, et al. Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy. N Engl J Med. In press. – reference: Tang HY, Hutcheson E, Neill S, et al. Genetic susceptibility to aminoglycoside ototoxicity: how many are at risk? Genet Med 2002; 4: 336-345. – reference: Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003; 22: 15-21. – reference: Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4: 1245-1250. – reference: Flanigan KM, von Niederhausern A, Dunn DM, et al. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet 2003; 72: 931-939. – reference: Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 1999; 340: 23-30. – reference: Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999; 104: 375-381. – reference: Hirawat S, Welch EM, Elfring GL, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol 2007; 47: 430-444. – reference: Howard MT, Shirts BH, Petros LM, et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000; 48: 164-169. – reference: Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci U S A 1964; 51: 883-890. – reference: Mendell JR, Province MA, Moxley RT III, et al. Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls. Arch Neurol 1987; 44: 808-811. – reference: Yoshimura M, Sakamoto M, Ikemoto M, et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821-828. – reference: Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007; 117: 683-692. – reference: Hamed SA. Drug evaluation: PTC-124-a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs 2006; 9: 783-789. – reference: Tawil R, McDermott MP, Mendell JR, et al. Facioscapulohumeral muscular dystrophy (FSHD): design of natural history study and results of baseline testing. FSH-DY Group. Neurology 1994; 44: 442-446. – reference: Kaufman RJ. Correction of genetic disease by making sense from nonsense. J Clin Invest 1999; 104: 367-368. – reference: Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280-1284. – reference: Ahmad A, Brinson M, Hodges BL, et al. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum Mol Genet 2000; 9: 2507-2515. – reference: Anderson WF, Gorini L, Breckenridge L. Role of ribosomes in streptomycin-activated suppression. Proc Natl Acad Sci U S A 1965; 54: 1076-1083. – reference: Viollet L, Gailey S, Thornton DJ, et al. Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy. Muscle Nerve 2009; 40: 438-442. – reference: Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996; 2: 467-469. – reference: Tuffery-Giraud S, Saquet C, Thorel D, et al. Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005; 13: 1254-1260. – reference: Neri M, Torelli S, Brown S, et al. Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 2007; 17: 913-918. – reference: Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001; 49: 706-711. – reference: Mendell JR, Buzin CH, Feng J, et al. Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 2001; 57: 645-650. – reference: Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251: 334-345. – reference: Poole ES, Brown CM, Tate WP. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 1995; 14: 151-158. – reference: Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med 1989; 320: 1592-1597. – reference: Bass KD, Larkin SE, Paap C, Haase GM. Pharmacokinetics of once-daily gentamicin dosing in pediatric patients. J Pediatr Surg 1998; 33: 1104-1107. – volume: 10 start-page: 821 year: 2004 end-page: 828 article-title: AAV vector‐mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype publication-title: Mol Ther – volume: 13 start-page: 1254 year: 2005 end-page: 1260 article-title: Mutation spectrum leading to an attenuated phenotype in dystrophinopathies publication-title: Eur J Hum Genet – volume: 357 start-page: 2677 year: 2007 end-page: 2686 article-title: Local dystrophin restoration with antisense oligonucleotide PRO051 publication-title: N Engl J Med – volume: 72 start-page: 931 year: 2003 end-page: 939 article-title: Rapid direct sequence analysis of the dystrophin gene publication-title: Am J Hum Genet – volume: 54 start-page: 1076 year: 1965 end-page: 1083 article-title: Role of ribosomes in streptomycin‐activated suppression publication-title: Proc Natl Acad Sci U S A – volume: 17 start-page: 913 year: 2007 end-page: 918 article-title: Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human publication-title: Neuromuscul Disord – volume: 99 start-page: 12979 year: 2002 end-page: 12984 article-title: Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full‐length dystrophin publication-title: Proc Natl Acad Sci U S A – volume: 49 start-page: 706 year: 2001 end-page: 711 article-title: Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations publication-title: Ann Neurol – article-title: Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy publication-title: N Engl J Med. – volume: 104 start-page: 375 year: 1999 end-page: 381 article-title: Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice publication-title: J Clin Invest – volume: 51 start-page: 883 year: 1964 end-page: 890 article-title: Streptomycin, suppression, and the code publication-title: Proc Natl Acad Sci U S A – volume: 48 start-page: 164 year: 2000 end-page: 169 article-title: Sequence specificity of aminoglycoside‐induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy publication-title: Ann Neurol – volume: 9 start-page: 783 year: 2006 end-page: 789 article-title: Drug evaluation: PTC‐124—a potential treatment of cystic fibrosis and Duchenne muscular dystrophy publication-title: IDrugs – volume: 44 start-page: 442 year: 1994 end-page: 446 article-title: Facioscapulohumeral muscular dystrophy (FSHD): design of natural history study and results of baseline testing publication-title: Neurology – volume: 9 start-page: 2507 year: 2000 end-page: 2515 article-title: Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy publication-title: Hum Mol Genet – volume: 13 start-page: 119 year: 2007 end-page: 126 article-title: Aminoglycoside‐induced ototoxicity publication-title: Curr Pharm Des – volume: 117 start-page: 683 year: 2007 end-page: 692 article-title: Nonsense‐mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin publication-title: J Clin Invest – volume: 3 start-page: 1280 year: 1997 end-page: 1284 article-title: Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line publication-title: Nat Med – volume: 22 start-page: 15 year: 2003 end-page: 21 article-title: Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results publication-title: Acta Myol – volume: 84 start-page: 151 year: 2004 end-page: 158 article-title: Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction publication-title: Phys Ther – volume: 320 start-page: 1592 year: 1989 end-page: 1597 article-title: Randomized, double‐blind six‐month trial of prednisone in Duchenne's muscular dystrophy publication-title: N Engl J Med – volume: 57 start-page: 645 year: 2001 end-page: 650 article-title: Diagnosis of Duchenne dystrophy by enhanced detection of small mutations publication-title: Neurology – volume: 104 start-page: 367 year: 1999 end-page: 368 article-title: Correction of genetic disease by making sense from nonsense publication-title: J Clin Invest – volume: 47 start-page: 430 year: 2007 end-page: 444 article-title: Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single‐ and multiple‐dose administration to healthy male and female adult volunteers publication-title: J Clin Pharmacol – volume: 14 start-page: 151 year: 1995 end-page: 158 article-title: The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli publication-title: EMBO J – volume: 6 start-page: 91 year: 1983 end-page: 103 article-title: Clinical investigation in Duchenne dystrophy: 2. Determination of the “power” of therapeutic trials based on the natural history publication-title: Muscle Nerve – volume: 33 start-page: 1104 year: 1998 end-page: 1107 article-title: Pharmacokinetics of once‐daily gentamicin dosing in pediatric patients publication-title: J Pediatr Surg – volume: 251 start-page: 334 year: 1995 end-page: 345 article-title: The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae publication-title: J Mol Biol – volume: 11 start-page: 690 year: 2005 end-page: 703 article-title: Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients publication-title: Clin Microbiol Infect – volume: 4 start-page: 1245 year: 1995 end-page: 1250 article-title: Expression of human full‐length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy publication-title: Hum Mol Genet – volume: 340 start-page: 23 year: 1999 end-page: 30 article-title: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis publication-title: N Engl J Med – volume: 115 start-page: 640 year: 2005 end-page: 644 article-title: Audiologic testing and molecular analysis of 12S rRNA in patients receiving aminoglycosides publication-title: Laryngoscope – volume: 2 start-page: 467 year: 1996 end-page: 469 article-title: Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations publication-title: Nat Med – volume: 40 start-page: 438 year: 2009 end-page: 442 article-title: Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy publication-title: Muscle Nerve – volume: 15 start-page: 999 year: 2006 end-page: 1013 article-title: An exon skipping‐associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements publication-title: Hum Mol Genet – volume: 44 start-page: 808 year: 1987 end-page: 811 article-title: Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls publication-title: Arch Neurol – volume: 4 start-page: 336 year: 2002 end-page: 345 article-title: Genetic susceptibility to aminoglycoside ototoxicity: how many are at risk? publication-title: Genet Med – ident: e_1_2_7_2_2 doi: 10.1073/pnas.54.4.1076 – ident: e_1_2_7_7_2 doi: 10.1172/JCI7866 – ident: e_1_2_7_12_2 doi: 10.1006/jmbi.1995.0438 – ident: e_1_2_7_31_2 doi: 10.1111/j.1469-0691.2005.01217.x – ident: e_1_2_7_18_2 doi: 10.1016/S0022-3468(98)90540-1 – ident: e_1_2_7_5_2 doi: 10.1038/nm0496-467 – ident: e_1_2_7_25_2 article-title: Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy publication-title: N Engl J Med. – ident: e_1_2_7_4_2 doi: 10.1172/JCI8055 – ident: e_1_2_7_22_2 doi: 10.1002/mus.880060204 – volume: 9 start-page: 783 year: 2006 ident: e_1_2_7_27_2 article-title: Drug evaluation: PTC‐124—a potential treatment of cystic fibrosis and Duchenne muscular dystrophy publication-title: IDrugs – ident: e_1_2_7_17_2 doi: 10.1097/01.mlg.0000161355.28073.f5 – ident: e_1_2_7_10_2 doi: 10.1002/ana.1023 – ident: e_1_2_7_35_2 doi: 10.1016/j.nmd.2007.07.005 – ident: e_1_2_7_15_2 doi: 10.2174/138161207779313731 – ident: e_1_2_7_21_2 doi: 10.1056/NEJM198906153202405 – volume: 22 start-page: 15 year: 2003 ident: e_1_2_7_11_2 article-title: Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results publication-title: Acta Myol – ident: e_1_2_7_26_2 doi: 10.1093/hmg/9.17.2507 – ident: e_1_2_7_36_2 doi: 10.1172/JCI28523 – ident: e_1_2_7_9_2 doi: 10.1086/374176 – ident: e_1_2_7_19_2 doi: 10.1093/ptj/84.2.151 – ident: e_1_2_7_16_2 doi: 10.1097/00125817-200209000-00004 – ident: e_1_2_7_20_2 doi: 10.1002/mus.21420 – ident: e_1_2_7_8_2 doi: 10.1212/WNL.57.4.645 – ident: e_1_2_7_37_2 doi: 10.1093/hmg/ddl015 – ident: e_1_2_7_24_2 doi: 10.1056/NEJMoa073108 – ident: e_1_2_7_14_2 doi: 10.1002/1531-8249(200008)48:2<164::AID-ANA5>3.0.CO;2-B – ident: e_1_2_7_34_2 doi: 10.1016/j.ymthe.2004.07.025 – ident: e_1_2_7_3_2 doi: 10.1073/pnas.51.5.883 – ident: e_1_2_7_23_2 doi: 10.1212/WNL.44.3_Part_1.442 – ident: e_1_2_7_30_2 doi: 10.1056/NEJM199901073400104 – ident: e_1_2_7_38_2 doi: 10.1038/sj.ejhg.5201478 – ident: e_1_2_7_33_2 doi: 10.1073/pnas.202300099 – ident: e_1_2_7_32_2 doi: 10.1093/hmg/4.8.1245 – ident: e_1_2_7_6_2 doi: 10.1038/nm1197-1280 – ident: e_1_2_7_28_2 doi: 10.1177/0091270006297140 – ident: e_1_2_7_29_2 doi: 10.1001/archneur.1987.00520200012009 – ident: e_1_2_7_13_2 doi: 10.1002/j.1460-2075.1995.tb06985.x |
SSID | ssj0009610 |
Score | 2.4568722 |
Snippet | Objective
The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length... The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length... Objective The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 771 |
SubjectTerms | Adolescent Audiometry - methods Biological and medical sciences Child Child, Preschool Codon, Terminator - drug effects Codon, Terminator - genetics Cohort Studies Creatine Kinase - blood Diseases of striated muscles. Neuromuscular diseases Enzyme-Linked Immunosorbent Assay - methods Gentamicins - therapeutic use Humans Medical sciences Muscle Cells - pathology Muscular Dystrophy, Duchenne - blood Muscular Dystrophy, Duchenne - genetics Muscular Dystrophy, Duchenne - pathology Mutation - genetics Neurology Protein Synthesis Inhibitors - therapeutic use T-Lymphocytes - drug effects T-Lymphocytes - pathology Time Factors |
Title | Gentamicin-induced readthrough of stop codons in duchenne muscular dystrophy |
URI | https://api.istex.fr/ark:/67375/WNG-SDP96Q4G-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.22024 https://www.ncbi.nlm.nih.gov/pubmed/20517938 https://www.proquest.com/docview/733127899 https://www.proquest.com/docview/754550373 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HCeKL33r14wgici_d2yZN0uLTcnp7CLf4dXgPQkiTFOW8rmx3QX3yT_Bv9C9xJmm7rJwivrUwCWQyk_wmmfyGkMfj0peFr2XKZa3SvM7B52DXTBXPjDVKSBPOO45n8ugkf3EqTrfI0_4tTOSHGA7c0DPCeo0Obqp2f00aahozYhC6Ixco5mohIHq9po4qZWAiwGu2VGQ871mFxmx_aLmxF11CtX7B3EjTgnrqWNfiIuC5iWPDRnR4jbzvhxDzT85Gq2U1st9-Y3f8zzFeJ1c7gEon0aJukC3f3CSXj7sr-FtkNsVs83P8-_n9B0T0YBuOAvR0XckfOq8p0hVQCxFv09KPDQWZD7ig0_NVzHul7mu7XMxhim-Tk8Pnbw-O0q4oQ2oFBJMpAEABIbUzhQf0ZrLaWmVNxQGHqcpJlzlZQdBiisqPhReOSV8UNWNVzUxZjz2_Q7abeeN3CIXIh1nhpFFe5ADyDefKcGurMnOcW5eQvX56tO0Yy7FwxicduZaZBv3ooJ-EPBpEP0eajouEnoQ5HiTM4gzz2pTQ72ZT_ebZy1K-yqf6ICG7G0YwNGCskIWQRUJobxUa3BHvWEzj56tWYwlMfFxc_kVE4EtyrnhC7kaDWvcfGNM49L8XzOLPY9GT2SR83Pt30fvkSsx9wDOkB2R7uVj5hwCpltVu8J1fJ-4b3w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVgJeuI9wFAsh1Jdsd-3YSSReVoXuAt2IoxV9QZbjQ6DSLNpDAp74CfxGfglj51gtKgjxlijjSLZn7G_G428AHvVzm2fWiZgJl8aJS9DmcNeMUzZQWqVcqBDvmBRifJS8OObHG_CkvQtT80N0ATdvGWG99gbuA9K7K9ZQVakeRd89OQdbvqJ3cKjerMijchG4CPxBW4xfk5ZXqE93u6Zru9GWH9gvPjtSzXGAXF3Z4izouY5kw1a0fxnet52oM1BOestF2dPffuN3_N9eXoFLDUYlw1qprsKGra7B-UlzCn8dipFPOD_1bz-__0CnHtXDEESfpqn6Q6aOeMYCotHprebkY0VQ5oNf08npsk59JebrfDGb4izfgKP9Z4d747ipyxBrjv5kjBiQo1dtVGYRwKmB0zrVqmQIxdLSCDMwokS_RWWl7XPLDRU2yxylpaMqd33LbsJmNa3sbSDo_FDNjVCp5QnifMVYqpjWZT4wjGkTwU47P1I3pOW-dsYnWdMtU4njI8P4RPCwE_1cM3WcJfQ4THInoWYnPrUt5fJdMZJvn77KxetkJPci2F7Tgq4BpZnIuMgiIK1aSLRIf8yiKjtdzqWvgunvF-d_EeH-MjlLWQS3ao1a_T-QpjH8_07Qiz_3RQ6LYXi48--iD-DC-HByIA-eFy_vwsU6FcKHlO7B5mK2tPcRYS3K7WBIvwDLTB_6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB7SBEJfeh_ukYpSSl68sSVLtunTku1uemRJj9A8BIQsyTQk8YY9oO1Tf0J_Y39JR_KxbElL6ZsNI4FGM9I30ugbgGdRbvPMliJkokzDpEzQ53DXDFMWK61SLpQ_79gfi73D5PURP1qDF-1bmJofojtwc57h12vn4Bem3FmShqpK9SiG7skV2EhElDmTHrxfckflwlMRuHu2kMcsaWmFIrrTNV3ZjDacXr-45Eg1Q_2UdWGLy5DnKpD1O9HwOhy3Y6gTUE57i3nR099-o3f8z0HegGsNQiX92qRuwpqtbsHmfnMHfxvGI5dufu7-fn7_gSE9GochiD1NU_OHTEri-AqIxpC3mpGTiqDMZ7eik_NFnfhKzNfZfDrBOb4Dh8OXH3f3wqYqQ6g5RpMhIkCOMbVRmUX4puJS61SrgiEQSwsjTGxEgVGLygobccsNFTbLSkqLkqq8jCy7C-vVpLL3gWDoQzU3QqWWJ4jyFWOpYloXeWwY0yaA7XZ6pG4oy13ljDNZky1TifqRXj8BPO1EL2qejsuEnvs57iTU9NQltqVcfhqP5IfBQS7eJSO5G8DWihF0DSjNRMZFFgBprUKiP7pLFlXZyWImXQ1M97o4_4sId0_JWcoCuFcb1LJ_T5nGsP9tbxZ_Hovsj_v-48G_iz6BzYPBUL59NX7zEK7WeRDuPOkRrM-nC_sY4dW82PJu9At2Lh6y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gentamicin-induced+readthrough+of+stop+codons+in+duchenne+muscular+dystrophy&rft.jtitle=Annals+of+neurology&rft.au=Malik%2C+Vinod&rft.au=Rodino-Klapac%2C+Louise+R&rft.au=Viollet%2C+Laurence&rft.au=Wall%2C+Cheryl&rft.date=2010-06-01&rft.issn=0364-5134&rft.volume=67&rft.issue=6&rft.spage=771&rft.epage=780&rft_id=info:doi/10.1002%2Fana.22024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |