Gentamicin-induced readthrough of stop codons in duchenne muscular dystrophy

Objective The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving t...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 67; no. 6; pp. 771 - 780
Main Authors Malik, Vinod, Rodino-Klapac, Louise R., Viollet, Laurence, Wall, Cheryl, King, Wendy, Al-Dahhak, Roula, Lewis, Sarah, Shilling, Christopher J., Kota, Janaiah, Serrano-Munuera, Carmen, Hayes, John, Mahan, John D., Campbell, Katherine J., Banwell, Brenda, Dasouki, Majed, Watts, Victoria, Sivakumar, Kumaraswamy, Bien-Willner, Ricardo, Flanigan, Kevin M., Sahenk, Zarife, Barohn, Richard J., Walker, Christopher M., Mendell, Jerry R.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2010
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Methods Two DMD cohorts received 14‐day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre‐ and post‐treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. Results In the 14‐day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug‐induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen‐specific interferon‐γ enzyme‐linked immunospot assay detected an immunogenic dystrophin epitope. Interpretation The results support efforts to achieve drug‐induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T‐cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. ANN NEUROL 2010;67:771–780
AbstractList Objective The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Methods Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. Results In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon- enzyme-linked immunospot assay detected an immunogenic dystrophin epitope. Interpretation The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. ANN NEUROL 2010; 67:771-780.
The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope. The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy.
Objective The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). Methods Two DMD cohorts received 14‐day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre‐ and post‐treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. Results In the 14‐day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug‐induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen‐specific interferon‐γ enzyme‐linked immunospot assay detected an immunogenic dystrophin epitope. Interpretation The results support efforts to achieve drug‐induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T‐cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy. ANN NEUROL 2010;67:771–780
The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD).OBJECTIVEThe objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD).Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes.METHODSTwo DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes.In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope.RESULTSIn the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope.The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy.INTERPRETATIONThe results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy.
Author Sahenk, Zarife
Mahan, John D.
Sivakumar, Kumaraswamy
Dasouki, Majed
Mendell, Jerry R.
Banwell, Brenda
Barohn, Richard J.
Watts, Victoria
Viollet, Laurence
Walker, Christopher M.
King, Wendy
Lewis, Sarah
Shilling, Christopher J.
Hayes, John
Al-Dahhak, Roula
Rodino-Klapac, Louise R.
Kota, Janaiah
Wall, Cheryl
Serrano-Munuera, Carmen
Flanigan, Kevin M.
Malik, Vinod
Bien-Willner, Ricardo
Campbell, Katherine J.
Author_xml – sequence: 1
  givenname: Vinod
  surname: Malik
  fullname: Malik, Vinod
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 2
  givenname: Louise R.
  surname: Rodino-Klapac
  fullname: Rodino-Klapac, Louise R.
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 3
  givenname: Laurence
  surname: Viollet
  fullname: Viollet, Laurence
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 4
  givenname: Cheryl
  surname: Wall
  fullname: Wall, Cheryl
  organization: Department of Neurology, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 5
  givenname: Wendy
  surname: King
  fullname: King, Wendy
  organization: Department of Neurology, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 6
  givenname: Roula
  surname: Al-Dahhak
  fullname: Al-Dahhak, Roula
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 7
  givenname: Sarah
  surname: Lewis
  fullname: Lewis, Sarah
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 8
  givenname: Christopher J.
  surname: Shilling
  fullname: Shilling, Christopher J.
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 9
  givenname: Janaiah
  surname: Kota
  fullname: Kota, Janaiah
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 10
  givenname: Carmen
  surname: Serrano-Munuera
  fullname: Serrano-Munuera, Carmen
  organization: Department of Neurology, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 11
  givenname: John
  surname: Hayes
  fullname: Hayes, John
  organization: Department of Pediatrics, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 12
  givenname: John D.
  surname: Mahan
  fullname: Mahan, John D.
  organization: Department of Pediatrics, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 13
  givenname: Katherine J.
  surname: Campbell
  fullname: Campbell, Katherine J.
  organization: Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 14
  givenname: Brenda
  surname: Banwell
  fullname: Banwell, Brenda
  organization: Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
– sequence: 15
  givenname: Majed
  surname: Dasouki
  fullname: Dasouki, Majed
  organization: Department of Neurology, University of Kansas, Kansas City, KS
– sequence: 16
  givenname: Victoria
  surname: Watts
  fullname: Watts, Victoria
  organization: Department of Neurology, University of Kansas, Kansas City, KS
– sequence: 17
  givenname: Kumaraswamy
  surname: Sivakumar
  fullname: Sivakumar, Kumaraswamy
  organization: Neuromuscular Research Center, Scottsdale, AZ
– sequence: 18
  givenname: Ricardo
  surname: Bien-Willner
  fullname: Bien-Willner, Ricardo
  organization: Neuromuscular Research Center, Scottsdale, AZ
– sequence: 19
  givenname: Kevin M.
  surname: Flanigan
  fullname: Flanigan, Kevin M.
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 20
  givenname: Zarife
  surname: Sahenk
  fullname: Sahenk, Zarife
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 21
  givenname: Richard J.
  surname: Barohn
  fullname: Barohn, Richard J.
  organization: Department of Neurology, University of Kansas, Kansas City, KS
– sequence: 22
  givenname: Christopher M.
  surname: Walker
  fullname: Walker, Christopher M.
  organization: Department of Pediatrics, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
– sequence: 23
  givenname: Jerry R.
  surname: Mendell
  fullname: Mendell, Jerry R.
  email: HUJerry.Mendell@nationwidechildrens.org
  organization: Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22868568$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20517938$$D View this record in MEDLINE/PubMed
BookMark eNqF0c2O0zAUBWALDWI6AwteAGWDEIvM-Cd2nGVVoCBVAwgQS-vGvqGGxC52Iujbk6EtSAjEypvvHF35XJCzEAMS8pDRK0Ypv4YAV5xTXt0hCyYFKzWvmjOyoEJVpWSiOicXOX-mlDaK0XvknFPJ6kboBdmsMYwweOtD6YObLLoiIbhxm-L0aVvErshj3BU2uhhy4UMxmy2GgMUwZTv1kAq3z2OKu-3-PrnbQZ_xwfG9JB9ePH-_elluXq9frZab0kou54uUlJVqHGikWgDrrK0ttEIqVrdOOeZUy5gG3SKVKB1XqHXHedtxaDqK4pI8OfTuUvw6YR7N4LPFvoeAccqmlpWUVNTi_1IIxmvdNLN8dJRTO6Azu-QHSHtz-qoZPD4CyBb6LkGwPv92XCst1a27PjibYs4JO2P9CKOPYUzge8OouR3NzKOZn6PNiad_JE6lf7PH9m--x_2_oVneLE-J8pDwecTvvxKQvhhVi1qajzdr8-7Zm0a9rdZmJX4AoiO0RA
CODEN ANNED3
CitedBy_id crossref_primary_10_1074_jbc_M113_533588
crossref_primary_10_3389_fcell_2021_689533
crossref_primary_10_1016_j_ymthe_2020_03_006
crossref_primary_10_1172_JCI92707
crossref_primary_10_1007_s40267_023_00986_2
crossref_primary_10_1097_WCO_0b013e328357f44c
crossref_primary_10_1038_oby_2011_202
crossref_primary_10_1002_mgg3_144
crossref_primary_10_1016_j_nmd_2018_06_009
crossref_primary_10_1371_journal_pone_0020733
crossref_primary_10_1007_s00441_012_1340_9
crossref_primary_10_1097_CND_0b013e3181f10d59
crossref_primary_10_1007_s00115_010_2970_3
crossref_primary_10_1093_hmg_ddt342
crossref_primary_10_3390_ijms22010344
crossref_primary_10_1016_j_isci_2024_109413
crossref_primary_10_1016_j_yjmcc_2014_01_009
crossref_primary_10_1111_ceo_13912
crossref_primary_10_1093_nar_gkw638
crossref_primary_10_3390_ph17030314
crossref_primary_10_1002_wrna_1739
crossref_primary_10_1007_s11940_018_0513_6
crossref_primary_10_1073_pnas_1402670111
crossref_primary_10_1073_pnas_1620982114
crossref_primary_10_25208_vdv16737
crossref_primary_10_1016_j_yexcr_2020_112033
crossref_primary_10_1007_s00109_011_0787_6
crossref_primary_10_1080_21678707_2016_1207519
crossref_primary_10_1007_s12015_019_09916_0
crossref_primary_10_3390_molecules200611317
crossref_primary_10_1080_14656566_2020_1732350
crossref_primary_10_1039_C4MD00081A
crossref_primary_10_1097_FPC_0b013e328349daba
crossref_primary_10_1016_j_neulet_2012_04_078
crossref_primary_10_29328_journal_jgmgt_1001003
crossref_primary_10_3390_molecules20058823
crossref_primary_10_1016_j_nmd_2011_04_012
crossref_primary_10_1007_s40259_016_0157_6
crossref_primary_10_1089_hum_2013_092
crossref_primary_10_1016_j_molmed_2012_09_004
crossref_primary_10_1016_j_molmed_2012_09_008
crossref_primary_10_1016_j_ejmech_2020_112436
crossref_primary_10_1146_annurev_genom_090314_025003
crossref_primary_10_3390_ijms21196997
crossref_primary_10_1002_pmic_201500158
crossref_primary_10_1517_14728214_2012_691965
crossref_primary_10_1007_s13167_011_0077_y
crossref_primary_10_1016_j_arcmed_2020_10_021
crossref_primary_10_15406_jabb_2024_11_00375
crossref_primary_10_1111_j_1749_6632_2010_05836_x
crossref_primary_10_1016_j_nmd_2014_05_006
crossref_primary_10_3389_fmed_2022_859930
crossref_primary_10_3390_cancers16162836
crossref_primary_10_1080_15476286_2016_1219832
crossref_primary_10_1016_j_tcmj_2014_02_002
crossref_primary_10_1038_nrneurol_2012_15_c1
crossref_primary_10_1002_ana_23528
crossref_primary_10_1016_j_bmcl_2022_128989
crossref_primary_10_1002_mus_24332
crossref_primary_10_1517_14712598_2012_693469
crossref_primary_10_2478_v10134_010_0034_7
crossref_primary_10_1177_1756285612472386
crossref_primary_10_3390_biom13060988
crossref_primary_10_3892_ijmm_2013_1601
crossref_primary_10_1016_j_carres_2020_108058
crossref_primary_10_1080_15476286_2015_1068497
crossref_primary_10_1371_journal_pone_0232654
crossref_primary_10_1007_s00018_013_1396_z
crossref_primary_10_1002_sctm_21_0054
crossref_primary_10_1016_j_biopha_2023_114968
crossref_primary_10_1016_j_nmd_2014_09_004
crossref_primary_10_1111_brv_12657
crossref_primary_10_1113_expphysiol_2010_053025
crossref_primary_10_1051_medsci_2012282018
crossref_primary_10_1540_jsmr_59_67
crossref_primary_10_1007_s00109_010_0704_4
crossref_primary_10_1002_jcb_22979
crossref_primary_10_1021_acs_orglett_0c01107
crossref_primary_10_1517_14712598_2014_866087
crossref_primary_10_3390_ijerph20064732
crossref_primary_10_1038_s41573_023_00775_6
crossref_primary_10_1093_nar_gkq1277
crossref_primary_10_3390_ijms20236053
crossref_primary_10_17650_2222_8721_2024_14_2_44_52
crossref_primary_10_1016_j_nmd_2012_06_348
crossref_primary_10_1016_j_jbc_2021_101546
crossref_primary_10_3390_ijms25115572
crossref_primary_10_1186_s13023_017_0703_4
crossref_primary_10_1093_hmg_ddr265
crossref_primary_10_3390_biology3040752
crossref_primary_10_1007_s11427_024_2613_y
crossref_primary_10_1002_jnr_23790
crossref_primary_10_1016_j_nmd_2011_05_011
crossref_primary_10_1016_j_matbio_2023_08_005
crossref_primary_10_3390_ijms16035334
crossref_primary_10_1016_j_nmd_2014_01_015
crossref_primary_10_1126_scitranslmed_aan0713
crossref_primary_10_1093_jb_mvaa041
crossref_primary_10_1038_jhg_2016_7
crossref_primary_10_1038_srep46126
crossref_primary_10_1002_jgm_2747
crossref_primary_10_1007_s00109_019_01847_0
crossref_primary_10_1089_hgtb_2013_092
crossref_primary_10_1146_annurev_genom_091212_153527
crossref_primary_10_1080_13543784_2021_1868434
crossref_primary_10_1371_journal_pone_0060478
crossref_primary_10_1016_j_heares_2011_05_008
crossref_primary_10_1186_s12919_020_00191_3
crossref_primary_10_1002_path_3020
crossref_primary_10_1111_febs_12178
crossref_primary_10_3390_jpm9010001
crossref_primary_10_1113_EP085308
crossref_primary_10_3109_10409238_2012_694846
crossref_primary_10_1016_j_jaci_2016_06_002
crossref_primary_10_1111_j_1365_2990_2012_01250_x
crossref_primary_10_1017_S0317167100011896
crossref_primary_10_1016_j_jcf_2019_12_001
crossref_primary_10_1038_mt_2011_59
crossref_primary_10_1080_14712598_2022_2150543
crossref_primary_10_1093_nar_gkaa136
crossref_primary_10_1038_s41572_021_00248_3
crossref_primary_10_1042_BJ20110648
crossref_primary_10_1165_rcmb_2013_0282OC
crossref_primary_10_1111_j_1582_4934_2011_01498_x
crossref_primary_10_1007_s12519_021_00469_2
crossref_primary_10_1002_jms_4437
crossref_primary_10_1038_s41551_021_00774_1
crossref_primary_10_3389_fphys_2020_611294
crossref_primary_10_1016_j_nmd_2013_11_016
crossref_primary_10_1186_s10020_018_0024_7
crossref_primary_10_7759_cureus_35498
crossref_primary_10_1016_j_jbc_2022_102592
crossref_primary_10_1371_journal_pone_0199573
crossref_primary_10_1002_emmm_201201438
crossref_primary_10_1002_mus_23738
crossref_primary_10_1371_journal_pone_0031937
crossref_primary_10_1002_jvc2_343
crossref_primary_10_1016_j_mrrev_2014_05_001
crossref_primary_10_1038_nrg3555
crossref_primary_10_3390_cancers12030765
crossref_primary_10_1021_acsinfecdis_3c00233
crossref_primary_10_3390_jcm7090291
crossref_primary_10_1080_15476286_2019_1632633
crossref_primary_10_3389_fphys_2023_1183101
crossref_primary_10_1002_mus_22097
crossref_primary_10_1002_ana_23989
crossref_primary_10_1016_j_pediatrneurol_2014_08_002
crossref_primary_10_17116_klinderma202120061102
crossref_primary_10_1093_hmg_ddu509
crossref_primary_10_1002_phar_1909
crossref_primary_10_1146_annurev_genom_090314_050024
crossref_primary_10_1016_j_jid_2017_10_014
crossref_primary_10_1517_21678707_2015_1057117
crossref_primary_10_1039_C4MD00163J
crossref_primary_10_1001_jamadermatol_2021_5630
crossref_primary_10_1186_2044_5040_3_14
crossref_primary_10_3389_fgeed_2022_863651
crossref_primary_10_1093_hmg_ddr105
crossref_primary_10_3390_jpm9010016
crossref_primary_10_1002_acn3_51149
crossref_primary_10_1016_j_ymthe_2019_06_008
crossref_primary_10_1093_hmg_ddy171
crossref_primary_10_5535_arm_2017_41_2_306
crossref_primary_10_1038_s41582_019_0203_3
crossref_primary_10_3390_diseases4040032
crossref_primary_10_1016_j_hlpt_2014_08_007
crossref_primary_10_1124_pharmrev_120_000011
crossref_primary_10_1002_wnan_1472
crossref_primary_10_1517_21678707_2013_746939
crossref_primary_10_1242_dmm_050502
crossref_primary_10_1016_j_gene_2017_06_057
crossref_primary_10_1038_nrd3459
crossref_primary_10_1016_j_coph_2019_02_003
crossref_primary_10_3892_ijmm_2019_4360
crossref_primary_10_1038_mt_2011_90
crossref_primary_10_1093_bjd_ljae420
crossref_primary_10_1038_s41598_017_17982_y
crossref_primary_10_1096_fj_12_224170
crossref_primary_10_1590_0004_282x20190088
crossref_primary_10_3390_genes11080837
crossref_primary_10_1016_j_alit_2017_10_002
crossref_primary_10_1080_00207454_2018_1430694
crossref_primary_10_1016_j_ejphar_2021_174569
crossref_primary_10_1016_j_omtn_2018_02_008
crossref_primary_10_1016_j_neuroscience_2018_11_034
crossref_primary_10_1016_j_pcl_2015_03_008
crossref_primary_10_1002_mus_23304
crossref_primary_10_1007_s43440_020_00134_x
crossref_primary_10_1242_dmm_037655
crossref_primary_10_1177_1756285610388693
crossref_primary_10_23868_201912026
crossref_primary_10_1097_PAT_0b013e32834b1dad
crossref_primary_10_1038_ejhg_2013_82
crossref_primary_10_1007_s11926_011_0178_6
crossref_primary_10_5692_clinicalneurol_54_1074
crossref_primary_10_1002_ar_22578
crossref_primary_10_1016_j_omtn_2023_06_018
crossref_primary_10_3390_genes8040108
crossref_primary_10_1016_j_ajpath_2011_03_050
crossref_primary_10_1159_000499906
crossref_primary_10_1371_journal_pone_0015286
crossref_primary_10_1002_mus_25396
Cites_doi 10.1073/pnas.54.4.1076
10.1172/JCI7866
10.1006/jmbi.1995.0438
10.1111/j.1469-0691.2005.01217.x
10.1016/S0022-3468(98)90540-1
10.1038/nm0496-467
10.1172/JCI8055
10.1002/mus.880060204
10.1097/01.mlg.0000161355.28073.f5
10.1002/ana.1023
10.1016/j.nmd.2007.07.005
10.2174/138161207779313731
10.1056/NEJM198906153202405
10.1093/hmg/9.17.2507
10.1172/JCI28523
10.1086/374176
10.1093/ptj/84.2.151
10.1097/00125817-200209000-00004
10.1002/mus.21420
10.1212/WNL.57.4.645
10.1093/hmg/ddl015
10.1056/NEJMoa073108
10.1002/1531-8249(200008)48:2<164::AID-ANA5>3.0.CO;2-B
10.1016/j.ymthe.2004.07.025
10.1073/pnas.51.5.883
10.1212/WNL.44.3_Part_1.442
10.1056/NEJM199901073400104
10.1038/sj.ejhg.5201478
10.1073/pnas.202300099
10.1093/hmg/4.8.1245
10.1038/nm1197-1280
10.1177/0091270006297140
10.1001/archneur.1987.00520200012009
10.1002/j.1460-2075.1995.tb06985.x
ContentType Journal Article
Copyright Copyright © 2010 American Neurological Association
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 American Neurological Association
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
7TK
7TM
8FD
FR3
H94
P64
DOI 10.1002/ana.22024
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 780
ExternalDocumentID 20517938
22868568
10_1002_ana_22024
ANA22024
ark_67375_WNG_SDP96Q4G_C
Genre article
Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Muscular Dystrophy Association
– fundername: National Center for Research Resources of the NIH
– fundername: University of Kansas Medical Center (General Clinical Research Center)
  funderid: M01 RR 023940
– fundername: NIH (National Institute of Neurological Disorders and Stroke)
  funderid: 7R01 NS043186
– fundername: Jesse's Journey
– fundername: NCRR NIH HHS
  grantid: M01 RR 023940
– fundername: NINDS NIH HHS
  grantid: 7R01 NS043186
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
7TK
7TM
8FD
FR3
H94
P64
ID FETCH-LOGICAL-c5254-5655469da8e083a1fcc7cab35617bd6d1d6b118a8be05e5d26e88f22bf2a9f0e3
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Fri Jul 11 01:20:31 EDT 2025
Fri Jul 11 13:06:16 EDT 2025
Mon Jul 21 05:39:13 EDT 2025
Mon Jul 21 09:16:36 EDT 2025
Tue Jul 01 02:23:59 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Aug 20 07:27:21 EDT 2025
Wed Oct 30 10:01:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Neuromuscular diseases
Nervous system diseases
Codon
Duchenne muscular dystrophy
Gentamicin
Genetic disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5254-5655469da8e083a1fcc7cab35617bd6d1d6b118a8be05e5d26e88f22bf2a9f0e3
Notes ark:/67375/WNG-SDP96Q4G-C
University of Kansas Medical Center (General Clinical Research Center) - No. M01 RR 023940
Jesse's Journey
istex:9C4EBA2F26D9C882B183AE1B279A3545178A1DF2
NIH (National Institute of Neurological Disorders and Stroke) - No. 7R01 NS043186
National Center for Research Resources of the NIH
Muscular Dystrophy Association
ArticleID:ANA22024
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ana.22024
PMID 20517938
PQID 733127899
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_754550373
proquest_miscellaneous_733127899
pubmed_primary_20517938
pascalfrancis_primary_22868568
crossref_citationtrail_10_1002_ana_22024
crossref_primary_10_1002_ana_22024
wiley_primary_10_1002_ana_22024_ANA22024
istex_primary_ark_67375_WNG_SDP96Q4G_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2010
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: June 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Flanigan KM, von Niederhausern A, Dunn DM, et al. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet 2003; 72: 931-939.
Bass KD, Larkin SE, Paap C, Haase GM. Pharmacokinetics of once-daily gentamicin dosing in pediatric patients. J Pediatr Surg 1998; 33: 1104-1107.
Canton R, Cobos N, de Gracia J, et al. Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. Clin Microbiol Infect 2005; 11: 690-703.
Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des 2007; 13: 119-126.
Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med 1989; 320: 1592-1597.
Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003; 22: 15-21.
Ahmad A, Brinson M, Hodges BL, et al. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum Mol Genet 2000; 9: 2507-2515.
Yoshimura M, Sakamoto M, Ikemoto M, et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821-828.
Mendell JR, Campbell K, Rodino-Klapac L, et al. Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy. N Engl J Med. In press.
Howard MT, Shirts BH, Petros LM, et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000; 48: 164-169.
Tawil R, McDermott MP, Mendell JR, et al. Facioscapulohumeral muscular dystrophy (FSHD): design of natural history study and results of baseline testing. FSH-DY Group. Neurology 1994; 44: 442-446.
Kaufman RJ. Correction of genetic disease by making sense from nonsense. J Clin Invest 1999; 104: 367-368.
DelloRusso C, Scott JM, Hartigan-O'Connor D, et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 2002; 99: 12979-12984.
Hirawat S, Welch EM, Elfring GL, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol 2007; 47: 430-444.
Disset A, Bourgeois CF, Benmalek N, et al. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15: 999-1013.
Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251: 334-345.
Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 1999; 340: 23-30.
Neri M, Torelli S, Brown S, et al. Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 2007; 17: 913-918.
van Deutekom JC, Janson AA, Ginjaar LB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677-2686.
Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996; 2: 467-469.
Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001; 49: 706-711.
Tang HY, Hutcheson E, Neill S, et al. Genetic susceptibility to aminoglycoside ototoxicity: how many are at risk? Genet Med 2002; 4: 336-345.
Mendell JR, Buzin CH, Feng J, et al. Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 2001; 57: 645-650.
Poole ES, Brown CM, Tate WP. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 1995; 14: 151-158.
Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci U S A 1964; 51: 883-890.
Brooke MH, Fenichel GM, Griggs RC, et al. Clinical investigation in Duchenne dystrophy: 2. Determination of the "power" of therapeutic trials based on the natural history. Muscle Nerve 1983; 6: 91-103.
Viollet L, Gailey S, Thornton DJ, et al. Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy. Muscle Nerve 2009; 40: 438-442.
Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4: 1245-1250.
Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007; 117: 683-692.
Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280-1284.
Gurtler N, Schmuziger N, Kim Y, et al. Audiologic testing and molecular analysis of 12S rRNA in patients receiving aminoglycosides. Laryngoscope 2005; 115: 640-644.
Hamed SA. Drug evaluation: PTC-124-a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs 2006; 9: 783-789.
Anderson WF, Gorini L, Breckenridge L. Role of ribosomes in streptomycin-activated suppression. Proc Natl Acad Sci U S A 1965; 54: 1076-1083.
Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999; 104: 375-381.
Schubert MC, Tusa RJ, Grine LE, Herdman SJ. Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction. Phys Ther 2004; 84: 151-158.
Tuffery-Giraud S, Saquet C, Thorel D, et al. Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005; 13: 1254-1260.
Mendell JR, Province MA, Moxley RT III, et al. Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls. Arch Neurol 1987; 44: 808-811.
2007; 17
1965; 54
2004; 84
2009; 40
2000; 48
1995; 14
1983; 6
2005; 115
2000; 9
2006; 9
2002; 99
2006; 15
1999; 340
1994; 44
2002; 4
2001; 49
2003; 72
1999; 104
1997; 3
1995; 251
1995; 4
2007; 13
2004; 10
2007; 357
1987; 44
2007; 117
1989; 320
1996; 2
2001; 57
2005; 11
1964; 51
1998; 33
2007; 47
2003; 22
2005; 13
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_28_2
e_1_2_7_29_2
Politano L (e_1_2_7_11_2) 2003; 22
Mendell JR (e_1_2_7_25_2)
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
Hamed SA (e_1_2_7_27_2) 2006; 9
References_xml – reference: van Deutekom JC, Janson AA, Ginjaar LB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677-2686.
– reference: Canton R, Cobos N, de Gracia J, et al. Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. Clin Microbiol Infect 2005; 11: 690-703.
– reference: Disset A, Bourgeois CF, Benmalek N, et al. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15: 999-1013.
– reference: Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des 2007; 13: 119-126.
– reference: Brooke MH, Fenichel GM, Griggs RC, et al. Clinical investigation in Duchenne dystrophy: 2. Determination of the "power" of therapeutic trials based on the natural history. Muscle Nerve 1983; 6: 91-103.
– reference: Gurtler N, Schmuziger N, Kim Y, et al. Audiologic testing and molecular analysis of 12S rRNA in patients receiving aminoglycosides. Laryngoscope 2005; 115: 640-644.
– reference: Schubert MC, Tusa RJ, Grine LE, Herdman SJ. Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction. Phys Ther 2004; 84: 151-158.
– reference: DelloRusso C, Scott JM, Hartigan-O'Connor D, et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 2002; 99: 12979-12984.
– reference: Mendell JR, Campbell K, Rodino-Klapac L, et al. Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy. N Engl J Med. In press.
– reference: Tang HY, Hutcheson E, Neill S, et al. Genetic susceptibility to aminoglycoside ototoxicity: how many are at risk? Genet Med 2002; 4: 336-345.
– reference: Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003; 22: 15-21.
– reference: Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4: 1245-1250.
– reference: Flanigan KM, von Niederhausern A, Dunn DM, et al. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet 2003; 72: 931-939.
– reference: Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 1999; 340: 23-30.
– reference: Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999; 104: 375-381.
– reference: Hirawat S, Welch EM, Elfring GL, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol 2007; 47: 430-444.
– reference: Howard MT, Shirts BH, Petros LM, et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000; 48: 164-169.
– reference: Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci U S A 1964; 51: 883-890.
– reference: Mendell JR, Province MA, Moxley RT III, et al. Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls. Arch Neurol 1987; 44: 808-811.
– reference: Yoshimura M, Sakamoto M, Ikemoto M, et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821-828.
– reference: Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007; 117: 683-692.
– reference: Hamed SA. Drug evaluation: PTC-124-a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs 2006; 9: 783-789.
– reference: Tawil R, McDermott MP, Mendell JR, et al. Facioscapulohumeral muscular dystrophy (FSHD): design of natural history study and results of baseline testing. FSH-DY Group. Neurology 1994; 44: 442-446.
– reference: Kaufman RJ. Correction of genetic disease by making sense from nonsense. J Clin Invest 1999; 104: 367-368.
– reference: Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280-1284.
– reference: Ahmad A, Brinson M, Hodges BL, et al. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum Mol Genet 2000; 9: 2507-2515.
– reference: Anderson WF, Gorini L, Breckenridge L. Role of ribosomes in streptomycin-activated suppression. Proc Natl Acad Sci U S A 1965; 54: 1076-1083.
– reference: Viollet L, Gailey S, Thornton DJ, et al. Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy. Muscle Nerve 2009; 40: 438-442.
– reference: Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996; 2: 467-469.
– reference: Tuffery-Giraud S, Saquet C, Thorel D, et al. Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005; 13: 1254-1260.
– reference: Neri M, Torelli S, Brown S, et al. Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 2007; 17: 913-918.
– reference: Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001; 49: 706-711.
– reference: Mendell JR, Buzin CH, Feng J, et al. Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 2001; 57: 645-650.
– reference: Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251: 334-345.
– reference: Poole ES, Brown CM, Tate WP. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 1995; 14: 151-158.
– reference: Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med 1989; 320: 1592-1597.
– reference: Bass KD, Larkin SE, Paap C, Haase GM. Pharmacokinetics of once-daily gentamicin dosing in pediatric patients. J Pediatr Surg 1998; 33: 1104-1107.
– volume: 10
  start-page: 821
  year: 2004
  end-page: 828
  article-title: AAV vector‐mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype
  publication-title: Mol Ther
– volume: 13
  start-page: 1254
  year: 2005
  end-page: 1260
  article-title: Mutation spectrum leading to an attenuated phenotype in dystrophinopathies
  publication-title: Eur J Hum Genet
– volume: 357
  start-page: 2677
  year: 2007
  end-page: 2686
  article-title: Local dystrophin restoration with antisense oligonucleotide PRO051
  publication-title: N Engl J Med
– volume: 72
  start-page: 931
  year: 2003
  end-page: 939
  article-title: Rapid direct sequence analysis of the dystrophin gene
  publication-title: Am J Hum Genet
– volume: 54
  start-page: 1076
  year: 1965
  end-page: 1083
  article-title: Role of ribosomes in streptomycin‐activated suppression
  publication-title: Proc Natl Acad Sci U S A
– volume: 17
  start-page: 913
  year: 2007
  end-page: 918
  article-title: Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human
  publication-title: Neuromuscul Disord
– volume: 99
  start-page: 12979
  year: 2002
  end-page: 12984
  article-title: Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full‐length dystrophin
  publication-title: Proc Natl Acad Sci U S A
– volume: 49
  start-page: 706
  year: 2001
  end-page: 711
  article-title: Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations
  publication-title: Ann Neurol
– article-title: Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy
  publication-title: N Engl J Med.
– volume: 104
  start-page: 375
  year: 1999
  end-page: 381
  article-title: Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice
  publication-title: J Clin Invest
– volume: 51
  start-page: 883
  year: 1964
  end-page: 890
  article-title: Streptomycin, suppression, and the code
  publication-title: Proc Natl Acad Sci U S A
– volume: 48
  start-page: 164
  year: 2000
  end-page: 169
  article-title: Sequence specificity of aminoglycoside‐induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy
  publication-title: Ann Neurol
– volume: 9
  start-page: 783
  year: 2006
  end-page: 789
  article-title: Drug evaluation: PTC‐124—a potential treatment of cystic fibrosis and Duchenne muscular dystrophy
  publication-title: IDrugs
– volume: 44
  start-page: 442
  year: 1994
  end-page: 446
  article-title: Facioscapulohumeral muscular dystrophy (FSHD): design of natural history study and results of baseline testing
  publication-title: Neurology
– volume: 9
  start-page: 2507
  year: 2000
  end-page: 2515
  article-title: Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy
  publication-title: Hum Mol Genet
– volume: 13
  start-page: 119
  year: 2007
  end-page: 126
  article-title: Aminoglycoside‐induced ototoxicity
  publication-title: Curr Pharm Des
– volume: 117
  start-page: 683
  year: 2007
  end-page: 692
  article-title: Nonsense‐mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin
  publication-title: J Clin Invest
– volume: 3
  start-page: 1280
  year: 1997
  end-page: 1284
  article-title: Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line
  publication-title: Nat Med
– volume: 22
  start-page: 15
  year: 2003
  end-page: 21
  article-title: Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results
  publication-title: Acta Myol
– volume: 84
  start-page: 151
  year: 2004
  end-page: 158
  article-title: Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction
  publication-title: Phys Ther
– volume: 320
  start-page: 1592
  year: 1989
  end-page: 1597
  article-title: Randomized, double‐blind six‐month trial of prednisone in Duchenne's muscular dystrophy
  publication-title: N Engl J Med
– volume: 57
  start-page: 645
  year: 2001
  end-page: 650
  article-title: Diagnosis of Duchenne dystrophy by enhanced detection of small mutations
  publication-title: Neurology
– volume: 104
  start-page: 367
  year: 1999
  end-page: 368
  article-title: Correction of genetic disease by making sense from nonsense
  publication-title: J Clin Invest
– volume: 47
  start-page: 430
  year: 2007
  end-page: 444
  article-title: Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single‐ and multiple‐dose administration to healthy male and female adult volunteers
  publication-title: J Clin Pharmacol
– volume: 14
  start-page: 151
  year: 1995
  end-page: 158
  article-title: The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli
  publication-title: EMBO J
– volume: 6
  start-page: 91
  year: 1983
  end-page: 103
  article-title: Clinical investigation in Duchenne dystrophy: 2. Determination of the “power” of therapeutic trials based on the natural history
  publication-title: Muscle Nerve
– volume: 33
  start-page: 1104
  year: 1998
  end-page: 1107
  article-title: Pharmacokinetics of once‐daily gentamicin dosing in pediatric patients
  publication-title: J Pediatr Surg
– volume: 251
  start-page: 334
  year: 1995
  end-page: 345
  article-title: The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae
  publication-title: J Mol Biol
– volume: 11
  start-page: 690
  year: 2005
  end-page: 703
  article-title: Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients
  publication-title: Clin Microbiol Infect
– volume: 4
  start-page: 1245
  year: 1995
  end-page: 1250
  article-title: Expression of human full‐length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy
  publication-title: Hum Mol Genet
– volume: 340
  start-page: 23
  year: 1999
  end-page: 30
  article-title: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis
  publication-title: N Engl J Med
– volume: 115
  start-page: 640
  year: 2005
  end-page: 644
  article-title: Audiologic testing and molecular analysis of 12S rRNA in patients receiving aminoglycosides
  publication-title: Laryngoscope
– volume: 2
  start-page: 467
  year: 1996
  end-page: 469
  article-title: Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations
  publication-title: Nat Med
– volume: 40
  start-page: 438
  year: 2009
  end-page: 442
  article-title: Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy
  publication-title: Muscle Nerve
– volume: 15
  start-page: 999
  year: 2006
  end-page: 1013
  article-title: An exon skipping‐associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements
  publication-title: Hum Mol Genet
– volume: 44
  start-page: 808
  year: 1987
  end-page: 811
  article-title: Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls
  publication-title: Arch Neurol
– volume: 4
  start-page: 336
  year: 2002
  end-page: 345
  article-title: Genetic susceptibility to aminoglycoside ototoxicity: how many are at risk?
  publication-title: Genet Med
– ident: e_1_2_7_2_2
  doi: 10.1073/pnas.54.4.1076
– ident: e_1_2_7_7_2
  doi: 10.1172/JCI7866
– ident: e_1_2_7_12_2
  doi: 10.1006/jmbi.1995.0438
– ident: e_1_2_7_31_2
  doi: 10.1111/j.1469-0691.2005.01217.x
– ident: e_1_2_7_18_2
  doi: 10.1016/S0022-3468(98)90540-1
– ident: e_1_2_7_5_2
  doi: 10.1038/nm0496-467
– ident: e_1_2_7_25_2
  article-title: Immunity to dystrophin revealed by gene therapy for Duchenne muscular dystrophy
  publication-title: N Engl J Med.
– ident: e_1_2_7_4_2
  doi: 10.1172/JCI8055
– ident: e_1_2_7_22_2
  doi: 10.1002/mus.880060204
– volume: 9
  start-page: 783
  year: 2006
  ident: e_1_2_7_27_2
  article-title: Drug evaluation: PTC‐124—a potential treatment of cystic fibrosis and Duchenne muscular dystrophy
  publication-title: IDrugs
– ident: e_1_2_7_17_2
  doi: 10.1097/01.mlg.0000161355.28073.f5
– ident: e_1_2_7_10_2
  doi: 10.1002/ana.1023
– ident: e_1_2_7_35_2
  doi: 10.1016/j.nmd.2007.07.005
– ident: e_1_2_7_15_2
  doi: 10.2174/138161207779313731
– ident: e_1_2_7_21_2
  doi: 10.1056/NEJM198906153202405
– volume: 22
  start-page: 15
  year: 2003
  ident: e_1_2_7_11_2
  article-title: Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results
  publication-title: Acta Myol
– ident: e_1_2_7_26_2
  doi: 10.1093/hmg/9.17.2507
– ident: e_1_2_7_36_2
  doi: 10.1172/JCI28523
– ident: e_1_2_7_9_2
  doi: 10.1086/374176
– ident: e_1_2_7_19_2
  doi: 10.1093/ptj/84.2.151
– ident: e_1_2_7_16_2
  doi: 10.1097/00125817-200209000-00004
– ident: e_1_2_7_20_2
  doi: 10.1002/mus.21420
– ident: e_1_2_7_8_2
  doi: 10.1212/WNL.57.4.645
– ident: e_1_2_7_37_2
  doi: 10.1093/hmg/ddl015
– ident: e_1_2_7_24_2
  doi: 10.1056/NEJMoa073108
– ident: e_1_2_7_14_2
  doi: 10.1002/1531-8249(200008)48:2<164::AID-ANA5>3.0.CO;2-B
– ident: e_1_2_7_34_2
  doi: 10.1016/j.ymthe.2004.07.025
– ident: e_1_2_7_3_2
  doi: 10.1073/pnas.51.5.883
– ident: e_1_2_7_23_2
  doi: 10.1212/WNL.44.3_Part_1.442
– ident: e_1_2_7_30_2
  doi: 10.1056/NEJM199901073400104
– ident: e_1_2_7_38_2
  doi: 10.1038/sj.ejhg.5201478
– ident: e_1_2_7_33_2
  doi: 10.1073/pnas.202300099
– ident: e_1_2_7_32_2
  doi: 10.1093/hmg/4.8.1245
– ident: e_1_2_7_6_2
  doi: 10.1038/nm1197-1280
– ident: e_1_2_7_28_2
  doi: 10.1177/0091270006297140
– ident: e_1_2_7_29_2
  doi: 10.1001/archneur.1987.00520200012009
– ident: e_1_2_7_13_2
  doi: 10.1002/j.1460-2075.1995.tb06985.x
SSID ssj0009610
Score 2.4568722
Snippet Objective The objective of this study was to establish the feasibility of long‐term gentamicin dosing to achieve stop codon readthrough and produce full‐length...
The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length...
Objective The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 771
SubjectTerms Adolescent
Audiometry - methods
Biological and medical sciences
Child
Child, Preschool
Codon, Terminator - drug effects
Codon, Terminator - genetics
Cohort Studies
Creatine Kinase - blood
Diseases of striated muscles. Neuromuscular diseases
Enzyme-Linked Immunosorbent Assay - methods
Gentamicins - therapeutic use
Humans
Medical sciences
Muscle Cells - pathology
Muscular Dystrophy, Duchenne - blood
Muscular Dystrophy, Duchenne - genetics
Muscular Dystrophy, Duchenne - pathology
Mutation - genetics
Neurology
Protein Synthesis Inhibitors - therapeutic use
T-Lymphocytes - drug effects
T-Lymphocytes - pathology
Time Factors
Title Gentamicin-induced readthrough of stop codons in duchenne muscular dystrophy
URI https://api.istex.fr/ark:/67375/WNG-SDP96Q4G-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.22024
https://www.ncbi.nlm.nih.gov/pubmed/20517938
https://www.proquest.com/docview/733127899
https://www.proquest.com/docview/754550373
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HCeKL33r14wgici_d2yZN0uLTcnp7CLf4dXgPQkiTFOW8rmx3QX3yT_Bv9C9xJmm7rJwivrUwCWQyk_wmmfyGkMfj0peFr2XKZa3SvM7B52DXTBXPjDVKSBPOO45n8ugkf3EqTrfI0_4tTOSHGA7c0DPCeo0Obqp2f00aahozYhC6Ixco5mohIHq9po4qZWAiwGu2VGQ871mFxmx_aLmxF11CtX7B3EjTgnrqWNfiIuC5iWPDRnR4jbzvhxDzT85Gq2U1st9-Y3f8zzFeJ1c7gEon0aJukC3f3CSXj7sr-FtkNsVs83P8-_n9B0T0YBuOAvR0XckfOq8p0hVQCxFv09KPDQWZD7ig0_NVzHul7mu7XMxhim-Tk8Pnbw-O0q4oQ2oFBJMpAEABIbUzhQf0ZrLaWmVNxQGHqcpJlzlZQdBiisqPhReOSV8UNWNVzUxZjz2_Q7abeeN3CIXIh1nhpFFe5ADyDefKcGurMnOcW5eQvX56tO0Yy7FwxicduZaZBv3ooJ-EPBpEP0eajouEnoQ5HiTM4gzz2pTQ72ZT_ebZy1K-yqf6ICG7G0YwNGCskIWQRUJobxUa3BHvWEzj56tWYwlMfFxc_kVE4EtyrnhC7kaDWvcfGNM49L8XzOLPY9GT2SR83Pt30fvkSsx9wDOkB2R7uVj5hwCpltVu8J1fJ-4b3w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVgJeuI9wFAsh1Jdsd-3YSSReVoXuAt2IoxV9QZbjQ6DSLNpDAp74CfxGfglj51gtKgjxlijjSLZn7G_G428AHvVzm2fWiZgJl8aJS9DmcNeMUzZQWqVcqBDvmBRifJS8OObHG_CkvQtT80N0ATdvGWG99gbuA9K7K9ZQVakeRd89OQdbvqJ3cKjerMijchG4CPxBW4xfk5ZXqE93u6Zru9GWH9gvPjtSzXGAXF3Z4izouY5kw1a0fxnet52oM1BOestF2dPffuN3_N9eXoFLDUYlw1qprsKGra7B-UlzCn8dipFPOD_1bz-__0CnHtXDEESfpqn6Q6aOeMYCotHprebkY0VQ5oNf08npsk59JebrfDGb4izfgKP9Z4d747ipyxBrjv5kjBiQo1dtVGYRwKmB0zrVqmQIxdLSCDMwokS_RWWl7XPLDRU2yxylpaMqd33LbsJmNa3sbSDo_FDNjVCp5QnifMVYqpjWZT4wjGkTwU47P1I3pOW-dsYnWdMtU4njI8P4RPCwE_1cM3WcJfQ4THInoWYnPrUt5fJdMZJvn77KxetkJPci2F7Tgq4BpZnIuMgiIK1aSLRIf8yiKjtdzqWvgunvF-d_EeH-MjlLWQS3ao1a_T-QpjH8_07Qiz_3RQ6LYXi48--iD-DC-HByIA-eFy_vwsU6FcKHlO7B5mK2tPcRYS3K7WBIvwDLTB_6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB7SBEJfeh_ukYpSSl68sSVLtunTku1uemRJj9A8BIQsyTQk8YY9oO1Tf0J_Y39JR_KxbElL6ZsNI4FGM9I30ugbgGdRbvPMliJkokzDpEzQ53DXDFMWK61SLpQ_79gfi73D5PURP1qDF-1bmJofojtwc57h12vn4Bem3FmShqpK9SiG7skV2EhElDmTHrxfckflwlMRuHu2kMcsaWmFIrrTNV3ZjDacXr-45Eg1Q_2UdWGLy5DnKpD1O9HwOhy3Y6gTUE57i3nR099-o3f8z0HegGsNQiX92qRuwpqtbsHmfnMHfxvGI5dufu7-fn7_gSE9GochiD1NU_OHTEri-AqIxpC3mpGTiqDMZ7eik_NFnfhKzNfZfDrBOb4Dh8OXH3f3wqYqQ6g5RpMhIkCOMbVRmUX4puJS61SrgiEQSwsjTGxEgVGLygobccsNFTbLSkqLkqq8jCy7C-vVpLL3gWDoQzU3QqWWJ4jyFWOpYloXeWwY0yaA7XZ6pG4oy13ljDNZky1TifqRXj8BPO1EL2qejsuEnvs57iTU9NQltqVcfhqP5IfBQS7eJSO5G8DWihF0DSjNRMZFFgBprUKiP7pLFlXZyWImXQ1M97o4_4sId0_JWcoCuFcb1LJ_T5nGsP9tbxZ_Hovsj_v-48G_iz6BzYPBUL59NX7zEK7WeRDuPOkRrM-nC_sY4dW82PJu9At2Lh6y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gentamicin-induced+readthrough+of+stop+codons+in+duchenne+muscular+dystrophy&rft.jtitle=Annals+of+neurology&rft.au=Malik%2C+Vinod&rft.au=Rodino-Klapac%2C+Louise+R&rft.au=Viollet%2C+Laurence&rft.au=Wall%2C+Cheryl&rft.date=2010-06-01&rft.issn=0364-5134&rft.volume=67&rft.issue=6&rft.spage=771&rft.epage=780&rft_id=info:doi/10.1002%2Fana.22024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon