Aminophosphate precursors for the synthesis of near‐unity emitting InP quantum dots and their application in liver cancer diagnosis
InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based cor...
Saved in:
Published in | Exploration (Beijing, China) Vol. 2; no. 4; pp. 20220082 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
China
John Wiley & Sons, Inc
01.08.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2766-8509 2766-2098 2766-2098 |
DOI | 10.1002/EXP.20220082 |
Cover
Loading…
Abstract | InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based core/shell QDs by using cost‐effective and low‐toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha‐fetoprotein can be detected in the widest analytical range of 1–1000 ng ml−1 and the limit of detection of 0.58 ng ml−1 by using those InP QDs‐based fluorescent probes, making it the best‐performing heavy metal‐free detection reported so far, comparable to state‐of‐the‐art Cd‐QDs‐based probes. Furthermore, the high‐quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor‐targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high‐quality Cd‐free InP QDs in cancer diagnosis and image‐guided surgery.
Environment‐friendly InP core/shell quantum dots (QDs) with quantum yield of ∼100% are prepared by aminophosphate precursors. The limit of detection of alpha‐fetoprotein for in vitro diagnostics, specific labeling of liver cancer cells, and in vivo tumor‐targeted imaging of live mice are comparable to that of the state‐of‐the‐art Cd‐QDs‐based probes. |
---|---|
AbstractList | InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based core/shell QDs by using cost‐effective and low‐toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha‐fetoprotein can be detected in the widest analytical range of 1–1000 ng ml
−1
and the limit of detection of 0.58 ng ml
−1
by using those InP QDs‐based fluorescent probes, making it the best‐performing heavy metal‐free detection reported so far, comparable to state‐of‐the‐art Cd‐QDs‐based probes. Furthermore, the high‐quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor‐targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high‐quality Cd‐free InP QDs in cancer diagnosis and image‐guided surgery.
Environment‐friendly InP core/shell quantum dots (QDs) with quantum yield of ∼100% are prepared by aminophosphate precursors. The limit of detection of alpha‐fetoprotein for in vitro diagnostics, specific labeling of liver cancer cells, and in vivo tumor‐targeted imaging of live mice are comparable to that of the state‐of‐the‐art Cd‐QDs‐based probes. InP quantum dots (QDs) are a promising and environment-friendly alternative to Cd-based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP-based core/shell QDs by using cost-effective and low-toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha-fetoprotein can be detected in the widest analytical range of 1-1000 ng ml-1 and the limit of detection of 0.58 ng ml-1 by using those InP QDs-based fluorescent probes, making it the best-performing heavy metal-free detection reported so far, comparable to state-of-the-art Cd-QDs-based probes. Furthermore, the high-quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor-targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high-quality Cd-free InP QDs in cancer diagnosis and image-guided surgery.InP quantum dots (QDs) are a promising and environment-friendly alternative to Cd-based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP-based core/shell QDs by using cost-effective and low-toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha-fetoprotein can be detected in the widest analytical range of 1-1000 ng ml-1 and the limit of detection of 0.58 ng ml-1 by using those InP QDs-based fluorescent probes, making it the best-performing heavy metal-free detection reported so far, comparable to state-of-the-art Cd-QDs-based probes. Furthermore, the high-quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor-targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high-quality Cd-free InP QDs in cancer diagnosis and image-guided surgery. InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based core/shell QDs by using cost‐effective and low‐toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha‐fetoprotein can be detected in the widest analytical range of 1–1000 ng ml−1 and the limit of detection of 0.58 ng ml−1 by using those InP QDs‐based fluorescent probes, making it the best‐performing heavy metal‐free detection reported so far, comparable to state‐of‐the‐art Cd‐QDs‐based probes. Furthermore, the high‐quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor‐targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high‐quality Cd‐free InP QDs in cancer diagnosis and image‐guided surgery. InP quantum dots (QDs) are a promising and environment-friendly alternative to Cd-based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP-based core/shell QDs by using cost-effective and low-toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha-fetoprotein can be detected in the widest analytical range of 1-1000 ng ml and the limit of detection of 0.58 ng ml by using those InP QDs-based fluorescent probes, making it the best-performing heavy metal-free detection reported so far, comparable to state-of-the-art Cd-QDs-based probes. Furthermore, the high-quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor-targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high-quality Cd-free InP QDs in cancer diagnosis and image-guided surgery. InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based core/shell QDs by using cost‐effective and low‐toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha‐fetoprotein can be detected in the widest analytical range of 1–1000 ng ml−1 and the limit of detection of 0.58 ng ml−1 by using those InP QDs‐based fluorescent probes, making it the best‐performing heavy metal‐free detection reported so far, comparable to state‐of‐the‐art Cd‐QDs‐based probes. Furthermore, the high‐quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor‐targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high‐quality Cd‐free InP QDs in cancer diagnosis and image‐guided surgery. Environment‐friendly InP core/shell quantum dots (QDs) with quantum yield of ∼100% are prepared by aminophosphate precursors. The limit of detection of alpha‐fetoprotein for in vitro diagnostics, specific labeling of liver cancer cells, and in vivo tumor‐targeted imaging of live mice are comparable to that of the state‐of‐the‐art Cd‐QDs‐based probes. InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based core/shell QDs by using cost‐effective and low‐toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha‐fetoprotein can be detected in the widest analytical range of 1–1000 ng ml −1 and the limit of detection of 0.58 ng ml −1 by using those InP QDs‐based fluorescent probes, making it the best‐performing heavy metal‐free detection reported so far, comparable to state‐of‐the‐art Cd‐QDs‐based probes. Furthermore, the high‐quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor‐targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high‐quality Cd‐free InP QDs in cancer diagnosis and image‐guided surgery. Abstract InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP‐based core/shell QDs by using cost‐effective and low‐toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha‐fetoprotein can be detected in the widest analytical range of 1–1000 ng ml−1 and the limit of detection of 0.58 ng ml−1 by using those InP QDs‐based fluorescent probes, making it the best‐performing heavy metal‐free detection reported so far, comparable to state‐of‐the‐art Cd‐QDs‐based probes. Furthermore, the high‐quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor‐targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high‐quality Cd‐free InP QDs in cancer diagnosis and image‐guided surgery. |
Author | Li, Lin‐Song Zhao, Mei‐Xia Lv, Yanbing Zhao, Xue‐Jie Zhang, Yanbin Shen, Huaibin |
AuthorAffiliation | 1 Key Laboratory of Natural Medicine and Immuno‐Engineering of Henan Province Henan University Kaifeng China 2 Key Laboratory for Special Functional Materials of Ministry of Education School of Materials and Engineering Henan University Kaifeng China |
AuthorAffiliation_xml | – name: 1 Key Laboratory of Natural Medicine and Immuno‐Engineering of Henan Province Henan University Kaifeng China – name: 2 Key Laboratory for Special Functional Materials of Ministry of Education School of Materials and Engineering Henan University Kaifeng China |
Author_xml | – sequence: 1 givenname: Yanbin surname: Zhang fullname: Zhang, Yanbin organization: Henan University – sequence: 2 givenname: Yanbing surname: Lv fullname: Lv, Yanbing organization: Henan University – sequence: 3 givenname: Lin‐Song surname: Li fullname: Li, Lin‐Song organization: Henan University – sequence: 4 givenname: Xue‐Jie surname: Zhao fullname: Zhao, Xue‐Jie organization: Henan University – sequence: 5 givenname: Mei‐Xia surname: Zhao fullname: Zhao, Mei‐Xia email: zhaomeixia2011@henu.edu.cn organization: Henan University – sequence: 6 givenname: Huaibin orcidid: 0000-0002-6425-0514 surname: Shen fullname: Shen, Huaibin email: shenhuaibin@henu.edu.cn organization: Henan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37325608$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFuEzEQhleoiJbSG2dkiQsHUuxxNmufUFUViFSJHkDiZo293sTRxt7a3qLcuHDnGXkSnKapaCU4jT3-5tfvmXleHfjgbVW9ZPSUUQrvLr5dnQIFoFTAk-oImtlsAlSKg7uzqKk8rE5SWtGCiwbETDyrDnnDoZ5RcVT9PFs7H4ZlSMMSsyVDtGaMKcREuhBJXlqSNr6E5BIJHfEW4-8fv0bv8obYtcvZ-QWZ-ytyPaLP45q0ISeCvt3WukhwGHpnMLvgifOkdzc2EoPelNA6XPhQlF9UTzvskz25i8fV1w8XX84_TS4_f5yfn11OTA01TJgQDUPUmjMrJOMMtG2mWlump91UUt40iBa4NrTjnUDWdoJT2XLeGuyE5sfVfKfbBlypIbo1xo0K6NRtIsSFwpid6a2qEYQG0IZ1cspNaVzJWClpA7oW2Bat9zutYdRr2xrrc8T-gejDF--WahFuFKNMUsllUXhzpxDD9WhTVmuXjO179DaMSYGABuopk6Kgrx-hqzBGX3qlygdB0IbOWKFe_W3p3st-3AWAHWBiSCnaThmXb2dTHLq-WFPbtVJlrdR-rUrR20dFe91_4PUO_-56u_kvu73c1_0BKG_gOg |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215632 crossref_primary_10_1016_j_talanta_2023_125416 crossref_primary_10_1039_D4TC01979B crossref_primary_10_1021_acsanm_3c06297 crossref_primary_10_1002_smsc_202300081 crossref_primary_10_1016_j_snb_2024_136858 crossref_primary_10_1021_acsnano_2c05517 crossref_primary_10_1016_j_cej_2025_159278 crossref_primary_10_1021_acsanm_4c04273 crossref_primary_10_1155_2022_5349691 crossref_primary_10_1002_EXP_20240004 crossref_primary_10_1021_acs_inorgchem_3c04153 crossref_primary_10_1007_s12274_024_6926_5 crossref_primary_10_3390_bios13060617 crossref_primary_10_1016_j_cej_2024_151152 crossref_primary_10_1039_D4TC01396D crossref_primary_10_1039_D4TC03312D crossref_primary_10_1007_s12274_022_5353_5 crossref_primary_10_1021_acsnano_3c07029 crossref_primary_10_1016_j_nantod_2022_101681 crossref_primary_10_1002_adom_202401106 crossref_primary_10_1021_jacs_4c10731 |
Cites_doi | 10.1016/j.bbrep.2021.100962 10.1126/science.aaz8541 10.1021/acs.langmuir.7b00409 10.1002/EXP.20210222 10.1007/s10856-013-4938-x 10.1021/acs.inorgchem.1c00304 10.1039/C7TB02324C 10.1002/smll.202004492 10.1002/smll.202002454 10.1021/jacs.8b12908 10.1021/acsanm.0c02814 10.1021/bc700404v 10.1002/smll.201401056 10.1016/j.trac.2020.115920 10.1021/acs.jpcc.0c09366 10.1021/acs.jpcc.7b11327 10.1021/acs.inorgchem.0c00347 10.1021/acsanm.1c00336 10.1021/acs.est.9b00373 10.1016/j.biomaterials.2008.07.025 10.1002/adma.201706356 10.1016/j.nantod.2020.100943 10.1021/acsami.1c15022 10.1038/s41586-019-1771-5 10.1021/jp102540w 10.1155/2016/8564648 10.1021/acs.chemmater.8b03117 10.1021/acs.jpclett.9b03567 10.1021/acs.jpclett.0c02752 10.1002/adfm.202008453 10.1021/nn1025934 10.1016/j.hbpd.2019.03.001 10.1016/j.chemosphere.2020.128170 10.1364/OME.9.001257 10.1039/D1TC06072D 10.1007/s10854-020-05206-5 10.1016/j.colsurfa.2010.01.059 10.1002/adma.200701166 10.1021/nn203598c 10.1021/acsenergylett.1c01067 10.1002/adom.202100427 10.1002/ppsc.201900441 10.1021/acs.chemmater.5b02190 10.1002/jat.4083 10.1021/acs.nanolett.1c00600 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd. 2022 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd. – notice: 2022 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
DOI | 10.1002/EXP.20220082 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2766-2098 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_5a28b22bc1f943c2865a2e99072b58ad PMC10190939 37325608 10_1002_EXP_20220082 EXP20220082 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21501044; 61922028; 61874039 – fundername: Key Scientific and Technological Project of Henan Province funderid: 212102311018 – fundername: Educational Reform Project of Henan University funderid: YB‐JFZX‐2022‐11 – fundername: Special Professor Project of Henan University, the Innovation Research Team of Science and Technology in Henan Province funderid: 20IRTSTHN020 – fundername: Major Cultivation Project of First‐class Discipline of Henan University funderid: 2019YLZDJL09 – fundername: Natural Science Foundation of Henan Province funderid: 222300420411 – fundername: Major Cultivation Project of First‐class Discipline of Henan University grantid: 2019YLZDJL09 – fundername: Key Scientific and Technological Project of Henan Province grantid: 212102311018 – fundername: ; grantid: 21501044; 61922028; 61874039 – fundername: ; grantid: 222300420411 – fundername: Special Professor Project of Henan University, the Innovation Research Team of Science and Technology in Henan Province grantid: 20IRTSTHN020 – fundername: Educational Reform Project of Henan University grantid: YB‐JFZX‐2022‐11 |
GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACCMX ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS ATCPS BENPR BHPHI CCPQU EBS GROUPED_DOAJ HCIFZ M~E OK1 PATMY PIMPY PYCSY RPM AAYXX CITATION PHGZM PHGZT NPM AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM WIN PUEGO |
ID | FETCH-LOGICAL-c5252-18871aabb31e891312be74bbe1b4f490377aae23bc0f3f8a1df8309d33dcaf8b3 |
IEDL.DBID | BENPR |
ISSN | 2766-8509 2766-2098 |
IngestDate | Wed Aug 27 01:26:39 EDT 2025 Thu Aug 21 18:37:46 EDT 2025 Fri Jul 11 10:11:51 EDT 2025 Sat Jul 26 02:36:23 EDT 2025 Wed Feb 19 02:02:37 EST 2025 Thu Apr 24 23:08:28 EDT 2025 Tue Jul 01 01:52:18 EDT 2025 Wed Jan 22 16:23:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | in vitro diagnostics InP quantum dots liver cancer shell engineering bioimaging |
Language | English |
License | Attribution 2022 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5252-18871aabb31e891312be74bbe1b4f490377aae23bc0f3f8a1df8309d33dcaf8b3 |
Notes | Yanbin Zhang and Yanbin Lv contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6425-0514 |
OpenAccessLink | https://www.proquest.com/docview/3092807061?pq-origsite=%requestingapplication% |
PMID | 37325608 |
PQID | 3092807061 |
PQPubID | 6853494 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a28b22bc1f943c2865a2e99072b58ad pubmedcentral_primary_oai_pubmedcentral_nih_gov_10190939 proquest_miscellaneous_2827254198 proquest_journals_3092807061 pubmed_primary_37325608 crossref_citationtrail_10_1002_EXP_20220082 crossref_primary_10_1002_EXP_20220082 wiley_primary_10_1002_EXP_20220082_EXP20220082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China – name: Beijing – name: Hoboken |
PublicationTitle | Exploration (Beijing, China) |
PublicationTitleAlternate | Exploration (Beijing) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 9 2017; 5 2018; 122 2021; 26 2021; 6 2019; 9 2021; 21 2021; 4 2019; 53 2013; 24 2008; 19 2020; 16 2020; 37 2020; 59 2020; 128 2019; 18 2020; 35 2021; 263 2016; 2016 2020; 11 2020; 124 2019; 141 2011; 5 2021; 13 2021; 31 2020; 3 2015; 27 2021; 56 2010; 359 2010; 114 2017; 33 2008; 29 2019; 575 2021; 373 2018; 30 2022; 10 2022; 2 2008; 20 2021; 60 2021; 41 2014; 10 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 59 start-page: 6220 year: 2020 publication-title: Inorg. Chem. – volume: 5 start-page: 9392 year: 2011 publication-title: ACS Nano – volume: 4 start-page: 3977 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 141 start-page: 6448 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2213 year: 2022 publication-title: J. Mater. Chem. C – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 575 start-page: 634 year: 2019 publication-title: Nature – volume: 53 start-page: 3938 year: 2019 publication-title: Environ. Sci. Technol. – volume: 19 start-page: 562 year: 2008 publication-title: Bioconjugate Chem – volume: 60 start-page: 6503 year: 2021 publication-title: Inorg. Chem. – volume: 359 start-page: 39 year: 2010 publication-title: Colloids Surf. A – volume: 20 start-page: 3416 year: 2008 publication-title: Adv. Mater. – volume: 18 start-page: 266 year: 2019 publication-title: Hepatobiliary Pancreatic Dis. Int. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 2 year: 2022 publication-title: Exploration – volume: 263 year: 2021 publication-title: Chemosphere – volume: 6 start-page: 2697 year: 2021 publication-title: ACS Energy Lett – volume: 128 year: 2020 publication-title: TrAC, Trends Anal. Chem. – volume: 30 start-page: 6877 year: 2018 publication-title: Chem. Mater. – volume: 27 start-page: 4899 year: 2015 publication-title: Chem. Mater. – volume: 41 start-page: 342 year: 2021 publication-title: J. Appl. Toxicol. – volume: 2016 year: 2016 publication-title: J. Nanomater. – volume: 56 start-page: 4686 year: 2021 publication-title: J. Mater. Sci. Mater. Electron. – volume: 16 year: 2020 publication-title: Small – volume: 5 start-page: 8152 year: 2017 publication-title: J. Mater. Chem. B – volume: 373 year: 2021 publication-title: Science – volume: 10 start-page: 4182 year: 2014 publication-title: Small – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 114 year: 2010 publication-title: J. Phys. Chem. C – volume: 26 year: 2021 publication-title: Biochem. Biophys. Rep. – volume: 5 start-page: 546 year: 2011 publication-title: ACS Nano – volume: 11 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 122 start-page: 964 year: 2018 publication-title: J. Phys. Chem. C – volume: 3 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 33 start-page: 6333 year: 2017 publication-title: Langmuir – volume: 21 start-page: 3271 year: 2021 publication-title: Nano Lett – volume: 24 start-page: 2505 year: 2013 publication-title: J. Mater. Sci. Mater. Med. – volume: 37 year: 2020 publication-title: Part. Part. Syst. Charact. – volume: 11 start-page: 960 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 9 start-page: 1257 year: 2019 publication-title: Opt. Mater. Express – volume: 35 year: 2020 publication-title: Nano Today – volume: 29 start-page: 4170 year: 2008 publication-title: Biomaterials – ident: e_1_2_9_11_1 doi: 10.1016/j.bbrep.2021.100962 – ident: e_1_2_9_2_1 doi: 10.1126/science.aaz8541 – ident: e_1_2_9_40_1 doi: 10.1021/acs.langmuir.7b00409 – ident: e_1_2_9_6_1 doi: 10.1002/EXP.20210222 – ident: e_1_2_9_45_1 doi: 10.1007/s10856-013-4938-x – ident: e_1_2_9_17_1 doi: 10.1021/acs.inorgchem.1c00304 – ident: e_1_2_9_37_1 doi: 10.1039/C7TB02324C – ident: e_1_2_9_3_1 doi: 10.1002/smll.202004492 – ident: e_1_2_9_13_1 doi: 10.1002/smll.202002454 – ident: e_1_2_9_16_1 doi: 10.1021/jacs.8b12908 – ident: e_1_2_9_29_1 doi: 10.1021/acsanm.0c02814 – ident: e_1_2_9_35_1 doi: 10.1021/bc700404v – ident: e_1_2_9_41_1 doi: 10.1002/smll.201401056 – ident: e_1_2_9_43_1 doi: 10.1016/j.trac.2020.115920 – ident: e_1_2_9_34_1 doi: 10.1021/acs.jpcc.0c09366 – ident: e_1_2_9_31_1 doi: 10.1021/acs.jpcc.7b11327 – ident: e_1_2_9_24_1 doi: 10.1021/acs.inorgchem.0c00347 – ident: e_1_2_9_28_1 doi: 10.1021/acsanm.1c00336 – ident: e_1_2_9_9_1 doi: 10.1021/acs.est.9b00373 – ident: e_1_2_9_46_1 doi: 10.1016/j.biomaterials.2008.07.025 – ident: e_1_2_9_5_1 doi: 10.1002/adma.201706356 – ident: e_1_2_9_4_1 doi: 10.1016/j.nantod.2020.100943 – ident: e_1_2_9_38_1 doi: 10.1021/acsami.1c15022 – ident: e_1_2_9_14_1 doi: 10.1038/s41586-019-1771-5 – ident: e_1_2_9_32_1 doi: 10.1021/jp102540w – ident: e_1_2_9_39_1 doi: 10.1155/2016/8564648 – ident: e_1_2_9_30_1 doi: 10.1021/acs.chemmater.8b03117 – ident: e_1_2_9_21_1 doi: 10.1021/acs.jpclett.9b03567 – ident: e_1_2_9_36_1 doi: 10.1021/acs.jpclett.0c02752 – ident: e_1_2_9_15_1 doi: 10.1002/adfm.202008453 – ident: e_1_2_9_23_1 doi: 10.1021/nn1025934 – ident: e_1_2_9_44_1 doi: 10.1016/j.hbpd.2019.03.001 – ident: e_1_2_9_8_1 doi: 10.1016/j.chemosphere.2020.128170 – ident: e_1_2_9_22_1 doi: 10.1364/OME.9.001257 – ident: e_1_2_9_26_1 doi: 10.1039/D1TC06072D – ident: e_1_2_9_27_1 doi: 10.1007/s10854-020-05206-5 – ident: e_1_2_9_33_1 doi: 10.1016/j.colsurfa.2010.01.059 – ident: e_1_2_9_25_1 doi: 10.1002/adma.200701166 – ident: e_1_2_9_19_1 doi: 10.1021/nn203598c – ident: e_1_2_9_12_1 doi: 10.1021/acsenergylett.1c01067 – ident: e_1_2_9_20_1 doi: 10.1002/adom.202100427 – ident: e_1_2_9_18_1 doi: 10.1002/ppsc.201900441 – ident: e_1_2_9_42_1 doi: 10.1021/acs.chemmater.5b02190 – ident: e_1_2_9_7_1 doi: 10.1002/jat.4083 – ident: e_1_2_9_10_1 doi: 10.1021/acs.nanolett.1c00600 |
SSID | ssj0002872868 |
Score | 2.3915617 |
Snippet | InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications. However,... InP quantum dots (QDs) are a promising and environment-friendly alternative to Cd-based QDs for in vitro diagnostics and bioimaging applications. However,... Abstract InP quantum dots (QDs) are a promising and environment‐friendly alternative to Cd‐based QDs for in vitro diagnostics and bioimaging applications.... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20220082 |
SubjectTerms | Aqueous solutions Biocompatibility bioimaging Cadmium Cost analysis Decomposition Diagnosis Fluorescent indicators Heavy metals Hepatocytes Image quality Immunoassay in vitro diagnostics InP quantum dots Ligands Liver cancer Medical diagnosis Medical imaging Optical properties Oxidation Probes Quantum dots shell engineering Spectrum analysis Toxicity |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcppTISnFDo2k5i51iqVgUJ1AOV9hbZia0N6jrLujnsjQt3fmN_SWec7GpXvC6c8rAVOTOf7ZnM5BtCXiMjeuFkmYpayjRjTqa6MC5tCmZVXjqAAUZ0P30uzi-zj9N8ulXqC3PCBnrgQXBHuebKcG5q5spM1PgjpeYW1lDJTa50g6sv7HlbztTX-MlIQs9Yjk4WRapgWxyz3qHt6HR6AZ4hx9A_39mPIm3_72zNX1Mmt03ZuBedPSD3RyOSHg-Df0juWP-I3B3KSq4ekx_H89Z3i1kXFjMwJeliiR_VQ7cMFExUCiYfDSsPh9AG2jnqAe0333_2MLtX1M7bmApNP_gL-q0HwfdzCq5roNo3NMYV6FbUm7aeXmFuB60RP0vaDLl7bXhCLs9Ov5ycp2O5hbTOec5TBusN09oYAWoqmWDcWJkZY5nJXFZOhJRaWy5MPXHCKc0ap8SkbIRoau2UEU_Jnu-8fU6oYKBkrq2w4I0h_08uAA_MFXbiNFM2IW_XQq_qkYscS2JcVQOLMq9ARdVaRQl5s-m9GDg4_tDvPepv0weZs-MNwFM14qn6F54ScrDWfjVO51DBayJrENg-CXm1aYaJiNEV7W3Xhwp8VwneNitVQp4NYNmMREiBpiW0qB0Y7Qx1t8W3s0j2zfBn_1KUCXkXEfdXCeDF-nz_f0jjBbmHzxsyHg_I3vWyty_BCrs2h3HC3QJ69y1h priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQIiQuiDdhF2QkOKFoazuJneOCdrUggXpgpd4iO7FppK3TjTeH3rhw39_IL2EmSUMrHhKnprVTJZ4Z-xvPzGdCXiMjeuZkHotSyjhhTsY6My6uMmZVmjtQA4zofvqcnV8kHxfpYtxww1qYgR9i2nBDy-jnazRwbcLxL9LQ08Uc3DuO8XuYgm9jdS1y5_NkPu2xgDfAVV8Nx2WWxQoWxzH3HdqOd_9gb1Xqyfv_hDh_T5zcBbT9inR2n9wboSQ9GWT_gNyy_iG5MxwuuXlEvp-sat-sl01YLwFQ0nWLW-uhaQMFoEoB-NGw8fAR6kAbRz3o_I9vNx3Y-IbaVd0nRNMPfk6vOhj-bkXBgQ1U-4r20QW6E_umtaeXmOFBS9SillZDBl8dHpOLs9Mv78_j8dCFuEx5ymMGsw7T2hgBwsqZYNxYmRhjmUlcks-ElFpbLkw5c8IpzSqnxCyvhKhK7ZQRT8iBb7x9RqhgIGqurbDgkyELUCpAK5jL7MxppmxE3m4HvShHRnI8GOOyGLiUeQEiKrYiisibqfd6YOL4S793KL-pD_Jn9z807ddiNMci1VwZzk3JXJ6IEstzNbewMktuUqWriBxtpV-MRh0KeE3kDgIEFJFXUzOYI8ZYtLdNFwrwYCX43CxXEXk6KMv0JEIKBJjQovbUaO9R91t8vewpvxmW_Ocij8hgE_8cAfyyvX7-vzcckrt4OeQ4HpGD67azLwB3XZuXvXH9BCo9JlI priority: 102 providerName: Wiley-Blackwell |
Title | Aminophosphate precursors for the synthesis of near‐unity emitting InP quantum dots and their application in liver cancer diagnosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FEXP.20220082 https://www.ncbi.nlm.nih.gov/pubmed/37325608 https://www.proquest.com/docview/3092807061 https://www.proquest.com/docview/2827254198 https://pubmed.ncbi.nlm.nih.gov/PMC10190939 https://doaj.org/article/5a28b22bc1f943c2865a2e99072b58ad |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYJiQuiG_CRmUkOKGw2k5i54Q21GkgMVWISb1FdmKvkVanq5dDb1x252_kL-HZScoqYKc0sQ9p3u_Z78u_h9Bbz4ieGZ7HrOQ8TojhscyUiauMaJHmBmDgM7pfz7LT8-TLLJ31ATfXl1UOa2JYqKum9DHyQzbOPXELbD8fl1ex7xrls6t9C40dtAdLsADna-94cjb9tomywDMqwnk4yrMMIJGLvvodxg4nsyl4iNSXANCtfSnQ9__L5vy7dPK2SRv2pJNH6GFvTOKjTvqP0T1tn6D7XXvJ9VN0c7SobbOcN245B5MSL1c-uO6alcNgqmIw_bBbW7i42uHGYAuo__XjZwtavsZ6UYeSaPzZTvFVCwJoFxhcWIelrXDIL-Bb2W9cW3zpazxw6XG0wlVXw1e7Z-j8ZPL902nct12Iy5SmNCaw7hAplWIgrpwwQpXmiVKaqMQk-ZhxLqWmTJVjw4yQpDICpFMxVpXSCMWeo13bWP0SYUZA2FRqpsEr8zxAKQNcEJPpsZFE6Ai9Hz56Ufac5L41xmXRsSnTAkRUDCKK0LvN7GXHxfGfecdefps5nkE7PGhWF0WvkEUqqVCUqpKYPGGlP6ArqYa9mVOVCllF6GCQftGrtSv-gDBCbzbDoJA-yyKtblpXgA_LwesmuYjQiw4smzdhnHkTE0bEFoy2XnV7xNbzQPpN_KH_nOUR-hAQd-cX8DfD71d3_5F99MDP7GoaD9Du9arVr8HOulYjtEOT6ahXqVGIVoxCOOw3CcUpXQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJuFAkaiJ7Q0tnfX3gNCLaRKaBtFqJVy29q7Nlmp2U3jRig3Ltz5JfwofgnjfYRGQG895WEncTyfxzOe8TcIvXaM6JHhsc9Szv2AGO7LSBk_i4gWYWwABi6iezSM-ifBp3E43kA_27swLq2y1YmVos7K1J2R77Bu7IhbYPt5Pzv3XdUoF11tS2jUsDjQy6_gstl3g48g321K93vHH_p-U1XAT0MaUp_AsiJSKsVgNDFhhCrNA6U0UYEJ4i7jXEpNmUq7hhkhSWYE_HjGWJZKIxSD772BNgMGrkwHbe71hqPPq1Md8D-oqO7fUR5FAMFYNNn20LbTG4_AI6Uu5YCu7YNVuYB_2bh_p2peNqGrPXD_LrrTGK94t0bbPbShi_voZl3OcvkAfd-d5kU5m5R2NgETFs_m7jDflnOLwTTGYGpiuyzgweYWlwYXMJ2_vv1YgFZZYj3NqxRsPChG-HwBAl9MMbjMFssiw1U8A1-KtuO8wGcupwSnDrdznNU5g7l9iE6uRSCPUKcoC_0EYUYAXFRqpsELdLxDIQMcEhPprpFEaA-9aSc9SRsOdFeK4yyp2ZtpAiJKWhF5aHvVe1Zzf_yn356T36qPY-yu3ijnX5JGASShpEJRqlJi4oCl7kKwpBpsAU5VKGTmoa1W-kmjRmzyB_QeerVqBgXgojqy0OXCJuAzc_DySSw89LgGy2okjDNn0kKLWIPR2lDXW4p8UpGME0cyELPYQ28rxF05A-5F-_zp1X_kJbrVPz46TA4Hw4Nn6Lb7VJ1PuYU6F_OFfg423oV60SwsjE6vey3_BnfMY_Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgL4k1KASPBCUVd20nsHAt01fKo9kClvUV2YrORuk5Iuoe99cKd38gvYSbJhl3xkDjlYSdKPDP2N57xZ0JeIiN64mQailzKMGJOhjoxLiwSZlWcOlADjOh-OktOzqP383g-TLjhWpieH2KccEPL6PprNPC6cIe_SEOP5zNw7zjG76ELvt7F-5DZOZqNcyzgDXDVrYbjMklCBYPjkPsOZYfbL9gZlTry_j8hzt8TJ7cBbTciTe-Q2wOUpEe97O-Sa9bfIzf6zSXX98m3o2Xpq3pRtfUCACWtG5xab6umpQBUKQA_2q49HNqypZWjHnT-x9X3Fdj4mtpl2SVE01M_o19X0PyrJQUHtqXaF7SLLtCt2DctPb3ADA-aoxY1tOgz-Mr2ATmfHn9-exIOmy6EecxjHjLodZjWxggQVsoE48bKyBjLTOSidCKk1NpyYfKJE05pVjglJmkhRJFrp4x4SPZ85e1jQgUDUXNthQWfDFmAYgFawVxiJ04zZQPyetPoWT4wkuPGGBdZz6XMMxBRthFRQF6NteueieMv9d6g_MY6yJ_d3aiaL9lgjlmsuTKcm5y5NBI5Ls_V3MLILLmJlS4CcrCRfjYYdZvBbyJ3ECCggLwYi8EcMcaiva1WbQYerASfm6UqII96ZRm_REiBABNK1I4a7XzqbokvFx3lN8Ml_6lIA9LbxD9bAC825_v_-8BzcnP2bpp9PD378ITcwrt9uuMB2btsVvYpQLBL86yzs58hpSjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aminophosphate+precursors+for+the+synthesis+of+near%E2%80%90unity+emitting+InP+quantum+dots+and+their+application+in+liver+cancer+diagnosis&rft.jtitle=Exploration+%28Beijing%2C+China%29&rft.au=Zhang%2C+Yanbin&rft.au=Lv%2C+Yanbing&rft.au=Li%2C+Lin%E2%80%90Song&rft.au=Zhao%2C+Xue%E2%80%90Jie&rft.date=2022-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2766-2098&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1002%2FEXP.20220082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2766-8509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2766-8509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2766-8509&client=summon |