Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein

Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, b...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 23; pp. 9332 - 9337
Main Authors Hattori, Mitsuru, Haga, Sanae, Takakura, Hideo, Ozaki, Michitaka, Ozawa, Takeaki
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.06.2013
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1304056110

Cover

Loading…
Abstract Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues.
AbstractList Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photoinactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues.
Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues.
Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues.
Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues.Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues.
Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the acidification in complex tissues of living subjects persists as an important challenge. We developed a photo-inactivatable bioluminescent indicator, based on a combination of luciferase-fragment complementation and a photoreaction of a light, oxygen, and voltage domain from Avena sativa Phototropin1 (LOV2), to visualize temporally dynamic acidification in living tissue samples. Bioluminescence of the indicator diminished upon light irradiation and it recovered gradually in the dark state thereafter. The recovery rate was remarkably sensitive to pH changes but unsusceptible to fluctuation of luciferin or ATP concentrations. Bioluminescence imaging, taken as an index of the recovery rates, enabled long-time recording of acidification in apoptotic and autophagous processes in a cell population and an ischemic condition in living mice. This technology using the indicator is widely applicable to sense organelle-specific acidic changes in target biological tissues. [PUBLICATION ABSTRACT]
Author Haga, Sanae
Ozaki, Michitaka
Ozawa, Takeaki
Takakura, Hideo
Hattori, Mitsuru
Author_xml – sequence: 1
  givenname: Mitsuru
  surname: Hattori
  fullname: Hattori, Mitsuru
– sequence: 2
  givenname: Sanae
  surname: Haga
  fullname: Haga, Sanae
– sequence: 3
  givenname: Hideo
  surname: Takakura
  fullname: Takakura, Hideo
– sequence: 4
  givenname: Michitaka
  surname: Ozaki
  fullname: Ozaki, Michitaka
– sequence: 5
  givenname: Takeaki
  surname: Ozawa
  fullname: Ozawa, Takeaki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23690604$$D View this record in MEDLINE/PubMed
BookMark eNqFkjtvFDEUhUcoiGwCNRUwEg3NJNfjx4wbJBTxkiJRhNSWx2PveuW1F9sTRJPfHk922UAKqFzc7xyf-zipjnzwuqpeIjhD0OHzrZfpDGEgQBlC8KRaIOCoYYTDUbUAaLumJy05rk5SWgMApz08q45bzDgwIIvq9mpKWVqvx1oqNUWZdR21CnG0flkHU1ufo1TaucnJWBg7WmOVzDb4UqudvZnBbFOadKp_2ryqZb1dhRwaFYo2OCcHp-vBBjdtykdJaZ_rbQxZW_-8emqkS_rF_j2trj99_H7xpbn89vnrxYfLRtGW5MbwXveggHJDgDPVY20o6Qz01HBVGh95ZzBoPbJhIIwgOmA0aKOZGgbca3xavd_5bqdho8c5QpRObKPdyPhLBGnF3xVvV2IZbgRmXUcYLQbv9gYx_CidZrGxaR6L9DpMSaAeMPCeYPR_FDNKEZRNFPTtI3QdpujLJO6pjjOCu0K9_jP8IfXvLRbgfAeoGFKK2hwQBGK-EzHfiXi4k6KgjxTK5vullu6t-4fuzT7KXDj8UvAWC45xW4hXO2KdcogHhLQdMIbIg4ORQchltElcX7WAGADCHcIE3wGGmeIe
CitedBy_id crossref_primary_10_1039_C4RA14979C
crossref_primary_10_2142_biophys_55_305
crossref_primary_10_1002_chem_201503944
crossref_primary_10_1117_1_JBO_20_10_101205
crossref_primary_10_1039_C3MD00288H
crossref_primary_10_1039_C8AN01371C
crossref_primary_10_1039_c8pp00573g
crossref_primary_10_2116_analsci_20R003
crossref_primary_10_1021_acssynbio_6b00027
crossref_primary_10_1039_c4pp00278d
crossref_primary_10_3389_fchbi_2024_1459397
crossref_primary_10_1021_acschembio_7b01019
crossref_primary_10_1016_j_cbpa_2015_05_029
crossref_primary_10_1021_acs_analchem_5b04142
crossref_primary_10_18632_oncoscience_45
crossref_primary_10_1002_adbi_202000181
crossref_primary_10_1515_hsz_2021_0417
crossref_primary_10_1002_tcr_201402001
crossref_primary_10_1016_j_jphotochemrev_2016_10_003
crossref_primary_10_1021_ac402278f
crossref_primary_10_2116_analsci_30_539
crossref_primary_10_2116_analsci_31_293
crossref_primary_10_1007_s00216_016_0011_1
Cites_doi 10.1101/gad.1047403
10.1111/j.1751-1097.2007.00209.x
10.1021/cr900249z
10.1038/ncomms2248
10.1371/journal.pone.0019170
10.1021/bi062074e
10.1021/bc100584d
10.1073/pnas.051520298
10.1093/emboj/19.21.5720
10.1007/s10495-006-0006-z
10.1002/anie.200700538
10.1038/nature08241
10.1038/nrm2820
10.1038/nmeth.1904
10.7150/thno.3940
10.1021/ac3031724
10.1021/bi025861u
10.1126/science.1086810
10.1074/jbc.M306766200
10.1021/bi801430e
10.1073/pnas.0401722101
10.1056/NEJM198501173120305
10.1016/j.copbio.2009.01.007
10.1021/ac0484777
10.1016/j.chembiol.2011.05.013
10.1073/pnas.242594299
10.1038/nchembio.210
10.1073/pnas.0709610105
10.1038/nm.1854
10.1007/s00216-008-2515-9
10.1038/nphoton.2007.251
10.1073/pnas.1100923108
10.1016/0016-5085(81)90648-X
10.1039/b800391b
10.1021/jo2005654
10.1016/S0022-2828(85)80017-1
10.1038/nmeth.1473
10.1016/j.ymthe.2004.10.016
10.1371/journal.pone.0005868
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 4, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 4, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1304056110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Intracellular pH imaging with bioluminescence
EISSN 1091-6490
EndPage 9337
ExternalDocumentID PMC3677465
2990876531
23690604
10_1073_pnas_1304056110
110_23_9332
42706614
US201600137134
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c524t-f98e80c059f4096c83ef547f085f9c110d97f30eed6bb46415b31befe6cbb38e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:35:11 EDT 2025
Fri Jul 11 03:42:04 EDT 2025
Thu Jul 10 19:18:30 EDT 2025
Mon Jun 30 08:07:01 EDT 2025
Wed Feb 19 01:55:39 EST 2025
Tue Jul 01 03:39:43 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Wed Nov 11 00:30:32 EST 2020
Thu May 29 08:40:46 EDT 2025
Wed Dec 27 19:19:13 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-f98e80c059f4096c83ef547f085f9c110d97f30eed6bb46415b31befe6cbb38e3
Notes http://dx.doi.org/10.1073/pnas.1304056110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by J. Woodland Hastings, Harvard University, Cambridge, MA, and approved April 23, 2013 (received for review March 12, 2013)
Author contributions: M.H., S.H., and T.O. designed research; M.H., S.H., H.T., and M.O. performed research; M.H., H.T., M.O., and T.O. analyzed data; and M.H. and T.O. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/110/23/9332.full.pdf
PMID 23690604
PQID 1365796437
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1304056110
proquest_miscellaneous_1803098431
pubmed_primary_23690604
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677465
proquest_journals_1365796437
crossref_citationtrail_10_1073_pnas_1304056110
pnas_primary_110_23_9332
jstor_primary_42706614
fao_agris_US201600137134
proquest_miscellaneous_1365510580
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-04
PublicationDateYYYYMMDD 2013-06-04
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Viviani VR (e_1_3_3_36_2) 2008; 84
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
Demaurex N (e_1_3_3_40_2) 2002; 17
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
19029979 - Nat Med. 2009 Jan;15(1):104-9
18667691 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10709-14
21618970 - J Org Chem. 2011 Jul 1;76(13):5219-28
19718042 - Nat Chem Biol. 2009 Nov;5(11):827-34
11060023 - EMBO J. 2000 Nov 1;19(21):5720-8
21730157 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12060-5
11248020 - Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):2995-3000
12044148 - Biochemistry. 2002 Jun 11;41(23):7183-9
15289615 - Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11542-7
14701849 - J Biol Chem. 2004 Mar 19;279(12):11521-9
22539937 - Theranostics. 2012;2(4):413-23
21388195 - Bioconjug Chem. 2011 Apr 20;22(4):777-84
17311415 - Biochemistry. 2007 Mar 20;46(11):3129-37
12629038 - Genes Dev. 2003 Mar 1;17(5):545-80
17722214 - Angew Chem Int Ed Engl. 2007;46(40):7595-9
15727940 - Mol Ther. 2005 Mar;11(3):435-43
21559477 - PLoS One. 2011;6(4):e19170
11821527 - News Physiol Sci. 2002 Feb;17:1-5
15732910 - Anal Chem. 2005 Mar 1;77(5):1295-302
20562867 - Nat Methods. 2010 Aug;7(8):623-6
19997129 - Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61
2981404 - N Engl J Med. 1985 Jan 17;312(3):159-63
19831417 - Chem Rev. 2010 May 12;110(5):2709-28
19536355 - PLoS One. 2009;4(6):e5868
22388287 - Nat Methods. 2012 Apr;9(4):379-84
19034433 - Anal Bioanal Chem. 2009 Feb;393(4):1107-22
6263743 - Gastroenterology. 1981 Jul;81(1):22-9
12438689 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15608-13
17195091 - Apoptosis. 2007 Mar;12(3):623-30
18528549 - Photochem Photobiol Sci. 2008 Jun;7(6):668-70
3839024 - J Mol Cell Cardiol. 1985 Feb;17(2):145-52
23134415 - Anal Chem. 2013 Jan 15;85(2):590-609
12970567 - Science. 2003 Sep 12;301(5639):1541-4
21867919 - Chem Biol. 2011 Aug 26;18(8):1042-52
23232392 - Nat Commun. 2012;3:1262
19233638 - Curr Opin Biotechnol. 2009 Feb;20(1):45-53
19063612 - Biochemistry. 2008 Dec 30;47(52):13842-9
18173713 - Photochem Photobiol. 2008 Jan-Feb;84(1):138-44
19693014 - Nature. 2009 Sep 3;461(7260):104-8
References_xml – volume: 17
  start-page: 1
  year: 2002
  ident: e_1_3_3_40_2
  article-title: pH Homeostasis of cellular organelles
  publication-title: News Physiol Sci
– ident: e_1_3_3_11_2
  doi: 10.1101/gad.1047403
– volume: 84
  start-page: 138
  year: 2008
  ident: e_1_3_3_36_2
  article-title: The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: A solvent gate for the active site of pH-sensitive luciferases
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.2007.00209.x
– ident: e_1_3_3_2_2
  doi: 10.1021/cr900249z
– ident: e_1_3_3_14_2
  doi: 10.1038/ncomms2248
– ident: e_1_3_3_38_2
  doi: 10.1371/journal.pone.0019170
– ident: e_1_3_3_27_2
  doi: 10.1021/bi062074e
– ident: e_1_3_3_5_2
  doi: 10.1021/bc100584d
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.051520298
– ident: e_1_3_3_39_2
  doi: 10.1093/emboj/19.21.5720
– ident: e_1_3_3_31_2
  doi: 10.1007/s10495-006-0006-z
– ident: e_1_3_3_19_2
  doi: 10.1002/anie.200700538
– ident: e_1_3_3_21_2
  doi: 10.1038/nature08241
– ident: e_1_3_3_1_2
  doi: 10.1038/nrm2820
– ident: e_1_3_3_22_2
  doi: 10.1038/nmeth.1904
– ident: e_1_3_3_9_2
  doi: 10.7150/thno.3940
– ident: e_1_3_3_10_2
  doi: 10.1021/ac3031724
– ident: e_1_3_3_23_2
  doi: 10.1021/bi025861u
– ident: e_1_3_3_24_2
  doi: 10.1126/science.1086810
– ident: e_1_3_3_6_2
  doi: 10.1074/jbc.M306766200
– ident: e_1_3_3_25_2
  doi: 10.1021/bi801430e
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0401722101
– ident: e_1_3_3_34_2
  doi: 10.1056/NEJM198501173120305
– ident: e_1_3_3_13_2
  doi: 10.1016/j.copbio.2009.01.007
– ident: e_1_3_3_28_2
  doi: 10.1021/ac0484777
– ident: e_1_3_3_8_2
  doi: 10.1016/j.chembiol.2011.05.013
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.242594299
– ident: e_1_3_3_29_2
  doi: 10.1038/nchembio.210
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.0709610105
– ident: e_1_3_3_4_2
  doi: 10.1038/nm.1854
– ident: e_1_3_3_7_2
  doi: 10.1007/s00216-008-2515-9
– ident: e_1_3_3_35_2
  doi: 10.1038/nphoton.2007.251
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.1100923108
– ident: e_1_3_3_32_2
  doi: 10.1016/0016-5085(81)90648-X
– ident: e_1_3_3_37_2
  doi: 10.1039/b800391b
– ident: e_1_3_3_3_2
  doi: 10.1021/jo2005654
– ident: e_1_3_3_33_2
  doi: 10.1016/S0022-2828(85)80017-1
– ident: e_1_3_3_30_2
  doi: 10.1038/nmeth.1473
– ident: e_1_3_3_12_2
  doi: 10.1016/j.ymthe.2004.10.016
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pone.0005868
– reference: 11248020 - Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):2995-3000
– reference: 23134415 - Anal Chem. 2013 Jan 15;85(2):590-609
– reference: 15727940 - Mol Ther. 2005 Mar;11(3):435-43
– reference: 22388287 - Nat Methods. 2012 Apr;9(4):379-84
– reference: 19233638 - Curr Opin Biotechnol. 2009 Feb;20(1):45-53
– reference: 18173713 - Photochem Photobiol. 2008 Jan-Feb;84(1):138-44
– reference: 19034433 - Anal Bioanal Chem. 2009 Feb;393(4):1107-22
– reference: 21730157 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12060-5
– reference: 19029979 - Nat Med. 2009 Jan;15(1):104-9
– reference: 12970567 - Science. 2003 Sep 12;301(5639):1541-4
– reference: 19693014 - Nature. 2009 Sep 3;461(7260):104-8
– reference: 11821527 - News Physiol Sci. 2002 Feb;17:1-5
– reference: 21867919 - Chem Biol. 2011 Aug 26;18(8):1042-52
– reference: 6263743 - Gastroenterology. 1981 Jul;81(1):22-9
– reference: 12438689 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15608-13
– reference: 21618970 - J Org Chem. 2011 Jul 1;76(13):5219-28
– reference: 21388195 - Bioconjug Chem. 2011 Apr 20;22(4):777-84
– reference: 19997129 - Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61
– reference: 15732910 - Anal Chem. 2005 Mar 1;77(5):1295-302
– reference: 17722214 - Angew Chem Int Ed Engl. 2007;46(40):7595-9
– reference: 18528549 - Photochem Photobiol Sci. 2008 Jun;7(6):668-70
– reference: 2981404 - N Engl J Med. 1985 Jan 17;312(3):159-63
– reference: 18667691 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10709-14
– reference: 19831417 - Chem Rev. 2010 May 12;110(5):2709-28
– reference: 15289615 - Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11542-7
– reference: 17195091 - Apoptosis. 2007 Mar;12(3):623-30
– reference: 3839024 - J Mol Cell Cardiol. 1985 Feb;17(2):145-52
– reference: 22539937 - Theranostics. 2012;2(4):413-23
– reference: 19718042 - Nat Chem Biol. 2009 Nov;5(11):827-34
– reference: 11060023 - EMBO J. 2000 Nov 1;19(21):5720-8
– reference: 23232392 - Nat Commun. 2012;3:1262
– reference: 19536355 - PLoS One. 2009;4(6):e5868
– reference: 12629038 - Genes Dev. 2003 Mar 1;17(5):545-80
– reference: 21559477 - PLoS One. 2011;6(4):e19170
– reference: 14701849 - J Biol Chem. 2004 Mar 19;279(12):11521-9
– reference: 17311415 - Biochemistry. 2007 Mar 20;46(11):3129-37
– reference: 12044148 - Biochemistry. 2002 Jun 11;41(23):7183-9
– reference: 20562867 - Nat Methods. 2010 Aug;7(8):623-6
– reference: 19063612 - Biochemistry. 2008 Dec 30;47(52):13842-9
SSID ssj0009580
Score 2.2046971
Snippet Regulation of an intracellular acidic environment plays a pivotal role in biological processes and functions. However, spatiotemporal analysis of the...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9332
SubjectTerms Acid-Base Equilibrium - physiology
Acidification
Adenosine triphosphatase
adenosine triphosphate
Animals
Apoptosis
Arithmetic mean
Avena - metabolism
Avena sativa
Biological Sciences
Bioluminescence
Fluorescence
HEK293 cells
Hydrogen-Ion Concentration
image analysis
Imaging
Indicators and Reagents - chemistry
Irradiation
Ischemia
Luciferin
Luminescent Measurements - methods
luminescent proteins
Mice
Microscopes
Monitoring, Physiologic - methods
Organelles
oxygen
Oxygen - metabolism
Photic Stimulation
Phototropins - metabolism
Phototropins - physiology
Physical Sciences
Protein Structure, Tertiary - physiology
Proteins
Rodents
Tissues
Title Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein
URI https://www.jstor.org/stable/42706614
http://www.pnas.org/content/110/23/9332.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23690604
https://www.proquest.com/docview/1365796437
https://www.proquest.com/docview/1365510580
https://www.proquest.com/docview/1803098431
https://pubmed.ncbi.nlm.nih.gov/PMC3677465
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF615cIFUaDUUNAicSiKXBKvXzlWFRAhNarUVurNWq_X1EprV4196YHfzE9gZl-xS6igFyux12vH83l2ZjLzDSEf80JOyqmIfNgkfggWvM_BTvBlUqLzLMeJREfxeB7PzsPvF9HFxsavXtZS1-YH4m5tXcljpAr7QK5YJfsfknWTwg74DPKFLUgYtv8k41Nd_QQ2IxeiQ9KHkQ66mFTmCiO3GJpXuaZcVAUmBnGb33hVqWhCq569LXMb3Vw2beObFPYrVVmFTE3dNSbIYy7nSHE7GMZuY9eeuHVwabMO5jbMeLgqWjGaZDnyRyfzVQvkGW-Rq0Sn8bfL7rZbHdGB31NecwfBM77gi041SBrNqkI2LlJ8xxeVLQaoWhjWD2qoBhP-eBXUfOgO-9o8gBU21DXYB1IrcLB__DjULUidhjeZsxrKAesp7Ckz4VVpvyZrFxbQhNgNueZL7J8dot-lJ-3B7OZa4SxgSP5sfs2Qy_vk-IjFYHDH0SZ5EoBjgz03vl1MejTRqS6aMr_MklEl7PO9ayOLtbnQwKTaLHljc2uRsBfOWuc83c8B7hlVZ8_JM-MN0UMN7W2yIesXZNvKgO4bUvRPL8lPh3VqsU4d1mlT0gHW6QDrcIxqrFODdYpYp5z-iXU6xDo1WH9Fzr9-OTua-aZ3iC-iIGxB9aQyHQtwHsoQvHSRMllGYVKChwFaCZ5fMUVtBG9GnOdhDGZszia5LGUs8pylku2Qrbqp5S6hJRdgxo9lHrAiFKVMeRQlRVGWCWOCTyceObCPPxOGWB_7u1xlKsEjYRkKIVuJziP77oQbzSnz96G7IM-M_4AVPzs_DZAPEklCJyz0yI4SspsiDJIxWttwjprFTQ1zByxDpHtkzyIhM3oMrxargnSWeOSDOwyrDMqM17Lp9Bh0xdLxA2NS_Ls2BY_EI681uNw9WKh6JBnAzg1Alvvhkbq6VGz35oV58-gz35KnKxWzR7ba206-A0-izd-rl-83wukkbQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustained+accurate+recording+of+intracellular+acidification+in+living+tissues+with+a+photo-controllable+bioluminescent+protein&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hattori%2C+Mitsuru&rft.au=Haga%2C+Sanae&rft.au=Takakura%2C+Hideo&rft.au=Ozaki%2C+Michitaka&rft.date=2013-06-04&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=23&rft.spage=9332&rft.epage=9337&rft_id=info:doi/10.1073%2Fpnas.1304056110&rft_id=info%3Apmid%2F23690604&rft.externalDocID=PMC3677465
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F23.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F23.cover.gif