NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and fu...
Saved in:
Published in | Neural networks Vol. 52; pp. 62 - 76 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain–Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships ‘hidden’ in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. |
---|---|
AbstractList | The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed.The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. |
Author | Kasabov, Nikola K. |
Author_xml | – sequence: 1 givenname: Nikola K. surname: Kasabov fullname: Kasabov, Nikola K. email: nkasabov@aut.ac.nz organization: Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Private Bag 92006, Auckland 1010, New Zealand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28318531$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24508754$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2L1TAUhoOMOHdG_4FIN4ILW5M0aZNZCMPFLxh0o-uQJieaO21ak1Tx35ty7yC4cFwlhOd9IOe8F-gszAEQekpwQzDpXh2aAGuA3FBMWINJg3H3AO2I6GVNe0HP0A4L2dYdFvgcXaR0wIUQrH2EzinjWPSc7VD-COt-HeCquq7S4m99-FoVb9RjOfLPOd5WOppvPoPJa4TKzbGa9LIU7mU1go5hS-hgqzVYiCmX6_Yyu6LT2c91hmmZN98QtQ-V1Vk_Rg-dHhM8OZ2X6MvbN5_37-ubT-8-7K9vasMpyzVIa8mAqaVWShh6KR3YlnEu5WBYOxjTGeNcb3SPJbeOt-VXFAvdUescd-0lenH0LnH-vkLKavLJwDjqAPOaFOl6wjshOnI_yilue4FJ_x8oZoRJ2W_WZyd0HSawaol-0vGXupt_AZ6fAJ2MHl3Uwfj0hxMtEbzdRFdHzsQ5pQhOGZ-38YZcpjoqgtVWCnVQx1KorRQKE1VWXsLsr_Cd_57Y62MMyop-eIgqGQ_BgPWxtEHZ2f9b8Bv52dOo |
CitedBy_id | crossref_primary_10_3389_fnins_2023_1093865 crossref_primary_10_1016_j_envsoft_2019_04_012 crossref_primary_10_15406_mojabb_2024_08_00208 crossref_primary_10_1007_s11042_019_7181_8 crossref_primary_10_2478_jaiscr_2019_0009 crossref_primary_10_1063_5_0009482 crossref_primary_10_1109_TNNLS_2018_2796023 crossref_primary_10_1109_TCDS_2018_2854274 crossref_primary_10_3389_fnins_2023_1151949 crossref_primary_10_1016_j_patrec_2024_08_002 crossref_primary_10_1016_j_neunet_2020_06_001 crossref_primary_10_1016_j_asoc_2020_106449 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1088_1361_6528_ac4662 crossref_primary_10_1038_s41598_021_90029_5 crossref_primary_10_1109_TGRS_2016_2586602 crossref_primary_10_1016_j_irbm_2022_11_001 crossref_primary_10_1109_TCYB_2018_2871144 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_1007_s11265_021_01659_x crossref_primary_10_1109_TNNLS_2017_2669522 crossref_primary_10_1109_TBCAS_2022_3166530 crossref_primary_10_1007_s11063_020_10322_8 crossref_primary_10_1007_s10489_023_04553_0 crossref_primary_10_1016_j_cmpb_2023_107927 crossref_primary_10_1109_ACCESS_2021_3080310 crossref_primary_10_1007_s11276_021_02555_9 crossref_primary_10_1016_j_asoc_2015_06_062 crossref_primary_10_1016_j_ins_2017_03_006 crossref_primary_10_1051_0004_6361_201935211 crossref_primary_10_3390_brainsci11050554 crossref_primary_10_1016_j_sse_2017_10_012 crossref_primary_10_1109_ACCESS_2021_3099492 crossref_primary_10_1109_TNNLS_2019_2906158 crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_1142_S0218126623501396 crossref_primary_10_1145_3433676 crossref_primary_10_3390_biomimetics10030183 crossref_primary_10_1016_j_neunet_2014_12_001 crossref_primary_10_1016_j_neunet_2015_03_009 crossref_primary_10_1016_j_neunet_2018_12_002 crossref_primary_10_1038_s41598_019_42863_x crossref_primary_10_3390_bdcc5040067 crossref_primary_10_1007_s00521_022_06984_1 crossref_primary_10_1016_j_neunet_2017_09_001 crossref_primary_10_4015_S1016237221500307 crossref_primary_10_1109_TNNLS_2017_2713125 crossref_primary_10_1002_jnm_2267 crossref_primary_10_1186_s40708_023_00192_w crossref_primary_10_1109_TIM_2024_3472838 crossref_primary_10_1016_j_neucom_2013_09_049 crossref_primary_10_3389_fgene_2021_721068 crossref_primary_10_1109_TFUZZ_2023_3292802 crossref_primary_10_1109_TNNLS_2021_3055421 crossref_primary_10_1016_j_engappai_2023_106322 crossref_primary_10_1007_s12559_022_10075_7 crossref_primary_10_3390_brainsci12020139 crossref_primary_10_3390_s20185328 crossref_primary_10_1109_TNNLS_2016_2612890 crossref_primary_10_1016_j_metrad_2023_100005 crossref_primary_10_1109_TNNLS_2016_2536742 crossref_primary_10_1038_s41598_024_60996_6 crossref_primary_10_1016_j_neunet_2015_07_005 crossref_primary_10_1007_s12530_020_09334_5 crossref_primary_10_3390_brainsci12070863 crossref_primary_10_1007_s00521_016_2767_9 crossref_primary_10_1007_s12530_017_9212_x crossref_primary_10_1016_j_neunet_2016_10_011 crossref_primary_10_1007_s12530_018_9238_8 crossref_primary_10_1016_j_neubiorev_2020_09_008 crossref_primary_10_1088_1757_899X_435_1_012049 crossref_primary_10_1016_j_neunet_2018_07_014 crossref_primary_10_1007_s00521_017_3336_6 crossref_primary_10_4018_IJCAC_2018040105 crossref_primary_10_1007_s12530_017_9175_y crossref_primary_10_3389_fnins_2019_00625 crossref_primary_10_1016_j_neunet_2014_09_003 crossref_primary_10_1016_j_neunet_2022_05_003 crossref_primary_10_1016_j_neunet_2025_107256 crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1007_s41870_022_01095_5 crossref_primary_10_1007_s12530_019_09269_6 crossref_primary_10_1016_j_ins_2021_11_065 crossref_primary_10_1016_j_bspc_2021_102595 crossref_primary_10_1088_2634_4386_adad0f crossref_primary_10_3389_frai_2022_807406 crossref_primary_10_1109_TNNLS_2018_2875471 crossref_primary_10_3389_fnins_2021_728460 crossref_primary_10_1088_1741_2552_aafabc crossref_primary_10_1016_j_jvoice_2016_02_019 crossref_primary_10_1002_aelm_202300021 crossref_primary_10_3389_fninf_2018_00089 crossref_primary_10_3390_s22155802 crossref_primary_10_1016_j_ins_2014_06_028 crossref_primary_10_1016_j_compbiomed_2024_109225 crossref_primary_10_1007_s12559_021_09975_x crossref_primary_10_1021_acsami_0c15519 crossref_primary_10_3389_fnins_2019_00650 crossref_primary_10_1007_s13534_024_00405_z crossref_primary_10_1038_s41598_021_81805_4 crossref_primary_10_1007_s12530_017_9176_x crossref_primary_10_1016_j_neunet_2019_09_007 crossref_primary_10_1109_TII_2019_2951089 crossref_primary_10_1016_j_neunet_2019_09_004 crossref_primary_10_1109_ACCESS_2021_3131743 crossref_primary_10_1109_TBME_2023_3258606 crossref_primary_10_1016_j_neunet_2017_12_015 crossref_primary_10_1016_j_neunet_2018_03_019 crossref_primary_10_1016_j_ifacol_2016_12_122 crossref_primary_10_1109_TCDS_2017_2680408 crossref_primary_10_1109_TCDS_2024_3395443 crossref_primary_10_1007_s00521_021_06827_5 crossref_primary_10_1063_1_5124027 crossref_primary_10_3390_bioengineering10121341 crossref_primary_10_1016_j_medntd_2024_100287 crossref_primary_10_1016_j_procs_2023_08_138 crossref_primary_10_1002_adma_201900636 crossref_primary_10_3390_s21144900 crossref_primary_10_1007_s42979_023_01786_1 crossref_primary_10_3389_fnins_2023_1153985 crossref_primary_10_1016_j_neunet_2020_01_027 crossref_primary_10_1007_s41060_022_00360_x crossref_primary_10_1109_TNB_2019_2896981 crossref_primary_10_1016_j_envsoft_2023_105851 crossref_primary_10_1109_TNNLS_2016_2541339 crossref_primary_10_1109_TBME_2015_2503400 crossref_primary_10_1109_LSENS_2024_3523443 crossref_primary_10_1016_j_procs_2021_04_146 crossref_primary_10_1109_TCSI_2021_3071956 crossref_primary_10_1109_ACCESS_2024_3479968 crossref_primary_10_1038_s43588_021_00184_y crossref_primary_10_1007_s12530_024_09628_y crossref_primary_10_1016_j_bspc_2024_107000 crossref_primary_10_1007_s12530_016_9144_x crossref_primary_10_1016_j_neunet_2019_08_029 crossref_primary_10_1016_j_neunet_2021_02_017 crossref_primary_10_1007_s12559_017_9517_x crossref_primary_10_1109_TNSRE_2023_3346766 crossref_primary_10_3390_brainsci11010052 crossref_primary_10_3390_s20102756 crossref_primary_10_1007_s12530_024_09630_4 crossref_primary_10_1007_s11071_023_08897_7 crossref_primary_10_1016_j_neunet_2021_09_013 crossref_primary_10_1109_TCYB_2019_2905157 crossref_primary_10_1016_j_neunet_2014_06_012 crossref_primary_10_3390_brainsci13091316 crossref_primary_10_1109_TIM_2022_3187719 crossref_primary_10_1007_s11760_023_02569_0 crossref_primary_10_1016_j_neunet_2019_08_016 crossref_primary_10_3389_fnins_2024_1305284 crossref_primary_10_1016_j_neunet_2019_08_019 crossref_primary_10_3389_fnins_2019_00855 crossref_primary_10_1038_s41537_023_00335_2 crossref_primary_10_1016_j_isprsjprs_2022_03_021 crossref_primary_10_1109_OJCAS_2020_3032092 crossref_primary_10_57019_jmv_1306685 crossref_primary_10_1007_s11071_023_08655_9 crossref_primary_10_1162_neco_a_01499 crossref_primary_10_1016_j_neucom_2021_02_027 crossref_primary_10_1016_j_neunet_2015_09_011 crossref_primary_10_3389_fnins_2023_1303564 crossref_primary_10_3390_app10093070 crossref_primary_10_23919_ICN_2024_0022 crossref_primary_10_1016_j_neucom_2023_02_026 crossref_primary_10_1016_j_artmed_2018_01_001 crossref_primary_10_1016_j_neucom_2021_06_027 crossref_primary_10_1016_j_sse_2019_107741 crossref_primary_10_1038_s41598_023_42605_0 crossref_primary_10_1007_s12530_017_9178_8 crossref_primary_10_1108_IJOES_02_2019_0036 crossref_primary_10_1016_j_neucom_2024_128477 crossref_primary_10_1088_1361_6463_aae223 crossref_primary_10_1109_THMS_2023_3267898 crossref_primary_10_1186_s40708_022_00172_6 crossref_primary_10_3390_app12125980 crossref_primary_10_3390_brainsci10110781 crossref_primary_10_1016_j_neunet_2019_07_021 crossref_primary_10_1063_1_5031929 crossref_primary_10_1016_j_jocs_2020_101103 crossref_primary_10_1109_TNNLS_2023_3263008 crossref_primary_10_3389_fnins_2018_00704 crossref_primary_10_1016_j_neunet_2016_02_006 crossref_primary_10_1016_j_caeai_2020_100002 crossref_primary_10_1186_1471_2105_16_S5_S3 crossref_primary_10_1080_27706710_2023_2285052 crossref_primary_10_1038_s41598_018_27169_8 crossref_primary_10_1109_JTEHM_2023_3320132 crossref_primary_10_1109_TCBB_2016_2520934 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_1007_s12293_022_00373_w crossref_primary_10_1016_j_ins_2017_04_017 crossref_primary_10_1016_j_jneuroling_2021_100985 crossref_primary_10_3389_fncom_2018_00042 crossref_primary_10_1016_j_engappai_2023_107252 crossref_primary_10_1016_j_inffus_2023_101943 crossref_primary_10_1109_TCDS_2016_2636291 crossref_primary_10_1109_TED_2022_3220726 crossref_primary_10_1109_TCDS_2017_2776863 crossref_primary_10_1109_TETCI_2019_2907724 crossref_primary_10_3390_s20247354 crossref_primary_10_1109_TNSRE_2023_3246989 |
Cites_doi | 10.1002/hbm.20579 10.1016/S0079-6123(01)34028-1 10.1038/nrn2575 10.1073/pnas.0712231105 10.1007/s10827-007-0038-6 10.1016/j.neunet.2010.04.009 10.1371/journal.pcbi.1000879 10.1007/s11064-005-6962-9 10.1038/scientificamerican0912-58 10.1016/j.mri.2009.01.006 10.1162/neco.2009.11-08-901 10.1007/s12021-008-9041-y 10.1113/jphysiol.1952.sp004764 10.1088/1741-2560/4/2/R01 10.1038/78829 10.1109/TAMD.2010.2086453 10.1523/JNEUROSCI.5059-07.2008 10.1016/j.physrep.2010.12.002 10.1016/j.neuron.2011.08.026 10.1016/j.neunet.2012.11.014 10.1093/cercor/bhn003 10.1016/j.neunet.2009.06.038 10.1109/5.58323 10.1038/nature10523 10.3233/ICA-2007-14301 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1016/j.neuroimage.2009.02.006 10.1212/WNL.0b013e3181fb44c8 10.1007/BF00961885 10.1109/MSPEC.2012.6247562 10.3389/fnins.2012.00096 10.1142/S0129065712500128 10.1016/j.neulet.2003.10.063 10.1016/j.neunet.2009.08.010 10.1016/j.tins.2011.02.004 10.1109/IEMBS.2007.4352847 10.1162/089976602760407955 10.1073/pnas.79.8.2554 10.1016/j.ipl.2005.05.018 10.1016/S0304-3975(02)00099-3 10.1038/nrn2414 10.1023/B:NACO.0000027755.02868.60 10.1142/S0129065710002565 10.1109/TEVC.2008.2003010 10.1126/science.1227356 10.1016/j.neuroimage.2004.12.034 10.3390/e14071186 10.1038/nn1643 10.1162/NECO_a_00182 10.1017/S0033291707000360 10.1038/nature11405 10.1162/089976606775093882 10.1038/483397a 10.1016/j.neuroimage.2012.02.018 10.3389/fnins.2011.00073 10.1109/TAMD.2011.2159839 10.1038/nrn2012 10.1016/j.neuroimage.2012.08.035 10.1038/nrn2776 10.1016/j.neunet.2009.10.003 10.1038/nrn1848 10.1142/S0129065712500244 10.1007/s12559-008-9003-6 10.1023/B:MACH.0000035475.85309.1b 10.1016/j.neucom.2012.08.034 10.1016/j.neucom.2007.08.025 10.1073/pnas.94.10.5411 10.1109/ISCAS.2010.5536980 10.1007/s12530-013-9074-9 10.1073/pnas.0701519104 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1016/j.neunet.2014.01.006 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1879-2782 |
EndPage | 76 |
ExternalDocumentID | 24508754 28318531 10_1016_j_neunet_2014_01_006 S0893608014000070 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 7SC EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c524t-e9dd1b02d2d99eb799fed345599bc43bcc6ccff7ca7095df53508208a62dff5f3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Mon Jul 21 11:35:11 EDT 2025 Fri Jul 11 04:41:13 EDT 2025 Fri Jul 11 07:54:01 EDT 2025 Thu Apr 03 07:07:19 EDT 2025 Wed Apr 02 07:25:25 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 01:24:28 EDT 2025 Fri Feb 23 02:28:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Associative memory Finite automata for spatio-temporal data Gene regulatory networks Computational neuro-genetic modeling EEG Spiking neural networks Neurogenetic data Spatio-temporal brain data Pattern recognition Data mining FMRI Space time correlation Brain Spiking neuron Central nervous system Network architecture Temporal databases Electroencephalography Modeling Encephalon Neuroscience Static model Classification Internal structure Learning algorithm Bioinformatics Data analysis Cluster Functional analysis Neural network Gene expression Nuclear magnetic resonance imaging Information processing Medical imagery Artificial intelligence Data gathering Functional imaging |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-e9dd1b02d2d99eb799fed345599bc43bcc6ccff7ca7095df53508208a62dff5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 24508754 |
PQID | 1504149971 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1671568861 proquest_miscellaneous_1520378017 proquest_miscellaneous_1504149971 pubmed_primary_24508754 pascalfrancis_primary_28318531 crossref_citationtrail_10_1016_j_neunet_2014_01_006 crossref_primary_10_1016_j_neunet_2014_01_006 elsevier_sciencedirect_doi_10_1016_j_neunet_2014_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (br000170) 2009; 7 Henley, Barker, Glebov (br000190) 2011; 34 Kasabov, Schliebs, Kojima (br000300) 2011; 3 Picard (br000395) 1997 Mammone, Labate, Lay-Ekuakille, Morabito (br000335) 2012; 22 Nicolelis (br000380) 2012; 307 Kasabov, Benuskova, Wysoski (br000285) 2005 Bullmore, Sporns (br000065) 2009; 10 Meng, Jin, Yin, Conforth (br000345) 2010 Kasabov (br000265) 2010; 23 Brette (br000050) 2007; 23 Izhikevich, Edelman (br000245) 2008; 105 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini (br000180) 2011; 72 Thorpe, Gautrais (br000470) 1998; 13 Evans, Collins, Mills, Brown, Kelly, Peters (br000115) 1993 . Lichtsteiner, Delbruck (br000320) 2005; 2 Ashburner (br000010) 2009; 27 Schliebs, Hamed, Kasabov (br000420) 2011; vol. 7063 Craig, D.A., & Nguyen, H.T. (2007). Adaptive EEG thought pattern classifier for advanced wheelchair control. In Koch, Reid (br000305) 2012; 483 Humble, Denham, Wennekers (br000215) 2012; 6 Schliebs, Kasabov (br000425) 2013; 4 Van Essen (br000480) 2012; 62 Kasabov, Dhoble, Nuntalid, Mohemmed (br000295) 2011; vol. 7064 Theunissen, Miller (br000465) 1995; 2 Indiveri, G., Stefanini, F., & Chicca, E. (2010). Spike-based learning with a generalized integrate and fire silicon neuron. In Bohte, Kok, La Poutre (br000040) 2005; 95 Stam (br000450) 2004; 355 Eickhoff (br000105) 2005; 25 Gerstner, Sprekeler, Deco (br000150) 2012; 338 Markram (br000340) 2006; 7 Wang, Hou, Zou, Tan, Cheng (br000490) 2008; 71 Florian, R. (2010). The chronotron: a neuron that learns to fire temporally-precise spike patterns. Available from Nature Precedings & lt Gerstner (br000145) 2001 Berry, Warland, Meister (br000030) 1997; 94 Kasabov (br000260) 2007 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (br000325) 2007; 4 Hopfield (br000210) 1982; 79 Zhdanov (br000505) 2011; 500 Kasabov (br000270) 2012; vol. 7477 Kasabov (br000275) 2012; vol. 7311 Schliebs, Kasabov, Defoin-Platel (br000430) 2010; 20 Delbruck, T. (2007). jAER open source project. Mohemmed, Schliebs, Matsuda, Kasabov (br000355) 2012; 22 Zilles, Amunts (br000510) 2010; 11 Lancaster (br000315) 2000; 10 Furber (br000130) 2012; 49 Isa, Fetz, Muller (br000235) 2009; 22 Nuntalid, Dhoble, Kasabov (br000385) 2011; vol. 7062 Natschlager, Maass (br000370) 2002; 287 Morabito, Labate, La Foresta, Morabito, Palamara (br000365) 2012; 14 Schliebs, Nuntalid, Kasabov (br000440) 2010; vol. 6443 Koessler, Maillard, Benhadid (br000310) 2009; 46 von der Elst, van Boxtel, van Breukelen, Jolles (br000485) 2007; 37 Abeles (br000005) 1991 Izhikevich (br000240) 2006; 18 Kang (br000250) 2011; 478 Hawrylycz (br000175) 2012; 489 Defoin-Platel, Schliebs, Kasabov (br000090) 2009; 13 Maass, Natschlaeger, Markram (br000330) 2002; 14 Kasabov, Dhoble, Nuntalid, Indiveri (br000290) 2013; 41 Furber, Temple (br000135) 2007; 4 Poline, Poldrack (br000400) 2012; 6 Szatmary, Izhikevich (br000455) 2010; 6 Song, Miller, Abbott (br000445) 2000; 3 Honey, Kötter, Breakspear, Sporns (br000200) 2007; 104 Benuskova, Kasabov (br000025) 2007 Talairach, Tournoux (br000460) 1988 Bellas, Duro, Faiña, Souto (br000020) 2010; 2 Emotiv (2013). Wysoski, Benuskova, Kasabov (br000500) 2010; 23 Chen, He, Rosa-Neto, Germann, Evans (br000075) 2008; 18 Indiveri, Chicca, Douglas (br000220) 2009; 1 Bohte (br000035) 2004; 3 Fiasché, Schliebs, Nobili (br000120) 2012; vol. 7552 Mitchel (br000350) 2004; 57 Widrow, Lehr (br000495) 1990; 78 Indiveri, Linares-Barranco, Hamilton, Van Schaik, Etienne-Cummings, Delbruck (br000225) 2011; 5 Schliebs, Defoin-Platel, Worner, Kasabov (br000415) 2009; 22 Hahnloser, Wang, Nager, Naie (br000165) 2008; 28 Nuzly, Kasabov, Shamsuddin (br000390) 2010; vol. 6443 Toga, Thompson, Mori, Amunts, Zilles (br000475) 2006; 7 Barker-Collo, Feigin, Parag, Lawes, Senior (br000015) 2010; 75 Broderson (br000060) 2012; 63 Dhoble, Nuntalid, Indiveri, Kasabov (br000100) 2012 Schliebs, Mohemmed, Kasabov (br000435) 2011 Hebb (br000185) 1949 Broderson (br000055) 2011; 7 Gutig, Sompolinsky (br000160) 2006; 9 Buteneers, Schrauwen, Verstraeten, Stroobandt (br000070) 2008; vol. 5506 Braitenberg, Schüz (br000045) 1998 Mohemmed, Schliebs, Matsuda, Kasabov (br000360) 2013; 107 (pp. 2544–2547). Neftci, Chicca, Indiveri, Douglas (br000375) 2012; 23 Ponulak, Kasinski (br000405) 2010; 22 Schliebs (br000410) 2005; 30 Honey, Sporns (br000205) 2008; 29 (pp. 1951–1954). Kasabov (br000255) 1996 (br000280) 2014 Ghosh-Dastidar, Adeli (br000155) 2007; 14 De Charms (br000085) 2008; 19 Gerstner (br000140) 1995; 51 Hodgkin, Huxley (br000195) 1952; 117 Hopfield (10.1016/j.neunet.2014.01.006_br000210) 1982; 79 Kasabov (10.1016/j.neunet.2014.01.006_br000275) 2012; vol. 7311 Izhikevich (10.1016/j.neunet.2014.01.006_br000245) 2008; 105 Maass (10.1016/j.neunet.2014.01.006_br000330) 2002; 14 Honey (10.1016/j.neunet.2014.01.006_br000205) 2008; 29 Schliebs (10.1016/j.neunet.2014.01.006_br000420) 2011; vol. 7063 Poline (10.1016/j.neunet.2014.01.006_br000400) 2012; 6 Barker-Collo (10.1016/j.neunet.2014.01.006_br000015) 2010; 75 (10.1016/j.neunet.2014.01.006_br000280) 2014 10.1016/j.neunet.2014.01.006_br000095 Nicolelis (10.1016/j.neunet.2014.01.006_br000380) 2012; 307 Thorpe (10.1016/j.neunet.2014.01.006_br000470) 1998; 13 Hodgkin (10.1016/j.neunet.2014.01.006_br000195) 1952; 117 von der Elst (10.1016/j.neunet.2014.01.006_br000485) 2007; 37 Hawrylycz (10.1016/j.neunet.2014.01.006_br000175) 2012; 489 Bohte (10.1016/j.neunet.2014.01.006_br000035) 2004; 3 Neftci (10.1016/j.neunet.2014.01.006_br000375) 2012; 23 Meng (10.1016/j.neunet.2014.01.006_br000345) 2010 Kasabov (10.1016/j.neunet.2014.01.006_br000300) 2011; 3 Fiasché (10.1016/j.neunet.2014.01.006_br000120) 2012; vol. 7552 Braitenberg (10.1016/j.neunet.2014.01.006_br000045) 1998 Kasabov (10.1016/j.neunet.2014.01.006_br000265) 2010; 23 Mohemmed (10.1016/j.neunet.2014.01.006_br000355) 2012; 22 Zhdanov (10.1016/j.neunet.2014.01.006_br000505) 2011; 500 Kasabov (10.1016/j.neunet.2014.01.006_br000260) 2007 Kasabov (10.1016/j.neunet.2014.01.006_br000255) 1996 Song (10.1016/j.neunet.2014.01.006_br000445) 2000; 3 Natschlager (10.1016/j.neunet.2014.01.006_br000370) 2002; 287 Koch (10.1016/j.neunet.2014.01.006_br000305) 2012; 483 Gerstner (10.1016/j.neunet.2014.01.006_br000140) 1995; 51 Hebb (10.1016/j.neunet.2014.01.006_br000185) 1949 Mohemmed (10.1016/j.neunet.2014.01.006_br000360) 2013; 107 Nuzly (10.1016/j.neunet.2014.01.006_br000390) 2010; vol. 6443 De Charms (10.1016/j.neunet.2014.01.006_br000085) 2008; 19 10.1016/j.neunet.2014.01.006_br000110 Ghosh-Dastidar (10.1016/j.neunet.2014.01.006_br000155) 2007; 14 10.1016/j.neunet.2014.01.006_br000230 Humble (10.1016/j.neunet.2014.01.006_br000215) 2012; 6 Eickhoff (10.1016/j.neunet.2014.01.006_br000105) 2005; 25 Ashburner (10.1016/j.neunet.2014.01.006_br000010) 2009; 27 Picard (10.1016/j.neunet.2014.01.006_br000395) 1997 Dhoble (10.1016/j.neunet.2014.01.006_br000100) 2012 Koessler (10.1016/j.neunet.2014.01.006_br000310) 2009; 46 Toga (10.1016/j.neunet.2014.01.006_br000475) 2006; 7 Furber (10.1016/j.neunet.2014.01.006_br000130) 2012; 49 Indiveri (10.1016/j.neunet.2014.01.006_br000220) 2009; 1 10.1016/j.neunet.2014.01.006_br000125 Mammone (10.1016/j.neunet.2014.01.006_br000335) 2012; 22 Zilles (10.1016/j.neunet.2014.01.006_br000510) 2010; 11 Schliebs (10.1016/j.neunet.2014.01.006_br000440) 2010; vol. 6443 Berry (10.1016/j.neunet.2014.01.006_br000030) 1997; 94 Evans (10.1016/j.neunet.2014.01.006_br000115) 1993 Henley (10.1016/j.neunet.2014.01.006_br000190) 2011; 34 10.1016/j.neunet.2014.01.006_br000080 Schliebs (10.1016/j.neunet.2014.01.006_br000425) 2013; 4 Hahnloser (10.1016/j.neunet.2014.01.006_br000165) 2008; 28 Isa (10.1016/j.neunet.2014.01.006_br000235) 2009; 22 Honey (10.1016/j.neunet.2014.01.006_br000200) 2007; 104 Schliebs (10.1016/j.neunet.2014.01.006_br000410) 2005; 30 Ponulak (10.1016/j.neunet.2014.01.006_br000405) 2010; 22 Schliebs (10.1016/j.neunet.2014.01.006_br000415) 2009; 22 Bellas (10.1016/j.neunet.2014.01.006_br000020) 2010; 2 Broderson (10.1016/j.neunet.2014.01.006_br000055) 2011; 7 Lotte (10.1016/j.neunet.2014.01.006_br000325) 2007; 4 Wang (10.1016/j.neunet.2014.01.006_br000490) 2008; 71 Buteneers (10.1016/j.neunet.2014.01.006_br000070) 2008; vol. 5506 Nuntalid (10.1016/j.neunet.2014.01.006_br000385) 2011; vol. 7062 Stam (10.1016/j.neunet.2014.01.006_br000450) 2004; 355 Mitchel (10.1016/j.neunet.2014.01.006_br000350) 2004; 57 Morabito (10.1016/j.neunet.2014.01.006_br000365) 2012; 14 Chen (10.1016/j.neunet.2014.01.006_br000075) 2008; 18 Indiveri (10.1016/j.neunet.2014.01.006_br000225) 2011; 5 Kasabov (10.1016/j.neunet.2014.01.006_br000290) 2013; 41 Bullmore (10.1016/j.neunet.2014.01.006_br000065) 2009; 10 Markram (10.1016/j.neunet.2014.01.006_br000340) 2006; 7 Kasabov (10.1016/j.neunet.2014.01.006_br000270) 2012; vol. 7477 Lichtsteiner (10.1016/j.neunet.2014.01.006_br000320) 2005; 2 Haxby (10.1016/j.neunet.2014.01.006_br000180) 2011; 72 Abeles (10.1016/j.neunet.2014.01.006_br000005) 1991 Kang (10.1016/j.neunet.2014.01.006_br000250) 2011; 478 Izhikevich (10.1016/j.neunet.2014.01.006_br000240) 2006; 18 Wysoski (10.1016/j.neunet.2014.01.006_br000500) 2010; 23 Gutig (10.1016/j.neunet.2014.01.006_br000160) 2006; 9 Defoin-Platel (10.1016/j.neunet.2014.01.006_br000090) 2009; 13 Talairach (10.1016/j.neunet.2014.01.006_br000460) 1988 Theunissen (10.1016/j.neunet.2014.01.006_br000465) 1995; 2 Schliebs (10.1016/j.neunet.2014.01.006_br000435) 2011 Gerstner (10.1016/j.neunet.2014.01.006_br000150) 2012; 338 Szatmary (10.1016/j.neunet.2014.01.006_br000455) 2010; 6 Benuskova (10.1016/j.neunet.2014.01.006_br000025) 2007 Kasabov (10.1016/j.neunet.2014.01.006_br000295) 2011; vol. 7064 Furber (10.1016/j.neunet.2014.01.006_br000135) 2007; 4 Gerstner (10.1016/j.neunet.2014.01.006_br000145) 2001 Hanke (10.1016/j.neunet.2014.01.006_br000170) 2009; 7 Broderson (10.1016/j.neunet.2014.01.006_br000060) 2012; 63 Lancaster (10.1016/j.neunet.2014.01.006_br000315) 2000; 10 Bohte (10.1016/j.neunet.2014.01.006_br000040) 2005; 95 Brette (10.1016/j.neunet.2014.01.006_br000050) 2007; 23 Widrow (10.1016/j.neunet.2014.01.006_br000495) 1990; 78 Van Essen (10.1016/j.neunet.2014.01.006_br000480) 2012; 62 Kasabov (10.1016/j.neunet.2014.01.006_br000285) 2005 Schliebs (10.1016/j.neunet.2014.01.006_br000430) 2010; 20 |
References_xml | – volume: 23 start-page: 2457 year: 2012 end-page: 2497 ident: br000375 article-title: A systematic method for configuring VLSI networks of spiking neurons publication-title: Neural Computation – volume: 29 start-page: 802 year: 2008 end-page: 809 ident: br000205 article-title: Dynamical consequences of lesions in cortical networks publication-title: Human Brain Mapping – volume: 5 year: 2011 ident: br000225 article-title: Neuromorphic silicon neuron circuits publication-title: Frontiers in Neuroscience – volume: vol. 7552 start-page: 653 year: 2012 end-page: 660 ident: br000120 article-title: Integrating neural networks and chaotic measurements for modelling epileptic brain publication-title: ICANN 2012 – volume: 34 start-page: 258 year: 2011 end-page: 268 ident: br000190 article-title: Routes, destinations and delays: recent advances in AMPA receptor trafficking publication-title: Trends in Neurosciences – year: 1997 ident: br000395 article-title: Affective computing – start-page: 3156 year: 2011 end-page: 3163 ident: br000435 article-title: Are probabilistic spiking neural networks suitable for reservoir computing? publication-title: Proc. IJCNN – start-page: 446 year: 2005 end-page: 451 ident: br000285 article-title: A computational neurogenetic model of a spiking neuron publication-title: Proc. IJCNN, vol. 1 – volume: 355 start-page: 25 year: 2004 end-page: 28 ident: br000450 article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network? publication-title: Neuroscience Letters – volume: 14 start-page: 187 year: 2007 end-page: 212 ident: br000155 article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection publication-title: Integrated Computer-Aided Engineering – volume: 4 start-page: R1 year: 2007 end-page: R15 ident: br000325 article-title: Review of classification algorithms for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering – year: 1949 ident: br000185 article-title: The organization of behavior – volume: 14 start-page: 1186 year: 2012 end-page: 1202 ident: br000365 article-title: Multivariate, multi-scale permutation entropy for complexity analysis of AD EEG publication-title: Entropy – reference: (pp. 2544–2547). – volume: 6 start-page: e1000879 year: 2010 ident: br000455 article-title: Spike-timing theory of working memory publication-title: PLoS Computational Biology – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: br000210 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proceedings of the National Academy of Sciences – volume: 338 start-page: 60 year: 2012 end-page: 65 ident: br000150 article-title: Theory and simulation in neuroscience publication-title: Science – volume: vol. 5506 start-page: 56 year: 2008 end-page: 63 ident: br000070 article-title: Real-time epileptic seizure detection on intra-cranial rat data using reservoircomputing publication-title: Advances in neuro-information processing – volume: 18 start-page: 2374 year: 2008 end-page: 2381 ident: br000075 article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI publication-title: Cerebral Cortex – volume: 28 start-page: 5040 year: 2008 end-page: 5052 ident: br000165 article-title: Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird publication-title: Journal of Neuroscience – volume: vol. 7477 start-page: 225 year: 2012 end-page: 243 ident: br000270 article-title: NeuroCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals publication-title: ANNPR – volume: 4 start-page: 87 year: 2013 end-page: 98 ident: br000425 article-title: Evolving spiking neural networks: a survey publication-title: Evolving Systems – start-page: 290 year: 2007 ident: br000025 article-title: Computational neuro-genetic modelling – volume: 7 start-page: 37 year: 2009 end-page: 53 ident: br000170 article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics – volume: 19 start-page: 720 year: 2008 end-page: 729 ident: br000085 article-title: Applications of real-time fMRI publication-title: Nature Reviews Neuroscience – volume: 105 start-page: 3593 year: 2008 end-page: 3598 ident: br000245 article-title: Large-scale model of mammalian thalamocortical systems publication-title: Proceedings of the National Academy of Sciences – volume: 3 year: 2004 ident: br000035 article-title: The evidence for neural information processing with precise spike-times: a survey publication-title: Natural Computing – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: br000180 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – reference: Florian, R. (2010). The chronotron: a neuron that learns to fire temporally-precise spike patterns. Available from Nature Precedings & lt; – volume: 37 start-page: 1335 year: 2007 end-page: 1344 ident: br000485 article-title: Assessment of information processing in working memory in applied settings: the paper and pencil memory scanning test publication-title: Psychological Medicine – volume: 7 start-page: 1 year: 2011 end-page: 19 ident: br000055 article-title: Generative embedding for model-based classification of fMRI data publication-title: PLoS Computational Biology – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: br000065 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – volume: 23 start-page: 349 year: 2007 end-page: 398 ident: br000050 article-title: Simulation of networks of spiking neurons: a review of tools and strategies publication-title: Journal of Computational Neuroscience – volume: 18 start-page: 245 year: 2006 end-page: 282 ident: br000240 article-title: Polychronization: computation with spikes publication-title: Neural Computation – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: br000350 article-title: Learning to decode cognitive states from brain images publication-title: Machine Learning – volume: 71 start-page: 655 year: 2008 end-page: 666 ident: br000490 article-title: A behavior controller for mobile robot based on spiking neural networks publication-title: Neurocomputing – volume: 94 start-page: 5411 year: 1997 end-page: 5416 ident: br000030 article-title: The structure and precision of retinal spike trains publication-title: Proceedings of the National Academy of Sciences – volume: 10 start-page: 120 year: 2000 end-page: 131 ident: br000315 article-title: Automated Talairach atlas labels for functional brain mapping publication-title: Human Brain Mapping – year: 1996 ident: br000255 article-title: Foundations of neural networks, fuzzy systems and knowledge engineering – reference: Emotiv (2013). – volume: 7 start-page: 952 year: 2006 end-page: 966 ident: br000475 article-title: Towards multimodal atlases of the human brain publication-title: Nature Reviews Neuroscience – volume: vol. 7311 start-page: 234 year: 2012 end-page: 260 ident: br000275 article-title: Evolving spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition publication-title: IEEE WCCI 2012 – reference: Craig, D.A., & Nguyen, H.T. (2007). Adaptive EEG thought pattern classifier for advanced wheelchair control. In – start-page: 23 year: 2001 end-page: 48 ident: br000145 article-title: What’s different with spiking neurons? publication-title: Plausible neural networks for biological modelling – volume: vol. 7063 start-page: 160 year: 2011 end-page: 168 ident: br000420 article-title: A reservoir-based evolving spiking neural network for on-line spatio-temporal pattern learning and recognition publication-title: ICONIP – volume: 7 start-page: 153 year: 2006 end-page: 160 ident: br000340 article-title: The blue brain project publication-title: Nature Reviews Neuroscience – volume: 95 start-page: 519 year: 2005 end-page: 520 ident: br000040 article-title: Applications of spiking neural networks publication-title: Information Processing Letters – volume: 46 start-page: 64 year: 2009 end-page: 72 ident: br000310 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system publication-title: NeuroImage – year: 1991 ident: br000005 article-title: Corticonics – volume: 22 start-page: 1201 year: 2009 end-page: 1202 ident: br000235 article-title: Recent advances in brain–machine interfaces publication-title: Neural Networks – volume: 27 start-page: 1163 year: 2009 end-page: 1174 ident: br000010 article-title: Computational anatomy with the SPM software publication-title: Magnetic Resonance Imaging – year: 2014 ident: br000280 publication-title: Springer handbook of bio-/neuroinformatics – volume: 6 start-page: 96 year: 2012 ident: br000400 article-title: Frontiers in brain imaging methods grand challenge publication-title: Frontiers in Neuroscience – volume: 489 start-page: 391 year: 2012 end-page: 399 ident: br000175 article-title: An anatomically comprehensive atlas of the adult human brain transcriptome publication-title: Nature – volume: 51 start-page: 738 year: 1995 end-page: 758 ident: br000140 article-title: Time structure of the activity of neural network models publication-title: Physical Review – volume: 25 start-page: 1325 year: 2005 end-page: 1335 ident: br000105 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: NeuroImage – volume: 13 start-page: 1218 year: 2009 end-page: 1232 ident: br000090 article-title: Quantum-inspired evolutionary algorithm: a multi-model EDA publication-title: IEEE Transactions on Evolutionary Computation – volume: 23 start-page: 819 year: 2010 end-page: 835 ident: br000500 article-title: Evolving spiking neural networks for audiovisual information processing publication-title: Neural Networks – volume: 49 start-page: 39 year: 2012 end-page: 41 ident: br000130 article-title: To build a brain publication-title: IEEE Spectrum – volume: 13 start-page: 113 year: 1998 end-page: 119 ident: br000470 article-title: Rank order coding publication-title: Computational Neuroscience: Trends in Research – reference: Indiveri, G., Stefanini, F., & Chicca, E. (2010). Spike-based learning with a generalized integrate and fire silicon neuron. In – start-page: 554 year: 2012 end-page: 560 ident: br000100 article-title: On-line spatiotemporal pattern recognition with evolving spiking neural networks utilizing address event representation, rank oder- and temporal spike learning publication-title: Proc. WCCI 2012 – volume: 107 start-page: 3 year: 2013 end-page: 10 ident: br000360 article-title: Evolving spike pattern association neurons and neural networks publication-title: Neurocomputing – reference: (pp. 1951–1954). – volume: 23 start-page: 16 year: 2010 end-page: 19 ident: br000265 article-title: To spike or not to spike: a probabilistic spiking neuron model publication-title: Neural Networks – volume: 1 start-page: 119 year: 2009 end-page: 127 ident: br000220 article-title: Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition publication-title: Cognitive Computation – volume: vol. 6443 start-page: 163 year: 2010 end-page: 170 ident: br000440 article-title: Towards spatio-temporal pattern recognition using evolving spiking neural networks publication-title: ICONIP – volume: 22 start-page: 467 year: 2010 end-page: 510 ident: br000405 article-title: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting publication-title: Neural Computation – volume: 22 year: 2012 ident: br000335 article-title: Analysis of absence seizure generation using EEG spatio-temporal regularity measures publication-title: International Journal of Neural Systems – start-page: 1813 year: 1993 end-page: 1817 ident: br000115 article-title: 3D statistical neuroanatomical models from 305 MRI volumes publication-title: IEEE-Nuclear science symposium and medical imaging conference – volume: 14 start-page: 2531 year: 2002 end-page: 2560 ident: br000330 article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations publication-title: Neural Computation – year: 2007 ident: br000260 article-title: Evolving connectionist systems: the knowledge engineering approach – volume: 307 start-page: 44 year: 2012 end-page: 49 ident: br000380 article-title: Mind in motion publication-title: Scientific American – volume: 2 start-page: 149 year: 1995 end-page: 162 ident: br000465 article-title: Temporal encoding in nervous systems: a rigorous definition publication-title: Journal of Computational Neuroscience – volume: 3 start-page: 300 year: 2011 end-page: 3011 ident: br000300 article-title: Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease publication-title: IEEE Transactions on Autonomous Mental Development – volume: 9 start-page: 420 year: 2006 end-page: 428 ident: br000160 article-title: The Tempotron: a neuron that learns spike timing-based decisions publication-title: Nature Neuroscience – volume: 6 start-page: 1 year: 2012 end-page: 12 ident: br000215 article-title: Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity publication-title: Frontiers in Computational Neuroscience – volume: 104 start-page: 10240 year: 2007 end-page: 10245 ident: br000200 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proceedings of the National Academy of Sciences – volume: 78 start-page: 1415 year: 1990 end-page: 1442 ident: br000495 article-title: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation publication-title: Proceedings of the IEEE – reference: Delbruck, T. (2007). jAER open source project. – volume: vol. 7062 start-page: 451 year: 2011 end-page: 460 ident: br000385 article-title: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network publication-title: LNCS – volume: 11 start-page: 139 year: 2010 end-page: 145 ident: br000510 article-title: Centenary of Brodmann’s map—conception and fate publication-title: Nature Reviews Neuroscience – volume: 41 start-page: 188 year: 2013 end-page: 201 ident: br000290 article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition publication-title: Neural Networks – volume: vol. 7064 start-page: 230 year: 2011 end-page: 239 ident: br000295 article-title: Evolving probabilistic spiking neural networks for spatio-temporal pattern recognition: a preliminary study on moving object recognition publication-title: LNCS – volume: 483 start-page: 397 year: 2012 ident: br000305 publication-title: Nature – volume: 75 start-page: 1608 year: 2010 end-page: 1616 ident: br000015 article-title: Auckland stroke outcomes study publication-title: Neurology – start-page: 2232 year: 2010 end-page: 2237 ident: br000345 article-title: Human activity detection using spiking neural networks regulated by a gene regulatory network publication-title: Proc. IJCNN – volume: 22 start-page: 1 year: 2012 end-page: 16 ident: br000355 article-title: SPAN: spike pattern association neuron for learning spatio-temporal sequences publication-title: International Journal of Neural Systems – volume: 22 start-page: 623 year: 2009 end-page: 632 ident: br000415 article-title: Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models publication-title: Neural Networks – volume: 3 start-page: 919 year: 2000 end-page: 926 ident: br000445 article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity publication-title: Nature Neuroscience – volume: 2 start-page: 340 year: 2010 end-page: 354 ident: br000020 article-title: Artificial evolution in a cognitive architecture for real robots publication-title: IEEE Transactions on Autonomous Mental Development – volume: 63 start-page: 1162 year: 2012 end-page: 1170 ident: br000060 article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis publication-title: NeuroImage – year: 1998 ident: br000045 article-title: Statistics and geometry of neuronal connectivity – volume: 30 start-page: 895 year: 2005 end-page: 908 ident: br000410 article-title: Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with publication-title: Neurochemical Research – volume: 500 start-page: 1 year: 2011 end-page: 42 ident: br000505 article-title: Kinetic models of gene expression including non-coding RNAs publication-title: Physics Reports – year: 1988 ident: br000460 article-title: Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging – volume: 2 start-page: 202 year: 2005 end-page: 205 ident: br000320 article-title: A 64×64 AER logarithmic temporal derivative silicon retina publication-title: Research in Microelectronics and Electronics – volume: 117 start-page: 500 year: 1952 end-page: 544 ident: br000195 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: Journal Physiology – volume: 4 start-page: 193 year: 2007 end-page: 206 ident: br000135 article-title: Neural systems engineering publication-title: Interface – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: br000480 article-title: The human connectome project: a data acquisition perspective publication-title: NeuroImage – volume: 20 start-page: 481 year: 2010 end-page: 500 ident: br000430 article-title: On the probabilistic optimization of spiking neural networks publication-title: International Journal of Neural Systems – volume: 287 start-page: 251 year: 2002 end-page: 265 ident: br000370 article-title: Spiking neurons and the induction of finite state machines publication-title: Theoretical Computer Science – reference: . – volume: vol. 6443 year: 2010 ident: br000390 article-title: Probabilistic evolving spiking neural network optimization using dynamic quantum inspired particle swarm optimization publication-title: LNCS – volume: 478 start-page: 483 year: 2011 end-page: 489 ident: br000250 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature – volume: 29 start-page: 802 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000205 article-title: Dynamical consequences of lesions in cortical networks publication-title: Human Brain Mapping doi: 10.1002/hbm.20579 – volume: 13 start-page: 113 year: 1998 ident: 10.1016/j.neunet.2014.01.006_br000470 article-title: Rank order coding publication-title: Computational Neuroscience: Trends in Research doi: 10.1016/S0079-6123(01)34028-1 – ident: 10.1016/j.neunet.2014.01.006_br000110 – year: 1988 ident: 10.1016/j.neunet.2014.01.006_br000460 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000065 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2575 – volume: 105 start-page: 3593 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000245 article-title: Large-scale model of mammalian thalamocortical systems publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0712231105 – volume: 23 start-page: 349 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000050 article-title: Simulation of networks of spiking neurons: a review of tools and strategies publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-007-0038-6 – volume: 23 start-page: 819 issue: 7 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000500 article-title: Evolving spiking neural networks for audiovisual information processing publication-title: Neural Networks doi: 10.1016/j.neunet.2010.04.009 – year: 1991 ident: 10.1016/j.neunet.2014.01.006_br000005 – volume: 6 start-page: e1000879 issue: 8 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000455 article-title: Spike-timing theory of working memory publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000879 – volume: 30 start-page: 895 year: 2005 ident: 10.1016/j.neunet.2014.01.006_br000410 article-title: Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with β-amyloid, inflammation and neurotrophin signalling publication-title: Neurochemical Research doi: 10.1007/s11064-005-6962-9 – start-page: 446 year: 2005 ident: 10.1016/j.neunet.2014.01.006_br000285 article-title: A computational neurogenetic model of a spiking neuron – volume: 307 start-page: 44 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000380 article-title: Mind in motion publication-title: Scientific American doi: 10.1038/scientificamerican0912-58 – volume: 27 start-page: 1163 issue: 8 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000010 article-title: Computational anatomy with the SPM software publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2009.01.006 – start-page: 554 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000100 article-title: On-line spatiotemporal pattern recognition with evolving spiking neural networks utilizing address event representation, rank oder- and temporal spike learning – volume: 22 start-page: 467 issue: 2 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000405 article-title: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting publication-title: Neural Computation doi: 10.1162/neco.2009.11-08-901 – start-page: 2232 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000345 article-title: Human activity detection using spiking neural networks regulated by a gene regulatory network – volume: 7 start-page: 37 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000170 article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 117 start-page: 500 year: 1952 ident: 10.1016/j.neunet.2014.01.006_br000195 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: Journal Physiology doi: 10.1113/jphysiol.1952.sp004764 – volume: 4 start-page: R1 issue: 2 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000325 article-title: Review of classification algorithms for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/4/2/R01 – volume: 3 start-page: 919 year: 2000 ident: 10.1016/j.neunet.2014.01.006_br000445 article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity publication-title: Nature Neuroscience doi: 10.1038/78829 – volume: 2 start-page: 340 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000020 article-title: Artificial evolution in a cognitive architecture for real robots publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2010.2086453 – volume: vol. 7311 start-page: 234 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000275 article-title: Evolving spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition – volume: 28 start-page: 5040 issue: 19 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000165 article-title: Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5059-07.2008 – volume: 4 start-page: 193 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000135 article-title: Neural systems engineering publication-title: Interface – volume: 500 start-page: 1 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000505 article-title: Kinetic models of gene expression including non-coding RNAs publication-title: Physics Reports doi: 10.1016/j.physrep.2010.12.002 – volume: 72 start-page: 404 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000180 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 41 start-page: 188 year: 2013 ident: 10.1016/j.neunet.2014.01.006_br000290 article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition publication-title: Neural Networks doi: 10.1016/j.neunet.2012.11.014 – volume: 2 start-page: 202 year: 2005 ident: 10.1016/j.neunet.2014.01.006_br000320 article-title: A 64×64 AER logarithmic temporal derivative silicon retina publication-title: Research in Microelectronics and Electronics – volume: 18 start-page: 2374 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000075 article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI publication-title: Cerebral Cortex doi: 10.1093/cercor/bhn003 – volume: 22 start-page: 623 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000415 article-title: Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models publication-title: Neural Networks doi: 10.1016/j.neunet.2009.06.038 – volume: 78 start-page: 1415 issue: 9 year: 1990 ident: 10.1016/j.neunet.2014.01.006_br000495 article-title: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation publication-title: Proceedings of the IEEE doi: 10.1109/5.58323 – volume: 478 start-page: 483 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000250 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature doi: 10.1038/nature10523 – volume: vol. 7063 start-page: 160 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000420 article-title: A reservoir-based evolving spiking neural network for on-line spatio-temporal pattern learning and recognition – volume: 14 start-page: 187 issue: 3 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000155 article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-2007-14301 – volume: 10 start-page: 120 year: 2000 ident: 10.1016/j.neunet.2014.01.006_br000315 article-title: Automated Talairach atlas labels for functional brain mapping publication-title: Human Brain Mapping doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 46 start-page: 64 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000310 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.006 – volume: 7 start-page: 1 issue: 6 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000055 article-title: Generative embedding for model-based classification of fMRI data publication-title: PLoS Computational Biology – volume: 75 start-page: 1608 issue: 18 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000015 article-title: Auckland stroke outcomes study publication-title: Neurology doi: 10.1212/WNL.0b013e3181fb44c8 – volume: 2 start-page: 149 issue: 2 year: 1995 ident: 10.1016/j.neunet.2014.01.006_br000465 article-title: Temporal encoding in nervous systems: a rigorous definition publication-title: Journal of Computational Neuroscience doi: 10.1007/BF00961885 – volume: 49 start-page: 39 issue: 8 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000130 article-title: To build a brain publication-title: IEEE Spectrum doi: 10.1109/MSPEC.2012.6247562 – volume: 6 start-page: 96 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000400 article-title: Frontiers in brain imaging methods grand challenge publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00096 – volume: 22 start-page: 1 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000355 article-title: SPAN: spike pattern association neuron for learning spatio-temporal sequences publication-title: International Journal of Neural Systems doi: 10.1142/S0129065712500128 – volume: 355 start-page: 25 year: 2004 ident: 10.1016/j.neunet.2014.01.006_br000450 article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network? publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2003.10.063 – start-page: 290 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000025 – year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000260 – volume: 6 start-page: 1 issue: 84 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000215 article-title: Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity publication-title: Frontiers in Computational Neuroscience – volume: 23 start-page: 16 issue: 1 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000265 article-title: To spike or not to spike: a probabilistic spiking neuron model publication-title: Neural Networks doi: 10.1016/j.neunet.2009.08.010 – volume: 34 start-page: 258 issue: 5 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000190 article-title: Routes, destinations and delays: recent advances in AMPA receptor trafficking publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2011.02.004 – ident: 10.1016/j.neunet.2014.01.006_br000080 doi: 10.1109/IEMBS.2007.4352847 – volume: 14 start-page: 2531 issue: 11 year: 2002 ident: 10.1016/j.neunet.2014.01.006_br000330 article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations publication-title: Neural Computation doi: 10.1162/089976602760407955 – start-page: 3156 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000435 article-title: Are probabilistic spiking neural networks suitable for reservoir computing? – volume: vol. 7552 start-page: 653 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000120 article-title: Integrating neural networks and chaotic measurements for modelling epileptic brain – volume: 79 start-page: 2554 year: 1982 ident: 10.1016/j.neunet.2014.01.006_br000210 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.79.8.2554 – volume: 95 start-page: 519 issue: 6 year: 2005 ident: 10.1016/j.neunet.2014.01.006_br000040 article-title: Applications of spiking neural networks publication-title: Information Processing Letters doi: 10.1016/j.ipl.2005.05.018 – ident: 10.1016/j.neunet.2014.01.006_br000095 – volume: 287 start-page: 251 year: 2002 ident: 10.1016/j.neunet.2014.01.006_br000370 article-title: Spiking neurons and the induction of finite state machines publication-title: Theoretical Computer Science doi: 10.1016/S0304-3975(02)00099-3 – start-page: 1813 year: 1993 ident: 10.1016/j.neunet.2014.01.006_br000115 article-title: 3D statistical neuroanatomical models from 305 MRI volumes – volume: 19 start-page: 720 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000085 article-title: Applications of real-time fMRI publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2414 – volume: vol. 7477 start-page: 225 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000270 article-title: NeuroCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals – volume: 3 year: 2004 ident: 10.1016/j.neunet.2014.01.006_br000035 article-title: The evidence for neural information processing with precise spike-times: a survey publication-title: Natural Computing doi: 10.1023/B:NACO.0000027755.02868.60 – volume: 20 start-page: 481 issue: 6 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000430 article-title: On the probabilistic optimization of spiking neural networks publication-title: International Journal of Neural Systems doi: 10.1142/S0129065710002565 – volume: 13 start-page: 1218 issue: 6 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000090 article-title: Quantum-inspired evolutionary algorithm: a multi-model EDA publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.2003010 – volume: vol. 7062 start-page: 451 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000385 article-title: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network – volume: 338 start-page: 60 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000150 article-title: Theory and simulation in neuroscience publication-title: Science doi: 10.1126/science.1227356 – volume: 25 start-page: 1325 year: 2005 ident: 10.1016/j.neunet.2014.01.006_br000105 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 14 start-page: 1186 issue: 7 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000365 article-title: Multivariate, multi-scale permutation entropy for complexity analysis of AD EEG publication-title: Entropy doi: 10.3390/e14071186 – volume: 9 start-page: 420 issue: 3 year: 2006 ident: 10.1016/j.neunet.2014.01.006_br000160 article-title: The Tempotron: a neuron that learns spike timing-based decisions publication-title: Nature Neuroscience doi: 10.1038/nn1643 – volume: vol. 7064 start-page: 230 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000295 article-title: Evolving probabilistic spiking neural networks for spatio-temporal pattern recognition: a preliminary study on moving object recognition – volume: vol. 5506 start-page: 56 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000070 article-title: Real-time epileptic seizure detection on intra-cranial rat data using reservoircomputing – volume: 23 start-page: 2457 issue: 10 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000375 article-title: A systematic method for configuring VLSI networks of spiking neurons publication-title: Neural Computation doi: 10.1162/NECO_a_00182 – volume: 37 start-page: 1335 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000485 article-title: Assessment of information processing in working memory in applied settings: the paper and pencil memory scanning test publication-title: Psychological Medicine doi: 10.1017/S0033291707000360 – volume: 489 start-page: 391 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000175 article-title: An anatomically comprehensive atlas of the adult human brain transcriptome publication-title: Nature doi: 10.1038/nature11405 – start-page: 23 year: 2001 ident: 10.1016/j.neunet.2014.01.006_br000145 article-title: What’s different with spiking neurons? – volume: 18 start-page: 245 year: 2006 ident: 10.1016/j.neunet.2014.01.006_br000240 article-title: Polychronization: computation with spikes publication-title: Neural Computation doi: 10.1162/089976606775093882 – volume: 483 start-page: 397 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000305 publication-title: Nature doi: 10.1038/483397a – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000480 article-title: The human connectome project: a data acquisition perspective publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.018 – ident: 10.1016/j.neunet.2014.01.006_br000125 – volume: vol. 6443 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000390 article-title: Probabilistic evolving spiking neural network optimization using dynamic quantum inspired particle swarm optimization – volume: 5 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000225 article-title: Neuromorphic silicon neuron circuits publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2011.00073 – volume: 3 start-page: 300 issue: 4 year: 2011 ident: 10.1016/j.neunet.2014.01.006_br000300 article-title: Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2011.2159839 – volume: 7 start-page: 952 year: 2006 ident: 10.1016/j.neunet.2014.01.006_br000475 article-title: Towards multimodal atlases of the human brain publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2012 – year: 1997 ident: 10.1016/j.neunet.2014.01.006_br000395 – volume: 63 start-page: 1162 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000060 article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.035 – volume: 11 start-page: 139 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000510 article-title: Centenary of Brodmann’s map—conception and fate publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2776 – volume: 22 start-page: 1201 issue: 9 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000235 article-title: Recent advances in brain–machine interfaces publication-title: Neural Networks doi: 10.1016/j.neunet.2009.10.003 – volume: 7 start-page: 153 year: 2006 ident: 10.1016/j.neunet.2014.01.006_br000340 article-title: The blue brain project publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1848 – year: 2014 ident: 10.1016/j.neunet.2014.01.006_br000280 – volume: 22 issue: 6 year: 2012 ident: 10.1016/j.neunet.2014.01.006_br000335 article-title: Analysis of absence seizure generation using EEG spatio-temporal regularity measures publication-title: International Journal of Neural Systems doi: 10.1142/S0129065712500244 – volume: 1 start-page: 119 issue: 2 year: 2009 ident: 10.1016/j.neunet.2014.01.006_br000220 article-title: Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition publication-title: Cognitive Computation doi: 10.1007/s12559-008-9003-6 – volume: 57 start-page: 145 year: 2004 ident: 10.1016/j.neunet.2014.01.006_br000350 article-title: Learning to decode cognitive states from brain images publication-title: Machine Learning doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 107 start-page: 3 year: 2013 ident: 10.1016/j.neunet.2014.01.006_br000360 article-title: Evolving spike pattern association neurons and neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.034 – volume: vol. 6443 start-page: 163 year: 2010 ident: 10.1016/j.neunet.2014.01.006_br000440 article-title: Towards spatio-temporal pattern recognition using evolving spiking neural networks – volume: 71 start-page: 655 issue: 4–6 year: 2008 ident: 10.1016/j.neunet.2014.01.006_br000490 article-title: A behavior controller for mobile robot based on spiking neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.08.025 – volume: 94 start-page: 5411 issue: 10 year: 1997 ident: 10.1016/j.neunet.2014.01.006_br000030 article-title: The structure and precision of retinal spike trains publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.94.10.5411 – ident: 10.1016/j.neunet.2014.01.006_br000230 doi: 10.1109/ISCAS.2010.5536980 – volume: 4 start-page: 87 issue: 2 year: 2013 ident: 10.1016/j.neunet.2014.01.006_br000425 article-title: Evolving spiking neural networks: a survey publication-title: Evolving Systems doi: 10.1007/s12530-013-9074-9 – volume: 51 start-page: 738 year: 1995 ident: 10.1016/j.neunet.2014.01.006_br000140 article-title: Time structure of the activity of neural network models publication-title: Physical Review – volume: 104 start-page: 10240 year: 2007 ident: 10.1016/j.neunet.2014.01.006_br000200 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0701519104 – year: 1998 ident: 10.1016/j.neunet.2014.01.006_br000045 – year: 1949 ident: 10.1016/j.neunet.2014.01.006_br000185 – year: 1996 ident: 10.1016/j.neunet.2014.01.006_br000255 |
SSID | ssj0006843 |
Score | 2.570268 |
SecondaryResourceType | review_article |
Snippet | The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | Action Potentials Animals Applied sciences Artificial intelligence Associative memory Biological and medical sciences Brain Brain - anatomy & histology Brain - physiology Brain Mapping - methods Central nervous system Computation Computational neuro-genetic modeling Computer science; control theory; systems Connectionism. Neural networks Data mining Data processing. List processing. Character string processing EEG Electrophysiology Exact sciences and technology Finite automata for spatio-temporal data FMRI Fundamental and applied biological sciences. Psychology Gene regulatory networks Genes Humans Learning Mathematical models Memory organisation. Data processing Models, Neurological Molecular and cellular biology Molecular genetics Neural networks Neural Networks (Computer) Neural Pathways - anatomy & histology Neural Pathways - physiology Neurogenetic data Neurons - physiology Pattern recognition Software Spatio-temporal brain data Spiking Spiking neural networks Stimuli Time Transcription. Transcription factor. Splicing. Rna processing Vertebrates: nervous system and sense organs |
Title | NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data |
URI | https://dx.doi.org/10.1016/j.neunet.2014.01.006 https://www.ncbi.nlm.nih.gov/pubmed/24508754 https://www.proquest.com/docview/1504149971 https://www.proquest.com/docview/1520378017 https://www.proquest.com/docview/1671568861 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvRRK34_0sajQY9W1rZfd27I0bFu6lzaQm7BeYUPqXbrra357Ziw5D2gT6NFmJEuakeaT9WmGkA9BcluoULLIeWTCSsGaCPMKvJ-IwSqwKTzR_bFUiyPx7Vge75H5eBcGaZV57U9r-rBa5zfTPJrTzWo1_VmAq1UFRj8ZzuNw3y6ERiv_dH5F81B1Ys6BMEPp8frcwPHqQt8FZFSWYgjeiXmP_u6eHmzaLQxaTNku_g1HB7d0-Jg8zHiSzlKTn5C90D0lj8ZcDTRP3Wdktwz9vLfhM53R7WaFP8gpxrKEsl1igtPrZwoUsCz93WLwhpOPNKeWOKFt52l__ToMXUeoDrXLcpCrM2ox6wRF6ulzcnT45dd8wXLGBeZkJXYsNN6Xtqh85ZsmWN00MXguMCqZdYJb55RzMWrXaoBmPkouEULUrap8jDLyF2S_W3fhFaFSN3XhLMAf64VuhQ1VVDwqqLCU1pcHhI8DbVwOR45ZMc7MyDs7NUk9BtVjitKAeg4Iuyy1SeE47pDXow7NDbMy4DHuKDm5ofLLzwEeQ4wDHXg_2oCBKYnnLG0X1v3WAMYWsPFs9K0yVcE1GK--RUZp2F3XtYJ6XiYju2qFkJiLQLz-7w6-IffxKbGQ3pL93Z8-vAOAtbOTYQZNyL3Z1--L5QU-XieX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYBU8YaWRzES3Eg3iV8JEoeqUG1puxdaqTcTx3a1VZtdsRtVvfCn-IPMxE4fErQSUq-J7die8czn-PMMIe-dYCaVLks8Yz7hRvCk9LCuwPtx74wEncIT3d2RHO7zbwfiYIH87u_CIK0y2v5g0ztrHZ8M4mwOpuPx4HsKrlamGP2kO49LI7Ny252dwr5t9nnrCwj5Q55vft3bGCYxtUBSi5zPE1dam5k0t7ktS2dUWXpnGcfwW6bmzNS1rGvvVV0pwCDWCybQVxaVzK33wjNo9w65y8FcYNqEtV8XvBJZBKoe9C7B7vX39TpSWePaxiGFM-NdtFBMtPR3f7g0rWYgJR_Sa_wb_3Z-cPMReRABLF0Pc_SYLLjmCXnYJ4eg0VY8JfORazda4z7RdTqbjvGPPMXgmVC3CdRzevkQgwJ4picVRos4_EhjLotDWjWWtpfv39CJh-ZQnZIYVeuYGkxzQZHr-ozs34ocnpPFZtK4ZUKFKou0NoC3jOWq4sblXjIvocFMGJutENZPtK5j_HNMw3Gse6LbkQ7i0SgenWYaxLNCkvNa0xD_44byqpehvqLHGlzUDTVXr4j8_HMAABFUwQDe9TqgwQbgwU7VuEk70wDqOex0S3VtmTxlClaLuqaMVLCdLwoJ7bwISnbRCy4w-QF_-d8DfEvuDfd2d_TO1mj7FbmPbwIF6jVZnP9s3RtAd3Oz2q0mSn7c9vL9A79GZRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NeuCube%3A+A+spiking+neural+network+architecture+for+mapping%2C+learning+and+understanding+of+spatio-temporal+brain+data&rft.jtitle=Neural+networks&rft.au=KASABOV%2C+Nikola+K&rft.date=2014-04-01&rft.pub=Elsevier&rft.issn=0893-6080&rft.volume=52&rft.spage=62&rft.epage=76&rft_id=info:doi/10.1016%2Fj.neunet.2014.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=28318531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |