NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data

The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and fu...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 52; pp. 62 - 76
Main Author Kasabov, Nikola K.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2014
Elsevier
Subjects
EEG
EEG
Online AccessGet full text

Cover

Loading…
Abstract The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain–Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships ‘hidden’ in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed.
AbstractList The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed.
The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed.The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed.
Author Kasabov, Nikola K.
Author_xml – sequence: 1
  givenname: Nikola K.
  surname: Kasabov
  fullname: Kasabov, Nikola K.
  email: nkasabov@aut.ac.nz
  organization: Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Private Bag 92006, Auckland 1010, New Zealand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28318531$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24508754$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2L1TAUhoOMOHdG_4FIN4ILW5M0aZNZCMPFLxh0o-uQJieaO21ak1Tx35ty7yC4cFwlhOd9IOe8F-gszAEQekpwQzDpXh2aAGuA3FBMWINJg3H3AO2I6GVNe0HP0A4L2dYdFvgcXaR0wIUQrH2EzinjWPSc7VD-COt-HeCquq7S4m99-FoVb9RjOfLPOd5WOppvPoPJa4TKzbGa9LIU7mU1go5hS-hgqzVYiCmX6_Yyu6LT2c91hmmZN98QtQ-V1Vk_Rg-dHhM8OZ2X6MvbN5_37-ubT-8-7K9vasMpyzVIa8mAqaVWShh6KR3YlnEu5WBYOxjTGeNcb3SPJbeOt-VXFAvdUescd-0lenH0LnH-vkLKavLJwDjqAPOaFOl6wjshOnI_yilue4FJ_x8oZoRJ2W_WZyd0HSawaol-0vGXupt_AZ6fAJ2MHl3Uwfj0hxMtEbzdRFdHzsQ5pQhOGZ-38YZcpjoqgtVWCnVQx1KorRQKE1VWXsLsr_Cd_57Y62MMyop-eIgqGQ_BgPWxtEHZ2f9b8Bv52dOo
CitedBy_id crossref_primary_10_3389_fnins_2023_1093865
crossref_primary_10_1016_j_envsoft_2019_04_012
crossref_primary_10_15406_mojabb_2024_08_00208
crossref_primary_10_1007_s11042_019_7181_8
crossref_primary_10_2478_jaiscr_2019_0009
crossref_primary_10_1063_5_0009482
crossref_primary_10_1109_TNNLS_2018_2796023
crossref_primary_10_1109_TCDS_2018_2854274
crossref_primary_10_3389_fnins_2023_1151949
crossref_primary_10_1016_j_patrec_2024_08_002
crossref_primary_10_1016_j_neunet_2020_06_001
crossref_primary_10_1016_j_asoc_2020_106449
crossref_primary_10_1109_TCSS_2024_3420445
crossref_primary_10_1088_1361_6528_ac4662
crossref_primary_10_1038_s41598_021_90029_5
crossref_primary_10_1109_TGRS_2016_2586602
crossref_primary_10_1016_j_irbm_2022_11_001
crossref_primary_10_1109_TCYB_2018_2871144
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1007_s11265_021_01659_x
crossref_primary_10_1109_TNNLS_2017_2669522
crossref_primary_10_1109_TBCAS_2022_3166530
crossref_primary_10_1007_s11063_020_10322_8
crossref_primary_10_1007_s10489_023_04553_0
crossref_primary_10_1016_j_cmpb_2023_107927
crossref_primary_10_1109_ACCESS_2021_3080310
crossref_primary_10_1007_s11276_021_02555_9
crossref_primary_10_1016_j_asoc_2015_06_062
crossref_primary_10_1016_j_ins_2017_03_006
crossref_primary_10_1051_0004_6361_201935211
crossref_primary_10_3390_brainsci11050554
crossref_primary_10_1016_j_sse_2017_10_012
crossref_primary_10_1109_ACCESS_2021_3099492
crossref_primary_10_1109_TNNLS_2019_2906158
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1142_S0218126623501396
crossref_primary_10_1145_3433676
crossref_primary_10_3390_biomimetics10030183
crossref_primary_10_1016_j_neunet_2014_12_001
crossref_primary_10_1016_j_neunet_2015_03_009
crossref_primary_10_1016_j_neunet_2018_12_002
crossref_primary_10_1038_s41598_019_42863_x
crossref_primary_10_3390_bdcc5040067
crossref_primary_10_1007_s00521_022_06984_1
crossref_primary_10_1016_j_neunet_2017_09_001
crossref_primary_10_4015_S1016237221500307
crossref_primary_10_1109_TNNLS_2017_2713125
crossref_primary_10_1002_jnm_2267
crossref_primary_10_1186_s40708_023_00192_w
crossref_primary_10_1109_TIM_2024_3472838
crossref_primary_10_1016_j_neucom_2013_09_049
crossref_primary_10_3389_fgene_2021_721068
crossref_primary_10_1109_TFUZZ_2023_3292802
crossref_primary_10_1109_TNNLS_2021_3055421
crossref_primary_10_1016_j_engappai_2023_106322
crossref_primary_10_1007_s12559_022_10075_7
crossref_primary_10_3390_brainsci12020139
crossref_primary_10_3390_s20185328
crossref_primary_10_1109_TNNLS_2016_2612890
crossref_primary_10_1016_j_metrad_2023_100005
crossref_primary_10_1109_TNNLS_2016_2536742
crossref_primary_10_1038_s41598_024_60996_6
crossref_primary_10_1016_j_neunet_2015_07_005
crossref_primary_10_1007_s12530_020_09334_5
crossref_primary_10_3390_brainsci12070863
crossref_primary_10_1007_s00521_016_2767_9
crossref_primary_10_1007_s12530_017_9212_x
crossref_primary_10_1016_j_neunet_2016_10_011
crossref_primary_10_1007_s12530_018_9238_8
crossref_primary_10_1016_j_neubiorev_2020_09_008
crossref_primary_10_1088_1757_899X_435_1_012049
crossref_primary_10_1016_j_neunet_2018_07_014
crossref_primary_10_1007_s00521_017_3336_6
crossref_primary_10_4018_IJCAC_2018040105
crossref_primary_10_1007_s12530_017_9175_y
crossref_primary_10_3389_fnins_2019_00625
crossref_primary_10_1016_j_neunet_2014_09_003
crossref_primary_10_1016_j_neunet_2022_05_003
crossref_primary_10_1016_j_neunet_2025_107256
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1007_s41870_022_01095_5
crossref_primary_10_1007_s12530_019_09269_6
crossref_primary_10_1016_j_ins_2021_11_065
crossref_primary_10_1016_j_bspc_2021_102595
crossref_primary_10_1088_2634_4386_adad0f
crossref_primary_10_3389_frai_2022_807406
crossref_primary_10_1109_TNNLS_2018_2875471
crossref_primary_10_3389_fnins_2021_728460
crossref_primary_10_1088_1741_2552_aafabc
crossref_primary_10_1016_j_jvoice_2016_02_019
crossref_primary_10_1002_aelm_202300021
crossref_primary_10_3389_fninf_2018_00089
crossref_primary_10_3390_s22155802
crossref_primary_10_1016_j_ins_2014_06_028
crossref_primary_10_1016_j_compbiomed_2024_109225
crossref_primary_10_1007_s12559_021_09975_x
crossref_primary_10_1021_acsami_0c15519
crossref_primary_10_3389_fnins_2019_00650
crossref_primary_10_1007_s13534_024_00405_z
crossref_primary_10_1038_s41598_021_81805_4
crossref_primary_10_1007_s12530_017_9176_x
crossref_primary_10_1016_j_neunet_2019_09_007
crossref_primary_10_1109_TII_2019_2951089
crossref_primary_10_1016_j_neunet_2019_09_004
crossref_primary_10_1109_ACCESS_2021_3131743
crossref_primary_10_1109_TBME_2023_3258606
crossref_primary_10_1016_j_neunet_2017_12_015
crossref_primary_10_1016_j_neunet_2018_03_019
crossref_primary_10_1016_j_ifacol_2016_12_122
crossref_primary_10_1109_TCDS_2017_2680408
crossref_primary_10_1109_TCDS_2024_3395443
crossref_primary_10_1007_s00521_021_06827_5
crossref_primary_10_1063_1_5124027
crossref_primary_10_3390_bioengineering10121341
crossref_primary_10_1016_j_medntd_2024_100287
crossref_primary_10_1016_j_procs_2023_08_138
crossref_primary_10_1002_adma_201900636
crossref_primary_10_3390_s21144900
crossref_primary_10_1007_s42979_023_01786_1
crossref_primary_10_3389_fnins_2023_1153985
crossref_primary_10_1016_j_neunet_2020_01_027
crossref_primary_10_1007_s41060_022_00360_x
crossref_primary_10_1109_TNB_2019_2896981
crossref_primary_10_1016_j_envsoft_2023_105851
crossref_primary_10_1109_TNNLS_2016_2541339
crossref_primary_10_1109_TBME_2015_2503400
crossref_primary_10_1109_LSENS_2024_3523443
crossref_primary_10_1016_j_procs_2021_04_146
crossref_primary_10_1109_TCSI_2021_3071956
crossref_primary_10_1109_ACCESS_2024_3479968
crossref_primary_10_1038_s43588_021_00184_y
crossref_primary_10_1007_s12530_024_09628_y
crossref_primary_10_1016_j_bspc_2024_107000
crossref_primary_10_1007_s12530_016_9144_x
crossref_primary_10_1016_j_neunet_2019_08_029
crossref_primary_10_1016_j_neunet_2021_02_017
crossref_primary_10_1007_s12559_017_9517_x
crossref_primary_10_1109_TNSRE_2023_3346766
crossref_primary_10_3390_brainsci11010052
crossref_primary_10_3390_s20102756
crossref_primary_10_1007_s12530_024_09630_4
crossref_primary_10_1007_s11071_023_08897_7
crossref_primary_10_1016_j_neunet_2021_09_013
crossref_primary_10_1109_TCYB_2019_2905157
crossref_primary_10_1016_j_neunet_2014_06_012
crossref_primary_10_3390_brainsci13091316
crossref_primary_10_1109_TIM_2022_3187719
crossref_primary_10_1007_s11760_023_02569_0
crossref_primary_10_1016_j_neunet_2019_08_016
crossref_primary_10_3389_fnins_2024_1305284
crossref_primary_10_1016_j_neunet_2019_08_019
crossref_primary_10_3389_fnins_2019_00855
crossref_primary_10_1038_s41537_023_00335_2
crossref_primary_10_1016_j_isprsjprs_2022_03_021
crossref_primary_10_1109_OJCAS_2020_3032092
crossref_primary_10_57019_jmv_1306685
crossref_primary_10_1007_s11071_023_08655_9
crossref_primary_10_1162_neco_a_01499
crossref_primary_10_1016_j_neucom_2021_02_027
crossref_primary_10_1016_j_neunet_2015_09_011
crossref_primary_10_3389_fnins_2023_1303564
crossref_primary_10_3390_app10093070
crossref_primary_10_23919_ICN_2024_0022
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1016_j_artmed_2018_01_001
crossref_primary_10_1016_j_neucom_2021_06_027
crossref_primary_10_1016_j_sse_2019_107741
crossref_primary_10_1038_s41598_023_42605_0
crossref_primary_10_1007_s12530_017_9178_8
crossref_primary_10_1108_IJOES_02_2019_0036
crossref_primary_10_1016_j_neucom_2024_128477
crossref_primary_10_1088_1361_6463_aae223
crossref_primary_10_1109_THMS_2023_3267898
crossref_primary_10_1186_s40708_022_00172_6
crossref_primary_10_3390_app12125980
crossref_primary_10_3390_brainsci10110781
crossref_primary_10_1016_j_neunet_2019_07_021
crossref_primary_10_1063_1_5031929
crossref_primary_10_1016_j_jocs_2020_101103
crossref_primary_10_1109_TNNLS_2023_3263008
crossref_primary_10_3389_fnins_2018_00704
crossref_primary_10_1016_j_neunet_2016_02_006
crossref_primary_10_1016_j_caeai_2020_100002
crossref_primary_10_1186_1471_2105_16_S5_S3
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1038_s41598_018_27169_8
crossref_primary_10_1109_JTEHM_2023_3320132
crossref_primary_10_1109_TCBB_2016_2520934
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_1007_s12293_022_00373_w
crossref_primary_10_1016_j_ins_2017_04_017
crossref_primary_10_1016_j_jneuroling_2021_100985
crossref_primary_10_3389_fncom_2018_00042
crossref_primary_10_1016_j_engappai_2023_107252
crossref_primary_10_1016_j_inffus_2023_101943
crossref_primary_10_1109_TCDS_2016_2636291
crossref_primary_10_1109_TED_2022_3220726
crossref_primary_10_1109_TCDS_2017_2776863
crossref_primary_10_1109_TETCI_2019_2907724
crossref_primary_10_3390_s20247354
crossref_primary_10_1109_TNSRE_2023_3246989
Cites_doi 10.1002/hbm.20579
10.1016/S0079-6123(01)34028-1
10.1038/nrn2575
10.1073/pnas.0712231105
10.1007/s10827-007-0038-6
10.1016/j.neunet.2010.04.009
10.1371/journal.pcbi.1000879
10.1007/s11064-005-6962-9
10.1038/scientificamerican0912-58
10.1016/j.mri.2009.01.006
10.1162/neco.2009.11-08-901
10.1007/s12021-008-9041-y
10.1113/jphysiol.1952.sp004764
10.1088/1741-2560/4/2/R01
10.1038/78829
10.1109/TAMD.2010.2086453
10.1523/JNEUROSCI.5059-07.2008
10.1016/j.physrep.2010.12.002
10.1016/j.neuron.2011.08.026
10.1016/j.neunet.2012.11.014
10.1093/cercor/bhn003
10.1016/j.neunet.2009.06.038
10.1109/5.58323
10.1038/nature10523
10.3233/ICA-2007-14301
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1016/j.neuroimage.2009.02.006
10.1212/WNL.0b013e3181fb44c8
10.1007/BF00961885
10.1109/MSPEC.2012.6247562
10.3389/fnins.2012.00096
10.1142/S0129065712500128
10.1016/j.neulet.2003.10.063
10.1016/j.neunet.2009.08.010
10.1016/j.tins.2011.02.004
10.1109/IEMBS.2007.4352847
10.1162/089976602760407955
10.1073/pnas.79.8.2554
10.1016/j.ipl.2005.05.018
10.1016/S0304-3975(02)00099-3
10.1038/nrn2414
10.1023/B:NACO.0000027755.02868.60
10.1142/S0129065710002565
10.1109/TEVC.2008.2003010
10.1126/science.1227356
10.1016/j.neuroimage.2004.12.034
10.3390/e14071186
10.1038/nn1643
10.1162/NECO_a_00182
10.1017/S0033291707000360
10.1038/nature11405
10.1162/089976606775093882
10.1038/483397a
10.1016/j.neuroimage.2012.02.018
10.3389/fnins.2011.00073
10.1109/TAMD.2011.2159839
10.1038/nrn2012
10.1016/j.neuroimage.2012.08.035
10.1038/nrn2776
10.1016/j.neunet.2009.10.003
10.1038/nrn1848
10.1142/S0129065712500244
10.1007/s12559-008-9003-6
10.1023/B:MACH.0000035475.85309.1b
10.1016/j.neucom.2012.08.034
10.1016/j.neucom.2007.08.025
10.1073/pnas.94.10.5411
10.1109/ISCAS.2010.5536980
10.1007/s12530-013-9074-9
10.1073/pnas.0701519104
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neunet.2014.01.006
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
Computer and Information Systems Abstracts

MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 76
ExternalDocumentID 24508754
28318531
10_1016_j_neunet_2014_01_006
S0893608014000070
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
7SC
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c524t-e9dd1b02d2d99eb799fed345599bc43bcc6ccff7ca7095df53508208a62dff5f3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Mon Jul 21 11:35:11 EDT 2025
Fri Jul 11 04:41:13 EDT 2025
Fri Jul 11 07:54:01 EDT 2025
Thu Apr 03 07:07:19 EDT 2025
Wed Apr 02 07:25:25 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 01:24:28 EDT 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Associative memory
Finite automata for spatio-temporal data
Gene regulatory networks
Computational neuro-genetic modeling
EEG
Spiking neural networks
Neurogenetic data
Spatio-temporal brain data
Pattern recognition
Data mining
FMRI
Space time correlation
Brain
Spiking neuron
Central nervous system
Network architecture
Temporal databases
Electroencephalography
Modeling
Encephalon
Neuroscience
Static model
Classification
Internal structure
Learning algorithm
Bioinformatics
Data analysis
Cluster
Functional analysis
Neural network
Gene expression
Nuclear magnetic resonance imaging
Information processing
Medical imagery
Artificial intelligence
Data gathering
Functional imaging
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-e9dd1b02d2d99eb799fed345599bc43bcc6ccff7ca7095df53508208a62dff5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 24508754
PQID 1504149971
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1671568861
proquest_miscellaneous_1520378017
proquest_miscellaneous_1504149971
pubmed_primary_24508754
pascalfrancis_primary_28318531
crossref_citationtrail_10_1016_j_neunet_2014_01_006
crossref_primary_10_1016_j_neunet_2014_01_006
elsevier_sciencedirect_doi_10_1016_j_neunet_2014_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (br000170) 2009; 7
Henley, Barker, Glebov (br000190) 2011; 34
Kasabov, Schliebs, Kojima (br000300) 2011; 3
Picard (br000395) 1997
Mammone, Labate, Lay-Ekuakille, Morabito (br000335) 2012; 22
Nicolelis (br000380) 2012; 307
Kasabov, Benuskova, Wysoski (br000285) 2005
Bullmore, Sporns (br000065) 2009; 10
Meng, Jin, Yin, Conforth (br000345) 2010
Kasabov (br000265) 2010; 23
Brette (br000050) 2007; 23
Izhikevich, Edelman (br000245) 2008; 105
Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini (br000180) 2011; 72
Thorpe, Gautrais (br000470) 1998; 13
Evans, Collins, Mills, Brown, Kelly, Peters (br000115) 1993
.
Lichtsteiner, Delbruck (br000320) 2005; 2
Ashburner (br000010) 2009; 27
Schliebs, Hamed, Kasabov (br000420) 2011; vol. 7063
Craig, D.A., & Nguyen, H.T. (2007). Adaptive EEG thought pattern classifier for advanced wheelchair control. In
Koch, Reid (br000305) 2012; 483
Humble, Denham, Wennekers (br000215) 2012; 6
Schliebs, Kasabov (br000425) 2013; 4
Van Essen (br000480) 2012; 62
Kasabov, Dhoble, Nuntalid, Mohemmed (br000295) 2011; vol. 7064
Theunissen, Miller (br000465) 1995; 2
Indiveri, G., Stefanini, F., & Chicca, E. (2010). Spike-based learning with a generalized integrate and fire silicon neuron. In
Bohte, Kok, La Poutre (br000040) 2005; 95
Stam (br000450) 2004; 355
Eickhoff (br000105) 2005; 25
Gerstner, Sprekeler, Deco (br000150) 2012; 338
Markram (br000340) 2006; 7
Wang, Hou, Zou, Tan, Cheng (br000490) 2008; 71
Florian, R. (2010). The chronotron: a neuron that learns to fire temporally-precise spike patterns. Available from Nature Precedings & lt
Gerstner (br000145) 2001
Berry, Warland, Meister (br000030) 1997; 94
Kasabov (br000260) 2007
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (br000325) 2007; 4
Hopfield (br000210) 1982; 79
Zhdanov (br000505) 2011; 500
Kasabov (br000270) 2012; vol. 7477
Kasabov (br000275) 2012; vol. 7311
Schliebs, Kasabov, Defoin-Platel (br000430) 2010; 20
Delbruck, T. (2007). jAER open source project.
Mohemmed, Schliebs, Matsuda, Kasabov (br000355) 2012; 22
Zilles, Amunts (br000510) 2010; 11
Lancaster (br000315) 2000; 10
Furber (br000130) 2012; 49
Isa, Fetz, Muller (br000235) 2009; 22
Nuntalid, Dhoble, Kasabov (br000385) 2011; vol. 7062
Natschlager, Maass (br000370) 2002; 287
Morabito, Labate, La Foresta, Morabito, Palamara (br000365) 2012; 14
Schliebs, Nuntalid, Kasabov (br000440) 2010; vol. 6443
Koessler, Maillard, Benhadid (br000310) 2009; 46
von der Elst, van Boxtel, van Breukelen, Jolles (br000485) 2007; 37
Abeles (br000005) 1991
Izhikevich (br000240) 2006; 18
Kang (br000250) 2011; 478
Hawrylycz (br000175) 2012; 489
Defoin-Platel, Schliebs, Kasabov (br000090) 2009; 13
Maass, Natschlaeger, Markram (br000330) 2002; 14
Kasabov, Dhoble, Nuntalid, Indiveri (br000290) 2013; 41
Furber, Temple (br000135) 2007; 4
Poline, Poldrack (br000400) 2012; 6
Szatmary, Izhikevich (br000455) 2010; 6
Song, Miller, Abbott (br000445) 2000; 3
Honey, Kötter, Breakspear, Sporns (br000200) 2007; 104
Benuskova, Kasabov (br000025) 2007
Talairach, Tournoux (br000460) 1988
Bellas, Duro, Faiña, Souto (br000020) 2010; 2
Emotiv (2013).
Wysoski, Benuskova, Kasabov (br000500) 2010; 23
Chen, He, Rosa-Neto, Germann, Evans (br000075) 2008; 18
Indiveri, Chicca, Douglas (br000220) 2009; 1
Bohte (br000035) 2004; 3
Fiasché, Schliebs, Nobili (br000120) 2012; vol. 7552
Mitchel (br000350) 2004; 57
Widrow, Lehr (br000495) 1990; 78
Indiveri, Linares-Barranco, Hamilton, Van Schaik, Etienne-Cummings, Delbruck (br000225) 2011; 5
Schliebs, Defoin-Platel, Worner, Kasabov (br000415) 2009; 22
Hahnloser, Wang, Nager, Naie (br000165) 2008; 28
Nuzly, Kasabov, Shamsuddin (br000390) 2010; vol. 6443
Toga, Thompson, Mori, Amunts, Zilles (br000475) 2006; 7
Barker-Collo, Feigin, Parag, Lawes, Senior (br000015) 2010; 75
Broderson (br000060) 2012; 63
Dhoble, Nuntalid, Indiveri, Kasabov (br000100) 2012
Schliebs, Mohemmed, Kasabov (br000435) 2011
Hebb (br000185) 1949
Broderson (br000055) 2011; 7
Gutig, Sompolinsky (br000160) 2006; 9
Buteneers, Schrauwen, Verstraeten, Stroobandt (br000070) 2008; vol. 5506
Braitenberg, Schüz (br000045) 1998
Mohemmed, Schliebs, Matsuda, Kasabov (br000360) 2013; 107
(pp. 2544–2547).
Neftci, Chicca, Indiveri, Douglas (br000375) 2012; 23
Ponulak, Kasinski (br000405) 2010; 22
Schliebs (br000410) 2005; 30
Honey, Sporns (br000205) 2008; 29
(pp. 1951–1954).
Kasabov (br000255) 1996
(br000280) 2014
Ghosh-Dastidar, Adeli (br000155) 2007; 14
De Charms (br000085) 2008; 19
Gerstner (br000140) 1995; 51
Hodgkin, Huxley (br000195) 1952; 117
Hopfield (10.1016/j.neunet.2014.01.006_br000210) 1982; 79
Kasabov (10.1016/j.neunet.2014.01.006_br000275) 2012; vol. 7311
Izhikevich (10.1016/j.neunet.2014.01.006_br000245) 2008; 105
Maass (10.1016/j.neunet.2014.01.006_br000330) 2002; 14
Honey (10.1016/j.neunet.2014.01.006_br000205) 2008; 29
Schliebs (10.1016/j.neunet.2014.01.006_br000420) 2011; vol. 7063
Poline (10.1016/j.neunet.2014.01.006_br000400) 2012; 6
Barker-Collo (10.1016/j.neunet.2014.01.006_br000015) 2010; 75
(10.1016/j.neunet.2014.01.006_br000280) 2014
10.1016/j.neunet.2014.01.006_br000095
Nicolelis (10.1016/j.neunet.2014.01.006_br000380) 2012; 307
Thorpe (10.1016/j.neunet.2014.01.006_br000470) 1998; 13
Hodgkin (10.1016/j.neunet.2014.01.006_br000195) 1952; 117
von der Elst (10.1016/j.neunet.2014.01.006_br000485) 2007; 37
Hawrylycz (10.1016/j.neunet.2014.01.006_br000175) 2012; 489
Bohte (10.1016/j.neunet.2014.01.006_br000035) 2004; 3
Neftci (10.1016/j.neunet.2014.01.006_br000375) 2012; 23
Meng (10.1016/j.neunet.2014.01.006_br000345) 2010
Kasabov (10.1016/j.neunet.2014.01.006_br000300) 2011; 3
Fiasché (10.1016/j.neunet.2014.01.006_br000120) 2012; vol. 7552
Braitenberg (10.1016/j.neunet.2014.01.006_br000045) 1998
Kasabov (10.1016/j.neunet.2014.01.006_br000265) 2010; 23
Mohemmed (10.1016/j.neunet.2014.01.006_br000355) 2012; 22
Zhdanov (10.1016/j.neunet.2014.01.006_br000505) 2011; 500
Kasabov (10.1016/j.neunet.2014.01.006_br000260) 2007
Kasabov (10.1016/j.neunet.2014.01.006_br000255) 1996
Song (10.1016/j.neunet.2014.01.006_br000445) 2000; 3
Natschlager (10.1016/j.neunet.2014.01.006_br000370) 2002; 287
Koch (10.1016/j.neunet.2014.01.006_br000305) 2012; 483
Gerstner (10.1016/j.neunet.2014.01.006_br000140) 1995; 51
Hebb (10.1016/j.neunet.2014.01.006_br000185) 1949
Mohemmed (10.1016/j.neunet.2014.01.006_br000360) 2013; 107
Nuzly (10.1016/j.neunet.2014.01.006_br000390) 2010; vol. 6443
De Charms (10.1016/j.neunet.2014.01.006_br000085) 2008; 19
10.1016/j.neunet.2014.01.006_br000110
Ghosh-Dastidar (10.1016/j.neunet.2014.01.006_br000155) 2007; 14
10.1016/j.neunet.2014.01.006_br000230
Humble (10.1016/j.neunet.2014.01.006_br000215) 2012; 6
Eickhoff (10.1016/j.neunet.2014.01.006_br000105) 2005; 25
Ashburner (10.1016/j.neunet.2014.01.006_br000010) 2009; 27
Picard (10.1016/j.neunet.2014.01.006_br000395) 1997
Dhoble (10.1016/j.neunet.2014.01.006_br000100) 2012
Koessler (10.1016/j.neunet.2014.01.006_br000310) 2009; 46
Toga (10.1016/j.neunet.2014.01.006_br000475) 2006; 7
Furber (10.1016/j.neunet.2014.01.006_br000130) 2012; 49
Indiveri (10.1016/j.neunet.2014.01.006_br000220) 2009; 1
10.1016/j.neunet.2014.01.006_br000125
Mammone (10.1016/j.neunet.2014.01.006_br000335) 2012; 22
Zilles (10.1016/j.neunet.2014.01.006_br000510) 2010; 11
Schliebs (10.1016/j.neunet.2014.01.006_br000440) 2010; vol. 6443
Berry (10.1016/j.neunet.2014.01.006_br000030) 1997; 94
Evans (10.1016/j.neunet.2014.01.006_br000115) 1993
Henley (10.1016/j.neunet.2014.01.006_br000190) 2011; 34
10.1016/j.neunet.2014.01.006_br000080
Schliebs (10.1016/j.neunet.2014.01.006_br000425) 2013; 4
Hahnloser (10.1016/j.neunet.2014.01.006_br000165) 2008; 28
Isa (10.1016/j.neunet.2014.01.006_br000235) 2009; 22
Honey (10.1016/j.neunet.2014.01.006_br000200) 2007; 104
Schliebs (10.1016/j.neunet.2014.01.006_br000410) 2005; 30
Ponulak (10.1016/j.neunet.2014.01.006_br000405) 2010; 22
Schliebs (10.1016/j.neunet.2014.01.006_br000415) 2009; 22
Bellas (10.1016/j.neunet.2014.01.006_br000020) 2010; 2
Broderson (10.1016/j.neunet.2014.01.006_br000055) 2011; 7
Lotte (10.1016/j.neunet.2014.01.006_br000325) 2007; 4
Wang (10.1016/j.neunet.2014.01.006_br000490) 2008; 71
Buteneers (10.1016/j.neunet.2014.01.006_br000070) 2008; vol. 5506
Nuntalid (10.1016/j.neunet.2014.01.006_br000385) 2011; vol. 7062
Stam (10.1016/j.neunet.2014.01.006_br000450) 2004; 355
Mitchel (10.1016/j.neunet.2014.01.006_br000350) 2004; 57
Morabito (10.1016/j.neunet.2014.01.006_br000365) 2012; 14
Chen (10.1016/j.neunet.2014.01.006_br000075) 2008; 18
Indiveri (10.1016/j.neunet.2014.01.006_br000225) 2011; 5
Kasabov (10.1016/j.neunet.2014.01.006_br000290) 2013; 41
Bullmore (10.1016/j.neunet.2014.01.006_br000065) 2009; 10
Markram (10.1016/j.neunet.2014.01.006_br000340) 2006; 7
Kasabov (10.1016/j.neunet.2014.01.006_br000270) 2012; vol. 7477
Lichtsteiner (10.1016/j.neunet.2014.01.006_br000320) 2005; 2
Haxby (10.1016/j.neunet.2014.01.006_br000180) 2011; 72
Abeles (10.1016/j.neunet.2014.01.006_br000005) 1991
Kang (10.1016/j.neunet.2014.01.006_br000250) 2011; 478
Izhikevich (10.1016/j.neunet.2014.01.006_br000240) 2006; 18
Wysoski (10.1016/j.neunet.2014.01.006_br000500) 2010; 23
Gutig (10.1016/j.neunet.2014.01.006_br000160) 2006; 9
Defoin-Platel (10.1016/j.neunet.2014.01.006_br000090) 2009; 13
Talairach (10.1016/j.neunet.2014.01.006_br000460) 1988
Theunissen (10.1016/j.neunet.2014.01.006_br000465) 1995; 2
Schliebs (10.1016/j.neunet.2014.01.006_br000435) 2011
Gerstner (10.1016/j.neunet.2014.01.006_br000150) 2012; 338
Szatmary (10.1016/j.neunet.2014.01.006_br000455) 2010; 6
Benuskova (10.1016/j.neunet.2014.01.006_br000025) 2007
Kasabov (10.1016/j.neunet.2014.01.006_br000295) 2011; vol. 7064
Furber (10.1016/j.neunet.2014.01.006_br000135) 2007; 4
Gerstner (10.1016/j.neunet.2014.01.006_br000145) 2001
Hanke (10.1016/j.neunet.2014.01.006_br000170) 2009; 7
Broderson (10.1016/j.neunet.2014.01.006_br000060) 2012; 63
Lancaster (10.1016/j.neunet.2014.01.006_br000315) 2000; 10
Bohte (10.1016/j.neunet.2014.01.006_br000040) 2005; 95
Brette (10.1016/j.neunet.2014.01.006_br000050) 2007; 23
Widrow (10.1016/j.neunet.2014.01.006_br000495) 1990; 78
Van Essen (10.1016/j.neunet.2014.01.006_br000480) 2012; 62
Kasabov (10.1016/j.neunet.2014.01.006_br000285) 2005
Schliebs (10.1016/j.neunet.2014.01.006_br000430) 2010; 20
References_xml – volume: 23
  start-page: 2457
  year: 2012
  end-page: 2497
  ident: br000375
  article-title: A systematic method for configuring VLSI networks of spiking neurons
  publication-title: Neural Computation
– volume: 29
  start-page: 802
  year: 2008
  end-page: 809
  ident: br000205
  article-title: Dynamical consequences of lesions in cortical networks
  publication-title: Human Brain Mapping
– volume: 5
  year: 2011
  ident: br000225
  article-title: Neuromorphic silicon neuron circuits
  publication-title: Frontiers in Neuroscience
– volume: vol. 7552
  start-page: 653
  year: 2012
  end-page: 660
  ident: br000120
  article-title: Integrating neural networks and chaotic measurements for modelling epileptic brain
  publication-title: ICANN 2012
– volume: 34
  start-page: 258
  year: 2011
  end-page: 268
  ident: br000190
  article-title: Routes, destinations and delays: recent advances in AMPA receptor trafficking
  publication-title: Trends in Neurosciences
– year: 1997
  ident: br000395
  article-title: Affective computing
– start-page: 3156
  year: 2011
  end-page: 3163
  ident: br000435
  article-title: Are probabilistic spiking neural networks suitable for reservoir computing?
  publication-title: Proc. IJCNN
– start-page: 446
  year: 2005
  end-page: 451
  ident: br000285
  article-title: A computational neurogenetic model of a spiking neuron
  publication-title: Proc. IJCNN, vol. 1
– volume: 355
  start-page: 25
  year: 2004
  end-page: 28
  ident: br000450
  article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network?
  publication-title: Neuroscience Letters
– volume: 14
  start-page: 187
  year: 2007
  end-page: 212
  ident: br000155
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integrated Computer-Aided Engineering
– volume: 4
  start-page: R1
  year: 2007
  end-page: R15
  ident: br000325
  article-title: Review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– year: 1949
  ident: br000185
  article-title: The organization of behavior
– volume: 14
  start-page: 1186
  year: 2012
  end-page: 1202
  ident: br000365
  article-title: Multivariate, multi-scale permutation entropy for complexity analysis of AD EEG
  publication-title: Entropy
– reference: (pp. 2544–2547).
– volume: 6
  start-page: e1000879
  year: 2010
  ident: br000455
  article-title: Spike-timing theory of working memory
  publication-title: PLoS Computational Biology
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: br000210
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences
– volume: 338
  start-page: 60
  year: 2012
  end-page: 65
  ident: br000150
  article-title: Theory and simulation in neuroscience
  publication-title: Science
– volume: vol. 5506
  start-page: 56
  year: 2008
  end-page: 63
  ident: br000070
  article-title: Real-time epileptic seizure detection on intra-cranial rat data using reservoircomputing
  publication-title: Advances in neuro-information processing
– volume: 18
  start-page: 2374
  year: 2008
  end-page: 2381
  ident: br000075
  article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
  publication-title: Cerebral Cortex
– volume: 28
  start-page: 5040
  year: 2008
  end-page: 5052
  ident: br000165
  article-title: Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird
  publication-title: Journal of Neuroscience
– volume: vol. 7477
  start-page: 225
  year: 2012
  end-page: 243
  ident: br000270
  article-title: NeuroCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals
  publication-title: ANNPR
– volume: 4
  start-page: 87
  year: 2013
  end-page: 98
  ident: br000425
  article-title: Evolving spiking neural networks: a survey
  publication-title: Evolving Systems
– start-page: 290
  year: 2007
  ident: br000025
  article-title: Computational neuro-genetic modelling
– volume: 7
  start-page: 37
  year: 2009
  end-page: 53
  ident: br000170
  article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
– volume: 19
  start-page: 720
  year: 2008
  end-page: 729
  ident: br000085
  article-title: Applications of real-time fMRI
  publication-title: Nature Reviews Neuroscience
– volume: 105
  start-page: 3593
  year: 2008
  end-page: 3598
  ident: br000245
  article-title: Large-scale model of mammalian thalamocortical systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  year: 2004
  ident: br000035
  article-title: The evidence for neural information processing with precise spike-times: a survey
  publication-title: Natural Computing
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: br000180
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– reference: Florian, R. (2010). The chronotron: a neuron that learns to fire temporally-precise spike patterns. Available from Nature Precedings & lt;
– volume: 37
  start-page: 1335
  year: 2007
  end-page: 1344
  ident: br000485
  article-title: Assessment of information processing in working memory in applied settings: the paper and pencil memory scanning test
  publication-title: Psychological Medicine
– volume: 7
  start-page: 1
  year: 2011
  end-page: 19
  ident: br000055
  article-title: Generative embedding for model-based classification of fMRI data
  publication-title: PLoS Computational Biology
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: br000065
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
– volume: 23
  start-page: 349
  year: 2007
  end-page: 398
  ident: br000050
  article-title: Simulation of networks of spiking neurons: a review of tools and strategies
  publication-title: Journal of Computational Neuroscience
– volume: 18
  start-page: 245
  year: 2006
  end-page: 282
  ident: br000240
  article-title: Polychronization: computation with spikes
  publication-title: Neural Computation
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: br000350
  article-title: Learning to decode cognitive states from brain images
  publication-title: Machine Learning
– volume: 71
  start-page: 655
  year: 2008
  end-page: 666
  ident: br000490
  article-title: A behavior controller for mobile robot based on spiking neural networks
  publication-title: Neurocomputing
– volume: 94
  start-page: 5411
  year: 1997
  end-page: 5416
  ident: br000030
  article-title: The structure and precision of retinal spike trains
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  start-page: 120
  year: 2000
  end-page: 131
  ident: br000315
  article-title: Automated Talairach atlas labels for functional brain mapping
  publication-title: Human Brain Mapping
– year: 1996
  ident: br000255
  article-title: Foundations of neural networks, fuzzy systems and knowledge engineering
– reference: Emotiv (2013).
– volume: 7
  start-page: 952
  year: 2006
  end-page: 966
  ident: br000475
  article-title: Towards multimodal atlases of the human brain
  publication-title: Nature Reviews Neuroscience
– volume: vol. 7311
  start-page: 234
  year: 2012
  end-page: 260
  ident: br000275
  article-title: Evolving spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition
  publication-title: IEEE WCCI 2012
– reference: Craig, D.A., & Nguyen, H.T. (2007). Adaptive EEG thought pattern classifier for advanced wheelchair control. In
– start-page: 23
  year: 2001
  end-page: 48
  ident: br000145
  article-title: What’s different with spiking neurons?
  publication-title: Plausible neural networks for biological modelling
– volume: vol. 7063
  start-page: 160
  year: 2011
  end-page: 168
  ident: br000420
  article-title: A reservoir-based evolving spiking neural network for on-line spatio-temporal pattern learning and recognition
  publication-title: ICONIP
– volume: 7
  start-page: 153
  year: 2006
  end-page: 160
  ident: br000340
  article-title: The blue brain project
  publication-title: Nature Reviews Neuroscience
– volume: 95
  start-page: 519
  year: 2005
  end-page: 520
  ident: br000040
  article-title: Applications of spiking neural networks
  publication-title: Information Processing Letters
– volume: 46
  start-page: 64
  year: 2009
  end-page: 72
  ident: br000310
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system
  publication-title: NeuroImage
– year: 1991
  ident: br000005
  article-title: Corticonics
– volume: 22
  start-page: 1201
  year: 2009
  end-page: 1202
  ident: br000235
  article-title: Recent advances in brain–machine interfaces
  publication-title: Neural Networks
– volume: 27
  start-page: 1163
  year: 2009
  end-page: 1174
  ident: br000010
  article-title: Computational anatomy with the SPM software
  publication-title: Magnetic Resonance Imaging
– year: 2014
  ident: br000280
  publication-title: Springer handbook of bio-/neuroinformatics
– volume: 6
  start-page: 96
  year: 2012
  ident: br000400
  article-title: Frontiers in brain imaging methods grand challenge
  publication-title: Frontiers in Neuroscience
– volume: 489
  start-page: 391
  year: 2012
  end-page: 399
  ident: br000175
  article-title: An anatomically comprehensive atlas of the adult human brain transcriptome
  publication-title: Nature
– volume: 51
  start-page: 738
  year: 1995
  end-page: 758
  ident: br000140
  article-title: Time structure of the activity of neural network models
  publication-title: Physical Review
– volume: 25
  start-page: 1325
  year: 2005
  end-page: 1335
  ident: br000105
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: NeuroImage
– volume: 13
  start-page: 1218
  year: 2009
  end-page: 1232
  ident: br000090
  article-title: Quantum-inspired evolutionary algorithm: a multi-model EDA
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 819
  year: 2010
  end-page: 835
  ident: br000500
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Networks
– volume: 49
  start-page: 39
  year: 2012
  end-page: 41
  ident: br000130
  article-title: To build a brain
  publication-title: IEEE Spectrum
– volume: 13
  start-page: 113
  year: 1998
  end-page: 119
  ident: br000470
  article-title: Rank order coding
  publication-title: Computational Neuroscience: Trends in Research
– reference: Indiveri, G., Stefanini, F., & Chicca, E. (2010). Spike-based learning with a generalized integrate and fire silicon neuron. In
– start-page: 554
  year: 2012
  end-page: 560
  ident: br000100
  article-title: On-line spatiotemporal pattern recognition with evolving spiking neural networks utilizing address event representation, rank oder- and temporal spike learning
  publication-title: Proc. WCCI 2012
– volume: 107
  start-page: 3
  year: 2013
  end-page: 10
  ident: br000360
  article-title: Evolving spike pattern association neurons and neural networks
  publication-title: Neurocomputing
– reference: (pp. 1951–1954).
– volume: 23
  start-page: 16
  year: 2010
  end-page: 19
  ident: br000265
  article-title: To spike or not to spike: a probabilistic spiking neuron model
  publication-title: Neural Networks
– volume: 1
  start-page: 119
  year: 2009
  end-page: 127
  ident: br000220
  article-title: Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition
  publication-title: Cognitive Computation
– volume: vol. 6443
  start-page: 163
  year: 2010
  end-page: 170
  ident: br000440
  article-title: Towards spatio-temporal pattern recognition using evolving spiking neural networks
  publication-title: ICONIP
– volume: 22
  start-page: 467
  year: 2010
  end-page: 510
  ident: br000405
  article-title: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting
  publication-title: Neural Computation
– volume: 22
  year: 2012
  ident: br000335
  article-title: Analysis of absence seizure generation using EEG spatio-temporal regularity measures
  publication-title: International Journal of Neural Systems
– start-page: 1813
  year: 1993
  end-page: 1817
  ident: br000115
  article-title: 3D statistical neuroanatomical models from 305 MRI volumes
  publication-title: IEEE-Nuclear science symposium and medical imaging conference
– volume: 14
  start-page: 2531
  year: 2002
  end-page: 2560
  ident: br000330
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Computation
– year: 2007
  ident: br000260
  article-title: Evolving connectionist systems: the knowledge engineering approach
– volume: 307
  start-page: 44
  year: 2012
  end-page: 49
  ident: br000380
  article-title: Mind in motion
  publication-title: Scientific American
– volume: 2
  start-page: 149
  year: 1995
  end-page: 162
  ident: br000465
  article-title: Temporal encoding in nervous systems: a rigorous definition
  publication-title: Journal of Computational Neuroscience
– volume: 3
  start-page: 300
  year: 2011
  end-page: 3011
  ident: br000300
  article-title: Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease
  publication-title: IEEE Transactions on Autonomous Mental Development
– volume: 9
  start-page: 420
  year: 2006
  end-page: 428
  ident: br000160
  article-title: The Tempotron: a neuron that learns spike timing-based decisions
  publication-title: Nature Neuroscience
– volume: 6
  start-page: 1
  year: 2012
  end-page: 12
  ident: br000215
  article-title: Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity
  publication-title: Frontiers in Computational Neuroscience
– volume: 104
  start-page: 10240
  year: 2007
  end-page: 10245
  ident: br000200
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proceedings of the National Academy of Sciences
– volume: 78
  start-page: 1415
  year: 1990
  end-page: 1442
  ident: br000495
  article-title: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation
  publication-title: Proceedings of the IEEE
– reference: Delbruck, T. (2007). jAER open source project.
– volume: vol. 7062
  start-page: 451
  year: 2011
  end-page: 460
  ident: br000385
  article-title: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network
  publication-title: LNCS
– volume: 11
  start-page: 139
  year: 2010
  end-page: 145
  ident: br000510
  article-title: Centenary of Brodmann’s map—conception and fate
  publication-title: Nature Reviews Neuroscience
– volume: 41
  start-page: 188
  year: 2013
  end-page: 201
  ident: br000290
  article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
  publication-title: Neural Networks
– volume: vol. 7064
  start-page: 230
  year: 2011
  end-page: 239
  ident: br000295
  article-title: Evolving probabilistic spiking neural networks for spatio-temporal pattern recognition: a preliminary study on moving object recognition
  publication-title: LNCS
– volume: 483
  start-page: 397
  year: 2012
  ident: br000305
  publication-title: Nature
– volume: 75
  start-page: 1608
  year: 2010
  end-page: 1616
  ident: br000015
  article-title: Auckland stroke outcomes study
  publication-title: Neurology
– start-page: 2232
  year: 2010
  end-page: 2237
  ident: br000345
  article-title: Human activity detection using spiking neural networks regulated by a gene regulatory network
  publication-title: Proc. IJCNN
– volume: 22
  start-page: 1
  year: 2012
  end-page: 16
  ident: br000355
  article-title: SPAN: spike pattern association neuron for learning spatio-temporal sequences
  publication-title: International Journal of Neural Systems
– volume: 22
  start-page: 623
  year: 2009
  end-page: 632
  ident: br000415
  article-title: Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models
  publication-title: Neural Networks
– volume: 3
  start-page: 919
  year: 2000
  end-page: 926
  ident: br000445
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nature Neuroscience
– volume: 2
  start-page: 340
  year: 2010
  end-page: 354
  ident: br000020
  article-title: Artificial evolution in a cognitive architecture for real robots
  publication-title: IEEE Transactions on Autonomous Mental Development
– volume: 63
  start-page: 1162
  year: 2012
  end-page: 1170
  ident: br000060
  article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis
  publication-title: NeuroImage
– year: 1998
  ident: br000045
  article-title: Statistics and geometry of neuronal connectivity
– volume: 30
  start-page: 895
  year: 2005
  end-page: 908
  ident: br000410
  article-title: Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with
  publication-title: Neurochemical Research
– volume: 500
  start-page: 1
  year: 2011
  end-page: 42
  ident: br000505
  article-title: Kinetic models of gene expression including non-coding RNAs
  publication-title: Physics Reports
– year: 1988
  ident: br000460
  article-title: Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging
– volume: 2
  start-page: 202
  year: 2005
  end-page: 205
  ident: br000320
  article-title: A 64×64 AER logarithmic temporal derivative silicon retina
  publication-title: Research in Microelectronics and Electronics
– volume: 117
  start-page: 500
  year: 1952
  end-page: 544
  ident: br000195
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: Journal Physiology
– volume: 4
  start-page: 193
  year: 2007
  end-page: 206
  ident: br000135
  article-title: Neural systems engineering
  publication-title: Interface
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: br000480
  article-title: The human connectome project: a data acquisition perspective
  publication-title: NeuroImage
– volume: 20
  start-page: 481
  year: 2010
  end-page: 500
  ident: br000430
  article-title: On the probabilistic optimization of spiking neural networks
  publication-title: International Journal of Neural Systems
– volume: 287
  start-page: 251
  year: 2002
  end-page: 265
  ident: br000370
  article-title: Spiking neurons and the induction of finite state machines
  publication-title: Theoretical Computer Science
– reference: .
– volume: vol. 6443
  year: 2010
  ident: br000390
  article-title: Probabilistic evolving spiking neural network optimization using dynamic quantum inspired particle swarm optimization
  publication-title: LNCS
– volume: 478
  start-page: 483
  year: 2011
  end-page: 489
  ident: br000250
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
– volume: 29
  start-page: 802
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000205
  article-title: Dynamical consequences of lesions in cortical networks
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20579
– volume: 13
  start-page: 113
  year: 1998
  ident: 10.1016/j.neunet.2014.01.006_br000470
  article-title: Rank order coding
  publication-title: Computational Neuroscience: Trends in Research
  doi: 10.1016/S0079-6123(01)34028-1
– ident: 10.1016/j.neunet.2014.01.006_br000110
– year: 1988
  ident: 10.1016/j.neunet.2014.01.006_br000460
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000065
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2575
– volume: 105
  start-page: 3593
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000245
  article-title: Large-scale model of mammalian thalamocortical systems
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0712231105
– volume: 23
  start-page: 349
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000050
  article-title: Simulation of networks of spiking neurons: a review of tools and strategies
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-007-0038-6
– volume: 23
  start-page: 819
  issue: 7
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000500
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.04.009
– year: 1991
  ident: 10.1016/j.neunet.2014.01.006_br000005
– volume: 6
  start-page: e1000879
  issue: 8
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000455
  article-title: Spike-timing theory of working memory
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000879
– volume: 30
  start-page: 895
  year: 2005
  ident: 10.1016/j.neunet.2014.01.006_br000410
  article-title: Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with β-amyloid, inflammation and neurotrophin signalling
  publication-title: Neurochemical Research
  doi: 10.1007/s11064-005-6962-9
– start-page: 446
  year: 2005
  ident: 10.1016/j.neunet.2014.01.006_br000285
  article-title: A computational neurogenetic model of a spiking neuron
– volume: 307
  start-page: 44
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000380
  article-title: Mind in motion
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0912-58
– volume: 27
  start-page: 1163
  issue: 8
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000010
  article-title: Computational anatomy with the SPM software
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2009.01.006
– start-page: 554
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000100
  article-title: On-line spatiotemporal pattern recognition with evolving spiking neural networks utilizing address event representation, rank oder- and temporal spike learning
– volume: 22
  start-page: 467
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000405
  article-title: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.11-08-901
– start-page: 2232
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000345
  article-title: Human activity detection using spiking neural networks regulated by a gene regulatory network
– volume: 7
  start-page: 37
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000170
  article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 117
  start-page: 500
  year: 1952
  ident: 10.1016/j.neunet.2014.01.006_br000195
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: Journal Physiology
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 4
  start-page: R1
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000325
  article-title: Review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/4/2/R01
– volume: 3
  start-page: 919
  year: 2000
  ident: 10.1016/j.neunet.2014.01.006_br000445
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nature Neuroscience
  doi: 10.1038/78829
– volume: 2
  start-page: 340
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000020
  article-title: Artificial evolution in a cognitive architecture for real robots
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2010.2086453
– volume: vol. 7311
  start-page: 234
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000275
  article-title: Evolving spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition
– volume: 28
  start-page: 5040
  issue: 19
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000165
  article-title: Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5059-07.2008
– volume: 4
  start-page: 193
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000135
  article-title: Neural systems engineering
  publication-title: Interface
– volume: 500
  start-page: 1
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000505
  article-title: Kinetic models of gene expression including non-coding RNAs
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2010.12.002
– volume: 72
  start-page: 404
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000180
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 41
  start-page: 188
  year: 2013
  ident: 10.1016/j.neunet.2014.01.006_br000290
  article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.11.014
– volume: 2
  start-page: 202
  year: 2005
  ident: 10.1016/j.neunet.2014.01.006_br000320
  article-title: A 64×64 AER logarithmic temporal derivative silicon retina
  publication-title: Research in Microelectronics and Electronics
– volume: 18
  start-page: 2374
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000075
  article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhn003
– volume: 22
  start-page: 623
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000415
  article-title: Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.06.038
– volume: 78
  start-page: 1415
  issue: 9
  year: 1990
  ident: 10.1016/j.neunet.2014.01.006_br000495
  article-title: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58323
– volume: 478
  start-page: 483
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000250
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
  doi: 10.1038/nature10523
– volume: vol. 7063
  start-page: 160
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000420
  article-title: A reservoir-based evolving spiking neural network for on-line spatio-temporal pattern learning and recognition
– volume: 14
  start-page: 187
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000155
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-2007-14301
– volume: 10
  start-page: 120
  year: 2000
  ident: 10.1016/j.neunet.2014.01.006_br000315
  article-title: Automated Talairach atlas labels for functional brain mapping
  publication-title: Human Brain Mapping
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– volume: 46
  start-page: 64
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000310
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.006
– volume: 7
  start-page: 1
  issue: 6
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000055
  article-title: Generative embedding for model-based classification of fMRI data
  publication-title: PLoS Computational Biology
– volume: 75
  start-page: 1608
  issue: 18
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000015
  article-title: Auckland stroke outcomes study
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181fb44c8
– volume: 2
  start-page: 149
  issue: 2
  year: 1995
  ident: 10.1016/j.neunet.2014.01.006_br000465
  article-title: Temporal encoding in nervous systems: a rigorous definition
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/BF00961885
– volume: 49
  start-page: 39
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000130
  article-title: To build a brain
  publication-title: IEEE Spectrum
  doi: 10.1109/MSPEC.2012.6247562
– volume: 6
  start-page: 96
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000400
  article-title: Frontiers in brain imaging methods grand challenge
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00096
– volume: 22
  start-page: 1
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000355
  article-title: SPAN: spike pattern association neuron for learning spatio-temporal sequences
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065712500128
– volume: 355
  start-page: 25
  year: 2004
  ident: 10.1016/j.neunet.2014.01.006_br000450
  article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network?
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2003.10.063
– start-page: 290
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000025
– year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000260
– volume: 6
  start-page: 1
  issue: 84
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000215
  article-title: Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity
  publication-title: Frontiers in Computational Neuroscience
– volume: 23
  start-page: 16
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000265
  article-title: To spike or not to spike: a probabilistic spiking neuron model
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.08.010
– volume: 34
  start-page: 258
  issue: 5
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000190
  article-title: Routes, destinations and delays: recent advances in AMPA receptor trafficking
  publication-title: Trends in Neurosciences
  doi: 10.1016/j.tins.2011.02.004
– ident: 10.1016/j.neunet.2014.01.006_br000080
  doi: 10.1109/IEMBS.2007.4352847
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: 10.1016/j.neunet.2014.01.006_br000330
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Computation
  doi: 10.1162/089976602760407955
– start-page: 3156
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000435
  article-title: Are probabilistic spiking neural networks suitable for reservoir computing?
– volume: vol. 7552
  start-page: 653
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000120
  article-title: Integrating neural networks and chaotic measurements for modelling epileptic brain
– volume: 79
  start-page: 2554
  year: 1982
  ident: 10.1016/j.neunet.2014.01.006_br000210
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.79.8.2554
– volume: 95
  start-page: 519
  issue: 6
  year: 2005
  ident: 10.1016/j.neunet.2014.01.006_br000040
  article-title: Applications of spiking neural networks
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2005.05.018
– ident: 10.1016/j.neunet.2014.01.006_br000095
– volume: 287
  start-page: 251
  year: 2002
  ident: 10.1016/j.neunet.2014.01.006_br000370
  article-title: Spiking neurons and the induction of finite state machines
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(02)00099-3
– start-page: 1813
  year: 1993
  ident: 10.1016/j.neunet.2014.01.006_br000115
  article-title: 3D statistical neuroanatomical models from 305 MRI volumes
– volume: 19
  start-page: 720
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000085
  article-title: Applications of real-time fMRI
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2414
– volume: vol. 7477
  start-page: 225
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000270
  article-title: NeuroCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals
– volume: 3
  year: 2004
  ident: 10.1016/j.neunet.2014.01.006_br000035
  article-title: The evidence for neural information processing with precise spike-times: a survey
  publication-title: Natural Computing
  doi: 10.1023/B:NACO.0000027755.02868.60
– volume: 20
  start-page: 481
  issue: 6
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000430
  article-title: On the probabilistic optimization of spiking neural networks
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065710002565
– volume: 13
  start-page: 1218
  issue: 6
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000090
  article-title: Quantum-inspired evolutionary algorithm: a multi-model EDA
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.2003010
– volume: vol. 7062
  start-page: 451
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000385
  article-title: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network
– volume: 338
  start-page: 60
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000150
  article-title: Theory and simulation in neuroscience
  publication-title: Science
  doi: 10.1126/science.1227356
– volume: 25
  start-page: 1325
  year: 2005
  ident: 10.1016/j.neunet.2014.01.006_br000105
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 14
  start-page: 1186
  issue: 7
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000365
  article-title: Multivariate, multi-scale permutation entropy for complexity analysis of AD EEG
  publication-title: Entropy
  doi: 10.3390/e14071186
– volume: 9
  start-page: 420
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2014.01.006_br000160
  article-title: The Tempotron: a neuron that learns spike timing-based decisions
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1643
– volume: vol. 7064
  start-page: 230
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000295
  article-title: Evolving probabilistic spiking neural networks for spatio-temporal pattern recognition: a preliminary study on moving object recognition
– volume: vol. 5506
  start-page: 56
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000070
  article-title: Real-time epileptic seizure detection on intra-cranial rat data using reservoircomputing
– volume: 23
  start-page: 2457
  issue: 10
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000375
  article-title: A systematic method for configuring VLSI networks of spiking neurons
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00182
– volume: 37
  start-page: 1335
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000485
  article-title: Assessment of information processing in working memory in applied settings: the paper and pencil memory scanning test
  publication-title: Psychological Medicine
  doi: 10.1017/S0033291707000360
– volume: 489
  start-page: 391
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000175
  article-title: An anatomically comprehensive atlas of the adult human brain transcriptome
  publication-title: Nature
  doi: 10.1038/nature11405
– start-page: 23
  year: 2001
  ident: 10.1016/j.neunet.2014.01.006_br000145
  article-title: What’s different with spiking neurons?
– volume: 18
  start-page: 245
  year: 2006
  ident: 10.1016/j.neunet.2014.01.006_br000240
  article-title: Polychronization: computation with spikes
  publication-title: Neural Computation
  doi: 10.1162/089976606775093882
– volume: 483
  start-page: 397
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000305
  publication-title: Nature
  doi: 10.1038/483397a
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000480
  article-title: The human connectome project: a data acquisition perspective
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: 10.1016/j.neunet.2014.01.006_br000125
– volume: vol. 6443
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000390
  article-title: Probabilistic evolving spiking neural network optimization using dynamic quantum inspired particle swarm optimization
– volume: 5
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000225
  article-title: Neuromorphic silicon neuron circuits
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2011.00073
– volume: 3
  start-page: 300
  issue: 4
  year: 2011
  ident: 10.1016/j.neunet.2014.01.006_br000300
  article-title: Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2011.2159839
– volume: 7
  start-page: 952
  year: 2006
  ident: 10.1016/j.neunet.2014.01.006_br000475
  article-title: Towards multimodal atlases of the human brain
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2012
– year: 1997
  ident: 10.1016/j.neunet.2014.01.006_br000395
– volume: 63
  start-page: 1162
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000060
  article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.035
– volume: 11
  start-page: 139
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000510
  article-title: Centenary of Brodmann’s map—conception and fate
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2776
– volume: 22
  start-page: 1201
  issue: 9
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000235
  article-title: Recent advances in brain–machine interfaces
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.10.003
– volume: 7
  start-page: 153
  year: 2006
  ident: 10.1016/j.neunet.2014.01.006_br000340
  article-title: The blue brain project
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1848
– year: 2014
  ident: 10.1016/j.neunet.2014.01.006_br000280
– volume: 22
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2014.01.006_br000335
  article-title: Analysis of absence seizure generation using EEG spatio-temporal regularity measures
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065712500244
– volume: 1
  start-page: 119
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2014.01.006_br000220
  article-title: Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-008-9003-6
– volume: 57
  start-page: 145
  year: 2004
  ident: 10.1016/j.neunet.2014.01.006_br000350
  article-title: Learning to decode cognitive states from brain images
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 107
  start-page: 3
  year: 2013
  ident: 10.1016/j.neunet.2014.01.006_br000360
  article-title: Evolving spike pattern association neurons and neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.034
– volume: vol. 6443
  start-page: 163
  year: 2010
  ident: 10.1016/j.neunet.2014.01.006_br000440
  article-title: Towards spatio-temporal pattern recognition using evolving spiking neural networks
– volume: 71
  start-page: 655
  issue: 4–6
  year: 2008
  ident: 10.1016/j.neunet.2014.01.006_br000490
  article-title: A behavior controller for mobile robot based on spiking neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.08.025
– volume: 94
  start-page: 5411
  issue: 10
  year: 1997
  ident: 10.1016/j.neunet.2014.01.006_br000030
  article-title: The structure and precision of retinal spike trains
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.94.10.5411
– ident: 10.1016/j.neunet.2014.01.006_br000230
  doi: 10.1109/ISCAS.2010.5536980
– volume: 4
  start-page: 87
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2014.01.006_br000425
  article-title: Evolving spiking neural networks: a survey
  publication-title: Evolving Systems
  doi: 10.1007/s12530-013-9074-9
– volume: 51
  start-page: 738
  year: 1995
  ident: 10.1016/j.neunet.2014.01.006_br000140
  article-title: Time structure of the activity of neural network models
  publication-title: Physical Review
– volume: 104
  start-page: 10240
  year: 2007
  ident: 10.1016/j.neunet.2014.01.006_br000200
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0701519104
– year: 1998
  ident: 10.1016/j.neunet.2014.01.006_br000045
– year: 1949
  ident: 10.1016/j.neunet.2014.01.006_br000185
– year: 1996
  ident: 10.1016/j.neunet.2014.01.006_br000255
SSID ssj0006843
Score 2.570268
SecondaryResourceType review_article
Snippet The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Action Potentials
Animals
Applied sciences
Artificial intelligence
Associative memory
Biological and medical sciences
Brain
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Central nervous system
Computation
Computational neuro-genetic modeling
Computer science; control theory; systems
Connectionism. Neural networks
Data mining
Data processing. List processing. Character string processing
EEG
Electrophysiology
Exact sciences and technology
Finite automata for spatio-temporal data
FMRI
Fundamental and applied biological sciences. Psychology
Gene regulatory networks
Genes
Humans
Learning
Mathematical models
Memory organisation. Data processing
Models, Neurological
Molecular and cellular biology
Molecular genetics
Neural networks
Neural Networks (Computer)
Neural Pathways - anatomy & histology
Neural Pathways - physiology
Neurogenetic data
Neurons - physiology
Pattern recognition
Software
Spatio-temporal brain data
Spiking
Spiking neural networks
Stimuli
Time
Transcription. Transcription factor. Splicing. Rna processing
Vertebrates: nervous system and sense organs
Title NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
URI https://dx.doi.org/10.1016/j.neunet.2014.01.006
https://www.ncbi.nlm.nih.gov/pubmed/24508754
https://www.proquest.com/docview/1504149971
https://www.proquest.com/docview/1520378017
https://www.proquest.com/docview/1671568861
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvRRK34_0sajQY9W1rZfd27I0bFu6lzaQm7BeYUPqXbrra357Ziw5D2gT6NFmJEuakeaT9WmGkA9BcluoULLIeWTCSsGaCPMKvJ-IwSqwKTzR_bFUiyPx7Vge75H5eBcGaZV57U9r-rBa5zfTPJrTzWo1_VmAq1UFRj8ZzuNw3y6ERiv_dH5F81B1Ys6BMEPp8frcwPHqQt8FZFSWYgjeiXmP_u6eHmzaLQxaTNku_g1HB7d0-Jg8zHiSzlKTn5C90D0lj8ZcDTRP3Wdktwz9vLfhM53R7WaFP8gpxrKEsl1igtPrZwoUsCz93WLwhpOPNKeWOKFt52l__ToMXUeoDrXLcpCrM2ox6wRF6ulzcnT45dd8wXLGBeZkJXYsNN6Xtqh85ZsmWN00MXguMCqZdYJb55RzMWrXaoBmPkouEULUrap8jDLyF2S_W3fhFaFSN3XhLMAf64VuhQ1VVDwqqLCU1pcHhI8DbVwOR45ZMc7MyDs7NUk9BtVjitKAeg4Iuyy1SeE47pDXow7NDbMy4DHuKDm5ofLLzwEeQ4wDHXg_2oCBKYnnLG0X1v3WAMYWsPFs9K0yVcE1GK--RUZp2F3XtYJ6XiYju2qFkJiLQLz-7w6-IffxKbGQ3pL93Z8-vAOAtbOTYQZNyL3Z1--L5QU-XieX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYBU8YaWRzES3Eg3iV8JEoeqUG1puxdaqTcTx3a1VZtdsRtVvfCn-IPMxE4fErQSUq-J7die8czn-PMMIe-dYCaVLks8Yz7hRvCk9LCuwPtx74wEncIT3d2RHO7zbwfiYIH87u_CIK0y2v5g0ztrHZ8M4mwOpuPx4HsKrlamGP2kO49LI7Ny252dwr5t9nnrCwj5Q55vft3bGCYxtUBSi5zPE1dam5k0t7ktS2dUWXpnGcfwW6bmzNS1rGvvVV0pwCDWCybQVxaVzK33wjNo9w65y8FcYNqEtV8XvBJZBKoe9C7B7vX39TpSWePaxiGFM-NdtFBMtPR3f7g0rWYgJR_Sa_wb_3Z-cPMReRABLF0Pc_SYLLjmCXnYJ4eg0VY8JfORazda4z7RdTqbjvGPPMXgmVC3CdRzevkQgwJ4picVRos4_EhjLotDWjWWtpfv39CJh-ZQnZIYVeuYGkxzQZHr-ozs34ocnpPFZtK4ZUKFKou0NoC3jOWq4sblXjIvocFMGJutENZPtK5j_HNMw3Gse6LbkQ7i0SgenWYaxLNCkvNa0xD_44byqpehvqLHGlzUDTVXr4j8_HMAABFUwQDe9TqgwQbgwU7VuEk70wDqOex0S3VtmTxlClaLuqaMVLCdLwoJ7bwISnbRCy4w-QF_-d8DfEvuDfd2d_TO1mj7FbmPbwIF6jVZnP9s3RtAd3Oz2q0mSn7c9vL9A79GZRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NeuCube%3A+A+spiking+neural+network+architecture+for+mapping%2C+learning+and+understanding+of+spatio-temporal+brain+data&rft.jtitle=Neural+networks&rft.au=KASABOV%2C+Nikola+K&rft.date=2014-04-01&rft.pub=Elsevier&rft.issn=0893-6080&rft.volume=52&rft.spage=62&rft.epage=76&rft_id=info:doi/10.1016%2Fj.neunet.2014.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=28318531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon