MYC protein stability is negatively regulated by BRD4
The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 24; pp. 13457 - 13467 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
16.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC. We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation. |
---|---|
AbstractList | The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC. We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation. The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC . We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation. Dysregulation of MYC protein levels is associated with most human cancers. MYC is regulated by both transcription and protein stability. BRD4, a driver of oncogenesis that activates Myc transcription, is being investigated as a therapeutic target in MYC-driven cancers. We report that BRD4 directly destabilizes MYC protein by phosphorylating it at a site leading to ubiquitination and degradation, thereby maintaining homeostatic levels of MYC protein. While JQ1, an inhibitor which releases BRD4 from chromatin and reduces MYC transcription has no effect on MYC protein stability, MZ1, which degrades BRD4 has the paradoxical effect of decreasing MYC transcription but increasing MYC stability. Our findings demonstrating BRD4-mediated MYC degradation are likely to have significant translational implications. The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC . We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation. The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation. |
Author | Uppal, Sheetal Devaiah, Ballachanda N. Mu, Jie Singer, Dinah S. Akman, Ben Levens, David Cheng, Dan Nie, Zuqin Weissman, Jocelyn D. Baranello, Laura |
Author_xml | – sequence: 1 givenname: Ballachanda N. surname: Devaiah fullname: Devaiah, Ballachanda N. – sequence: 2 givenname: Jie surname: Mu fullname: Mu, Jie – sequence: 3 givenname: Ben surname: Akman fullname: Akman, Ben – sequence: 4 givenname: Sheetal surname: Uppal fullname: Uppal, Sheetal – sequence: 5 givenname: Jocelyn D. surname: Weissman fullname: Weissman, Jocelyn D. – sequence: 6 givenname: Dan surname: Cheng fullname: Cheng, Dan – sequence: 7 givenname: Laura surname: Baranello fullname: Baranello, Laura – sequence: 8 givenname: Zuqin surname: Nie fullname: Nie, Zuqin – sequence: 9 givenname: David surname: Levens fullname: Levens, David – sequence: 10 givenname: Dinah S. surname: Singer fullname: Singer, Dinah S. |
BackLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:144197845$$DView record from Swedish Publication Index |
BookMark | eNp1kc1rFDEYxoNU7LZ69iQMePEybT7efF0EXVstVATRg6eQmcmuWWeTbZKp7H_fLLu2tOApIe_veZI8zwk6CjE4hF4TfEawZOebYPMZ0URzLAmRz9CMYE1aARofoRnGVLYKKByjk5xXGGPNFX6BjhkFRZVQM8S__po3mxSL86HJxXZ-9GXb-NwEt7TF37px2yS3nEZb3NB02-bj90_wEj1f2DG7V4f1FP28vPgx_9Jef_t8Nf9w3facQmmdEGzBZYeVVlJaLqjQapBWd119LQPg1hLtgA3AWeespFTrgXMtWN_33YKdonbvm_-6zdSZTfJrm7YmWm8OR3_qzhmQWAGp_Ps9XydrN_QulGTHR7LHk-B_m2W8NZJhIUFXg3cHgxRvJpeLWfvcu3G0wcUpGwpYKQpcQEXfPkFXcUqhxlEpAhgE8B3F91SfYs7JLUzvS8017u73oyHY7Io0uyLNQ5FVd_5E9-8T_1e82StWucR0j9fIhYKa6B38I6n9 |
CitedBy_id | crossref_primary_10_3389_fgene_2022_1085391 crossref_primary_10_1021_acs_jmedchem_0c01487 crossref_primary_10_1016_j_nantod_2024_102521 crossref_primary_10_1016_j_heliyon_2021_e08702 crossref_primary_10_1016_j_jbc_2024_108030 crossref_primary_10_3390_cancers15133389 crossref_primary_10_1016_j_tcb_2022_07_006 crossref_primary_10_3389_fendo_2022_972312 crossref_primary_10_1038_s41556_024_01349_3 crossref_primary_10_2174_1573394719666230720164009 crossref_primary_10_1186_s12943_021_01424_5 crossref_primary_10_1016_j_ejmech_2023_115982 crossref_primary_10_31857_S0131164622601014 crossref_primary_10_3390_ijms241310831 crossref_primary_10_1016_j_ebiom_2021_103756 crossref_primary_10_1016_j_gendis_2021_02_002 crossref_primary_10_1016_j_jep_2024_119145 crossref_primary_10_3390_cells12131745 crossref_primary_10_1016_j_canlet_2021_12_021 crossref_primary_10_1016_j_freeradbiomed_2023_09_006 crossref_primary_10_1186_s13045_022_01249_9 crossref_primary_10_3390_ijms22147761 crossref_primary_10_3389_fmolb_2021_728777 crossref_primary_10_1016_j_gene_2024_149016 crossref_primary_10_7554_eLife_82597 crossref_primary_10_1002_ctm2_1153 crossref_primary_10_1016_j_bbadis_2021_166267 crossref_primary_10_1186_s13046_024_03217_2 crossref_primary_10_1002_jmv_29294 crossref_primary_10_3390_ijms25063156 crossref_primary_10_1038_s41598_024_74206_w crossref_primary_10_1016_j_molcel_2024_09_030 crossref_primary_10_1371_journal_ppat_1011089 crossref_primary_10_3390_ijms24054746 crossref_primary_10_1016_j_gendis_2022_03_004 crossref_primary_10_1016_j_tips_2020_08_008 crossref_primary_10_3389_fcell_2023_1268275 crossref_primary_10_1186_s13046_024_03224_3 crossref_primary_10_3389_fimmu_2024_1324045 crossref_primary_10_1080_13543784_2023_2186851 crossref_primary_10_3390_ijms26051973 crossref_primary_10_1016_j_celrep_2024_114431 crossref_primary_10_1016_j_phrs_2023_106767 crossref_primary_10_1007_s00894_022_05082_2 crossref_primary_10_1111_febs_16580 crossref_primary_10_3389_fonc_2022_847701 crossref_primary_10_1038_s41420_021_00622_w crossref_primary_10_1080_14728222_2024_2443577 crossref_primary_10_3390_ijms21249486 crossref_primary_10_1016_j_prp_2023_155037 crossref_primary_10_2174_0115680096272757231211113206 crossref_primary_10_1002_advs_202303904 crossref_primary_10_1172_JCI133090 crossref_primary_10_1186_s12964_024_01553_6 crossref_primary_10_1002_adma_202412837 crossref_primary_10_1134_S036211972360011X crossref_primary_10_1186_s12943_022_01707_5 crossref_primary_10_1158_0008_5472_CAN_21_0649 crossref_primary_10_1111_febs_16057 crossref_primary_10_1016_j_jbc_2021_101326 crossref_primary_10_1016_j_jhazmat_2021_127911 crossref_primary_10_1155_2021_7228584 crossref_primary_10_1016_j_bbrc_2020_06_142 crossref_primary_10_1038_s41388_022_02327_5 crossref_primary_10_1007_s12672_024_01173_z crossref_primary_10_1186_s12964_022_00868_6 crossref_primary_10_1021_acs_jmedchem_4c01933 crossref_primary_10_1016_j_cclet_2023_108433 crossref_primary_10_1155_2022_8027987 crossref_primary_10_1186_s13045_021_01111_4 crossref_primary_10_3390_ijms24044217 crossref_primary_10_1002_tox_23939 crossref_primary_10_1038_s41592_024_02586_y crossref_primary_10_3390_ijms232012290 crossref_primary_10_1155_2022_9635674 crossref_primary_10_1002_biof_2158 crossref_primary_10_1080_13543776_2024_2400166 crossref_primary_10_1021_acs_jmedchem_3c01423 crossref_primary_10_1158_1541_7786_MCR_21_0560 crossref_primary_10_1016_j_ajpath_2022_06_010 crossref_primary_10_1021_acsmedchemlett_2c00300 crossref_primary_10_3390_lymphatics1020010 crossref_primary_10_1172_jci_insight_146351 crossref_primary_10_14336_AD_2023_0520 crossref_primary_10_1016_j_ejmech_2025_117381 crossref_primary_10_1002_advs_202502416 crossref_primary_10_1002_bies_202100180 crossref_primary_10_1097_MD_0000000000038029 crossref_primary_10_3390_ijms25020944 crossref_primary_10_1016_j_xgen_2024_100651 crossref_primary_10_1016_j_ejmech_2022_114116 crossref_primary_10_3748_wjg_v31_i11_103449 crossref_primary_10_1172_jci_insight_164947 crossref_primary_10_1021_acs_jmedchem_1c01382 crossref_primary_10_18632_aging_205739 crossref_primary_10_1021_acs_jmedchem_2c01770 crossref_primary_10_1007_s11172_022_3659_z crossref_primary_10_1186_s12951_022_01740_y crossref_primary_10_1038_s41698_024_00792_7 crossref_primary_10_1038_s42003_025_07519_9 crossref_primary_10_1158_2159_8290_CD_23_0601 crossref_primary_10_3390_ijms24010013 crossref_primary_10_1007_s10549_024_07403_w crossref_primary_10_1016_j_bmc_2022_117152 crossref_primary_10_3390_v16071096 |
Cites_doi | 10.1101/gad.2053311 10.1016/j.pharmthera.2014.11.016 10.1101/cshperspect.a014365 10.1016/j.cell.2013.07.013 10.1016/j.cell.2013.03.036 10.1016/j.cell.2012.08.033 10.1073/pnas.1120422109 10.1074/jbc.M112.412015 10.1038/nature08822 10.1016/j.cell.2016.02.036 10.1074/jbc.R700001200 10.1101/cshperspect.a014357 10.1038/s41591-018-0158-8 10.1073/pnas.0900121106 10.1073/pnas.050586197 10.1189/jlb.2RI0616-250R 10.1038/sj.emboj.7600217 10.1038/nrm1703 10.1038/nature10334 10.1128/MCB.20.2.556-562.2000 10.1038/nsmb.3228 10.1016/j.molcel.2012.12.006 10.1073/pnas.81.22.7046 10.1016/j.cell.2012.03.003 10.1016/S0021-9258(18)35834-4 10.1007/s11684-018-0650-z 10.1016/j.molcel.2005.06.029 10.1128/MCB.25.23.10220-10234.2005 10.1016/j.bbagrm.2014.03.013 10.1016/j.molcel.2019.02.031 10.1111/febs.14660 10.1101/gad.836800 10.1073/pnas.0402770101 10.1038/ncb2341 10.1016/j.cell.2012.08.026 10.1016/j.cell.2010.03.030 10.1128/MCB.01180-12 10.1101/gad.1712408 10.1074/jbc.M310722200 10.1091/mbc.e09-05-0380 10.1016/j.molcel.2018.09.031 10.1016/j.bbagrm.2014.12.006 10.1016/j.molcel.2015.11.007 10.1128/JVI.01208-07 10.1073/pnas.1108190108 10.1016/j.cell.2011.08.017 10.1016/j.celrep.2015.07.003 10.1073/pnas.1433065100 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 16, 2020 Copyright © 2020 the Author(s). Published by PNAS. Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 16, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTPV AOWAS |
DOI | 10.1073/pnas.1919507117 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 13467 |
ExternalDocumentID | oai_swepub_ki_se_470841 PMC7306749 10_1073_pnas_1919507117 26968496 |
GrantInformation_xml | – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: ZIA BC 011381 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTPV ADULT ADXHL AFHIN AFQQW AOWAS AS~ EJD HGD HQ3 HTVGU MVM NEJ NHB P-O VOH WHG ZCG |
ID | FETCH-LOGICAL-c524t-e663f57b089877a562698d7a9bb7113445aa19e43d453bea72299d55963cccbf3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Mon Aug 25 03:33:46 EDT 2025 Thu Aug 21 18:32:23 EDT 2025 Fri Jul 11 05:32:43 EDT 2025 Mon Jun 30 10:03:04 EDT 2025 Tue Jul 01 03:40:23 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Thu May 29 09:12:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c524t-e663f57b089877a562698d7a9bb7113445aa19e43d453bea72299d55963cccbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved April 30, 2020 (received for review November 6, 2019) Author contributions: B.N.D. and D.S.S. designed research; B.N.D., J.M., B.A., S.U., and J.D.W. performed research; D.C., L.B., and Z.N. contributed new reagents/analytic tools; B.N.D., D.L., and D.S.S. analyzed data; and B.N.D. and D.S.S. wrote the paper. |
ORCID | 0000-0001-9885-3826 0000-0002-2627-2536 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7306749 |
PMID | 32482868 |
PQID | 2414046454 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_470841 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7306749 proquest_miscellaneous_2408824564 proquest_journals_2414046454 crossref_citationtrail_10_1073_pnas_1919507117 crossref_primary_10_1073_pnas_1919507117 jstor_primary_26968496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-16 |
PublicationDateYYYYMMDD | 2020-06-16 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Welcker M. (e_1_3_4_21_2) 2004; 101 Sammak S. (e_1_3_4_12_2) 2018; 285 Hermeking H. (e_1_3_4_40_2) 2000; 97 Devaiah B. N. (e_1_3_4_29_2) 2012; 287 von Eyss B. (e_1_3_4_7_2) 2011; 25 Zanconato F. (e_1_3_4_41_2) 2018; 24 Yang Z. (e_1_3_4_28_2) 2005; 19 Mertz J. A. (e_1_3_4_33_2) 2011; 108 Rahl P. B. (e_1_3_4_8_2) 2010; 141 Myant K. (e_1_3_4_37_2) 2015; 12 Lovén J. (e_1_3_4_47_2) 2013; 153 Conacci-Sorrell M. (e_1_3_4_35_2) 2014; 4 Bretones G. (e_1_3_4_4_2) 2015; 1849 Wu S. Y. (e_1_3_4_25_2) 2007; 282 Jiang G. (e_1_3_4_14_2) 2007; 81 Sears R. (e_1_3_4_20_2) 2000; 14 Liu J. (e_1_3_4_16_2) 2006; 302 Devaiah B. N. (e_1_3_4_36_2) 2016; 100 Hydbring P. (e_1_3_4_22_2) 2010; 107 Carroll P. A. (e_1_3_4_5_2) 2018; 12 Jaenicke L. A. (e_1_3_4_9_2) 2016; 61 Beroukhim R. (e_1_3_4_24_2) 2010; 463 Adhikary S. (e_1_3_4_18_2) 2005; 6 Seth A. (e_1_3_4_43_2) 1992; 267 Dani C. (e_1_3_4_17_2) 1984; 81 Kalkat M. (e_1_3_4_11_2) 2018; 72 Majello B. (e_1_3_4_6_2) 2015; 1849 e_1_3_4_38_2 Gregory M. A. (e_1_3_4_45_2) 2003; 278 Yada M. (e_1_3_4_39_2) 2004; 23 Baluapuri A. (e_1_3_4_10_2) 2019; 74 McMahon S. B. (e_1_3_4_13_2) 2000; 20 Faiola F. (e_1_3_4_42_2) 2005; 25 Dang C. V. (e_1_3_4_23_2) 2012; 149 Delmore J. E. (e_1_3_4_32_2) 2011; 146 Nie Z. (e_1_3_4_2_2) 2012; 151 Devaiah B. N. (e_1_3_4_15_2) 2016; 23 Dey A. (e_1_3_4_44_2) 2003; 100 Eilers M. (e_1_3_4_1_2) 2008; 22 Lin C. Y. (e_1_3_4_3_2) 2012; 151 Patel M. C. (e_1_3_4_50_2) 2013; 33 Baranello L. (e_1_3_4_27_2) 2016; 165 Zuber J. (e_1_3_4_48_2) 2011; 478 Wu S. Y. (e_1_3_4_34_2) 2013; 49 Farrell A. S. (e_1_3_4_19_2) 2014; 4 Zhao R. (e_1_3_4_31_2) 2011; 13 Anand P. (e_1_3_4_49_2) 2013; 154 Dey A. (e_1_3_4_30_2) 2009; 20 Devaiah B. N. (e_1_3_4_26_2) 2012; 109 Beurel E. (e_1_3_4_46_2) 2015; 148 |
References_xml | – volume: 25 start-page: 895 year: 2011 ident: e_1_3_4_7_2 article-title: Addicted to Myc–But why? publication-title: Genes Dev. doi: 10.1101/gad.2053311 – volume: 148 start-page: 114 year: 2015 ident: e_1_3_4_46_2 article-title: Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2014.11.016 – volume: 4 start-page: a014365 year: 2014 ident: e_1_3_4_19_2 article-title: MYC degradation publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a014365 – volume: 154 start-page: 569 year: 2013 ident: e_1_3_4_49_2 article-title: BET bromodomains mediate transcriptional pause release in heart failure publication-title: Cell doi: 10.1016/j.cell.2013.07.013 – volume: 153 start-page: 320 year: 2013 ident: e_1_3_4_47_2 article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers publication-title: Cell doi: 10.1016/j.cell.2013.03.036 – volume: 151 start-page: 68 year: 2012 ident: e_1_3_4_2_2 article-title: c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2012.08.033 – volume: 109 start-page: 6927 year: 2012 ident: e_1_3_4_26_2 article-title: BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1120422109 – volume: 287 start-page: 38755 year: 2012 ident: e_1_3_4_29_2 article-title: Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.412015 – volume: 463 start-page: 899 year: 2010 ident: e_1_3_4_24_2 article-title: The landscape of somatic copy-number alteration across human cancers publication-title: Nature doi: 10.1038/nature08822 – volume: 165 start-page: 357 year: 2016 ident: e_1_3_4_27_2 article-title: RNA polymerase II regulates Topoisomerase 1 activity to favor efficient transcription publication-title: Cell doi: 10.1016/j.cell.2016.02.036 – volume: 282 start-page: 13141 year: 2007 ident: e_1_3_4_25_2 article-title: The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700001200 – volume: 4 start-page: a014357 year: 2014 ident: e_1_3_4_35_2 article-title: An overview of MYC and its interactome publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a014357 – volume: 24 start-page: 1599 year: 2018 ident: e_1_3_4_41_2 article-title: Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4 publication-title: Nat. Med. doi: 10.1038/s41591-018-0158-8 – volume: 107 start-page: 58 year: 2010 ident: e_1_3_4_22_2 article-title: Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0900121106 – volume: 97 start-page: 2229 year: 2000 ident: e_1_3_4_40_2 article-title: Identification of CDK4 as a target of c-MYC publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.050586197 – volume: 100 start-page: 679 year: 2016 ident: e_1_3_4_36_2 article-title: Bromodomain 4: A cellular Swiss army knife publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.2RI0616-250R – volume: 23 start-page: 2116 year: 2004 ident: e_1_3_4_39_2 article-title: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600217 – volume: 6 start-page: 635 year: 2005 ident: e_1_3_4_18_2 article-title: Transcriptional regulation and transformation by Myc proteins publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1703 – volume: 478 start-page: 524 year: 2011 ident: e_1_3_4_48_2 article-title: RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia publication-title: Nature doi: 10.1038/nature10334 – volume: 20 start-page: 556 year: 2000 ident: e_1_3_4_13_2 article-title: The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.2.556-562.2000 – volume: 23 start-page: 540 year: 2016 ident: e_1_3_4_15_2 article-title: BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3228 – volume: 49 start-page: 843 year: 2013 ident: e_1_3_4_34_2 article-title: Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.006 – volume: 81 start-page: 7046 year: 1984 ident: e_1_3_4_17_2 article-title: Extreme instability of myc mRNA in normal and transformed human cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.81.22.7046 – volume: 149 start-page: 22 year: 2012 ident: e_1_3_4_23_2 article-title: MYC on the path to cancer publication-title: Cell doi: 10.1016/j.cell.2012.03.003 – volume: 267 start-page: 24796 year: 1992 ident: e_1_3_4_43_2 article-title: Signal transduction within the nucleus by mitogen-activated protein kinase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35834-4 – volume: 12 start-page: 412 year: 2018 ident: e_1_3_4_5_2 article-title: The MYC transcription factor network: Balancing metabolism, proliferation and oncogenesis publication-title: Front. Med. doi: 10.1007/s11684-018-0650-z – volume: 19 start-page: 535 year: 2005 ident: e_1_3_4_28_2 article-title: Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.06.029 – volume: 25 start-page: 10220 year: 2005 ident: e_1_3_4_42_2 article-title: Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.23.10220-10234.2005 – volume: 1849 start-page: 506 year: 2015 ident: e_1_3_4_4_2 article-title: Myc and cell cycle control publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.03.013 – volume: 74 start-page: 674 year: 2019 ident: e_1_3_4_10_2 article-title: MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.031 – volume: 285 start-page: 4165 year: 2018 ident: e_1_3_4_12_2 article-title: The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex publication-title: FEBS J. doi: 10.1111/febs.14660 – volume: 14 start-page: 2501 year: 2000 ident: e_1_3_4_20_2 article-title: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability publication-title: Genes Dev. doi: 10.1101/gad.836800 – volume: 101 start-page: 9085 year: 2004 ident: e_1_3_4_21_2 article-title: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0402770101 – volume: 13 start-page: 1295 year: 2011 ident: e_1_3_4_31_2 article-title: Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2341 – volume: 151 start-page: 56 year: 2012 ident: e_1_3_4_3_2 article-title: Transcriptional amplification in tumor cells with elevated c-Myc publication-title: Cell doi: 10.1016/j.cell.2012.08.026 – volume: 141 start-page: 432 year: 2010 ident: e_1_3_4_8_2 article-title: c-Myc regulates transcriptional pause release publication-title: Cell doi: 10.1016/j.cell.2010.03.030 – volume: 33 start-page: 2497 year: 2013 ident: e_1_3_4_50_2 article-title: BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01180-12 – volume: 22 start-page: 2755 year: 2008 ident: e_1_3_4_1_2 article-title: Myc’s broad reach publication-title: Genes Dev. doi: 10.1101/gad.1712408 – volume: 278 start-page: 51606 year: 2003 ident: e_1_3_4_45_2 article-title: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310722200 – volume: 20 start-page: 4899 year: 2009 ident: e_1_3_4_30_2 article-title: Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-05-0380 – volume: 302 start-page: 1 year: 2006 ident: e_1_3_4_16_2 article-title: Making myc publication-title: Curr. Top. Microbiol. Immunol. – volume: 72 start-page: 836 year: 2018 ident: e_1_3_4_11_2 article-title: MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.09.031 – volume: 1849 start-page: 467 year: 2015 ident: e_1_3_4_6_2 article-title: Myc proteins in cell biology and pathology publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.12.006 – volume: 61 start-page: 54 year: 2016 ident: e_1_3_4_9_2 article-title: Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.11.007 – volume: 81 start-page: 10914 year: 2007 ident: e_1_3_4_14_2 article-title: c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter publication-title: J. Virol. doi: 10.1128/JVI.01208-07 – volume: 108 start-page: 16669 year: 2011 ident: e_1_3_4_33_2 article-title: Targeting MYC dependence in cancer by inhibiting BET bromodomains publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1108190108 – volume: 146 start-page: 904 year: 2011 ident: e_1_3_4_32_2 article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc publication-title: Cell doi: 10.1016/j.cell.2011.08.017 – volume: 12 start-page: 1019 year: 2015 ident: e_1_3_4_37_2 article-title: Serine 62-phosphorylated MYC associates with nuclear lamins and its regulation by CIP2A is essential for regenerative proliferation publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.07.003 – ident: e_1_3_4_38_2 – volume: 100 start-page: 8758 year: 2003 ident: e_1_3_4_44_2 article-title: The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1433065100 |
SSID | ssj0009580 |
Score | 2.6099305 |
Snippet | The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to... Dysregulation of MYC protein levels is associated with most human cancers. MYC is regulated by both transcription and protein stability. BRD4, a driver of... |
SourceID | swepub pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13457 |
SubjectTerms | Activation Biological Sciences Chromatin remodeling Degradation Extracellular signal-regulated kinase Histone acetyltransferase Kinases Myc protein Phosphorylation Proteins Stability Transcription Ubiquitination |
Title | MYC protein stability is negatively regulated by BRD4 |
URI | https://www.jstor.org/stable/26968496 https://www.proquest.com/docview/2414046454 https://www.proquest.com/docview/2408824564 https://pubmed.ncbi.nlm.nih.gov/PMC7306749 http://kipublications.ki.se/Default.aspx?queryparsed=id:144197845 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAisKEgITQUpTSxE8eP-wBVSKsmWKXxFDmxs0absmpNkbp3_m_OH_kamwS8RKnjuI7vcr673P0Oofc4EmxS0MiHt5D7hAEtsoAGvgjA3JKC80S7sk9m8XROvp5H56PRr17U0rrOxvntvXkl_0NVaAO6qizZf6BsOyg0wDnQF45AYTj-FY1Pfhx5GmihrJRPQMe5blSJ8kpeaEDvq413Y4rNG0Xz8Nsx6aujp-32tWqCBWaNd_CgyzWxAmDl-d7prKtcfCx_8pIvzGcL5Y9XXnjuzcYdFTWTlB1bXVqH62GXgTZfLnXRAe_7QsraPrL1Q4SqXI1v0iT7MN73zq4vgEPYFIlJmx5LI3NBZfFjYqqGtkLZZHRa7rP9jYwNMDGY1nbDht-moscfuwGIL1XCuOKrMZilTKm-dtghxHaoEIIIix-hxyFYGzo-dNrHbk5MJpOde4MQRfGnO2MPlBsT3zqwXO7G3Q7QabVGc_YMPbWmiHtg-GobjWT1HG03q-nuW0Tyjy9QBIzmWkZzW0Zzy5XbMZrbMpqbbVzFaC_R_Mvns6Opb-tt-HkUktqXoH0WEc0mCUso5aAZxywRlLMsg4fDhEScB0wSLEiEM8lpCLqMAJM0xnmeZwXeQVvVdSVfIbfAsSyKjOYiEGTCw2QSShFzHDIuMBPYQeNmodLcgtGrmihXqQ6KoDhVK5t2K-ug_faGpcFhebjrjl75tl9DXgftNqRI7Vu8SkGDJQbXzkHv2ssgY9WHM17J67XqowxRBbzkIDogYfsfCqV9eKUqFxqtnSqjnDAHfTDEHtximy7hTKaEThISvH5o-m_Qk-6920Vb9c1a7oFGXGdvNb_-BtSptII |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MYC+protein+stability+is+negatively+regulated+by+BRD4&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Devaiah%2C+Ballachanda+N.&rft.au=Mu%2C+Jie&rft.au=Akman%2C+Ben&rft.au=Uppal%2C+Sheetal&rft.date=2020-06-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=24&rft.spage=13457&rft.epage=13467&rft_id=info:doi/10.1073%2Fpnas.1919507117&rft.externalDocID=26968496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |