MYC protein stability is negatively regulated by BRD4

The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 24; pp. 13457 - 13467
Main Authors Devaiah, Ballachanda N., Mu, Jie, Akman, Ben, Uppal, Sheetal, Weissman, Jocelyn D., Cheng, Dan, Baranello, Laura, Nie, Zuqin, Levens, David, Singer, Dinah S.
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 16.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC. We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
AbstractList The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC. We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC . We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
Dysregulation of MYC protein levels is associated with most human cancers. MYC is regulated by both transcription and protein stability. BRD4, a driver of oncogenesis that activates Myc transcription, is being investigated as a therapeutic target in MYC-driven cancers. We report that BRD4 directly destabilizes MYC protein by phosphorylating it at a site leading to ubiquitination and degradation, thereby maintaining homeostatic levels of MYC protein. While JQ1, an inhibitor which releases BRD4 from chromatin and reduces MYC transcription has no effect on MYC protein stability, MZ1, which degrades BRD4 has the paradoxical effect of decreasing MYC transcription but increasing MYC stability. Our findings demonstrating BRD4-mediated MYC degradation are likely to have significant translational implications. The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC . We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4's HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
Author Uppal, Sheetal
Devaiah, Ballachanda N.
Mu, Jie
Singer, Dinah S.
Akman, Ben
Levens, David
Cheng, Dan
Nie, Zuqin
Weissman, Jocelyn D.
Baranello, Laura
Author_xml – sequence: 1
  givenname: Ballachanda N.
  surname: Devaiah
  fullname: Devaiah, Ballachanda N.
– sequence: 2
  givenname: Jie
  surname: Mu
  fullname: Mu, Jie
– sequence: 3
  givenname: Ben
  surname: Akman
  fullname: Akman, Ben
– sequence: 4
  givenname: Sheetal
  surname: Uppal
  fullname: Uppal, Sheetal
– sequence: 5
  givenname: Jocelyn D.
  surname: Weissman
  fullname: Weissman, Jocelyn D.
– sequence: 6
  givenname: Dan
  surname: Cheng
  fullname: Cheng, Dan
– sequence: 7
  givenname: Laura
  surname: Baranello
  fullname: Baranello, Laura
– sequence: 8
  givenname: Zuqin
  surname: Nie
  fullname: Nie, Zuqin
– sequence: 9
  givenname: David
  surname: Levens
  fullname: Levens, David
– sequence: 10
  givenname: Dinah S.
  surname: Singer
  fullname: Singer, Dinah S.
BackLink http://kipublications.ki.se/Default.aspx?queryparsed=id:144197845$$DView record from Swedish Publication Index
BookMark eNp1kc1rFDEYxoNU7LZ69iQMePEybT7efF0EXVstVATRg6eQmcmuWWeTbZKp7H_fLLu2tOApIe_veZI8zwk6CjE4hF4TfEawZOebYPMZ0URzLAmRz9CMYE1aARofoRnGVLYKKByjk5xXGGPNFX6BjhkFRZVQM8S__po3mxSL86HJxXZ-9GXb-NwEt7TF37px2yS3nEZb3NB02-bj90_wEj1f2DG7V4f1FP28vPgx_9Jef_t8Nf9w3facQmmdEGzBZYeVVlJaLqjQapBWd119LQPg1hLtgA3AWeespFTrgXMtWN_33YKdonbvm_-6zdSZTfJrm7YmWm8OR3_qzhmQWAGp_Ps9XydrN_QulGTHR7LHk-B_m2W8NZJhIUFXg3cHgxRvJpeLWfvcu3G0wcUpGwpYKQpcQEXfPkFXcUqhxlEpAhgE8B3F91SfYs7JLUzvS8017u73oyHY7Io0uyLNQ5FVd_5E9-8T_1e82StWucR0j9fIhYKa6B38I6n9
CitedBy_id crossref_primary_10_3389_fgene_2022_1085391
crossref_primary_10_1021_acs_jmedchem_0c01487
crossref_primary_10_1016_j_nantod_2024_102521
crossref_primary_10_1016_j_heliyon_2021_e08702
crossref_primary_10_1016_j_jbc_2024_108030
crossref_primary_10_3390_cancers15133389
crossref_primary_10_1016_j_tcb_2022_07_006
crossref_primary_10_3389_fendo_2022_972312
crossref_primary_10_1038_s41556_024_01349_3
crossref_primary_10_2174_1573394719666230720164009
crossref_primary_10_1186_s12943_021_01424_5
crossref_primary_10_1016_j_ejmech_2023_115982
crossref_primary_10_31857_S0131164622601014
crossref_primary_10_3390_ijms241310831
crossref_primary_10_1016_j_ebiom_2021_103756
crossref_primary_10_1016_j_gendis_2021_02_002
crossref_primary_10_1016_j_jep_2024_119145
crossref_primary_10_3390_cells12131745
crossref_primary_10_1016_j_canlet_2021_12_021
crossref_primary_10_1016_j_freeradbiomed_2023_09_006
crossref_primary_10_1186_s13045_022_01249_9
crossref_primary_10_3390_ijms22147761
crossref_primary_10_3389_fmolb_2021_728777
crossref_primary_10_1016_j_gene_2024_149016
crossref_primary_10_7554_eLife_82597
crossref_primary_10_1002_ctm2_1153
crossref_primary_10_1016_j_bbadis_2021_166267
crossref_primary_10_1186_s13046_024_03217_2
crossref_primary_10_1002_jmv_29294
crossref_primary_10_3390_ijms25063156
crossref_primary_10_1038_s41598_024_74206_w
crossref_primary_10_1016_j_molcel_2024_09_030
crossref_primary_10_1371_journal_ppat_1011089
crossref_primary_10_3390_ijms24054746
crossref_primary_10_1016_j_gendis_2022_03_004
crossref_primary_10_1016_j_tips_2020_08_008
crossref_primary_10_3389_fcell_2023_1268275
crossref_primary_10_1186_s13046_024_03224_3
crossref_primary_10_3389_fimmu_2024_1324045
crossref_primary_10_1080_13543784_2023_2186851
crossref_primary_10_3390_ijms26051973
crossref_primary_10_1016_j_celrep_2024_114431
crossref_primary_10_1016_j_phrs_2023_106767
crossref_primary_10_1007_s00894_022_05082_2
crossref_primary_10_1111_febs_16580
crossref_primary_10_3389_fonc_2022_847701
crossref_primary_10_1038_s41420_021_00622_w
crossref_primary_10_1080_14728222_2024_2443577
crossref_primary_10_3390_ijms21249486
crossref_primary_10_1016_j_prp_2023_155037
crossref_primary_10_2174_0115680096272757231211113206
crossref_primary_10_1002_advs_202303904
crossref_primary_10_1172_JCI133090
crossref_primary_10_1186_s12964_024_01553_6
crossref_primary_10_1002_adma_202412837
crossref_primary_10_1134_S036211972360011X
crossref_primary_10_1186_s12943_022_01707_5
crossref_primary_10_1158_0008_5472_CAN_21_0649
crossref_primary_10_1111_febs_16057
crossref_primary_10_1016_j_jbc_2021_101326
crossref_primary_10_1016_j_jhazmat_2021_127911
crossref_primary_10_1155_2021_7228584
crossref_primary_10_1016_j_bbrc_2020_06_142
crossref_primary_10_1038_s41388_022_02327_5
crossref_primary_10_1007_s12672_024_01173_z
crossref_primary_10_1186_s12964_022_00868_6
crossref_primary_10_1021_acs_jmedchem_4c01933
crossref_primary_10_1016_j_cclet_2023_108433
crossref_primary_10_1155_2022_8027987
crossref_primary_10_1186_s13045_021_01111_4
crossref_primary_10_3390_ijms24044217
crossref_primary_10_1002_tox_23939
crossref_primary_10_1038_s41592_024_02586_y
crossref_primary_10_3390_ijms232012290
crossref_primary_10_1155_2022_9635674
crossref_primary_10_1002_biof_2158
crossref_primary_10_1080_13543776_2024_2400166
crossref_primary_10_1021_acs_jmedchem_3c01423
crossref_primary_10_1158_1541_7786_MCR_21_0560
crossref_primary_10_1016_j_ajpath_2022_06_010
crossref_primary_10_1021_acsmedchemlett_2c00300
crossref_primary_10_3390_lymphatics1020010
crossref_primary_10_1172_jci_insight_146351
crossref_primary_10_14336_AD_2023_0520
crossref_primary_10_1016_j_ejmech_2025_117381
crossref_primary_10_1002_advs_202502416
crossref_primary_10_1002_bies_202100180
crossref_primary_10_1097_MD_0000000000038029
crossref_primary_10_3390_ijms25020944
crossref_primary_10_1016_j_xgen_2024_100651
crossref_primary_10_1016_j_ejmech_2022_114116
crossref_primary_10_3748_wjg_v31_i11_103449
crossref_primary_10_1172_jci_insight_164947
crossref_primary_10_1021_acs_jmedchem_1c01382
crossref_primary_10_18632_aging_205739
crossref_primary_10_1021_acs_jmedchem_2c01770
crossref_primary_10_1007_s11172_022_3659_z
crossref_primary_10_1186_s12951_022_01740_y
crossref_primary_10_1038_s41698_024_00792_7
crossref_primary_10_1038_s42003_025_07519_9
crossref_primary_10_1158_2159_8290_CD_23_0601
crossref_primary_10_3390_ijms24010013
crossref_primary_10_1007_s10549_024_07403_w
crossref_primary_10_1016_j_bmc_2022_117152
crossref_primary_10_3390_v16071096
Cites_doi 10.1101/gad.2053311
10.1016/j.pharmthera.2014.11.016
10.1101/cshperspect.a014365
10.1016/j.cell.2013.07.013
10.1016/j.cell.2013.03.036
10.1016/j.cell.2012.08.033
10.1073/pnas.1120422109
10.1074/jbc.M112.412015
10.1038/nature08822
10.1016/j.cell.2016.02.036
10.1074/jbc.R700001200
10.1101/cshperspect.a014357
10.1038/s41591-018-0158-8
10.1073/pnas.0900121106
10.1073/pnas.050586197
10.1189/jlb.2RI0616-250R
10.1038/sj.emboj.7600217
10.1038/nrm1703
10.1038/nature10334
10.1128/MCB.20.2.556-562.2000
10.1038/nsmb.3228
10.1016/j.molcel.2012.12.006
10.1073/pnas.81.22.7046
10.1016/j.cell.2012.03.003
10.1016/S0021-9258(18)35834-4
10.1007/s11684-018-0650-z
10.1016/j.molcel.2005.06.029
10.1128/MCB.25.23.10220-10234.2005
10.1016/j.bbagrm.2014.03.013
10.1016/j.molcel.2019.02.031
10.1111/febs.14660
10.1101/gad.836800
10.1073/pnas.0402770101
10.1038/ncb2341
10.1016/j.cell.2012.08.026
10.1016/j.cell.2010.03.030
10.1128/MCB.01180-12
10.1101/gad.1712408
10.1074/jbc.M310722200
10.1091/mbc.e09-05-0380
10.1016/j.molcel.2018.09.031
10.1016/j.bbagrm.2014.12.006
10.1016/j.molcel.2015.11.007
10.1128/JVI.01208-07
10.1073/pnas.1108190108
10.1016/j.cell.2011.08.017
10.1016/j.celrep.2015.07.003
10.1073/pnas.1433065100
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 16, 2020
Copyright © 2020 the Author(s). Published by PNAS.
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright National Academy of Sciences Jun 16, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
DOI 10.1073/pnas.1919507117
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef


MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 13467
ExternalDocumentID oai_swepub_ki_se_470841
PMC7306749
10_1073_pnas_1919507117
26968496
GrantInformation_xml – fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: ZIA BC 011381
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADTPV
ADULT
ADXHL
AFHIN
AFQQW
AOWAS
AS~
EJD
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
ID FETCH-LOGICAL-c524t-e663f57b089877a562698d7a9bb7113445aa19e43d453bea72299d55963cccbf3
ISSN 0027-8424
1091-6490
IngestDate Mon Aug 25 03:33:46 EDT 2025
Thu Aug 21 18:32:23 EDT 2025
Fri Jul 11 05:32:43 EDT 2025
Mon Jun 30 10:03:04 EDT 2025
Tue Jul 01 03:40:23 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Thu May 29 09:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-e663f57b089877a562698d7a9bb7113445aa19e43d453bea72299d55963cccbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved April 30, 2020 (received for review November 6, 2019)
Author contributions: B.N.D. and D.S.S. designed research; B.N.D., J.M., B.A., S.U., and J.D.W. performed research; D.C., L.B., and Z.N. contributed new reagents/analytic tools; B.N.D., D.L., and D.S.S. analyzed data; and B.N.D. and D.S.S. wrote the paper.
ORCID 0000-0001-9885-3826
0000-0002-2627-2536
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7306749
PMID 32482868
PQID 2414046454
PQPubID 42026
PageCount 11
ParticipantIDs swepub_primary_oai_swepub_ki_se_470841
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7306749
proquest_miscellaneous_2408824564
proquest_journals_2414046454
crossref_citationtrail_10_1073_pnas_1919507117
crossref_primary_10_1073_pnas_1919507117
jstor_primary_26968496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-16
PublicationDateYYYYMMDD 2020-06-16
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Welcker M. (e_1_3_4_21_2) 2004; 101
Sammak S. (e_1_3_4_12_2) 2018; 285
Hermeking H. (e_1_3_4_40_2) 2000; 97
Devaiah B. N. (e_1_3_4_29_2) 2012; 287
von Eyss B. (e_1_3_4_7_2) 2011; 25
Zanconato F. (e_1_3_4_41_2) 2018; 24
Yang Z. (e_1_3_4_28_2) 2005; 19
Mertz J. A. (e_1_3_4_33_2) 2011; 108
Rahl P. B. (e_1_3_4_8_2) 2010; 141
Myant K. (e_1_3_4_37_2) 2015; 12
Lovén J. (e_1_3_4_47_2) 2013; 153
Conacci-Sorrell M. (e_1_3_4_35_2) 2014; 4
Bretones G. (e_1_3_4_4_2) 2015; 1849
Wu S. Y. (e_1_3_4_25_2) 2007; 282
Jiang G. (e_1_3_4_14_2) 2007; 81
Sears R. (e_1_3_4_20_2) 2000; 14
Liu J. (e_1_3_4_16_2) 2006; 302
Devaiah B. N. (e_1_3_4_36_2) 2016; 100
Hydbring P. (e_1_3_4_22_2) 2010; 107
Carroll P. A. (e_1_3_4_5_2) 2018; 12
Jaenicke L. A. (e_1_3_4_9_2) 2016; 61
Beroukhim R. (e_1_3_4_24_2) 2010; 463
Adhikary S. (e_1_3_4_18_2) 2005; 6
Seth A. (e_1_3_4_43_2) 1992; 267
Dani C. (e_1_3_4_17_2) 1984; 81
Kalkat M. (e_1_3_4_11_2) 2018; 72
Majello B. (e_1_3_4_6_2) 2015; 1849
e_1_3_4_38_2
Gregory M. A. (e_1_3_4_45_2) 2003; 278
Yada M. (e_1_3_4_39_2) 2004; 23
Baluapuri A. (e_1_3_4_10_2) 2019; 74
McMahon S. B. (e_1_3_4_13_2) 2000; 20
Faiola F. (e_1_3_4_42_2) 2005; 25
Dang C. V. (e_1_3_4_23_2) 2012; 149
Delmore J. E. (e_1_3_4_32_2) 2011; 146
Nie Z. (e_1_3_4_2_2) 2012; 151
Devaiah B. N. (e_1_3_4_15_2) 2016; 23
Dey A. (e_1_3_4_44_2) 2003; 100
Eilers M. (e_1_3_4_1_2) 2008; 22
Lin C. Y. (e_1_3_4_3_2) 2012; 151
Patel M. C. (e_1_3_4_50_2) 2013; 33
Baranello L. (e_1_3_4_27_2) 2016; 165
Zuber J. (e_1_3_4_48_2) 2011; 478
Wu S. Y. (e_1_3_4_34_2) 2013; 49
Farrell A. S. (e_1_3_4_19_2) 2014; 4
Zhao R. (e_1_3_4_31_2) 2011; 13
Anand P. (e_1_3_4_49_2) 2013; 154
Dey A. (e_1_3_4_30_2) 2009; 20
Devaiah B. N. (e_1_3_4_26_2) 2012; 109
Beurel E. (e_1_3_4_46_2) 2015; 148
References_xml – volume: 25
  start-page: 895
  year: 2011
  ident: e_1_3_4_7_2
  article-title: Addicted to Myc–But why?
  publication-title: Genes Dev.
  doi: 10.1101/gad.2053311
– volume: 148
  start-page: 114
  year: 2015
  ident: e_1_3_4_46_2
  article-title: Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2014.11.016
– volume: 4
  start-page: a014365
  year: 2014
  ident: e_1_3_4_19_2
  article-title: MYC degradation
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a014365
– volume: 154
  start-page: 569
  year: 2013
  ident: e_1_3_4_49_2
  article-title: BET bromodomains mediate transcriptional pause release in heart failure
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.013
– volume: 153
  start-page: 320
  year: 2013
  ident: e_1_3_4_47_2
  article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.036
– volume: 151
  start-page: 68
  year: 2012
  ident: e_1_3_4_2_2
  article-title: c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.033
– volume: 109
  start-page: 6927
  year: 2012
  ident: e_1_3_4_26_2
  article-title: BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1120422109
– volume: 287
  start-page: 38755
  year: 2012
  ident: e_1_3_4_29_2
  article-title: Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.412015
– volume: 463
  start-page: 899
  year: 2010
  ident: e_1_3_4_24_2
  article-title: The landscape of somatic copy-number alteration across human cancers
  publication-title: Nature
  doi: 10.1038/nature08822
– volume: 165
  start-page: 357
  year: 2016
  ident: e_1_3_4_27_2
  article-title: RNA polymerase II regulates Topoisomerase 1 activity to favor efficient transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.036
– volume: 282
  start-page: 13141
  year: 2007
  ident: e_1_3_4_25_2
  article-title: The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700001200
– volume: 4
  start-page: a014357
  year: 2014
  ident: e_1_3_4_35_2
  article-title: An overview of MYC and its interactome
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a014357
– volume: 24
  start-page: 1599
  year: 2018
  ident: e_1_3_4_41_2
  article-title: Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0158-8
– volume: 107
  start-page: 58
  year: 2010
  ident: e_1_3_4_22_2
  article-title: Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0900121106
– volume: 97
  start-page: 2229
  year: 2000
  ident: e_1_3_4_40_2
  article-title: Identification of CDK4 as a target of c-MYC
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.050586197
– volume: 100
  start-page: 679
  year: 2016
  ident: e_1_3_4_36_2
  article-title: Bromodomain 4: A cellular Swiss army knife
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.2RI0616-250R
– volume: 23
  start-page: 2116
  year: 2004
  ident: e_1_3_4_39_2
  article-title: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600217
– volume: 6
  start-page: 635
  year: 2005
  ident: e_1_3_4_18_2
  article-title: Transcriptional regulation and transformation by Myc proteins
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1703
– volume: 478
  start-page: 524
  year: 2011
  ident: e_1_3_4_48_2
  article-title: RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia
  publication-title: Nature
  doi: 10.1038/nature10334
– volume: 20
  start-page: 556
  year: 2000
  ident: e_1_3_4_13_2
  article-title: The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.2.556-562.2000
– volume: 23
  start-page: 540
  year: 2016
  ident: e_1_3_4_15_2
  article-title: BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3228
– volume: 49
  start-page: 843
  year: 2013
  ident: e_1_3_4_34_2
  article-title: Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.006
– volume: 81
  start-page: 7046
  year: 1984
  ident: e_1_3_4_17_2
  article-title: Extreme instability of myc mRNA in normal and transformed human cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.81.22.7046
– volume: 149
  start-page: 22
  year: 2012
  ident: e_1_3_4_23_2
  article-title: MYC on the path to cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.003
– volume: 267
  start-page: 24796
  year: 1992
  ident: e_1_3_4_43_2
  article-title: Signal transduction within the nucleus by mitogen-activated protein kinase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)35834-4
– volume: 12
  start-page: 412
  year: 2018
  ident: e_1_3_4_5_2
  article-title: The MYC transcription factor network: Balancing metabolism, proliferation and oncogenesis
  publication-title: Front. Med.
  doi: 10.1007/s11684-018-0650-z
– volume: 19
  start-page: 535
  year: 2005
  ident: e_1_3_4_28_2
  article-title: Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.06.029
– volume: 25
  start-page: 10220
  year: 2005
  ident: e_1_3_4_42_2
  article-title: Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.23.10220-10234.2005
– volume: 1849
  start-page: 506
  year: 2015
  ident: e_1_3_4_4_2
  article-title: Myc and cell cycle control
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2014.03.013
– volume: 74
  start-page: 674
  year: 2019
  ident: e_1_3_4_10_2
  article-title: MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.031
– volume: 285
  start-page: 4165
  year: 2018
  ident: e_1_3_4_12_2
  article-title: The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex
  publication-title: FEBS J.
  doi: 10.1111/febs.14660
– volume: 14
  start-page: 2501
  year: 2000
  ident: e_1_3_4_20_2
  article-title: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability
  publication-title: Genes Dev.
  doi: 10.1101/gad.836800
– volume: 101
  start-page: 9085
  year: 2004
  ident: e_1_3_4_21_2
  article-title: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0402770101
– volume: 13
  start-page: 1295
  year: 2011
  ident: e_1_3_4_31_2
  article-title: Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2341
– volume: 151
  start-page: 56
  year: 2012
  ident: e_1_3_4_3_2
  article-title: Transcriptional amplification in tumor cells with elevated c-Myc
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.026
– volume: 141
  start-page: 432
  year: 2010
  ident: e_1_3_4_8_2
  article-title: c-Myc regulates transcriptional pause release
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.030
– volume: 33
  start-page: 2497
  year: 2013
  ident: e_1_3_4_50_2
  article-title: BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01180-12
– volume: 22
  start-page: 2755
  year: 2008
  ident: e_1_3_4_1_2
  article-title: Myc’s broad reach
  publication-title: Genes Dev.
  doi: 10.1101/gad.1712408
– volume: 278
  start-page: 51606
  year: 2003
  ident: e_1_3_4_45_2
  article-title: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310722200
– volume: 20
  start-page: 4899
  year: 2009
  ident: e_1_3_4_30_2
  article-title: Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-05-0380
– volume: 302
  start-page: 1
  year: 2006
  ident: e_1_3_4_16_2
  article-title: Making myc
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 72
  start-page: 836
  year: 2018
  ident: e_1_3_4_11_2
  article-title: MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.09.031
– volume: 1849
  start-page: 467
  year: 2015
  ident: e_1_3_4_6_2
  article-title: Myc proteins in cell biology and pathology
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2014.12.006
– volume: 61
  start-page: 54
  year: 2016
  ident: e_1_3_4_9_2
  article-title: Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.11.007
– volume: 81
  start-page: 10914
  year: 2007
  ident: e_1_3_4_14_2
  article-title: c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter
  publication-title: J. Virol.
  doi: 10.1128/JVI.01208-07
– volume: 108
  start-page: 16669
  year: 2011
  ident: e_1_3_4_33_2
  article-title: Targeting MYC dependence in cancer by inhibiting BET bromodomains
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1108190108
– volume: 146
  start-page: 904
  year: 2011
  ident: e_1_3_4_32_2
  article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.017
– volume: 12
  start-page: 1019
  year: 2015
  ident: e_1_3_4_37_2
  article-title: Serine 62-phosphorylated MYC associates with nuclear lamins and its regulation by CIP2A is essential for regenerative proliferation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.07.003
– ident: e_1_3_4_38_2
– volume: 100
  start-page: 8758
  year: 2003
  ident: e_1_3_4_44_2
  article-title: The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1433065100
SSID ssj0009580
Score 2.6099305
Snippet The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to...
Dysregulation of MYC protein levels is associated with most human cancers. MYC is regulated by both transcription and protein stability. BRD4, a driver of...
SourceID swepub
pubmedcentral
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13457
SubjectTerms Activation
Biological Sciences
Chromatin remodeling
Degradation
Extracellular signal-regulated kinase
Histone acetyltransferase
Kinases
Myc protein
Phosphorylation
Proteins
Stability
Transcription
Ubiquitination
Title MYC protein stability is negatively regulated by BRD4
URI https://www.jstor.org/stable/26968496
https://www.proquest.com/docview/2414046454
https://www.proquest.com/docview/2408824564
https://pubmed.ncbi.nlm.nih.gov/PMC7306749
http://kipublications.ki.se/Default.aspx?queryparsed=id:144197845
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAisKEgITQUpTSxE8eP-wBVSKsmWKXxFDmxs0absmpNkbp3_m_OH_kamwS8RKnjuI7vcr673P0Oofc4EmxS0MiHt5D7hAEtsoAGvgjA3JKC80S7sk9m8XROvp5H56PRr17U0rrOxvntvXkl_0NVaAO6qizZf6BsOyg0wDnQF45AYTj-FY1Pfhx5GmihrJRPQMe5blSJ8kpeaEDvq413Y4rNG0Xz8Nsx6aujp-32tWqCBWaNd_CgyzWxAmDl-d7prKtcfCx_8pIvzGcL5Y9XXnjuzcYdFTWTlB1bXVqH62GXgTZfLnXRAe_7QsraPrL1Q4SqXI1v0iT7MN73zq4vgEPYFIlJmx5LI3NBZfFjYqqGtkLZZHRa7rP9jYwNMDGY1nbDht-moscfuwGIL1XCuOKrMZilTKm-dtghxHaoEIIIix-hxyFYGzo-dNrHbk5MJpOde4MQRfGnO2MPlBsT3zqwXO7G3Q7QabVGc_YMPbWmiHtg-GobjWT1HG03q-nuW0Tyjy9QBIzmWkZzW0Zzy5XbMZrbMpqbbVzFaC_R_Mvns6Opb-tt-HkUktqXoH0WEc0mCUso5aAZxywRlLMsg4fDhEScB0wSLEiEM8lpCLqMAJM0xnmeZwXeQVvVdSVfIbfAsSyKjOYiEGTCw2QSShFzHDIuMBPYQeNmodLcgtGrmihXqQ6KoDhVK5t2K-ug_faGpcFhebjrjl75tl9DXgftNqRI7Vu8SkGDJQbXzkHv2ssgY9WHM17J67XqowxRBbzkIDogYfsfCqV9eKUqFxqtnSqjnDAHfTDEHtximy7hTKaEThISvH5o-m_Qk-6920Vb9c1a7oFGXGdvNb_-BtSptII
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MYC+protein+stability+is+negatively+regulated+by+BRD4&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Devaiah%2C+Ballachanda+N.&rft.au=Mu%2C+Jie&rft.au=Akman%2C+Ben&rft.au=Uppal%2C+Sheetal&rft.date=2020-06-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=24&rft.spage=13457&rft.epage=13467&rft_id=info:doi/10.1073%2Fpnas.1919507117&rft.externalDocID=26968496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon