From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries

The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challen...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 15; no. 3; pp. 170 - 180
Main Authors Tan, Darren H. S., Banerjee, Abhik, Chen, Zheng, Meng, Ying Shirley
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1748-3387
1748-3395
1748-3395
DOI10.1038/s41565-020-0657-x

Cover

Loading…
Abstract The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model. This Review summarizes the current nanoscale understanding of the interface chemistries between solid state electrolytes and electrodes for future all solid state batteries.
AbstractList The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.This Review summarizes the current nanoscale understanding of the interface chemistries between solid state electrolytes and electrodes for future all solid state batteries.
The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.
The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model. This Review summarizes the current nanoscale understanding of the interface chemistries between solid state electrolytes and electrodes for future all solid state batteries.
The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.
Author Meng, Ying Shirley
Tan, Darren H. S.
Chen, Zheng
Banerjee, Abhik
Author_xml – sequence: 1
  givenname: Darren H. S.
  surname: Tan
  fullname: Tan, Darren H. S.
  organization: Department of NanoEngineering, University of California San Diego
– sequence: 2
  givenname: Abhik
  surname: Banerjee
  fullname: Banerjee, Abhik
  organization: Department of NanoEngineering, University of California San Diego
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0002-9186-4298
  surname: Chen
  fullname: Chen, Zheng
  email: zhengchen@eng.ucsd.edu
  organization: Department of NanoEngineering, University of California San Diego, Program of Chemical Engineering, University of California San Diego, Sustainable Power & Energy Center (SPEC), University of California San Diego
– sequence: 4
  givenname: Ying Shirley
  orcidid: 0000-0001-8936-8845
  surname: Meng
  fullname: Meng, Ying Shirley
  email: shmeng@ucsd.edu
  organization: Department of NanoEngineering, University of California San Diego, Sustainable Power & Energy Center (SPEC), University of California San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32157239$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFjEUhYNU7If-ADcy4MbNaL4zs5RiVSi40XW4k7kZU-ZNapKBtr_evL6tQsGucgPPORzOOSVHMUUk5DWj7xkVw4cimdKqp5z2VCvT3zwjJ8zIoRdiVEd_78Eck9NSrihVfOTyBTkWnCnDxXhCloucdl2EmIqDFbsQK2YPDjv3EzK49gt3UEOKXU1d2UqFEGFqJEbMy21XasqwYLeVEJcO1rUvaQ1z38CK3QR174DlJXnuYS346v49Iz8uPn0__9Jffvv89fzjZe8Ul7Wf3YCzNFR5NngzgXJcSPSUtUgwaO01yskZPU7czwa4mQR3UjOjuJq8B3FG3h18r3P6tWGpdheKw3WFiGkrlgujuRB6HBr69hF6lbYcWzrLpVGtYCrFk1TzMnRQo27Um3tqm3Y42-scdpBv7UPRDTAHwOVUSkZvXah_eq0ZwmoZtftJ7WFS2ya1-0ntTVOyR8oH86c0_KApjY0L5n-h_y_6DVYrtKc
CitedBy_id crossref_primary_10_1039_D3SC05105F
crossref_primary_10_1039_D0MA00893A
crossref_primary_10_1016_j_jechem_2023_01_037
crossref_primary_10_1002_adfm_202214274
crossref_primary_10_1021_acs_chemrev_4c00512
crossref_primary_10_1016_j_jpowsour_2023_233049
crossref_primary_10_1021_acsnano_4c02197
crossref_primary_10_1038_s41598_021_84799_1
crossref_primary_10_1016_j_jpowsour_2021_230335
crossref_primary_10_1021_acs_chemmater_4c02307
crossref_primary_10_1016_j_electacta_2023_142163
crossref_primary_10_1002_adma_202406368
crossref_primary_10_1016_j_cec_2024_100087
crossref_primary_10_1002_aenm_202100881
crossref_primary_10_1038_s41598_024_58866_2
crossref_primary_10_1016_j_mattod_2022_04_008
crossref_primary_10_1039_D1EE00551K
crossref_primary_10_1002_adma_202202780
crossref_primary_10_1002_aenm_202203883
crossref_primary_10_1002_smll_202412204
crossref_primary_10_1016_j_cej_2023_142537
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_1016_j_cej_2021_132094
crossref_primary_10_1016_j_cej_2021_134271
crossref_primary_10_1111_jace_18506
crossref_primary_10_1016_j_nanoen_2021_106756
crossref_primary_10_1021_acsenergylett_4c01098
crossref_primary_10_1021_acssuschemeng_3c07872
crossref_primary_10_1002_aenm_202101612
crossref_primary_10_1002_ange_202302655
crossref_primary_10_1007_s11581_020_03891_0
crossref_primary_10_1016_j_mattod_2022_04_004
crossref_primary_10_1016_j_ensm_2023_102814
crossref_primary_10_1007_s41918_023_00188_4
crossref_primary_10_1016_j_cclet_2024_110272
crossref_primary_10_1002_adma_202007864
crossref_primary_10_1021_acsenergylett_1c02261
crossref_primary_10_3390_nano11020390
crossref_primary_10_1016_j_ccr_2024_216003
crossref_primary_10_1016_j_joule_2022_07_002
crossref_primary_10_1021_acsenergylett_1c01299
crossref_primary_10_1016_j_est_2024_111254
crossref_primary_10_1002_aenm_202203861
crossref_primary_10_1016_j_mattod_2024_08_011
crossref_primary_10_1039_D1NJ05199G
crossref_primary_10_1002_adfm_202008487
crossref_primary_10_1002_aenm_202304480
crossref_primary_10_1016_j_jpowsour_2023_233079
crossref_primary_10_1360_TB_2023_0521
crossref_primary_10_1016_j_electacta_2020_137185
crossref_primary_10_1002_anie_202302655
crossref_primary_10_1007_s12598_020_01429_x
crossref_primary_10_1002_adfm_202420170
crossref_primary_10_54392_irjmt2521
crossref_primary_10_3390_en14144223
crossref_primary_10_1016_j_cclet_2021_08_031
crossref_primary_10_1039_D0EE01017K
crossref_primary_10_1016_j_est_2024_113602
crossref_primary_10_1039_D2MA00158F
crossref_primary_10_1002_aenm_202203791
crossref_primary_10_1038_s41467_025_56932_5
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1016_j_ceramint_2024_11_128
crossref_primary_10_1016_j_cej_2024_154903
crossref_primary_10_1002_batt_202200057
crossref_primary_10_1093_nsr_nwad238
crossref_primary_10_1016_j_ensm_2021_02_001
crossref_primary_10_1021_acsenergylett_2c00535
crossref_primary_10_3390_batteries8120255
crossref_primary_10_1126_sciadv_adh9020
crossref_primary_10_31857_S042485702303012X
crossref_primary_10_1016_j_jcis_2023_06_059
crossref_primary_10_1002_adma_202410948
crossref_primary_10_1016_j_polymer_2023_126214
crossref_primary_10_1038_s41467_021_26632_x
crossref_primary_10_1016_j_scriptamat_2022_114529
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1039_D1TA02796D
crossref_primary_10_1016_j_chempr_2020_06_030
crossref_primary_10_1002_gch2_202200067
crossref_primary_10_1016_j_ensm_2022_04_015
crossref_primary_10_1002_aenm_202003250
crossref_primary_10_1021_acsami_3c14086
crossref_primary_10_1021_acsenergylett_3c00560
crossref_primary_10_1038_s41563_020_00903_2
crossref_primary_10_1021_acsnano_2c07314
crossref_primary_10_1002_adfm_202103632
crossref_primary_10_1002_smll_202307030
crossref_primary_10_1002_adma_202209074
crossref_primary_10_1038_s41560_022_01051_4
crossref_primary_10_1007_s12274_022_4845_x
crossref_primary_10_1038_s44286_024_00079_5
crossref_primary_10_1021_acsami_3c02084
crossref_primary_10_1002_adfm_202306320
crossref_primary_10_1016_j_electacta_2024_144632
crossref_primary_10_1021_acsami_1c20893
crossref_primary_10_1016_j_cclet_2024_110215
crossref_primary_10_1016_j_carbon_2022_07_033
crossref_primary_10_1002_aenm_202002394
crossref_primary_10_1016_j_nanoen_2020_105344
crossref_primary_10_1021_acsaem_4c00341
crossref_primary_10_1002_smll_202307260
crossref_primary_10_1007_s42247_020_00146_6
crossref_primary_10_1016_j_ensm_2022_05_035
crossref_primary_10_1149_1945_7111_ac91aa
crossref_primary_10_3390_batteries10010013
crossref_primary_10_1002_advs_202301381
crossref_primary_10_1002_adma_202417796
crossref_primary_10_1039_D2TA09445B
crossref_primary_10_1007_s11426_021_1235_2
crossref_primary_10_1007_s11814_022_1321_y
crossref_primary_10_1002_anie_202308837
crossref_primary_10_1002_batt_202400142
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1002_adfm_202214430
crossref_primary_10_1002_smtd_202000111
crossref_primary_10_1016_j_cej_2024_154426
crossref_primary_10_1016_j_jechem_2025_02_004
crossref_primary_10_1016_j_susmat_2021_e00297
crossref_primary_10_3390_batteries9070347
crossref_primary_10_1002_adfm_202311564
crossref_primary_10_1002_adfm_202310476
crossref_primary_10_1016_j_jpowsour_2021_229871
crossref_primary_10_26599_NRE_2022_9120016
crossref_primary_10_1002_sus2_67
crossref_primary_10_1002_aenm_202301464
crossref_primary_10_1088_2752_5724_acfb28
crossref_primary_10_1016_j_nanoen_2025_110885
crossref_primary_10_1021_acs_macromol_2c02160
crossref_primary_10_1021_acsenergylett_2c01668
crossref_primary_10_1016_j_nxmate_2024_100371
crossref_primary_10_1016_j_joule_2022_01_015
crossref_primary_10_1002_aenm_202201732
crossref_primary_10_1002_anie_202110699
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1002_celc_202001527
crossref_primary_10_1016_j_cej_2021_132343
crossref_primary_10_1016_j_cej_2024_154534
crossref_primary_10_1016_j_scenv_2024_100147
crossref_primary_10_1002_aenm_202001274
crossref_primary_10_1039_D3EE03877G
crossref_primary_10_1021_acsami_3c05713
crossref_primary_10_3389_fchem_2021_751476
crossref_primary_10_1002_smll_202308045
crossref_primary_10_1016_j_jechem_2022_08_042
crossref_primary_10_3389_fenrg_2020_00218
crossref_primary_10_1016_j_adna_2024_03_002
crossref_primary_10_1021_jacs_3c01955
crossref_primary_10_1021_acssuschemeng_1c02886
crossref_primary_10_1016_j_etran_2024_100319
crossref_primary_10_1002_aesr_202000077
crossref_primary_10_1021_accountsmr_1c00159
crossref_primary_10_1021_acs_chemmater_0c03444
crossref_primary_10_1039_D4MA00666F
crossref_primary_10_1016_j_ensm_2022_04_023
crossref_primary_10_7498_aps_70_20210180
crossref_primary_10_1021_acsami_4c03997
crossref_primary_10_1149_1945_7111_ad27b8
crossref_primary_10_1002_smll_202302863
crossref_primary_10_1039_D0EE02241A
crossref_primary_10_1007_s11426_024_2420_9
crossref_primary_10_1016_j_jechem_2023_07_028
crossref_primary_10_1063_5_0110830
crossref_primary_10_1002_sus2_190
crossref_primary_10_1016_j_ensm_2020_07_026
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1039_D2EE02998G
crossref_primary_10_1039_D3EE02657D
crossref_primary_10_1016_j_actamat_2024_120370
crossref_primary_10_1016_j_cej_2021_131040
crossref_primary_10_1039_D1TA02754A
crossref_primary_10_3390_nano11040946
crossref_primary_10_1016_j_etran_2024_100311
crossref_primary_10_1016_j_nanoen_2022_107994
crossref_primary_10_1021_acsomega_4c01966
crossref_primary_10_1016_j_jpowsour_2021_229861
crossref_primary_10_1016_j_electacta_2021_138735
crossref_primary_10_1016_j_mtener_2023_101434
crossref_primary_10_1007_s10008_021_05004_x
crossref_primary_10_1016_j_mattod_2023_11_016
crossref_primary_10_1002_aenm_202001235
crossref_primary_10_1016_j_nanoen_2023_108192
crossref_primary_10_1039_D1TA01545A
crossref_primary_10_1002_aenm_202002689
crossref_primary_10_1016_j_ensm_2023_103016
crossref_primary_10_1039_D0TA11030B
crossref_primary_10_1021_acsenergylett_1c01368
crossref_primary_10_1021_acs_jpcc_0c07385
crossref_primary_10_1002_aenm_202400725
crossref_primary_10_1002_adfm_202201038
crossref_primary_10_1016_j_est_2023_107283
crossref_primary_10_3389_fmtec_2024_1360076
crossref_primary_10_3390_ma16052090
crossref_primary_10_1002_adma_202407923
crossref_primary_10_3390_cleantechnol5030044
crossref_primary_10_1002_aenm_202304530
crossref_primary_10_1002_aenm_202302476
crossref_primary_10_1002_ange_202314537
crossref_primary_10_1021_acsami_1c12059
crossref_primary_10_1002_ange_202315628
crossref_primary_10_1016_j_electacta_2021_138917
crossref_primary_10_1002_app_52001
crossref_primary_10_1016_j_xcrp_2021_100569
crossref_primary_10_2139_ssrn_4193476
crossref_primary_10_1021_acs_nanolett_2c03291
crossref_primary_10_1016_j_joule_2021_07_002
crossref_primary_10_1021_acsaem_0c02993
crossref_primary_10_1002_aesr_202000057
crossref_primary_10_1088_2752_5724_ac8947
crossref_primary_10_1016_j_est_2020_102167
crossref_primary_10_1002_batt_202200100
crossref_primary_10_1021_acs_nanolett_4c05442
crossref_primary_10_1002_cssc_202202060
crossref_primary_10_1016_j_elecom_2022_107336
crossref_primary_10_3390_su132111696
crossref_primary_10_1016_j_ensm_2023_103034
crossref_primary_10_1002_adma_202206762
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1021_acs_analchem_2c03780
crossref_primary_10_1002_aenm_202400985
crossref_primary_10_1021_acs_energyfuels_0c02915
crossref_primary_10_1038_s41467_021_27311_7
crossref_primary_10_1557_s43577_023_00630_4
crossref_primary_10_1002_bte2_20230050
crossref_primary_10_1002_adfm_202005209
crossref_primary_10_1021_acs_chemmater_4c02478
crossref_primary_10_1002_batt_202200359
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1007_s12274_022_4242_5
crossref_primary_10_1002_smll_202300118
crossref_primary_10_1016_j_mattod_2020_09_001
crossref_primary_10_1016_j_mattod_2020_09_003
crossref_primary_10_1088_2515_7655_ad6bc0
crossref_primary_10_1007_s41918_023_00198_2
crossref_primary_10_1016_j_jallcom_2020_157340
crossref_primary_10_1039_D1TA08226D
crossref_primary_10_1016_j_ensm_2020_05_007
crossref_primary_10_1038_s41563_022_01343_w
crossref_primary_10_1039_D2MA00655C
crossref_primary_10_1002_advs_202207627
crossref_primary_10_1002_batt_202000194
crossref_primary_10_1016_j_coelec_2022_101127
crossref_primary_10_1021_acsenergylett_1c01960
crossref_primary_10_1021_acsaelm_0c00849
crossref_primary_10_34133_energymatadv_0041
crossref_primary_10_1002_aenm_202401336
crossref_primary_10_1002_advs_202401889
crossref_primary_10_1002_anie_202218621
crossref_primary_10_1016_j_ensm_2024_103847
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1007_s40820_023_01177_4
crossref_primary_10_1007_s40843_022_2259_3
crossref_primary_10_1016_j_cej_2021_130335
crossref_primary_10_1021_acssuschemeng_2c07556
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_1002_adma_202308493
crossref_primary_10_1002_adma_202210835
crossref_primary_10_1016_j_matlet_2021_129705
crossref_primary_10_1002_cey2_129
crossref_primary_10_1016_j_actamat_2024_119880
crossref_primary_10_1002_celc_202200054
crossref_primary_10_1007_s43979_024_00110_x
crossref_primary_10_1039_D1EE03345J
crossref_primary_10_1002_ange_202400960
crossref_primary_10_1016_j_jallcom_2023_170548
crossref_primary_10_1016_j_est_2024_110952
crossref_primary_10_1021_acsomega_2c01338
crossref_primary_10_1021_acsami_3c12414
crossref_primary_10_1039_D2EE01358D
crossref_primary_10_1016_j_cclet_2021_04_045
crossref_primary_10_1007_s40242_020_0116_0
crossref_primary_10_1016_j_electacta_2020_136884
crossref_primary_10_1021_acsami_2c12920
crossref_primary_10_1021_acsenergylett_2c02138
crossref_primary_10_26599_EMD_2023_9370004
crossref_primary_10_1039_D0EE02714F
crossref_primary_10_1016_j_jpowsour_2022_232372
crossref_primary_10_1002_aenm_202401473
crossref_primary_10_1021_acs_nanolett_2c01364
crossref_primary_10_1016_j_susmat_2024_e01176
crossref_primary_10_1016_j_ensm_2022_08_017
crossref_primary_10_1016_j_matt_2021_01_012
crossref_primary_10_1021_acsnano_2c01038
crossref_primary_10_1039_D0EE02062A
crossref_primary_10_1063_5_0055963
crossref_primary_10_1002_adma_202409269
crossref_primary_10_1016_j_ceramint_2021_08_076
crossref_primary_10_1002_aenm_202003939
crossref_primary_10_1021_acsaem_3c02646
crossref_primary_10_1021_acsenergylett_2c01297
crossref_primary_10_1016_j_jpowsour_2024_234187
crossref_primary_10_1021_acs_inorgchem_3c03345
crossref_primary_10_1002_adma_202403848
crossref_primary_10_1038_s43588_021_00041_y
crossref_primary_10_1016_j_cej_2024_155673
crossref_primary_10_1039_D2QM01071B
crossref_primary_10_1002_elsa_202100038
crossref_primary_10_1016_j_ensm_2024_103527
crossref_primary_10_1016_j_jpowsour_2021_230930
crossref_primary_10_1002_adma_202301540
crossref_primary_10_1021_acsami_1c15607
crossref_primary_10_1038_s43246_021_00216_0
crossref_primary_10_1021_acsami_3c02678
crossref_primary_10_1002_adfm_202404795
crossref_primary_10_1002_eem2_12498
crossref_primary_10_1016_j_jpowsour_2024_234299
crossref_primary_10_1016_j_jssc_2023_124375
crossref_primary_10_1002_adma_202206013
crossref_primary_10_1016_j_jpowsour_2022_232270
crossref_primary_10_1038_s43246_024_00568_3
crossref_primary_10_1016_j_jpowsour_2024_235259
crossref_primary_10_1002_adma_202312305
crossref_primary_10_1002_adem_202201390
crossref_primary_10_3390_molecules25163733
crossref_primary_10_1002_cssc_202201252
crossref_primary_10_1039_D3EE01119D
crossref_primary_10_1134_S1023193523030126
crossref_primary_10_1002_adfm_202107555
crossref_primary_10_1021_acsami_4c19857
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1002_slct_202004595
crossref_primary_10_1021_acsenergylett_1c00332
crossref_primary_10_3390_s24082392
crossref_primary_10_1016_j_mser_2025_100972
crossref_primary_10_1002_ange_202308837
crossref_primary_10_1021_acsenergylett_4c00882
crossref_primary_10_1016_j_coelec_2020_07_006
crossref_primary_10_1002_smll_202411747
crossref_primary_10_1038_s41467_022_29596_8
crossref_primary_10_1016_j_mattod_2023_03_001
crossref_primary_10_1038_s41578_020_00261_0
crossref_primary_10_1002_adfm_202111829
crossref_primary_10_1002_aenm_202200948
crossref_primary_10_1016_j_mtphys_2023_101009
crossref_primary_10_1002_cssc_202202216
crossref_primary_10_1007_s11426_023_1706_8
crossref_primary_10_1021_jacs_1c10872
crossref_primary_10_1016_j_ensm_2022_01_042
crossref_primary_10_1098_rsos_200598
crossref_primary_10_1021_acsami_2c18552
crossref_primary_10_1021_acs_langmuir_0c03580
crossref_primary_10_1002_aenm_202403602
crossref_primary_10_1039_D2TA01021F
crossref_primary_10_1002_aesr_202300280
crossref_primary_10_1063_5_0018417
crossref_primary_10_1038_s41467_024_53869_z
crossref_primary_10_1039_D3QM01171B
crossref_primary_10_2139_ssrn_4105393
crossref_primary_10_1016_j_matt_2020_07_005
crossref_primary_10_1021_acsaem_4c02653
crossref_primary_10_2139_ssrn_3988077
crossref_primary_10_1016_j_isci_2023_105982
crossref_primary_10_1039_D1TA00451D
crossref_primary_10_1021_acsenergylett_0c00942
crossref_primary_10_1021_acssuschemeng_1c07996
crossref_primary_10_1007_s41918_023_00200_x
crossref_primary_10_1021_acsami_3c07592
crossref_primary_10_1016_j_jpowsour_2023_232914
crossref_primary_10_1021_acsami_4c09878
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1016_j_jeurceramsoc_2023_12_071
crossref_primary_10_1002_adfm_202411737
crossref_primary_10_1016_j_coelec_2021_100828
crossref_primary_10_1016_j_matt_2020_10_027
crossref_primary_10_1002_ange_202424304
crossref_primary_10_1016_j_cej_2024_149877
crossref_primary_10_1039_D3TA00687E
crossref_primary_10_1002_smsc_202100055
crossref_primary_10_1039_D4DT01133C
crossref_primary_10_1016_j_ensm_2022_11_007
crossref_primary_10_1021_acsnano_4c02236
crossref_primary_10_1016_j_jpowsour_2022_231891
crossref_primary_10_1038_s41467_021_24697_2
crossref_primary_10_1039_D1TA04476A
crossref_primary_10_1021_acs_chemmater_4c00515
crossref_primary_10_1063_5_0031233
crossref_primary_10_1016_j_ensm_2025_104125
crossref_primary_10_1021_acs_chemmater_4c00301
crossref_primary_10_1021_acsaem_3c01498
crossref_primary_10_7791_jspmee_10_279
crossref_primary_10_1002_adfm_202418274
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1038_s41586_023_05899_8
crossref_primary_10_7791_jspmee_10_152
crossref_primary_10_1016_j_matt_2024_02_012
crossref_primary_10_1039_D0EE01569E
crossref_primary_10_1016_j_jssc_2023_124361
crossref_primary_10_1016_j_trechm_2021_04_007
crossref_primary_10_1016_j_cej_2024_148995
crossref_primary_10_1021_acs_nanolett_1c00315
crossref_primary_10_1021_acsaem_3c00396
crossref_primary_10_1016_j_jpowsour_2025_236394
crossref_primary_10_1021_acsnano_4c14322
crossref_primary_10_1021_acsenergylett_3c01839
crossref_primary_10_1016_j_jechem_2022_01_046
crossref_primary_10_1016_j_joule_2023_07_022
crossref_primary_10_1016_j_cclet_2024_109568
crossref_primary_10_1002_adma_202407150
crossref_primary_10_1016_j_mser_2025_100941
crossref_primary_10_1088_1742_6596_2418_1_012075
crossref_primary_10_1016_j_ensm_2025_104131
crossref_primary_10_1038_s41560_024_01463_4
crossref_primary_10_1038_s41560_023_01221_y
crossref_primary_10_1016_j_ensm_2022_12_015
crossref_primary_10_1002_adfm_202106680
crossref_primary_10_1002_ange_202218621
crossref_primary_10_1016_j_cej_2022_136229
crossref_primary_10_1002_anie_202400960
crossref_primary_10_1016_j_rser_2020_110261
crossref_primary_10_1038_s41467_022_33129_8
crossref_primary_10_1007_s40820_022_00996_1
crossref_primary_10_1016_j_ensm_2021_10_003
crossref_primary_10_1002_adfm_202312187
crossref_primary_10_1038_s41565_021_00883_7
crossref_primary_10_1557_mre_2020_31
crossref_primary_10_1021_acsaem_3c00061
crossref_primary_10_1002_adma_202002325
crossref_primary_10_1038_s41597_024_03886_w
crossref_primary_10_1002_adfm_202106608
crossref_primary_10_1038_s41467_024_52226_4
crossref_primary_10_1039_D1EE01812D
crossref_primary_10_1021_acsaem_1c02187
crossref_primary_10_1002_celc_202400484
crossref_primary_10_1021_acsami_1c19235
crossref_primary_10_1039_D3TA00440F
crossref_primary_10_1039_D1EE00638J
crossref_primary_10_1039_D3TA07366A
crossref_primary_10_1093_mam_ozae086
crossref_primary_10_1002_sstr_202000042
crossref_primary_10_1016_j_mtchem_2020_100368
crossref_primary_10_1002_aenm_202101518
crossref_primary_10_1002_adma_202305985
crossref_primary_10_1557_mre_2020_25
crossref_primary_10_1016_j_carbpol_2024_123041
crossref_primary_10_1039_D3TA02787B
crossref_primary_10_1016_j_ensm_2023_01_047
crossref_primary_10_1016_j_jechem_2024_05_006
crossref_primary_10_3390_inorganics12020054
crossref_primary_10_1002_adfm_202010261
crossref_primary_10_1039_D4TA08556F
crossref_primary_10_1002_anie_202314537
crossref_primary_10_1021_acsnano_1c10919
crossref_primary_10_1039_D1TA04532F
crossref_primary_10_1002_anie_202315628
crossref_primary_10_1002_batt_202100264
crossref_primary_10_1002_aenm_202100210
crossref_primary_10_1021_acsami_4c12938
crossref_primary_10_1016_j_cej_2022_140509
crossref_primary_10_1016_j_est_2024_112017
crossref_primary_10_1021_acsnano_5c01171
crossref_primary_10_3390_nano10081606
crossref_primary_10_1038_s41467_023_43883_y
crossref_primary_10_1016_j_oceram_2024_100639
crossref_primary_10_1016_j_electacta_2022_139995
crossref_primary_10_1039_D1TA05751K
crossref_primary_10_1002_adma_202003741
crossref_primary_10_1021_acs_jpclett_1c02490
crossref_primary_10_1002_adma_202202848
crossref_primary_10_1002_aesr_202100004
crossref_primary_10_1016_j_jechem_2022_01_008
crossref_primary_10_1038_s41467_022_35667_7
crossref_primary_10_1002_ange_202110699
crossref_primary_10_1016_j_jechem_2023_10_040
crossref_primary_10_1021_acsami_0c21461
crossref_primary_10_1002_adfm_202405152
Cites_doi 10.1073/pnas.1615912113
10.1039/C7RA09081A
10.1002/aenm.201401408
10.1021/acsami.6b13925
10.1021/acsaem.9b00290
10.1021/acsami.8b04204
10.1149/2.0951712jes
10.1038/nmat4821
10.1149/1.1393226
10.1016/j.eng.2018.05.018
10.1016/j.joule.2019.02.006
10.1002/aenm.201900454
10.1016/j.jpowsour.2016.05.100
10.1016/j.jechem.2019.02.006
10.1021/acssuschemeng.6b01948
10.1016/j.jpowsour.2017.11.031
10.1039/C8RA08436J
10.1038/s41570-019-0078-2
10.1021/acs.chemmater.7b03002
10.1016/j.ssi.2013.12.019
10.1002/aenm.201501590
10.1038/natrevmats.2016.103
10.1021/jacs.7b07904
10.1021/jz402467x
10.3389/fchem.2019.00522
10.1016/j.jpowsour.2019.05.031
10.1021/acsenergylett.8b02381
10.1016/j.ssi.2016.11.029
10.1016/j.est.2017.11.008
10.1021/cm5016959
10.1016/j.ensm.2019.05.033
10.1016/j.ssi.2018.08.010
10.1002/aenm.201703644
10.1021/acs.nanolett.6b01119
10.1021/acs.chemmater.6b04990
10.1021/acs.chemmater.6b00610
10.1021/acs.chemmater.7b00034
10.1038/nmat3066
10.1002/aenm.201802927
10.1021/acsami.8b07476
10.1002/adma.201500180
10.1021/acsami.6b08435
10.1002/adma.201803075
10.1021/acsaem.9b01111
10.1149/2.1391814jes
10.1016/j.joule.2018.07.009
10.1021/acs.chemmater.7b04842
10.1002/anie.201901938
10.1021/acs.chemmater.7b00931
10.1021/acs.nanolett.7b00221
10.1016/j.elecom.2015.05.001
10.1039/c3ta10247e
10.1149/2.0311602jes
10.1149/2.1571707jes
10.1021/acsami.7b18962
10.1002/aenm.201500865
10.1002/aenm.201300787
10.1039/C6CS00491A
10.1021/acs.chemmater.7b00551
10.1016/j.progpolymsci.2017.12.004
10.1149/2.0731504jes
10.1039/C9TA02614B
10.1021/acsenergylett.8b01726
10.1021/acs.chemmater.8b04875
10.1021/acs.nanolett.7b00330
10.1149/2.1341709jes
10.1149/2.0301816jes
10.1016/j.jpowsour.2018.02.062
10.1021/acs.jpcc.6b10268
10.1021/acsami.7b11530
10.1149/2.085207jes
10.1021/acsami.5b07517
10.1016/j.trechm.2019.06.013
10.3390/molecules22030403
10.1007/s41918-018-0012-1
10.1016/j.ensm.2018.11.011
10.1016/j.jpowsour.2007.11.074
10.1038/s41586-019-1481-z
10.1021/jacs.7b06364
10.1016/j.elecom.2012.12.021
10.1002/adma.200502604
10.1039/C8CS00297E
10.1038/nenergy.2016.30
10.1021/cm901819c
ContentType Journal Article
Copyright Springer Nature Limited 2020
2020© Springer Nature Limited 2020
Springer Nature Limited 2020.
Copyright_xml – notice: Springer Nature Limited 2020
– notice: 2020© Springer Nature Limited 2020
– notice: Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-020-0657-x
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
PubMed
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 180
ExternalDocumentID 32157239
10_1038_s41565_020_0657_x
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: LG Chem through Battery Innovation Contest (BIC) program as well as the Energy & Biosciences Institute through the EBI-Shell program.
– fundername: LG Chem through Battery Innovation Contest (BIC) program as well as the Energy & Biosciences Institute through the EBI-Shell program. The authors would like to acknowledge the National Center for Microscopy and Imaging Research for the CT imaging, which is funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (5 P41-GM103412). Y.S.M. acknowledges the funding support from Zable Endowed Chair Fund.
– fundername: Z.C. acknowledges funding from US National Science Foundation via Award CBET-1805570, US Department of Energy via ReCell Center, and the start-up fund support from the Jacob School of Engineering at UC San Diego.
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: 5 P41-GM103412
  funderid: https://doi.org/10.13039/100000057
– fundername: NIGMS NIH HHS
  grantid: P41 GM103412
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
5BI
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
EBS
EE.
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L6V
LK8
M1P
M7P
M7S
NNMJJ
O9-
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
5M7
5S5
ABAWZ
ABDBF
ACUHS
DB5
EJD
EMOBN
I-F
MM.
NFIDA
NPM
ODYON
SV3
TUS
~8M
3V.
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c524t-dc8ed4705f18f7ba5c234ef01faca866f6e4bc769b2fd7a27b32c4617525bffa3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Thu Jul 10 17:40:10 EDT 2025
Sat Aug 23 14:04:37 EDT 2025
Sat Aug 23 13:35:20 EDT 2025
Thu Apr 03 07:00:54 EDT 2025
Tue Jul 01 01:56:30 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 21 02:41:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-dc8ed4705f18f7ba5c234ef01faca866f6e4bc769b2fd7a27b32c4617525bffa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8936-8845
0000-0002-9186-4298
PMID 32157239
PQID 2376708596
PQPubID 546299
PageCount 11
ParticipantIDs proquest_miscellaneous_2376233698
proquest_journals_2475038043
proquest_journals_2376708596
pubmed_primary_32157239
crossref_citationtrail_10_1038_s41565_020_0657_x
crossref_primary_10_1038_s41565_020_0657_x
springer_journals_10_1038_s41565_020_0657_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhang (CR73) 2018; 47
Han, Gao, Zhu, Gaskell, Wang (CR39) 2015; 27
Sakuda, Hayashi, Tatsumisago (CR14) 2010; 22
Neudecker, Dudney, Bates (CR30) 2000; 147
Xiao, Miara, Wang, Ceder (CR17) 2019; 3
Fang (CR32) 2019; 572
Tan (CR60) 2019; 2
Liu (CR75) 2019; 10
Nowak, Winter (CR77) 2017; 22
Koerver (CR18) 2017; 29
Ren, Shen, Lin, Nan (CR46) 2015; 57
Lee (CR52) 2019; 4
Haruyama, Sodeyama, Tateyama (CR13) 2017; 9
Auvergniot (CR9) 2017; 300
Asano (CR36) 2018; 30
Wenzel (CR19) 2016; 28
Calpa, Rosero-Navarro, Miura, Tadanaga (CR81) 2017; 7
May, Davidson, Monahov (CR72) 2018; 15
Hayashi, Muramatsu, Ohtomo, Hama, Tatsumisago (CR65) 2013; 1
Mindemark, Lacey, Bowden, Brandell (CR6) 2018; 81
Sharafi (CR33) 2017; 29
Wang (CR79) 2018; 30
Yao (CR7) 2019; 7
Jung (CR82) 2014; 4
Oh (CR67) 2015; 5
Ohta (CR11) 2006; 18
Nam, Oh, Jung, Jung (CR59) 2018; 375
Zhang (CR5) 2017; 46
Zhang (CR42) 2017; 9
Tao (CR34) 2016; 163
Lee, Lee, Choi, Char, Choi (CR64) 2018; 4
Woo (CR15) 2012; 159
Yan, Li, Wen, Han (CR40) 2017; 121
Lee (CR63) 2017; 164
Kerman, Luntz, Viswanathan, Chiang, Chen (CR27) 2017; 164
Haruyama, Sodeyama, Han, Takada, Tateyama (CR10) 2014; 26
Santhanagopalan (CR54) 2014; 5
Zhu, He, Mo (CR4) 2015; 7
Wang (CR50) 2017; 139
Hakari (CR55) 2017; 29
Manthiram, Yu, Wang (CR45) 2017; 2
Chen-Wiegart, Liu, Faber, Barnett, Wang (CR49) 2013; 28
Shi, Zhang, Meng, Chen (CR84) 2019; 9
Schnell (CR56) 2018; 382
Hippauf (CR62) 2019; 21
Han (CR20) 2017; 16
Li, Ma, Chi, Liang, Dudney (CR31) 2015; 5
Okada (CR16) 2014; 255
Aguesse (CR28) 2017; 9
Xu (CR71) 2008; 177
Kim (CR80) 2017; 17
Swamy (CR29) 2018; 165
Kato (CR3) 2016; 1
Kim (CR22) 2019; 7
Miura (CR78) 2019; 3
Marbella (CR51) 2019; 31
Wang (CR85) 2019; 58
Zhang (CR57) 2017; 139
Li (CR48) 2018; 10
Kamaya (CR37) 2011; 10
Lewis, Tippens, Cortes, McDowell (CR44) 2019; 1
Wang (CR86) 2016; 16
Yersak, Salvador, Schmidt, Cai (CR21) 2019; 2
Zhang (CR83) 2016; 4
Sun (CR35) 2016; 324
Li (CR74) 2018; 1
Yamamoto, Terauchi, Sakuda, Takahashi (CR70) 2018; 8
Seitzman (CR47) 2018; 165
Zheng (CR76) 2018; 4
Nguyen (CR2) 2019; 435
Ates, Keller, Kulisch, Adermann, Passerini (CR24) 2019; 17
Xu (CR43) 2018; 2
CR68
Oh (CR69) 2019; 9
Jung, Lee, Choi, Jang, Kim (CR58) 2015; 162
Li (CR12) 2019; 40
Auvergniot (CR8) 2017; 29
Liang, Han, Wang, Lan, Mao (CR66) 2018; 8
Yu (CR1) 2018; 10
Sakuda (CR61) 2017; 164
Tao (CR23) 2017; 17
Choi (CR53) 2018; 10
Han, Zhu, He, Mo, Wang (CR38) 2016; 6
Shi (CR41) 2018; 325
Han, Yue, Zhu, Wang (CR25) 2018; 8
Li (CR26) 2016; 113
Sang, Haasch, Gewirth, Nuzzo (CR87) 2017; 29
J Haruyama (657_CR10) 2014; 26
JZ Lee (657_CR52) 2019; 4
X Tao (657_CR23) 2017; 17
T Asano (657_CR36) 2018; 30
T Liu (657_CR75) 2019; 10
Y Shi (657_CR84) 2019; 9
T Ates (657_CR24) 2019; 17
F Hippauf (657_CR62) 2019; 21
R Koerver (657_CR18) 2017; 29
Y-cK Chen-Wiegart (657_CR49) 2013; 28
Z Wang (657_CR86) 2016; 16
J Auvergniot (657_CR8) 2017; 29
DY Oh (657_CR67) 2015; 5
F Aguesse (657_CR28) 2017; 9
L Li (657_CR74) 2018; 1
LE Marbella (657_CR51) 2019; 31
Y Sun (657_CR35) 2016; 324
S Wang (657_CR85) 2019; 58
H Nguyen (657_CR2) 2019; 435
F Han (657_CR25) 2018; 8
D Santhanagopalan (657_CR54) 2014; 5
X Zhang (657_CR83) 2016; 4
L Sang (657_CR87) 2017; 29
C Yu (657_CR1) 2018; 10
BJ Neudecker (657_CR30) 2000; 147
JA Lewis (657_CR44) 2019; 1
N Ohta (657_CR11) 2006; 18
T Yersak (657_CR21) 2019; 2
X Zhang (657_CR73) 2018; 47
S Nowak (657_CR77) 2017; 22
S-K Jung (657_CR82) 2014; 4
C Fang (657_CR32) 2019; 572
YJ Nam (657_CR59) 2018; 375
657_CR68
Y Zhu (657_CR4) 2015; 7
Y Tao (657_CR34) 2016; 163
W Zhang (657_CR42) 2017; 9
K Okada (657_CR16) 2014; 255
X Liang (657_CR66) 2018; 8
H Zhang (657_CR5) 2017; 46
N Seitzman (657_CR47) 2018; 165
X Zhang (657_CR57) 2017; 139
P Yao (657_CR7) 2019; 7
J Li (657_CR31) 2015; 5
M Calpa (657_CR81) 2017; 7
J Auvergniot (657_CR9) 2017; 300
A Sakuda (657_CR14) 2010; 22
F Han (657_CR39) 2015; 27
N Kamaya (657_CR37) 2011; 10
X Shi (657_CR41) 2018; 325
DHS Tan (657_CR60) 2019; 2
X Zheng (657_CR76) 2018; 4
S Choi (657_CR53) 2018; 10
X Li (657_CR12) 2019; 40
A Hayashi (657_CR65) 2013; 1
Y Li (657_CR26) 2016; 113
X Yan (657_CR40) 2017; 121
A Sharafi (657_CR33) 2017; 29
J Schnell (657_CR56) 2018; 382
DY Oh (657_CR69) 2019; 9
J Xu (657_CR71) 2008; 177
M Yamamoto (657_CR70) 2018; 8
C Wang (657_CR50) 2017; 139
X Han (657_CR20) 2017; 16
Y Ren (657_CR46) 2015; 57
JH Woo (657_CR15) 2012; 159
J Haruyama (657_CR13) 2017; 9
T Li (657_CR48) 2018; 10
K Lee (657_CR63) 2017; 164
A Miura (657_CR78) 2019; 3
T Hakari (657_CR55) 2017; 29
Y Wang (657_CR79) 2018; 30
K Lee (657_CR64) 2018; 4
A Sakuda (657_CR61) 2017; 164
DH Kim (657_CR80) 2017; 17
T Swamy (657_CR29) 2018; 165
Y Kato (657_CR3) 2016; 1
S Wenzel (657_CR19) 2016; 28
A Manthiram (657_CR45) 2017; 2
K Kerman (657_CR27) 2017; 164
GJ May (657_CR72) 2018; 15
J Mindemark (657_CR6) 2018; 81
Y Xiao (657_CR17) 2019; 3
SH Kim (657_CR22) 2019; 7
L Xu (657_CR43) 2018; 2
Y-C Jung (657_CR58) 2015; 162
F Han (657_CR38) 2016; 6
33674773 - Nat Nanotechnol. 2021 Mar 5
References_xml – volume: 16
  start-page: 572
  year: 2017
  end-page: 579
  ident: CR20
  article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries
  publication-title: Nat. Mater.
– volume: 121
  start-page: 1431
  year: 2017
  end-page: 1435
  ident: CR40
  article-title: Li/Li La Zr O /LiFePO All-solid-state battery with ultrathin nanoscale solid electrolyte
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 990
  year: 2018
  end-page: 997
  ident: CR79
  article-title: Mechanism of formation of Li P S solid electrolytes through liquid phase synthesis
  publication-title: Chem. Mater.
– volume: 165
  start-page: A3732
  year: 2018
  end-page: A3737
  ident: CR47
  article-title: Toward all-solid-state lithium batteries: three-dimensional visualization of lithium migration in β-Li PS ceramic electrolyte
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 3473
  year: 2015
  end-page: 3483
  ident: CR39
  article-title: A battery made from a single material
  publication-title: Adv. Mater.
– ident: CR68
– volume: 113
  start-page: 13313
  year: 2016
  end-page: 13317
  ident: CR26
  article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: 35888
  year: 2017
  end-page: 35896
  ident: CR42
  article-title: The detrimental effects of carbon additives in Li GeP S based solid-state batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1252
  year: 2019
  end-page: 1275
  ident: CR17
  article-title: Computational Screening of Cathode Coatings for Solid-State
  publication-title: Batteries. Joule
– volume: 8
  start-page: 1703644
  year: 2018
  ident: CR25
  article-title: Suppressing Li dendrite formation in Li S-P S solid electrolyte by LiI incorporation
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 23685
  year: 2015
  end-page: 23693
  ident: CR4
  article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations
  publication-title: ACS Appl. Mater. Interfaces
– volume: 163
  start-page: A96
  year: 2016
  end-page: A101
  ident: CR34
  article-title: Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 2226
  year: 2006
  end-page: 2229
  ident: CR11
  article-title: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification
  publication-title: Adv. Mater.
– volume: 28
  start-page: 127
  year: 2013
  end-page: 130
  ident: CR49
  article-title: 3D analysis of a LiCoO –Li(Ni Mn Co )O Li-ion battery positive electrode using x-ray nano-tomography
  publication-title: Electrochem. Commun.
– volume: 26
  start-page: 4248
  year: 2014
  end-page: 4255
  ident: CR10
  article-title: Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery
  publication-title: Chem. Mater.
– volume: 29
  start-page: 4768
  year: 2017
  end-page: 4774
  ident: CR55
  article-title: Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes
  publication-title: Chem. Mater.
– volume: 164
  start-page: A1731
  year: 2017
  end-page: A1744
  ident: CR27
  article-title: Review—practical challenges hindering the development of solid state Li ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 435
  start-page: 126623
  year: 2019
  ident: CR2
  article-title: Single-step synthesis of highly conductive Na PS solid electrolyte for sodium all solid-state batteries
  publication-title: J. Power Sources
– volume: 162
  start-page: A704
  year: 2015
  end-page: A710
  ident: CR58
  article-title: All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 845
  year: 2019
  end-page: 857
  ident: CR44
  article-title: Chemo-mechanical challenges in solid-state batteries
  publication-title: Trends Chem.
– volume: 58
  start-page: 8039
  year: 2019
  end-page: 8043
  ident: CR85
  article-title: Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 6542
  year: 2019
  end-page: 6550
  ident: CR60
  article-title: Enabling thin and flexible solid-state composite electrolytes by the scalable solution process
  publication-title: ACS Appl. Energy Mater.
– volume: 8
  start-page: 40498
  year: 2018
  end-page: 40504
  ident: CR66
  article-title: Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries
  publication-title: RSC Adv.
– volume: 29
  start-page: 7961
  year: 2017
  end-page: 7968
  ident: CR33
  article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li La Zr O
  publication-title: Chem. Mater.
– volume: 7
  start-page: 522
  year: 2019
  ident: CR7
  article-title: Review on polymer-based composite electrolytes for lithium batteries
  publication-title: Front. Chem.
– volume: 325
  start-page: 112
  year: 2018
  end-page: 119
  ident: CR41
  article-title: Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery
  publication-title: Solid State Ion.
– volume: 300
  start-page: 78
  year: 2017
  end-page: 85
  ident: CR9
  article-title: Redox activity of argyrodite Li PS Cl electrolyte in all-solid-state Li-ion battery: an XPS study
  publication-title: Solid State Ionics
– volume: 22
  start-page: 403
  year: 2017
  ident: CR77
  article-title: The role of sub- and supercritical CO as “Processing Solvent” for the recycling and sample preparation of lithium ion battery electrolytes
  publication-title: Molecules
– volume: 324
  start-page: 798
  year: 2016
  end-page: 803
  ident: CR35
  article-title: Oxygen substitution effects in Li GeP S solid electrolyte
  publication-title: J. Power Sources
– volume: 2
  start-page: 3523
  year: 2019
  end-page: 3531
  ident: CR21
  article-title: Hot pressed, fiber-reinforced (Li S)70(P S )30 solid-state electrolyte separators for Li metal batteries
  publication-title: ACS Appl. Energy Mater.
– volume: 17
  start-page: 204
  year: 2019
  end-page: 210
  ident: CR24
  article-title: Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 1401408
  year: 2015
  ident: CR31
  article-title: Solid electrolyte: the key for high-voltage lithium batteries
  publication-title: Adv. Energy Mater.
– volume: 375
  start-page: 93
  year: 2018
  end-page: 101
  ident: CR59
  article-title: Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes
  publication-title: J. Power Sources
– volume: 10
  start-page: 33296
  year: 2018
  end-page: 33306
  ident: CR1
  article-title: Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li PS Cl solid-state electrolyte
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 6320
  year: 2013
  ident: CR65
  article-title: Improvement of chemical stability of Li PS glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 489
  year: 2019
  end-page: 493
  ident: CR52
  article-title: Cryogenic focused ion beam characterization of lithium metal anodes
  publication-title: ACS Energy Lett.
– volume: 164
  start-page: A2075
  year: 2017
  end-page: A2081
  ident: CR63
  article-title: Selection of binder and solvent for solution-processed all-solid-state battery
  publication-title: J. Electrochem. Soc.
– volume: 47
  start-page: 7239
  year: 2018
  end-page: 7302
  ident: CR73
  article-title: Toward sustainable and systematic recycling of spent rechargeable batteries
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 286
  year: 2017
  end-page: 292
  ident: CR13
  article-title: Cation mixing properties toward Co diffusion at the LiCoO cathode/sulfide electrolyte interface in a solid-state battery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 390
  year: 2019
  end-page: 398
  ident: CR62
  article-title: Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach
  publication-title: Energy Storage Mater.
– volume: 164
  start-page: A2474
  year: 2017
  end-page: A2478
  ident: CR61
  article-title: All-solid-state battery electrode sheets prepared by a slurry coating process
  publication-title: J. Electrochem. Soc.
– volume: 46
  start-page: 797
  year: 2017
  end-page: 815
  ident: CR5
  article-title: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
  publication-title: Chem Soc Rev
– volume: 572
  start-page: 511
  year: 2019
  end-page: 515
  ident: CR32
  article-title: Quantifying inactive lithium in lithium metal batteries
  publication-title: Nature
– volume: 40
  start-page: 39
  year: 2019
  end-page: 45
  ident: CR12
  article-title: LiNbO -coated LiNi Co Mn O cathode with high discharge capacity and rate performance for all-solid-state lithium battery
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 682
  year: 2011
  end-page: 686
  ident: CR37
  article-title: A lithium superionic conductor
  publication-title: Nat. Mater.
– volume: 31
  start-page: 2762
  year: 2019
  end-page: 2769
  ident: CR51
  article-title: Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries
  publication-title: Chem. Mater.
– volume: 7
  start-page: 46499
  year: 2017
  end-page: 46504
  ident: CR81
  article-title: Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li P S by a liquid phase process
  publication-title: RSC Adv.
– volume: 2
  start-page: 1991
  year: 2018
  end-page: 2015
  ident: CR43
  article-title: Interfaces in solid-state lithium batteries
  publication-title: Joule
– volume: 9
  start-page: 1900454
  year: 2019
  ident: CR84
  article-title: Ambient‐pressure relithiation of degraded Li Ni Co Mn O (0 < x < 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1500865
  year: 2015
  ident: CR67
  article-title: Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 3013
  year: 2017
  end-page: 3020
  ident: CR80
  article-title: Infiltration of solution-processable solid electrolytes into conventional Li-Ion-battery electrodes for all-solid-state Li-Ion batteries
  publication-title: Nano Lett
– volume: 1
  start-page: 461
  year: 2018
  end-page: 482
  ident: CR74
  article-title: The recycling of spent lithium-ion batteries: a review of current processes and technologies
  publication-title: Electrochem. Energy Rev.
– volume: 10
  year: 2019
  ident: CR75
  article-title: Sustainability-inspired cell design for a fully recyclable sodium ion battery
  publication-title: Nat. Commun.
– volume: 15
  start-page: 145
  year: 2018
  end-page: 157
  ident: CR72
  article-title: Lead batteries for utility energy storage: a review
  publication-title: J. Energy Storage
– volume: 177
  start-page: 512
  year: 2008
  end-page: 527
  ident: CR71
  article-title: A review of processes and technologies for the recycling of lithium-ion secondary batteries
  publication-title: J. Power Sources
– volume: 7
  start-page: 13650
  year: 2019
  end-page: 13657
  ident: CR22
  article-title: In situ observation of lithium metal plating in a sulfur-based solid electrolyte for all-solid-state batteries
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 189
  year: 2019
  end-page: 198
  ident: CR78
  article-title: Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery
  publication-title: Nat. Rev. Chem.
– volume: 28
  start-page: 2400
  year: 2016
  end-page: 2407
  ident: CR19
  article-title: Direct observation of the interfacial instability of the fast ionic conductor Li GeP S at the lithium metal anode
  publication-title: Chem. Mater.
– volume: 139
  start-page: 14257
  year: 2017
  end-page: 14264
  ident: CR50
  article-title: In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 3883
  year: 2017
  end-page: 3890
  ident: CR8
  article-title: Interface stability of argyrodite Li PS Cl toward LiCoO , LiNi Co Mn O , and LiMn O in bulk all-solid-state batteries
  publication-title: Chem. Mater.
– volume: 57
  start-page: 27
  year: 2015
  end-page: 30
  ident: CR46
  article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
  publication-title: Electrochem. Commun.
– volume: 29
  start-page: 5574
  year: 2017
  end-page: 5582
  ident: CR18
  article-title: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes
  publication-title: Chem. Mater.
– volume: 5
  start-page: 298
  year: 2014
  end-page: 303
  ident: CR54
  article-title: Interface limited lithium transport in solid-state batteries
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 16103
  year: 2017
  ident: CR45
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
– volume: 165
  start-page: A3648
  year: 2018
  end-page: A3655
  ident: CR29
  article-title: Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li La ZrTaO garnet
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 7041
  year: 2016
  end-page: 7049
  ident: CR83
  article-title: sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 1501590
  year: 2016
  ident: CR38
  article-title: Electrochemical stability of Li GeP S and Li La Zr O solid electrolytes
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2018
  ident: CR70
  article-title: Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities
  publication-title: Sci. Rep.
– volume: 4
  start-page: 94
  year: 2018
  end-page: 101
  ident: CR64
  article-title: Thiol–ene click reaction for fine polarity tuning of polymeric binders in solution-processed all-solid-state batteries
  publication-title: ACS Energy Lett.
– volume: 29
  start-page: 3029
  year: 2017
  end-page: 3037
  ident: CR87
  article-title: Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping
  publication-title: Chem. Mater.
– volume: 17
  start-page: 2967
  year: 2017
  end-page: 2972
  ident: CR23
  article-title: Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li La Zr O /carbon foam and polymer
  publication-title: Nano Lett.
– volume: 30
  start-page: e1803075
  year: 2018
  ident: CR36
  article-title: Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries
  publication-title: Adv. Mater.
– volume: 159
  start-page: A1120
  year: 2012
  end-page: A1124
  ident: CR15
  article-title: Nanoscale interface modification of LiCoO by Al O atomic layer deposition for solid-state li batteries
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 3808
  year: 2017
  end-page: 3816
  ident: CR28
  article-title: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal
  publication-title: ACS Appl. Mater. Interfaces
– volume: 255
  start-page: 120
  year: 2014
  end-page: 127
  ident: CR16
  article-title: Preparation and electrochemical properties of LiAlO coated Li(Ni Mn Co )O for all-solid-state batteries
  publication-title: Solid State Ionics
– volume: 10
  start-page: 23740
  year: 2018
  end-page: 23747
  ident: CR53
  article-title: Quantitative analysis of microstructures and reaction interfaces on composite cathodes in all-solid-state batteries using a three-dimensional reconstruction technique
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 949
  year: 2010
  end-page: 956
  ident: CR14
  article-title: Interfacial observation between LiCoO electrode and li s−p s solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy
  publication-title: Chem. Mater.
– volume: 4
  start-page: 361
  year: 2018
  end-page: 370
  ident: CR76
  article-title: A mini-review on metal recycling from spent lithium ion batteries
  publication-title: Engineering
– volume: 16
  start-page: 3760
  year: 2016
  end-page: 3767
  ident: CR86
  article-title: In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries
  publication-title: Nano Lett.
– volume: 81
  start-page: 114
  year: 2018
  end-page: 143
  ident: CR6
  article-title: Beyond PEO—alternative host materials for Li conducting solid polymer electrolytes
  publication-title: Prog. Polym. Sci.
– volume: 139
  start-page: 13779
  year: 2017
  end-page: 13785
  ident: CR57
  article-title: Synergistic coupling between Li La Zr Ta O and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1300787
  year: 2014
  ident: CR82
  article-title: Understanding the degradation mechanisms of LiNi Co Mn O cathode material in lithium ion batteries
  publication-title: Adv. Energy Mater.
– volume: 147
  start-page: 517
  year: 2000
  end-page: 523
  ident: CR30
  article-title: “Lithium-free” thin-film battery with in situ plated Li snode
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 16927
  year: 2018
  end-page: 16931
  ident: CR48
  article-title: Three-dimensional reconstruction and analysis of all-solid Li-ion battery electrode using synchrotron transmission X-ray microscopy tomography
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1802927
  year: 2019
  ident: CR69
  article-title: Slurry‐fabricable Li conductive polymeric binders for practical all‐solid‐state lithium‐ion batteries enabled by solvate ionic liquids
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16030
  year: 2016
  ident: CR3
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
– volume: 382
  start-page: 160
  year: 2018
  end-page: 175
  ident: CR56
  article-title: All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production
  publication-title: J. Power Sources
– volume: 113
  start-page: 13313
  year: 2016
  ident: 657_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1615912113
– volume: 7
  start-page: 46499
  year: 2017
  ident: 657_CR81
  publication-title: RSC Adv.
  doi: 10.1039/C7RA09081A
– volume: 5
  start-page: 1401408
  year: 2015
  ident: 657_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401408
– volume: 9
  start-page: 3808
  year: 2017
  ident: 657_CR28
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13925
– volume: 2
  start-page: 3523
  year: 2019
  ident: 657_CR21
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00290
– volume: 10
  start-page: 23740
  year: 2018
  ident: 657_CR53
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04204
– volume: 164
  start-page: A2474
  year: 2017
  ident: 657_CR61
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0951712jes
– volume: 16
  start-page: 572
  year: 2017
  ident: 657_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4821
– volume: 8
  year: 2018
  ident: 657_CR70
  publication-title: Sci. Rep.
– volume: 147
  start-page: 517
  year: 2000
  ident: 657_CR30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393226
– volume: 4
  start-page: 361
  year: 2018
  ident: 657_CR76
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.05.018
– volume: 3
  start-page: 1252
  year: 2019
  ident: 657_CR17
  publication-title: Batteries. Joule
  doi: 10.1016/j.joule.2019.02.006
– volume: 10
  year: 2019
  ident: 657_CR75
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1900454
  year: 2019
  ident: 657_CR84
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900454
– volume: 324
  start-page: 798
  year: 2016
  ident: 657_CR35
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.100
– volume: 40
  start-page: 39
  year: 2019
  ident: 657_CR12
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.02.006
– volume: 4
  start-page: 7041
  year: 2016
  ident: 657_CR83
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01948
– volume: 375
  start-page: 93
  year: 2018
  ident: 657_CR59
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.031
– volume: 8
  start-page: 40498
  year: 2018
  ident: 657_CR66
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08436J
– volume: 3
  start-page: 189
  year: 2019
  ident: 657_CR78
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0078-2
– volume: 29
  start-page: 7961
  year: 2017
  ident: 657_CR33
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03002
– volume: 255
  start-page: 120
  year: 2014
  ident: 657_CR16
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.12.019
– volume: 6
  start-page: 1501590
  year: 2016
  ident: 657_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501590
– volume: 2
  start-page: 16103
  year: 2017
  ident: 657_CR45
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 139
  start-page: 14257
  year: 2017
  ident: 657_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07904
– volume: 5
  start-page: 298
  year: 2014
  ident: 657_CR54
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402467x
– volume: 7
  start-page: 522
  year: 2019
  ident: 657_CR7
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00522
– volume: 435
  start-page: 126623
  year: 2019
  ident: 657_CR2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.05.031
– volume: 4
  start-page: 489
  year: 2019
  ident: 657_CR52
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02381
– volume: 300
  start-page: 78
  year: 2017
  ident: 657_CR9
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.11.029
– volume: 15
  start-page: 145
  year: 2018
  ident: 657_CR72
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.11.008
– volume: 26
  start-page: 4248
  year: 2014
  ident: 657_CR10
  publication-title: Chem. Mater.
  doi: 10.1021/cm5016959
– volume: 21
  start-page: 390
  year: 2019
  ident: 657_CR62
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.033
– volume: 325
  start-page: 112
  year: 2018
  ident: 657_CR41
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2018.08.010
– volume: 8
  start-page: 1703644
  year: 2018
  ident: 657_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703644
– volume: 16
  start-page: 3760
  year: 2016
  ident: 657_CR86
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01119
– volume: 29
  start-page: 3883
  year: 2017
  ident: 657_CR8
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04990
– volume: 28
  start-page: 2400
  year: 2016
  ident: 657_CR19
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00610
– volume: 29
  start-page: 3029
  year: 2017
  ident: 657_CR87
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00034
– volume: 10
  start-page: 682
  year: 2011
  ident: 657_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3066
– volume: 9
  start-page: 1802927
  year: 2019
  ident: 657_CR69
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802927
– volume: 10
  start-page: 33296
  year: 2018
  ident: 657_CR1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07476
– volume: 27
  start-page: 3473
  year: 2015
  ident: 657_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500180
– volume: 9
  start-page: 286
  year: 2017
  ident: 657_CR13
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08435
– volume: 30
  start-page: e1803075
  year: 2018
  ident: 657_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803075
– volume: 2
  start-page: 6542
  year: 2019
  ident: 657_CR60
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01111
– volume: 165
  start-page: A3648
  year: 2018
  ident: 657_CR29
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1391814jes
– volume: 2
  start-page: 1991
  year: 2018
  ident: 657_CR43
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.009
– volume: 30
  start-page: 990
  year: 2018
  ident: 657_CR79
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04842
– volume: 58
  start-page: 8039
  year: 2019
  ident: 657_CR85
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901938
– volume: 29
  start-page: 5574
  year: 2017
  ident: 657_CR18
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00931
– volume: 17
  start-page: 2967
  year: 2017
  ident: 657_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00221
– volume: 57
  start-page: 27
  year: 2015
  ident: 657_CR46
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.05.001
– volume: 1
  start-page: 6320
  year: 2013
  ident: 657_CR65
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10247e
– volume: 163
  start-page: A96
  year: 2016
  ident: 657_CR34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311602jes
– volume: 164
  start-page: A1731
  year: 2017
  ident: 657_CR27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1571707jes
– volume: 10
  start-page: 16927
  year: 2018
  ident: 657_CR48
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18962
– volume: 5
  start-page: 1500865
  year: 2015
  ident: 657_CR67
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500865
– volume: 4
  start-page: 1300787
  year: 2014
  ident: 657_CR82
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300787
– volume: 46
  start-page: 797
  year: 2017
  ident: 657_CR5
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00491A
– volume: 29
  start-page: 4768
  year: 2017
  ident: 657_CR55
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00551
– volume: 81
  start-page: 114
  year: 2018
  ident: 657_CR6
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.12.004
– volume: 162
  start-page: A704
  year: 2015
  ident: 657_CR58
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0731504jes
– volume: 7
  start-page: 13650
  year: 2019
  ident: 657_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02614B
– volume: 4
  start-page: 94
  year: 2018
  ident: 657_CR64
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01726
– volume: 31
  start-page: 2762
  year: 2019
  ident: 657_CR51
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04875
– volume: 17
  start-page: 3013
  year: 2017
  ident: 657_CR80
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b00330
– volume: 164
  start-page: A2075
  year: 2017
  ident: 657_CR63
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1341709jes
– volume: 165
  start-page: A3732
  year: 2018
  ident: 657_CR47
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0301816jes
– volume: 382
  start-page: 160
  year: 2018
  ident: 657_CR56
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.062
– volume: 121
  start-page: 1431
  year: 2017
  ident: 657_CR40
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10268
– volume: 9
  start-page: 35888
  year: 2017
  ident: 657_CR42
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11530
– volume: 159
  start-page: A1120
  year: 2012
  ident: 657_CR15
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.085207jes
– volume: 7
  start-page: 23685
  year: 2015
  ident: 657_CR4
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 1
  start-page: 845
  year: 2019
  ident: 657_CR44
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.06.013
– volume: 22
  start-page: 403
  year: 2017
  ident: 657_CR77
  publication-title: Molecules
  doi: 10.3390/molecules22030403
– volume: 1
  start-page: 461
  year: 2018
  ident: 657_CR74
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0012-1
– volume: 17
  start-page: 204
  year: 2019
  ident: 657_CR24
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.11.011
– volume: 177
  start-page: 512
  year: 2008
  ident: 657_CR71
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.074
– volume: 572
  start-page: 511
  year: 2019
  ident: 657_CR32
  publication-title: Nature
  doi: 10.1038/s41586-019-1481-z
– volume: 139
  start-page: 13779
  year: 2017
  ident: 657_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06364
– ident: 657_CR68
– volume: 28
  start-page: 127
  year: 2013
  ident: 657_CR49
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.12.021
– volume: 18
  start-page: 2226
  year: 2006
  ident: 657_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502604
– volume: 47
  start-page: 7239
  year: 2018
  ident: 657_CR73
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00297E
– volume: 1
  start-page: 16030
  year: 2016
  ident: 657_CR3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 22
  start-page: 949
  year: 2010
  ident: 657_CR14
  publication-title: Chem. Mater.
  doi: 10.1021/cm901819c
– reference: 33674773 - Nat Nanotechnol. 2021 Mar 5;:
SSID ssj0052924
Score 2.7056367
SecondaryResourceType review_article
Snippet The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 170
SubjectTerms 140/131
140/133
140/146
639/301
639/4077
639/4077/4079/891
639/925
706/4066
Chemistry and Materials Science
Electrolytes
Energy storage
Evaluation
Interface stability
Lithium
Lithium-ion batteries
Materials Science
Molten salt electrolytes
Nanotechnology
Nanotechnology and Microengineering
Prototyping
Rechargeable batteries
Recyclability
Review Article
Solid electrolytes
Solid state
Stability analysis
State-of-the-art reviews
Storage batteries
Sustainability
Sustainable energy
Sustainable production
Title From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries
URI https://link.springer.com/article/10.1038/s41565-020-0657-x
https://www.ncbi.nlm.nih.gov/pubmed/32157239
https://www.proquest.com/docview/2376708596
https://www.proquest.com/docview/2475038043
https://www.proquest.com/docview/2376233698
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABtTwDbWUkTiCru37EzqnqooYKiRVCVNpbZDt2hbQkZbOV-vOZcR4FFZpDcnASjWbG9oxn5htC3kntYVMWikVY_pj03OJBk2Ugaz2v57zOU0uWL8v8_EJ-XqnVcODWDWmV45qYFuq69XhGfswlRtzMTIqTq18Mu0ZhdHVoofGQ7CJ0GaZ06dXkcCle9E1ttTQMXDE9RjWFOe7QccHaZGy7ojS7-XtfumNs3gmUpv2n3CNPBsORnvaS3icPQvOUPP4DTvAZuSw37U_a2KbtgPOBIhTEJlofqJ9gmfuqS7ptaXdbOkVDqgCkmCkJ6wvFZPhLatdrBpr5o2ap6oi6BMUJnvVzclGeff94zoZGCswrLres9ibUUs9UnJuonVWeCxnibA4kWJPnMQ_SeZ0XjsdaW66d4F6CbaO4cjFa8YLsNG0TXhGqohI8FpE7IeESRV0YpXWM0tkCbI2MzEY2Vn5AGcdmF-sqRbuFqXrOV8D5Cjlf3WTk_fTJVQ-xcd_LB6NsqmG2dRVm9mhEasv_PTypTkbeTsMwjTA2YpvQXve_4ELkhcnIy17kEzECzCLNRZGRD6MO3P78v5S-vp-UN-QRT9qH6WwHZGe7uQ6HYN9s3VFSYrib8tMR2T0tF4slPBdny6_ffgOsCvpY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATig8g4tYCS4gKzu-hE7B1QhYNnSx6mVeguOY1dIS1I2W1F-qt_ITLJJQYXemqsTy5n3eF4Ar5TxqJSl5hHFH1deOLpochxxbcblWJRpO5Jlbz-dHqovR_poBc77WhhKq-xlYiuoy9rTHfmmUBRxsyMlt05-cJoaRdHVfoRGRxY74ddPdNmad9sfEb-vhZh8Ovgw5cupAtxroRa89DaUyox0HNtoCqe9kCrE0Tg672yaxjSowps0K0QsjROmkMIrVPRa6CJGJ3HfG3BTSZkRR9nJ517ya5F1Q3SNshxdP9NHUaXdbMhRolpoGvOiDT_7Ww9eMm4vBWZbfTdZg7tLQ5W97yjrHqyE6j7c-aN94QM4nszr76xyVd0gpgOj1hNz_L_A_NAGuqvyZIuaNRelWiy0FYeMMjNRnjFKvj9mbjbjyAnfSt5WObGibf2JnvxDOLwWED-C1aquwhNgOmopYhZFIRU-Miszq42JURUuQ9smgVEPxtwvu5rTcI1Z3kbXpc07yOcI-Zwgn58l8Gb45KRr6XHVyxs9bvIldzc5ZRIZ6gyX_nt5INUEXg7LyLYUi3FVqE-7LYSUaWYTeNyhfDiMRDPMCJkl8LangYvN_3vSp1cf5QXcmh7s7ea72_s763BbtJRIqXQbsLqYn4ZnaFstiuctQTP4et0c9BtS5zT5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKhOCAyju0gJHgArJ240ecHFCFKKuWQsWBSnsLjmNXSEtSNltRfq1fx0xeBRV6a65OLGfe43kBvFDGoVKWmgcUf1w5YemiyXLEtYnLWJRJO5Ll00Gye6g-zPV8Dc6GWhhKqxxkYiuoy9rRHflEKIq4pVMlJ6FPi_i8M9s-_sFpghRFWodxGh2J7PtfP9F9a97s7SCuXwoxe__l3S7vJwxwp4Va8dKlvlRmqkOcBlNY7YRUPkzjYJ1NkyQkXhXOJFkhQmmsMIUUTqHS10IXIViJ-16D60bqmHjMzEdnT4usG6hrVMrRDTRDRFWmk4acJqqLppEv2vDTv3XiBUP3QpC21X2zDbjdG63sbUdld2DNV3fh1h-tDO_B0WxZf2eVreoGse4ZtaFY4v955saW0F3FJ1vVrDkv22K-rT5klKWJso1RIv4Rs4sFR674VvK24okVbRtQ9Orvw-GVgPgBrFd15R8B00FLEbIgCqnwkVmZpdqYEFRhM7RzIpgOYMxd3-GcBm0s8jbSLtO8g3yOkM8J8vlpBK_GT4679h6Xvbw14CbvOb3JKavIUJe45N_LI9lG8HxcRhamuIytfH3SbSGkTLI0gocdysfDSDTJjJBZBK8HGjjf_L8nfXz5UZ7BDeSd_OPewf4m3BQtIVJW3Rasr5Yn_gmaWaviaUvPDL5eNQP9BoYYOSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+nanoscale+interface+characterization+to+sustainable+energy+storage+using+all-solid-state+batteries&rft.jtitle=Nature+nanotechnology&rft.au=Tan%2C+Darren+H+S&rft.au=Banerjee%2C+Abhik&rft.au=Chen%2C+Zheng&rft.au=Meng%2C+Ying+Shirley&rft.date=2020-03-01&rft.issn=1748-3395&rft.eissn=1748-3395&rft.volume=15&rft.issue=3&rft.spage=170&rft_id=info:doi/10.1038%2Fs41565-020-0657-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon