Scope for improved eco-efficiency varies among diverse cropping systems
Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping syste...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 21; pp. 8381 - 8386 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.05.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems. |
---|---|
AbstractList | Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems. Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems. Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems. [PUBLICATION ABSTRACT] |
Author | Keating, Brian A. Liang, Wei-li Chen, Fu Holzworth, Dean P. Huth, Neil I. McClelland, Tim Carberry, Peter S. Dimes, John P. Hochman, Zvi Twomlow, Stephen |
Author_xml | – sequence: 1 givenname: Peter S. surname: Carberry fullname: Carberry, Peter S. – sequence: 2 givenname: Wei-li surname: Liang fullname: Liang, Wei-li – sequence: 3 givenname: Stephen surname: Twomlow fullname: Twomlow, Stephen – sequence: 4 givenname: Dean P. surname: Holzworth fullname: Holzworth, Dean P. – sequence: 5 givenname: John P. surname: Dimes fullname: Dimes, John P. – sequence: 6 givenname: Tim surname: McClelland fullname: McClelland, Tim – sequence: 7 givenname: Neil I. surname: Huth fullname: Huth, Neil I. – sequence: 8 givenname: Fu surname: Chen fullname: Chen, Fu – sequence: 9 givenname: Zvi surname: Hochman fullname: Hochman, Zvi – sequence: 10 givenname: Brian A. surname: Keating fullname: Keating, Brian A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23671071$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycgEpde0o4_k1wqoYoWpEocSs-W1xkvXiVxsLMr7X-Po1220AOcLHl-7_mN3xk5GcKAhLylcEmh4lfjYNIlZVCDBErhBVlQaGipRAMnZAHAqrIWTJySs5TWANDIGl6RU8ZVlfV0Qe4ebBixcCEWvh9j2GJboA0lOuetx8Huiq2JHlNh-jCsitZvMSYsbAzj6PNF2qUJ-_SavHSmS_jmcJ6Tx9vP32--lPff7r7efLovrWRiKtuGmVZSy9USsHLL2qKAtlKiNapygrYNB8d5DqqUcnmGcomNdZxZY1zr-Dm53vuOm2WPrcVhiqbTY_S9iTsdjNd_Twb_Q6_CVvNsmJfOBhcHgxh-bjBNuvfJYteZAcMmaVoDp1Ryxf-PcimqhguY0Y_P0HXYxCH_xEwpYArETL3_M_wx9e86MnC1B_L3phTRHREKei5cz4Xrp8KzQj5TWD-ZyYd5e9_9Q_fhEGUeHF_JOKO65vWc5d2eWKcpxCMimJKq4vTJwZmgzSr6pB8fGFAFQHlVSeC_AFyBzL8 |
CitedBy_id | crossref_primary_10_1016_j_gfs_2019_01_008 crossref_primary_10_1016_j_soisec_2021_100010 crossref_primary_10_1146_annurev_genet_112414_055037 crossref_primary_10_1093_jxb_erv098 crossref_primary_10_1016_j_envsoft_2018_02_002 crossref_primary_10_3389_fpls_2022_1090970 crossref_primary_10_15302_J_FASE_2014006 crossref_primary_10_1016_j_agrformet_2018_05_019 crossref_primary_10_1017_S0014479719000309 crossref_primary_10_3390_foods10051058 crossref_primary_10_1016_j_jenvman_2020_111440 crossref_primary_10_1088_1748_9326_9_5_054002 crossref_primary_10_1080_09064710_2021_1903984 crossref_primary_10_3390_horticulturae2010002 crossref_primary_10_1016_j_agsy_2014_06_001 crossref_primary_10_1007_s13593_023_00929_1 crossref_primary_10_1016_j_agwat_2017_05_002 crossref_primary_10_1016_j_resconrec_2024_107622 crossref_primary_10_1016_j_cosust_2018_06_005 crossref_primary_10_1002_2016EF000506 crossref_primary_10_1016_j_agee_2015_05_011 crossref_primary_10_1016_j_eja_2016_01_007 crossref_primary_10_4028_www_scientific_net_AMM_448_453_4508 crossref_primary_10_1147_JRD_2016_2591698 crossref_primary_10_1007_s13593_019_0556_4 crossref_primary_10_3390_su10061776 crossref_primary_10_48077_scihor_25_4__2022_9_17 crossref_primary_10_1017_S0021859616000381 crossref_primary_10_1080_14735903_2018_1523828 crossref_primary_10_3389_fpls_2015_00990 crossref_primary_10_1016_j_gfs_2014_08_004 crossref_primary_10_1016_j_jclepro_2019_117685 crossref_primary_10_1007_s11356_022_19431_4 crossref_primary_10_1016_j_gfs_2021_100536 crossref_primary_10_1016_j_fcr_2022_108761 crossref_primary_10_1016_j_agrformet_2016_09_008 crossref_primary_10_1016_j_agee_2015_05_005 crossref_primary_10_1016_j_geoderma_2016_01_015 crossref_primary_10_1016_j_gfs_2021_100552 crossref_primary_10_1016_j_agsy_2015_11_008 crossref_primary_10_1038_s43016_023_00891_x crossref_primary_10_3390_agronomy13051365 crossref_primary_10_1007_s13593_018_0550_2 crossref_primary_10_24857_rgsa_v17n3_029 crossref_primary_10_1016_j_fcr_2015_04_002 crossref_primary_10_1016_j_envsoft_2014_08_001 crossref_primary_10_1016_j_eiar_2020_106431 crossref_primary_10_1016_j_envsoft_2014_07_009 crossref_primary_10_2134_agronj2015_0482 crossref_primary_10_1021_acs_est_8b03610 crossref_primary_10_1016_j_agsy_2021_103278 crossref_primary_10_1080_00036846_2018_1558363 crossref_primary_10_1111_brv_12941 crossref_primary_10_1080_14479338_2014_11081992 crossref_primary_10_1016_j_fcr_2020_108017 crossref_primary_10_1017_S0021859619000856 crossref_primary_10_3390_w13141975 crossref_primary_10_1016_j_agrformet_2018_06_003 crossref_primary_10_1016_j_cosust_2014_08_008 crossref_primary_10_1073_pnas_1208054110 crossref_primary_10_1111_gcb_12830 crossref_primary_10_1016_j_cosust_2014_08_006 crossref_primary_10_1016_j_tree_2013_12_001 crossref_primary_10_1016_j_envsoft_2014_12_013 crossref_primary_10_1038_s41396_023_01380_6 crossref_primary_10_5194_bg_11_2287_2014 crossref_primary_10_5194_soil_1_687_2015 crossref_primary_10_1088_1748_9326_abc3ef crossref_primary_10_1016_j_agsy_2015_10_010 crossref_primary_10_1007_s42106_021_00139_3 crossref_primary_10_1016_j_cosust_2014_09_004 crossref_primary_10_1080_03650340_2018_1514111 crossref_primary_10_3390_agronomy12020357 crossref_primary_10_1002_jsfa_8100 |
Cites_doi | 10.1146/annurev.environ.041008.093740 10.1126/science.1185383 10.1016/j.agsy.2010.02.004 10.1038/nature10452 10.1080/00220388.2011.587509 10.1007/s11104-010-0462-7 10.1017/S0014479702000170 10.1073/pnas.1116364109 10.2135/cropsci2009.10.0594 10.1093/jxb/erq245 10.1016/j.eja.2011.11.003 10.1071/CP09052 10.1007/s10705-008-9200-4 10.1073/pnas.96.11.5952 10.1073/pnas.1116437108 10.1126/science.1136674 10.1016/S1161-0301(02)00108-9 10.1071/CP09020 10.1073/pnas.1101419108 10.2135/cropsci2009.10.0564 10.1016/j.agee.2006.06.019 10.1038/483525a 10.1073/pnas.0813417106 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 21, 2013 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 21, 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1208050110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Eco-efficiency in diverse cropping systems |
EISSN | 1091-6490 |
EndPage | 8386 |
ExternalDocumentID | PMC3666671 2982473691 23671071 10_1073_pnas_1208050110 110_21_8381 42656731 US201600137750 |
Genre | Journal Article Feature |
GeographicLocations | Australia Zimbabwe China |
GeographicLocations_xml | – name: China – name: Australia – name: Zimbabwe |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c524t-d92ad51c36b0e7fb8ce40d764da67f41d930f33009666fe40e5be9cf32caafdf3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:07:53 EDT 2025 Fri Jul 11 13:53:25 EDT 2025 Fri Jul 11 10:36:56 EDT 2025 Sat Aug 23 12:58:56 EDT 2025 Thu Apr 03 07:06:21 EDT 2025 Tue Jul 01 03:39:43 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Wed Nov 11 00:30:33 EST 2020 Thu May 29 08:40:42 EDT 2025 Wed Dec 27 19:18:59 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | APSIM nitrogen fertilizer yield gap greenhouse gas potential yield |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c524t-d92ad51c36b0e7fb8ce40d764da67f41d930f33009666fe40e5be9cf32caafdf3 |
Notes | http://dx.doi.org/10.1073/pnas.1208050110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: P.S.C. and B.A.K. designed research; W.-l.L., S.T., T.M., F.C., and Z.H. performed research; P.S.C., W.-l.L., D.P.H., J.P.D., and N.I.H. analyzed data; and P.S.C., W.-l.L., S.T., and Z.H. wrote the paper. Edited by Kenneth G. Cassman, University of Nebraska, Lincoln, NE, and accepted by the Editorial Board February 12, 2013 (received for review June 18, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/21/8381.full.pdf |
PMID | 23671071 |
PQID | 1356026043 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1208050110 pubmed_primary_23671071 pnas_primary_110_21_8381 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3666671 crossref_primary_10_1073_pnas_1208050110 fao_agris_US201600137750 proquest_journals_1356026043 proquest_miscellaneous_1803115363 proquest_miscellaneous_1354793403 jstor_primary_42656731 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-21 |
PublicationDateYYYYMMDD | 2013-05-21 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 Wang L (e_1_3_3_18_2) 2007; 18 Keating BA (e_1_3_3_2_2) 2010; 102 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 22460878 - Nature. 2012 Mar 29;483(7391):525-7 18487183 - Science. 2008 May 16;320(5878):889-92 10339523 - Proc Natl Acad Sci U S A. 1999 May 25;96(11):5952-9 22232684 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1074-9 19223587 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3041-6 22106295 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20260-4 21993620 - Nature. 2011 Oct 20;478(7369):337-42 20709725 - J Exp Bot. 2010 Oct;61(15):4129-43 18260451 - Ying Yong Sheng Tai Xue Bao. 2007 Nov;18(11):2480-6 20110467 - Science. 2010 Feb 12;327(5967):812-8 21444818 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6399-404 |
References_xml | – ident: e_1_3_3_9_2 doi: 10.1146/annurev.environ.041008.093740 – volume: 18 start-page: 2480 year: 2007 ident: e_1_3_3_18_2 article-title: Application of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain publication-title: J Appl Ecol – ident: e_1_3_3_6_2 doi: 10.1126/science.1185383 – ident: e_1_3_3_7_2 doi: 10.1016/j.agsy.2010.02.004 – ident: e_1_3_3_5_2 doi: 10.1038/nature10452 – ident: e_1_3_3_26_2 – ident: e_1_3_3_27_2 doi: 10.1080/00220388.2011.587509 – volume: 102 start-page: 7 year: 2010 ident: e_1_3_3_2_2 article-title: Sustainable production, food security and supply chain implications publication-title: Aspects Appl Biol – ident: e_1_3_3_14_2 doi: 10.1007/s11104-010-0462-7 – ident: e_1_3_3_19_2 doi: 10.1017/S0014479702000170 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.1116364109 – ident: e_1_3_3_4_2 doi: 10.2135/cropsci2009.10.0594 – ident: e_1_3_3_22_2 doi: 10.1093/jxb/erq245 – ident: e_1_3_3_13_2 doi: 10.1016/j.eja.2011.11.003 – ident: e_1_3_3_17_2 doi: 10.1071/CP09052 – ident: e_1_3_3_23_2 doi: 10.1007/s10705-008-9200-4 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.96.11.5952 – ident: e_1_3_3_8_2 – ident: e_1_3_3_1_2 doi: 10.1073/pnas.1116437108 – ident: e_1_3_3_11_2 doi: 10.1126/science.1136674 – ident: e_1_3_3_16_2 doi: 10.1016/S1161-0301(02)00108-9 – ident: e_1_3_3_24_2 doi: 10.1071/CP09020 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.1101419108 – ident: e_1_3_3_10_2 doi: 10.2135/cropsci2009.10.0564 – ident: e_1_3_3_21_2 doi: 10.1016/j.agee.2006.06.019 – ident: e_1_3_3_25_2 doi: 10.1038/483525a – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0813417106 – reference: 18260451 - Ying Yong Sheng Tai Xue Bao. 2007 Nov;18(11):2480-6 – reference: 18487183 - Science. 2008 May 16;320(5878):889-92 – reference: 19223587 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3041-6 – reference: 21993620 - Nature. 2011 Oct 20;478(7369):337-42 – reference: 22106295 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20260-4 – reference: 20709725 - J Exp Bot. 2010 Oct;61(15):4129-43 – reference: 10339523 - Proc Natl Acad Sci U S A. 1999 May 25;96(11):5952-9 – reference: 22232684 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1074-9 – reference: 20110467 - Science. 2010 Feb 12;327(5967):812-8 – reference: 22460878 - Nature. 2012 Mar 29;483(7391):525-7 – reference: 21444818 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6399-404 |
SSID | ssj0009580 |
Score | 2.4076593 |
Snippet | Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8381 |
SubjectTerms | AGRICULTURAL INNOVATION TO PROTECT THE ENVIRONMENT SPECIAL FEATURE Agricultural production Agriculture - economics Agriculture - methods Australia Biological Sciences Cereal crops China Commercial farms Corn Crop economics Crop management Crop production Crop science Crop yield Cropping systems Crops Crops, Agricultural - economics Crops, Agricultural - growth & development double cropping eco-efficiency Ecosystem emissions Environmental risk Farmers fertilizers Fertilizers - economics Food crops Food security Food supply Food Supply - economics Food Supply - methods foods Grain grain yield Grains International comparisons irrigation Irrigation systems natural fibers nitrates nitrogen Nitrous Oxide Rainfed farming Resource efficiency risk Risk assessment Soil profiles Sustainable agriculture Wheat Zimbabwe |
Title | Scope for improved eco-efficiency varies among diverse cropping systems |
URI | https://www.jstor.org/stable/42656731 http://www.pnas.org/content/110/21/8381.abstract https://www.ncbi.nlm.nih.gov/pubmed/23671071 https://www.proquest.com/docview/1356026043 https://www.proquest.com/docview/1354793403 https://www.proquest.com/docview/1803115363 https://pubmed.ncbi.nlm.nih.gov/PMC3666671 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaA0UJCROBRFDrb3YftYlUeFIIrURvRm2fuASKld5QFSfz2zD6-d0iLgYkXZ2XXi-Tw7uzvzDUKvlcKMVIKHOKciJElchRlmeZhQCfNtpGhs6Bi-TNjpjHy6oBeDwaafXbKuxvz61ryS_9EqfAd61Vmy_6BZPyh8AZ9Bv3AFDcP1r3R8plNKTKDg3OwNgPMIq8lQGloIk1P5wyyFXUkhYWIw5EhX7TJpUqseXblzUKd-Qlu14QOTdr_wuMs-cSZhNQpH00lXy_ikXFZyaU_mTeRvt7P6ee52pr_KebiY-x2Dn83lwp0v2YAzD7Rmce0DGN_pA4Npf4siNgGBNu95LK1ZBa8kZMQWBvV218WzWoA5eWtGM2zruPxm38Eg6aLEdbkaxwk4uzRyo_S0fXVp1K2p6UA-7iY6H37YNu2gewmsLhJjz_tczVnUskCl-O2Nu2n6aNd_y5fZUWXTBrVqplzodduq5Wbwbc-bOX-IHrhlSHBsMbWHBrJ-hPZarQZHjo38zWP00YAsAJAFLciCbZAFFmSBAVngQBa0IAscyJ6g2Yf35yenoau-EXKakHUo8qQUNOaYVZFMVZVxSSKRMiJKlioSixxHCmO9BmZMQZuklcy5wgkvSyUU3ke7dVPLAxSISDCa54potkaGeUWwYBFPUw7imcRDNG6fY8EdNb2ukLIoTIhEigv9NItOB0N05DtcWVaWu0UPQDFF-Q3mzGJ2lmhGRUOzSaFp32jLDwHeKmUpjqGPGcUPDWMncaFROUSHrUoLZwngbpjqSm4RgX_yyjeDndaHb2Utm42R0ZvYJPqTTBZp8ivMQOapRYn_DS3mhijdwo8X0Dzx2y31_Lvhi8egIOj87M4xn6P73Wt7iHbXy418Ab72unpp3oxfIfXRBQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scope+for+improved+eco-efficiency+varies+among+diverse+cropping+systems&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Carberry%2C+Peter+S&rft.au=Liang%2C+Wei-li&rft.au=Twomlow%2C+Stephen&rft.au=Holzworth%2C+Dean+P&rft.date=2013-05-21&rft.eissn=1091-6490&rft.volume=110&rft.issue=21&rft.spage=8381&rft_id=info:doi/10.1073%2Fpnas.1208050110&rft_id=info%3Apmid%2F23671071&rft.externalDocID=23671071 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F21.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F21.cover.gif |