Scope for improved eco-efficiency varies among diverse cropping systems

Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping syste...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 21; pp. 8381 - 8386
Main Authors Carberry, Peter S., Liang, Wei-li, Twomlow, Stephen, Holzworth, Dean P., Dimes, John P., McClelland, Tim, Huth, Neil I., Chen, Fu, Hochman, Zvi, Keating, Brian A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.05.2013
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.
AbstractList Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.
Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.
Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems. [PUBLICATION ABSTRACT]
Author Keating, Brian A.
Liang, Wei-li
Chen, Fu
Holzworth, Dean P.
Huth, Neil I.
McClelland, Tim
Carberry, Peter S.
Dimes, John P.
Hochman, Zvi
Twomlow, Stephen
Author_xml – sequence: 1
  givenname: Peter S.
  surname: Carberry
  fullname: Carberry, Peter S.
– sequence: 2
  givenname: Wei-li
  surname: Liang
  fullname: Liang, Wei-li
– sequence: 3
  givenname: Stephen
  surname: Twomlow
  fullname: Twomlow, Stephen
– sequence: 4
  givenname: Dean P.
  surname: Holzworth
  fullname: Holzworth, Dean P.
– sequence: 5
  givenname: John P.
  surname: Dimes
  fullname: Dimes, John P.
– sequence: 6
  givenname: Tim
  surname: McClelland
  fullname: McClelland, Tim
– sequence: 7
  givenname: Neil I.
  surname: Huth
  fullname: Huth, Neil I.
– sequence: 8
  givenname: Fu
  surname: Chen
  fullname: Chen, Fu
– sequence: 9
  givenname: Zvi
  surname: Hochman
  fullname: Hochman, Zvi
– sequence: 10
  givenname: Brian A.
  surname: Keating
  fullname: Keating, Brian A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23671071$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycgEpde0o4_k1wqoYoWpEocSs-W1xkvXiVxsLMr7X-Po1220AOcLHl-7_mN3xk5GcKAhLylcEmh4lfjYNIlZVCDBErhBVlQaGipRAMnZAHAqrIWTJySs5TWANDIGl6RU8ZVlfV0Qe4ebBixcCEWvh9j2GJboA0lOuetx8Huiq2JHlNh-jCsitZvMSYsbAzj6PNF2qUJ-_SavHSmS_jmcJ6Tx9vP32--lPff7r7efLovrWRiKtuGmVZSy9USsHLL2qKAtlKiNapygrYNB8d5DqqUcnmGcomNdZxZY1zr-Dm53vuOm2WPrcVhiqbTY_S9iTsdjNd_Twb_Q6_CVvNsmJfOBhcHgxh-bjBNuvfJYteZAcMmaVoDp1Ryxf-PcimqhguY0Y_P0HXYxCH_xEwpYArETL3_M_wx9e86MnC1B_L3phTRHREKei5cz4Xrp8KzQj5TWD-ZyYd5e9_9Q_fhEGUeHF_JOKO65vWc5d2eWKcpxCMimJKq4vTJwZmgzSr6pB8fGFAFQHlVSeC_AFyBzL8
CitedBy_id crossref_primary_10_1016_j_gfs_2019_01_008
crossref_primary_10_1016_j_soisec_2021_100010
crossref_primary_10_1146_annurev_genet_112414_055037
crossref_primary_10_1093_jxb_erv098
crossref_primary_10_1016_j_envsoft_2018_02_002
crossref_primary_10_3389_fpls_2022_1090970
crossref_primary_10_15302_J_FASE_2014006
crossref_primary_10_1016_j_agrformet_2018_05_019
crossref_primary_10_1017_S0014479719000309
crossref_primary_10_3390_foods10051058
crossref_primary_10_1016_j_jenvman_2020_111440
crossref_primary_10_1088_1748_9326_9_5_054002
crossref_primary_10_1080_09064710_2021_1903984
crossref_primary_10_3390_horticulturae2010002
crossref_primary_10_1016_j_agsy_2014_06_001
crossref_primary_10_1007_s13593_023_00929_1
crossref_primary_10_1016_j_agwat_2017_05_002
crossref_primary_10_1016_j_resconrec_2024_107622
crossref_primary_10_1016_j_cosust_2018_06_005
crossref_primary_10_1002_2016EF000506
crossref_primary_10_1016_j_agee_2015_05_011
crossref_primary_10_1016_j_eja_2016_01_007
crossref_primary_10_4028_www_scientific_net_AMM_448_453_4508
crossref_primary_10_1147_JRD_2016_2591698
crossref_primary_10_1007_s13593_019_0556_4
crossref_primary_10_3390_su10061776
crossref_primary_10_48077_scihor_25_4__2022_9_17
crossref_primary_10_1017_S0021859616000381
crossref_primary_10_1080_14735903_2018_1523828
crossref_primary_10_3389_fpls_2015_00990
crossref_primary_10_1016_j_gfs_2014_08_004
crossref_primary_10_1016_j_jclepro_2019_117685
crossref_primary_10_1007_s11356_022_19431_4
crossref_primary_10_1016_j_gfs_2021_100536
crossref_primary_10_1016_j_fcr_2022_108761
crossref_primary_10_1016_j_agrformet_2016_09_008
crossref_primary_10_1016_j_agee_2015_05_005
crossref_primary_10_1016_j_geoderma_2016_01_015
crossref_primary_10_1016_j_gfs_2021_100552
crossref_primary_10_1016_j_agsy_2015_11_008
crossref_primary_10_1038_s43016_023_00891_x
crossref_primary_10_3390_agronomy13051365
crossref_primary_10_1007_s13593_018_0550_2
crossref_primary_10_24857_rgsa_v17n3_029
crossref_primary_10_1016_j_fcr_2015_04_002
crossref_primary_10_1016_j_envsoft_2014_08_001
crossref_primary_10_1016_j_eiar_2020_106431
crossref_primary_10_1016_j_envsoft_2014_07_009
crossref_primary_10_2134_agronj2015_0482
crossref_primary_10_1021_acs_est_8b03610
crossref_primary_10_1016_j_agsy_2021_103278
crossref_primary_10_1080_00036846_2018_1558363
crossref_primary_10_1111_brv_12941
crossref_primary_10_1080_14479338_2014_11081992
crossref_primary_10_1016_j_fcr_2020_108017
crossref_primary_10_1017_S0021859619000856
crossref_primary_10_3390_w13141975
crossref_primary_10_1016_j_agrformet_2018_06_003
crossref_primary_10_1016_j_cosust_2014_08_008
crossref_primary_10_1073_pnas_1208054110
crossref_primary_10_1111_gcb_12830
crossref_primary_10_1016_j_cosust_2014_08_006
crossref_primary_10_1016_j_tree_2013_12_001
crossref_primary_10_1016_j_envsoft_2014_12_013
crossref_primary_10_1038_s41396_023_01380_6
crossref_primary_10_5194_bg_11_2287_2014
crossref_primary_10_5194_soil_1_687_2015
crossref_primary_10_1088_1748_9326_abc3ef
crossref_primary_10_1016_j_agsy_2015_10_010
crossref_primary_10_1007_s42106_021_00139_3
crossref_primary_10_1016_j_cosust_2014_09_004
crossref_primary_10_1080_03650340_2018_1514111
crossref_primary_10_3390_agronomy12020357
crossref_primary_10_1002_jsfa_8100
Cites_doi 10.1146/annurev.environ.041008.093740
10.1126/science.1185383
10.1016/j.agsy.2010.02.004
10.1038/nature10452
10.1080/00220388.2011.587509
10.1007/s11104-010-0462-7
10.1017/S0014479702000170
10.1073/pnas.1116364109
10.2135/cropsci2009.10.0594
10.1093/jxb/erq245
10.1016/j.eja.2011.11.003
10.1071/CP09052
10.1007/s10705-008-9200-4
10.1073/pnas.96.11.5952
10.1073/pnas.1116437108
10.1126/science.1136674
10.1016/S1161-0301(02)00108-9
10.1071/CP09020
10.1073/pnas.1101419108
10.2135/cropsci2009.10.0564
10.1016/j.agee.2006.06.019
10.1038/483525a
10.1073/pnas.0813417106
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 21, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 21, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1208050110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


AGRICOLA


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Eco-efficiency in diverse cropping systems
EISSN 1091-6490
EndPage 8386
ExternalDocumentID PMC3666671
2982473691
23671071
10_1073_pnas_1208050110
110_21_8381
42656731
US201600137750
Genre Journal Article
Feature
GeographicLocations Australia
Zimbabwe
China
GeographicLocations_xml – name: China
– name: Australia
– name: Zimbabwe
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c524t-d92ad51c36b0e7fb8ce40d764da67f41d930f33009666fe40e5be9cf32caafdf3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:07:53 EDT 2025
Fri Jul 11 13:53:25 EDT 2025
Fri Jul 11 10:36:56 EDT 2025
Sat Aug 23 12:58:56 EDT 2025
Thu Apr 03 07:06:21 EDT 2025
Tue Jul 01 03:39:43 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Wed Nov 11 00:30:33 EST 2020
Thu May 29 08:40:42 EDT 2025
Wed Dec 27 19:18:59 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords APSIM
nitrogen fertilizer
yield gap
greenhouse gas
potential yield
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-d92ad51c36b0e7fb8ce40d764da67f41d930f33009666fe40e5be9cf32caafdf3
Notes http://dx.doi.org/10.1073/pnas.1208050110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: P.S.C. and B.A.K. designed research; W.-l.L., S.T., T.M., F.C., and Z.H. performed research; P.S.C., W.-l.L., D.P.H., J.P.D., and N.I.H. analyzed data; and P.S.C., W.-l.L., S.T., and Z.H. wrote the paper.
Edited by Kenneth G. Cassman, University of Nebraska, Lincoln, NE, and accepted by the Editorial Board February 12, 2013 (received for review June 18, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/110/21/8381.full.pdf
PMID 23671071
PQID 1356026043
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1208050110
pubmed_primary_23671071
pnas_primary_110_21_8381
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3666671
crossref_primary_10_1073_pnas_1208050110
fao_agris_US201600137750
proquest_journals_1356026043
proquest_miscellaneous_1803115363
proquest_miscellaneous_1354793403
jstor_primary_42656731
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-21
PublicationDateYYYYMMDD 2013-05-21
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
Wang L (e_1_3_3_18_2) 2007; 18
Keating BA (e_1_3_3_2_2) 2010; 102
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
22460878 - Nature. 2012 Mar 29;483(7391):525-7
18487183 - Science. 2008 May 16;320(5878):889-92
10339523 - Proc Natl Acad Sci U S A. 1999 May 25;96(11):5952-9
22232684 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1074-9
19223587 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3041-6
22106295 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20260-4
21993620 - Nature. 2011 Oct 20;478(7369):337-42
20709725 - J Exp Bot. 2010 Oct;61(15):4129-43
18260451 - Ying Yong Sheng Tai Xue Bao. 2007 Nov;18(11):2480-6
20110467 - Science. 2010 Feb 12;327(5967):812-8
21444818 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6399-404
References_xml – ident: e_1_3_3_9_2
  doi: 10.1146/annurev.environ.041008.093740
– volume: 18
  start-page: 2480
  year: 2007
  ident: e_1_3_3_18_2
  article-title: Application of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain
  publication-title: J Appl Ecol
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1185383
– ident: e_1_3_3_7_2
  doi: 10.1016/j.agsy.2010.02.004
– ident: e_1_3_3_5_2
  doi: 10.1038/nature10452
– ident: e_1_3_3_26_2
– ident: e_1_3_3_27_2
  doi: 10.1080/00220388.2011.587509
– volume: 102
  start-page: 7
  year: 2010
  ident: e_1_3_3_2_2
  article-title: Sustainable production, food security and supply chain implications
  publication-title: Aspects Appl Biol
– ident: e_1_3_3_14_2
  doi: 10.1007/s11104-010-0462-7
– ident: e_1_3_3_19_2
  doi: 10.1017/S0014479702000170
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.1116364109
– ident: e_1_3_3_4_2
  doi: 10.2135/cropsci2009.10.0594
– ident: e_1_3_3_22_2
  doi: 10.1093/jxb/erq245
– ident: e_1_3_3_13_2
  doi: 10.1016/j.eja.2011.11.003
– ident: e_1_3_3_17_2
  doi: 10.1071/CP09052
– ident: e_1_3_3_23_2
  doi: 10.1007/s10705-008-9200-4
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.96.11.5952
– ident: e_1_3_3_8_2
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.1116437108
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1136674
– ident: e_1_3_3_16_2
  doi: 10.1016/S1161-0301(02)00108-9
– ident: e_1_3_3_24_2
  doi: 10.1071/CP09020
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1101419108
– ident: e_1_3_3_10_2
  doi: 10.2135/cropsci2009.10.0564
– ident: e_1_3_3_21_2
  doi: 10.1016/j.agee.2006.06.019
– ident: e_1_3_3_25_2
  doi: 10.1038/483525a
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.0813417106
– reference: 18260451 - Ying Yong Sheng Tai Xue Bao. 2007 Nov;18(11):2480-6
– reference: 18487183 - Science. 2008 May 16;320(5878):889-92
– reference: 19223587 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3041-6
– reference: 21993620 - Nature. 2011 Oct 20;478(7369):337-42
– reference: 22106295 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20260-4
– reference: 20709725 - J Exp Bot. 2010 Oct;61(15):4129-43
– reference: 10339523 - Proc Natl Acad Sci U S A. 1999 May 25;96(11):5952-9
– reference: 22232684 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1074-9
– reference: 20110467 - Science. 2010 Feb 12;327(5967):812-8
– reference: 22460878 - Nature. 2012 Mar 29;483(7391):525-7
– reference: 21444818 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6399-404
SSID ssj0009580
Score 2.4076593
Snippet Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8381
SubjectTerms AGRICULTURAL INNOVATION TO PROTECT THE ENVIRONMENT SPECIAL FEATURE
Agricultural production
Agriculture - economics
Agriculture - methods
Australia
Biological Sciences
Cereal crops
China
Commercial farms
Corn
Crop economics
Crop management
Crop production
Crop science
Crop yield
Cropping systems
Crops
Crops, Agricultural - economics
Crops, Agricultural - growth & development
double cropping
eco-efficiency
Ecosystem
emissions
Environmental risk
Farmers
fertilizers
Fertilizers - economics
Food crops
Food security
Food supply
Food Supply - economics
Food Supply - methods
foods
Grain
grain yield
Grains
International comparisons
irrigation
Irrigation systems
natural fibers
nitrates
nitrogen
Nitrous Oxide
Rainfed farming
Resource efficiency
risk
Risk assessment
Soil profiles
Sustainable agriculture
Wheat
Zimbabwe
Title Scope for improved eco-efficiency varies among diverse cropping systems
URI https://www.jstor.org/stable/42656731
http://www.pnas.org/content/110/21/8381.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23671071
https://www.proquest.com/docview/1356026043
https://www.proquest.com/docview/1354793403
https://www.proquest.com/docview/1803115363
https://pubmed.ncbi.nlm.nih.gov/PMC3666671
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaA0UJCROBRFDrb3YftYlUeFIIrURvRm2fuASKld5QFSfz2zD6-d0iLgYkXZ2XXi-Tw7uzvzDUKvlcKMVIKHOKciJElchRlmeZhQCfNtpGhs6Bi-TNjpjHy6oBeDwaafXbKuxvz61ryS_9EqfAd61Vmy_6BZPyh8AZ9Bv3AFDcP1r3R8plNKTKDg3OwNgPMIq8lQGloIk1P5wyyFXUkhYWIw5EhX7TJpUqseXblzUKd-Qlu14QOTdr_wuMs-cSZhNQpH00lXy_ikXFZyaU_mTeRvt7P6ee52pr_KebiY-x2Dn83lwp0v2YAzD7Rmce0DGN_pA4Npf4siNgGBNu95LK1ZBa8kZMQWBvV218WzWoA5eWtGM2zruPxm38Eg6aLEdbkaxwk4uzRyo_S0fXVp1K2p6UA-7iY6H37YNu2gewmsLhJjz_tczVnUskCl-O2Nu2n6aNd_y5fZUWXTBrVqplzodduq5Wbwbc-bOX-IHrhlSHBsMbWHBrJ-hPZarQZHjo38zWP00YAsAJAFLciCbZAFFmSBAVngQBa0IAscyJ6g2Yf35yenoau-EXKakHUo8qQUNOaYVZFMVZVxSSKRMiJKlioSixxHCmO9BmZMQZuklcy5wgkvSyUU3ke7dVPLAxSISDCa54potkaGeUWwYBFPUw7imcRDNG6fY8EdNb2ukLIoTIhEigv9NItOB0N05DtcWVaWu0UPQDFF-Q3mzGJ2lmhGRUOzSaFp32jLDwHeKmUpjqGPGcUPDWMncaFROUSHrUoLZwngbpjqSm4RgX_yyjeDndaHb2Utm42R0ZvYJPqTTBZp8ivMQOapRYn_DS3mhijdwo8X0Dzx2y31_Lvhi8egIOj87M4xn6P73Wt7iHbXy418Ab72unpp3oxfIfXRBQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scope+for+improved+eco-efficiency+varies+among+diverse+cropping+systems&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Carberry%2C+Peter+S&rft.au=Liang%2C+Wei-li&rft.au=Twomlow%2C+Stephen&rft.au=Holzworth%2C+Dean+P&rft.date=2013-05-21&rft.eissn=1091-6490&rft.volume=110&rft.issue=21&rft.spage=8381&rft_id=info:doi/10.1073%2Fpnas.1208050110&rft_id=info%3Apmid%2F23671071&rft.externalDocID=23671071
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F21.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F21.cover.gif