On the Sample Complexity of the Linear Quadratic Regulator

This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control , that estimates a model from a few experimental trials, estimates the error in that model with respect to t...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 20; no. 4; pp. 633 - 679
Main Authors Dean, Sarah, Mania, Horia, Matni, Nikolai, Recht, Benjamin, Tu, Stephen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-3375
1615-3383
DOI10.1007/s10208-019-09426-y

Cover

Abstract This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control , that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system.
AbstractList This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control, that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system.
This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control , that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system.
Audience Academic
Author Recht, Benjamin
Dean, Sarah
Mania, Horia
Matni, Nikolai
Tu, Stephen
Author_xml – sequence: 1
  givenname: Sarah
  surname: Dean
  fullname: Dean, Sarah
  organization: Department of Electrical Engineering and Computer Sciences, University of California
– sequence: 2
  givenname: Horia
  surname: Mania
  fullname: Mania, Horia
  organization: Department of Electrical Engineering and Computer Sciences, University of California
– sequence: 3
  givenname: Nikolai
  surname: Matni
  fullname: Matni, Nikolai
  organization: Department of Computing and Mathematical Sciences, California Institute of Technology
– sequence: 4
  givenname: Benjamin
  surname: Recht
  fullname: Recht, Benjamin
  email: brecht@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California
– sequence: 5
  givenname: Stephen
  surname: Tu
  fullname: Tu, Stephen
  organization: Department of Electrical Engineering and Computer Sciences, University of California
BookMark eNp9kctKAzEUhoMoWC8v4GrAlYvRZJLMxZ0UL4WCWHUd4pkzY8p0piYZaN_e1EqlUkoWCcn3nZPkPyGHbdciIReMXjNKsxvHaELzmLIipoVI0nh5QAYsZTLmPOeHm3Umj8mJc1NKmSyYGJDb5zbynxi96tm8wWjYraaF8cuoq34OxqZFbaOXXpdWewPRBOu-0b6zZ-So0o3D89_5lLw_3L8Nn-Lx8-NoeDeOQSbCx6XgAJLxCoELAVzLPOVYlIWEMsnyFKXgNNyOJTJN-EfGqMg0pJCxEgDoBz8ll-u6c9t99ei8mna9bUNLlQSVMU7DGzdUrRtUpq06bzXMjAN1l_JQPs3Eiop3UDW2aHUTvrQyYXuLv97Bh1HizMBO4WpLCIzHha9175wavU622WTNgu2cs1ipuTUzbZeKUbWKVa1jVSFW9ROrWgYp_yeB8SGY0Mdq0-xX-Vp1oU9bo_37yD3WNxKrtO4
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108506
crossref_primary_10_1016_j_ifacol_2023_10_134
crossref_primary_10_1109_TAC_2023_3341757
crossref_primary_10_1109_TAC_2022_3202082
crossref_primary_10_1137_21M1414413
crossref_primary_10_1109_TAC_2020_3047577
crossref_primary_10_1109_MCS_2023_3291625
crossref_primary_10_1109_OJCSYS_2024_3507452
crossref_primary_10_1016_j_automatica_2021_109906
crossref_primary_10_1016_j_arcontrol_2023_03_006
crossref_primary_10_1016_j_sysconle_2024_106011
crossref_primary_10_1109_OJCSYS_2024_3441768
crossref_primary_10_1109_TAC_2022_3152724
crossref_primary_10_1002_asjc_2596
crossref_primary_10_1016_j_automatica_2024_111894
crossref_primary_10_1109_MCS_2023_3310345
crossref_primary_10_1137_21M1439729
crossref_primary_10_1109_TAC_2024_3430088
crossref_primary_10_3390_en14216909
crossref_primary_10_1007_s10208_023_09605_y
crossref_primary_10_1109_TAC_2021_3137059
crossref_primary_10_1109_TAC_2022_3221705
crossref_primary_10_1109_TCST_2021_3088638
crossref_primary_10_1109_TSP_2024_3386396
crossref_primary_10_1109_TAC_2024_3366038
crossref_primary_10_1109_TAC_2021_3056582
crossref_primary_10_1109_TAC_2024_3422105
crossref_primary_10_1109_ACCESS_2023_3245570
crossref_primary_10_1145_3510414
crossref_primary_10_1109_TSMC_2024_3467057
crossref_primary_10_1137_23M1618570
crossref_primary_10_12677_PM_2024_141041
crossref_primary_10_1007_s11063_024_11502_6
crossref_primary_10_1016_j_automatica_2022_110599
crossref_primary_10_1109_LCSYS_2020_2993986
crossref_primary_10_1109_TAC_2023_3299551
crossref_primary_10_1051_cocv_2024014
crossref_primary_10_1016_j_mechmachtheory_2021_104654
crossref_primary_10_1109_LCSYS_2024_3514995
crossref_primary_10_1109_TCYB_2023_3324601
crossref_primary_10_1016_j_sysconle_2022_105392
crossref_primary_10_1109_ACCESS_2023_3241926
crossref_primary_10_2139_ssrn_3734179
crossref_primary_10_1109_ACCESS_2024_3410013
crossref_primary_10_1016_j_ifacol_2023_10_1086
crossref_primary_10_1109_LCSYS_2020_3045664
crossref_primary_10_1017_S0962492922000046
crossref_primary_10_1109_TAC_2021_3097706
crossref_primary_10_1109_TAC_2023_3335002
crossref_primary_10_1109_TAC_2022_3209342
crossref_primary_10_1145_3579452
crossref_primary_10_1109_TAC_2020_2979785
crossref_primary_10_1016_j_arcontrol_2023_100915
crossref_primary_10_1016_j_arcontrol_2023_100916
crossref_primary_10_1016_j_ifacol_2023_10_1873
crossref_primary_10_1080_03610926_2020_1836219
crossref_primary_10_1002_rnc_6485
crossref_primary_10_2514_1_G008321
crossref_primary_10_1016_j_automatica_2022_110253
crossref_primary_10_1109_TAC_2021_3087455
crossref_primary_10_1109_LCSYS_2020_3042924
crossref_primary_10_1016_j_automatica_2022_110537
crossref_primary_10_1109_OJCSYS_2023_3241486
crossref_primary_10_1109_ACCESS_2020_2973344
crossref_primary_10_1109_TAC_2021_3056398
crossref_primary_10_1109_TAC_2024_3455508
crossref_primary_10_1016_j_automatica_2021_109548
crossref_primary_10_1109_TAC_2021_3131148
crossref_primary_10_1137_22M1486807
crossref_primary_10_1177_00202940221144476
crossref_primary_10_1016_j_ifacol_2023_10_1381
crossref_primary_10_1007_s10107_023_01938_4
crossref_primary_10_1109_ACCESS_2022_3144933
crossref_primary_10_1109_ACCESS_2022_3185244
crossref_primary_10_1007_s40305_024_00546_z
crossref_primary_10_1038_s42256_024_00829_3
crossref_primary_10_1109_TAC_2021_3128592
crossref_primary_10_1287_moor_2022_0134
crossref_primary_10_1109_TAC_2022_3180692
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1109_TAC_2021_3083651
crossref_primary_10_1109_LCSYS_2021_3053180
crossref_primary_10_1109_TAC_2023_3235967
crossref_primary_10_1109_TCNS_2021_3089141
crossref_primary_10_1109_TIV_2022_3174029
crossref_primary_10_1155_2021_4827900
crossref_primary_10_1109_LCSYS_2020_2996581
crossref_primary_10_1109_TAC_2020_3030877
crossref_primary_10_1109_TAC_2022_3214055
crossref_primary_10_1287_moor_2021_1238
crossref_primary_10_1109_TCAD_2022_3197980
crossref_primary_10_1146_annurev_control_042920_020021
crossref_primary_10_1109_LCSYS_2024_3418755
crossref_primary_10_1109_ACCESS_2024_3376253
crossref_primary_10_1137_22M1515744
crossref_primary_10_1016_j_automatica_2024_112095
crossref_primary_10_1109_TAC_2022_3215940
crossref_primary_10_4271_13_05_01_0004
crossref_primary_10_1016_j_ejcon_2024_101051
crossref_primary_10_1016_j_ifacol_2023_10_763
crossref_primary_10_1109_TAC_2023_3253787
crossref_primary_10_1109_TCNS_2020_3028035
crossref_primary_10_1109_TAC_2023_3330792
crossref_primary_10_1109_TAC_2023_3234889
crossref_primary_10_1016_j_sysconle_2021_104985
crossref_primary_10_1137_20M1382386
crossref_primary_10_1109_TAC_2022_3145632
crossref_primary_10_1109_TAC_2023_3288623
crossref_primary_10_1016_j_ifacol_2023_10_1793
crossref_primary_10_1007_s10208_025_09689_8
crossref_primary_10_1109_TAC_2020_2966717
crossref_primary_10_1038_s41467_021_21554_0
crossref_primary_10_1016_j_ifacol_2023_10_924
crossref_primary_10_1016_j_automatica_2025_112262
Cites_doi 10.1007/978-1-4612-4380-9_41
10.1109/TAC.2002.800750
10.1007/978-1-4757-2545-2_3
10.1016/j.jprocont.2007.10.009
10.1038/nature16961
10.1214/aos/1009210547
10.1016/S0005-1098(01)00299-0
10.1145/267460.267481
10.1214/aop/1176988849
10.1214/17-EJS1341SI
10.1109/9.62265
10.1109/CDC.2017.8264168
10.1109/9.90229
10.1017/9781108627771
10.1049/ip-d.1982.0053
10.1137/S0363012994266504
10.1016/0005-1098(93)90175-S
10.1109/ALLERTON.2017.8262873
10.1109/TAC.2018.2890753
10.1561/2200000070
10.1016/0005-1098(95)00024-Q
10.1109/CDC.1991.261579
10.1109/9.587335
10.1109/ALLERTON.2017.8262844
10.1017/9781139061759
10.1109/TAC.2016.2616644
10.1109/ACC.1995.532775
10.1038/nature14236
10.1109/TAC.1976.1101223
10.1109/CDC.1995.480635
10.1109/9.284879
10.1007/s10994-016-5588-2
10.1145/3127479.3128601
10.1109/18.661510
ContentType Journal Article
Copyright SFoCM 2019
COPYRIGHT 2020 Springer
SFoCM 2019.
Copyright_xml – notice: SFoCM 2019
– notice: COPYRIGHT 2020 Springer
– notice: SFoCM 2019.
DBID AAYXX
CITATION
ISR
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-019-09426-y
DatabaseName CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 679
ExternalDocumentID A631516748
10_1007_s10208_019_09426_y
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
AEIIB
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c524t-d43cc513fec344c3a5863e9d95cd2786e5430615125623b71047ac6c71dccc0b3
IEDL.DBID AGYKE
ISSN 1615-3375
IngestDate Fri Jul 25 19:05:29 EDT 2025
Tue Jun 17 21:46:49 EDT 2025
Thu Jun 12 23:33:05 EDT 2025
Tue Jun 10 20:39:34 EDT 2025
Fri Jun 27 03:35:01 EDT 2025
Thu Apr 24 22:55:31 EDT 2025
Tue Jul 01 04:30:05 EDT 2025
Fri Feb 21 02:36:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Robust control
System level synthesis
93D21
Optimal control
93E35
Reinforcement learning
93E12
93D09
49N05
Statistical learning theory
System identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-d43cc513fec344c3a5863e9d95cd2786e5430615125623b71047ac6c71dccc0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2430113038
PQPubID 43692
PageCount 47
ParticipantIDs proquest_journals_2430113038
gale_infotracmisc_A631516748
gale_infotracgeneralonefile_A631516748
gale_infotracacademiconefile_A631516748
gale_incontextgauss_ISR_A631516748
crossref_primary_10_1007_s10208_019_09426_y
crossref_citationtrail_10_1007_s10208_019_09426_y
springer_journals_10_1007_s10208_019_09426_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, pages 1329–1338, 2016.
J. Chen and G. Gu. Control-Oriented System Identification: An H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document} Approach. Wiley, 2000.
M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Transactions on Automatic Control, 36(1), 1991. ISSN 0018-9286. https://doi.org/10.1109/9.62265.
MohriMRostamizadehAStability bounds for stationary ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing processesJournal of Machine Learning Research20101178981426006301242.68238
M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. https://doi.org/10.1017/9781108627771.
G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. John Wiley & Sons, 2015.
PackardADoyleJThe complex structured singular valueAutomatica19932917110912005420772.9302310.1016/0005-1098(93)90175-S
M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 1467–1476. PMLR, 10–15 Jul 2018.
YuBRates of convergence for empirical processes of stationary mixing sequencesThe Annals of Probability19942219411612588670802.60024
J. Chen and C. N. Nett. The Caratheodory-Fejer problem and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} identification: a time domain approach. In Proceedings of 32nd IEEE Conference on Decision and Control, pages 68–73. IEEE, 1993.
Y. Abbasi-Yadkori and C. Szepesvári. Regret Bounds for the Adaptive Control of Linear Quadratic Systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages 1–26, 2011.
S. Tu, R. Boczar, A. Packard, and B. Recht. Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification. arXiv:1707.04791, 2017.
GoldenshlugerAZeeviANonasymptotic bounds for autoregressive time series modelingAnn. Statist.2001292417444, 0418639641041.6207410.1214/aos/1009210547
BraatzRPYoungPMDoyleJCMorariMComputational complexity of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} calculationIEEE Transactions on Automatic Control19943951000100212743480807.93020
P. Hall. The Bootstrap and Edgeworth Expansion. Springer Science & Business Media, 2013.
HardtMMaTRechtBGradient descent learns linear dynamical systemsThe Journal of Machine Learning Research201819110251068386243606982320
KuznetsovVMohriMGeneralization bounds for non-stationary mixing processesMachine Learning201710619311735921511412.6818610.1007/s10994-016-5588-2
GoldenshlugerANonparametric estimation of transfer functions: rates of convergence and adaptationIEEE Transactions on Information Theory199844264465816077380902.6204310.1109/18.661510
VidyasagarMKarandikarRLA learning theory approach to system identification and stochastic adaptive controlJournal of Process Control200818342143010.1016/j.jprocont.2007.10.009
Y. Wang, N. Matni, and J. C. Doyle. A system level approach to controller synthesis. IEEE Transactions on Automatic Control, pages 1–1, 2019. https://doi.org/10.1109/TAC.2018.2890753.
M. Abeille and A. Lazaric. Improved regret bounds for thompson sampling in linear quadratic control problems. In International Conference on Machine Learning, pages 1–9, 2018.
F. Paganini. Necessary and sufficient conditions for robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance. In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume 2, pages 1970–1975 vol.2, Dec 1995. https://doi.org/10.1109/CDC.1995.480635.
YoulaDJabrHBongiornoJModern wiener-hopf design of optimal controllers–part ii: The multivariable caseIEEE Transactions on Automatic Control19762133193384466370339.9303510.1109/TAC.1976.1101223
M. Abeille and A. Lazaric. Thompson sampling for linear-quadratic control problems. In AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, 2017.
BorrelliFBemporadAMorariMPredictive control for linear and hybrid systems2017New York, NY, USACambridge University Press1365.93003
MegretskiARantzerASystem analysis via integral quadratic constraintsIEEE Transactions on Automatic Control199742681983014557110881.9306210.1109/9.587335
SznaierMAmishimaTParriloPTiernoJA convex approach to robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance analysisAutomatica200238695796621350921012.93023
B. Efron. Bootstrap Methods: Another Look at the Jackknife, pages 569–593. Springer New York, New York, NY, 1992. https://doi.org/10.1007/978-1-4612-4380-9_41.
M. Ibrahimi, A. Javanmard, and B. V. Roy. Efficient reinforcement learning for high dimensional linear quadratic systems. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2636–2644, 2012.
E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the 2017 Symposium on Cloud Computing, pages 445–451. ACM, 2017. 10.1145/3127479.3128601.
J. Pereira, M. Ibrahimi, and A. Montanari. Learning networks of stochastic differential equations. In Advances in Neural Information Processing Systems, pages 172–180, 2010.
HelmickiA. JJacobsonC. ANettC. NControl oriented system identification: a worst-case/deterministic approach in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document}IEEE Transactions on Automatic Control199136101163117611258970758.93020
N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1704–1713. PMLR, 06–11 Aug 2017.
R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv:1011.3027, 2010.
M. ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1 (Revision 25)., 2015. URL http://docs.mosek.com/8.1/toolbox/index.html.
J. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings D - Control Theory and Applications, 129(6), 1982. ISSN 0143-7054. https://doi.org/10.1049/ip-d.1982.0053.
FeronEAnalysis of robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance using multiplier theorySIAM Journal on Control and Optimization199735116017714302870871.93014
CampiMCWeyerEFinite sample properties of system identification methodsIEEE Transactions on Automatic Control20024781329133419174441364.93823
B. Dumitrescu. Positive trigonometric polynomials and signal processing applications, volume 103. Springer Science & Business Media, 2007.
J. Anderson and N. Matni. Structured state space realizations for sls distributed controllers. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 982–987. IEEE, 2017.
P. M. Young, M. P. Newlin, and J. C. Doyle. μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} analysis with real parametric uncertainty. In Proceedings of the 30th IEEE Conference on Decision and Control, volume 2, pages 1251–1256, Dec 1991. https://doi.org/10.1109/CDC.1991.261579.
S. Dean, S. Tu, N. Matni, and B. Recht. Safely Learning to Control the Constrained Linear Quadratic Regulator. arXiv:1809.10121, 2018.
PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Transactions on Automatic Control20176262736274936605591369.9353810.1109/TAC.2016.2616644
E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Spectral filtering for general linear dynamical systems. In Advances in Neural Information Proc
9426_CR12
V Mnih (9426_CR41) 2015; 518
9426_CR56
9426_CR15
L Ljung (9426_CR36) 1999
9426_CR59
9426_CR14
9426_CR58
9426_CR17
9426_CR16
9426_CR19
9426_CR18
M Mohri (9426_CR42) 2010; 11
V Kuznetsov (9426_CR33) 2017; 106
A. J Helmicki (9426_CR29) 1991; 36
M Sznaier (9426_CR53) 2002; 38
A Megretski (9426_CR40) 1997; 42
MC Campi (9426_CR10) 2002; 47
DJ McDonald (9426_CR39) 2017; 18
9426_CR50
R Postoyan (9426_CR47) 2017; 62
D Silver (9426_CR51) 2016; 529
9426_CR52
9426_CR11
9426_CR55
9426_CR54
9426_CR46
9426_CR45
D Youla (9426_CR61) 1976; 21
M Vidyasagar (9426_CR57) 2008; 18
F Borrelli (9426_CR6) 2017
S Levine (9426_CR34) 2016; 17
A Packard (9426_CR44) 1993; 29
E Feron (9426_CR21) 1997; 35
K Zhou (9426_CR64) 1996
9426_CR43
9426_CR35
9426_CR37
9426_CR38
RP Braatz (9426_CR8) 1994; 39
A Goldenshluger (9426_CR23) 1998; 44
9426_CR9
9426_CR7
M Hardt (9426_CR26) 2018; 19
9426_CR5
B Yu (9426_CR63) 1994; 22
9426_CR3
9426_CR4
9426_CR1
9426_CR31
9426_CR2
9426_CR30
A Goldenshluger (9426_CR24) 2001; 29
9426_CR32
9426_CR25
9426_CR28
9426_CR27
MA Dahleh (9426_CR13) 1994
DJ Russo (9426_CR49) 2018; 11
L Qiu (9426_CR48) 1995; 31
9426_CR60
9426_CR62
9426_CR20
9426_CR22
References_xml – reference: McDonaldDJShaliziCRSchervishMNonparametric risk bounds for time-series forecastingJournal of Machine Learning Research201718110441083364662706781353
– reference: YoulaDJabrHBongiornoJModern wiener-hopf design of optimal controllers–part ii: The multivariable caseIEEE Transactions on Automatic Control19762133193384466370339.9303510.1109/TAC.1976.1101223
– reference: M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 1467–1476. PMLR, 10–15 Jul 2018.
– reference: RussoDJVan RoyBKazerouniAOsbandIWenZA tutorial on thompson samplingFoundations and Trends on Machine Learning20181111961409.6202410.1561/2200000070
– reference: SznaierMAmishimaTParriloPTiernoJA convex approach to robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance analysisAutomatica200238695796621350921012.93023
– reference: M. Abeille and A. Lazaric. Thompson sampling for linear-quadratic control problems. In AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, 2017.
– reference: Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, pages 1329–1338, 2016.
– reference: J. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings D - Control Theory and Applications, 129(6), 1982. ISSN 0143-7054. https://doi.org/10.1049/ip-d.1982.0053.
– reference: N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1704–1713. PMLR, 06–11 Aug 2017.
– reference: KuznetsovVMohriMGeneralization bounds for non-stationary mixing processesMachine Learning201710619311735921511412.6818610.1007/s10994-016-5588-2
– reference: J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In IEEE International Symposium on Computer Aided Control System Design, 2004.
– reference: HardtMMaTRechtBGradient descent learns linear dynamical systemsThe Journal of Machine Learning Research201819110251068386243606982320
– reference: M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Transactions on Automatic Control, 36(1), 1991. ISSN 0018-9286. https://doi.org/10.1109/9.62265.
– reference: FeronEAnalysis of robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance using multiplier theorySIAM Journal on Control and Optimization199735116017714302870871.93014
– reference: ZhouKDoyleJCGloverKRobust and Optimal Control1996Upper Saddle River, NJ, USAPrentice-Hall Inc0999.49500
– reference: B. Efron. Bootstrap Methods: Another Look at the Jackknife, pages 569–593. Springer New York, New York, NY, 1992. https://doi.org/10.1007/978-1-4612-4380-9_41.
– reference: GoldenshlugerAZeeviANonasymptotic bounds for autoregressive time series modelingAnn. Statist.2001292417444, 0418639641041.6207410.1214/aos/1009210547
– reference: M. ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1 (Revision 25)., 2015. URL http://docs.mosek.com/8.1/toolbox/index.html.
– reference: CampiMCWeyerEFinite sample properties of system identification methodsIEEE Transactions on Automatic Control20024781329133419174441364.93823
– reference: M. Abeille and A. Lazaric. Improved regret bounds for thompson sampling in linear quadratic control problems. In International Conference on Machine Learning, pages 1–9, 2018.
– reference: J. Chen and C. N. Nett. The Caratheodory-Fejer problem and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} identification: a time domain approach. In Proceedings of 32nd IEEE Conference on Decision and Control, pages 68–73. IEEE, 1993.
– reference: E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Spectral filtering for general linear dynamical systems. In Advances in Neural Information Processing Systems, pages 4634–4643, 2018.
– reference: YuBRates of convergence for empirical processes of stationary mixing sequencesThe Annals of Probability19942219411612588670802.60024
– reference: F. Paganini. Necessary and sufficient conditions for robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance. In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume 2, pages 1970–1975 vol.2, Dec 1995. https://doi.org/10.1109/CDC.1995.480635.
– reference: Y. Abbasi-Yadkori and C. Szepesvári. Regret Bounds for the Adaptive Control of Linear Quadratic Systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages 1–26, 2011.
– reference: A. W. Van Der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer Science & Business Media, 1996.
– reference: G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. John Wiley & Sons, 2015.
– reference: J. Chen and G. Gu. Control-Oriented System Identification: An H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document} Approach. Wiley, 2000.
– reference: HelmickiA. JJacobsonC. ANettC. NControl oriented system identification: a worst-case/deterministic approach in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document}IEEE Transactions on Automatic Control199136101163117611258970758.93020
– reference: S. J. Bradtke, B. E. Ydstie, and A. G. Barto. Adaptive linear quadratic control using policy iteration. In Proceedings of 1994 American Control Conference-ACC’94, volume 3, pages 3475–3479. IEEE, 1994.
– reference: W. Li and E. Todorov. Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems. In International Conference on Informatics in Control, Automation and Robotics, 2004.
– reference: LevineSFinnCDarrellTAbbeelPEnd-to-end training of deep visuomotor policiesJournal of Machine Learning Research20161711334137334911331360.68687
– reference: M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. https://doi.org/10.1017/9781108627771.
– reference: J. Anderson and N. Matni. Structured state space realizations for sls distributed controllers. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 982–987. IEEE, 2017.
– reference: SilverDHuangAMaddisonC. JGuezASifreLvan den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMDielemanSGreweDNhamJKalchbrennerNSutskeverILillicrapTLeachMKavukcuogluKGraepelTHassabisDMastering the game of go with deep neural networks and tree searchNature2016529484489, 01
– reference: R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv:1011.3027, 2010.
– reference: P. M. Young, M. P. Newlin, and J. C. Doyle. μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} analysis with real parametric uncertainty. In Proceedings of the 30th IEEE Conference on Decision and Control, volume 2, pages 1251–1256, Dec 1991. https://doi.org/10.1109/CDC.1991.261579.
– reference: M. Simchowitz, H. Mania, S. Tu, M. I. Jordan, and B. Recht. Learning without mixing: Towards a sharp analysis of linear system identification. In Proceedings of the 31st Conference On Learning Theory, volume 75, pages 439–473. PMLR, 06–09 Jul 2018.
– reference: B. Dumitrescu. Positive trigonometric polynomials and signal processing applications, volume 103. Springer Science & Business Media, 2007.
– reference: M. Ibrahimi, A. Javanmard, and B. V. Roy. Efficient reinforcement learning for high dimensional linear quadratic systems. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2636–2644, 2012.
– reference: MnihVKavukcuogluKSilverDRusuA. AVenessJBellemareM. GGravesARiedmillerMFidjelandA. KOstrovskiGPetersenSBeattieCSadikAAntonoglouIKingHKumaranDWierstraDLeggSHassabisDHuman-level control through deep reinforcement learningNature2015518529533, 02
– reference: E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the 2017 Symposium on Cloud Computing, pages 445–451. ACM, 2017. 10.1145/3127479.3128601.
– reference: DahlehMADiaz-BobilloIJControl of uncertain systems: a linear programming approach1994Upper Saddle River, NJ, USAPrentice-Hall Inc0838.93007
– reference: P. Hall. The Bootstrap and Edgeworth Expansion. Springer Science & Business Media, 2013.
– reference: E. Hazan, K. Singh, and C. Zhang. Learning linear dynamical systems via spectral filtering. In Advances in Neural Information Processing Systems, pages 6702–6712, 2017.
– reference: PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Transactions on Automatic Control20176262736274936605591369.9353810.1109/TAC.2016.2616644
– reference: C.-N. Fiechter. PAC adaptive control of linear systems. In Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT ’97, pages 72–80, New York, NY, USA, 1997. ACM. https://doi.org/10.1145/267460.267481.
– reference: QiuLBernhardssonBRantzerADavisonEYoungPDoyleJA formula for computation of the real stability radiusAutomatica199531687989013373360839.9303910.1016/0005-1098(95)00024-Q
– reference: Y. Wang, N. Matni, and J. C. Doyle. A system level approach to controller synthesis. IEEE Transactions on Automatic Control, pages 1–1, 2019. https://doi.org/10.1109/TAC.2018.2890753.
– reference: BraatzRPYoungPMDoyleJCMorariMComputational complexity of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} calculationIEEE Transactions on Automatic Control19943951000100212743480807.93020
– reference: N. Matni, Y. Wang, and J. Anderson. Scalable system level synthesis for virtually localizable systems. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 3473–3480, Dec 2017. https://doi.org/10.1109/CDC.2017.8264168.
– reference: GoldenshlugerANonparametric estimation of transfer functions: rates of convergence and adaptationIEEE Transactions on Information Theory199844264465816077380902.6204310.1109/18.661510
– reference: BorrelliFBemporadAMorariMPredictive control for linear and hybrid systems2017New York, NY, USACambridge University Press1365.93003
– reference: S. Dean, S. Tu, N. Matni, and B. Recht. Safely Learning to Control the Constrained Linear Quadratic Regulator. arXiv:1809.10121, 2018.
– reference: J. Pereira, M. Ibrahimi, and A. Montanari. Learning networks of stochastic differential equations. In Advances in Neural Information Processing Systems, pages 172–180, 2010.
– reference: J. Shao and D. Tu. The Jackknife and Bootstrap. Springer Science & Business Media, 2012.
– reference: MohriMRostamizadehAStability bounds for stationary ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing processesJournal of Machine Learning Research20101178981426006301242.68238
– reference: F. Wu and A. Packard. Optimal lqg performance of linear uncertain systems using state-feedback. In Proceedings of 1995 American Control Conference - ACC’95, volume 6, pages 4435–4439, June 1995. https://doi.org/10.1109/ACC.1995.532775.
– reference: S. Tu, R. Boczar, A. Packard, and B. Recht. Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification. arXiv:1707.04791, 2017.
– reference: VidyasagarMKarandikarRLA learning theory approach to system identification and stochastic adaptive controlJournal of Process Control200818342143010.1016/j.jprocont.2007.10.009
– reference: MegretskiARantzerASystem analysis via integral quadratic constraintsIEEE Transactions on Automatic Control199742681983014557110881.9306210.1109/9.587335
– reference: Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205, Oct 2017. https://doi.org/10.1109/ALLERTON.2017.8262873.
– reference: PackardADoyleJThe complex structured singular valueAutomatica19932917110912005420772.9302310.1016/0005-1098(93)90175-S
– reference: LjungLSystem Identification: Theory for the User1999Upper Saddle River, NJ, USAPrentice-Hall Inc0615.93004
– ident: 9426_CR18
  doi: 10.1007/978-1-4612-4380-9_41
– ident: 9426_CR9
– ident: 9426_CR27
– ident: 9426_CR52
– ident: 9426_CR46
– volume: 47
  start-page: 1329
  issue: 8
  year: 2002
  ident: 9426_CR10
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2002.800750
– ident: 9426_CR55
  doi: 10.1007/978-1-4757-2545-2_3
– volume: 18
  start-page: 421
  issue: 3
  year: 2008
  ident: 9426_CR57
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2007.10.009
– volume: 11
  start-page: 789
  year: 2010
  ident: 9426_CR42
  publication-title: Journal of Machine Learning Research
– ident: 9426_CR14
– volume: 529
  start-page: 484
  year: 2016
  ident: 9426_CR51
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: 9426_CR56
– ident: 9426_CR37
– volume: 29
  start-page: 417
  issue: 2
  year: 2001
  ident: 9426_CR24
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1009210547
– volume: 38
  start-page: 957
  issue: 6
  year: 2002
  ident: 9426_CR53
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00299-0
– ident: 9426_CR22
  doi: 10.1145/267460.267481
– volume: 22
  start-page: 94
  issue: 1
  year: 1994
  ident: 9426_CR63
  publication-title: The Annals of Probability
  doi: 10.1214/aop/1176988849
– ident: 9426_CR2
  doi: 10.1214/17-EJS1341SI
– ident: 9426_CR28
– ident: 9426_CR19
  doi: 10.1109/9.62265
– ident: 9426_CR38
  doi: 10.1109/CDC.2017.8264168
– volume: 36
  start-page: 1163
  issue: 10
  year: 1991
  ident: 9426_CR29
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.90229
– ident: 9426_CR20
– volume-title: Robust and Optimal Control
  year: 1996
  ident: 9426_CR64
– ident: 9426_CR58
  doi: 10.1017/9781108627771
– ident: 9426_CR15
  doi: 10.1049/ip-d.1982.0053
– ident: 9426_CR1
– volume: 18
  start-page: 1044
  issue: 1
  year: 2017
  ident: 9426_CR39
  publication-title: Journal of Machine Learning Research
– ident: 9426_CR5
– ident: 9426_CR17
– volume: 35
  start-page: 160
  issue: 1
  year: 1997
  ident: 9426_CR21
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/S0363012994266504
– ident: 9426_CR30
– volume: 29
  start-page: 71
  issue: 1
  year: 1993
  ident: 9426_CR44
  publication-title: Automatica
  doi: 10.1016/0005-1098(93)90175-S
– volume: 19
  start-page: 1025
  issue: 1
  year: 2018
  ident: 9426_CR26
  publication-title: The Journal of Machine Learning Research
– ident: 9426_CR43
  doi: 10.1109/ALLERTON.2017.8262873
– ident: 9426_CR59
  doi: 10.1109/TAC.2018.2890753
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 9426_CR49
  publication-title: Foundations and Trends on Machine Learning
  doi: 10.1561/2200000070
– ident: 9426_CR7
– ident: 9426_CR25
– ident: 9426_CR50
– volume: 31
  start-page: 879
  issue: 6
  year: 1995
  ident: 9426_CR48
  publication-title: Automatica
  doi: 10.1016/0005-1098(95)00024-Q
– ident: 9426_CR62
  doi: 10.1109/CDC.1991.261579
– ident: 9426_CR35
– volume: 42
  start-page: 819
  issue: 6
  year: 1997
  ident: 9426_CR40
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.587335
– ident: 9426_CR12
– ident: 9426_CR4
  doi: 10.1109/ALLERTON.2017.8262844
– volume-title: Predictive control for linear and hybrid systems
  year: 2017
  ident: 9426_CR6
  doi: 10.1017/9781139061759
– volume: 62
  start-page: 2736
  issue: 6
  year: 2017
  ident: 9426_CR47
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2616644
– ident: 9426_CR54
– ident: 9426_CR16
– ident: 9426_CR31
– ident: 9426_CR60
  doi: 10.1109/ACC.1995.532775
– volume: 518
  start-page: 529
  year: 2015
  ident: 9426_CR41
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 21
  start-page: 319
  issue: 3
  year: 1976
  ident: 9426_CR61
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1976.1101223
– volume-title: System Identification: Theory for the User
  year: 1999
  ident: 9426_CR36
– ident: 9426_CR45
  doi: 10.1109/CDC.1995.480635
– volume: 39
  start-page: 1000
  issue: 5
  year: 1994
  ident: 9426_CR8
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.284879
– volume: 106
  start-page: 93
  issue: 1
  year: 2017
  ident: 9426_CR33
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5588-2
– ident: 9426_CR32
  doi: 10.1145/3127479.3128601
– ident: 9426_CR11
– volume: 17
  start-page: 1334
  issue: 1
  year: 2016
  ident: 9426_CR34
  publication-title: Journal of Machine Learning Research
– ident: 9426_CR3
– volume: 44
  start-page: 644
  issue: 2
  year: 1998
  ident: 9426_CR23
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.661510
– volume-title: Control of uncertain systems: a linear programming approach
  year: 1994
  ident: 9426_CR13
SSID ssj0015914
Score 2.6416018
Snippet This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 633
SubjectTerms Analysis
Applications of Mathematics
Computational geometry
Computer Science
Control systems design
Controllers
Convexity
Cost control
Design optimization
Economics
Errors
Linear and Multilinear Algebras
Linear quadratic regulator
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Optimal control
Robust control
Synthesis
Uncertainty
Title On the Sample Complexity of the Linear Quadratic Regulator
URI https://link.springer.com/article/10.1007/s10208-019-09426-y
https://www.proquest.com/docview/2430113038
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7gF4YDBAFEZlIQQPkKmJYyflrYOVARqIjUrbk-VcnD4wpdOSPpS_nrvU6cgYSHuM7_LDzp39Jb77DuAlOZ92UjpGbllACHwYpNnQBdplhSW8QEsY5zsfftUH0_jziTrxSWFVG-3ebkk2M_UfyW5RE3jFIT60rgTLDdhUYTpKe7A5_nj6ZX-9e6BGDac3g5lAykT5ZJnrr9JZkK5Oy3_tjzbLzmQLpu0Dr6JNfu4u6mwXf13hcrxpj-7DPY9DxXhlOA_gliu3YctjUuE9vqKmtuxD27YNt9tkZhLfPVzTvlYP4d23UtChOLbMOSz4VObbrJdiXjQC-vIlzxLfFzZny0Nx5GZcP2x-8Qimk_0f7w8CX5whQBXFdZDHElGFsnAo4xilVamWbpSPFOZRkmqnYtnApYgRVpYwJYRFjUmYI-Iwk4-hV85L9wRE4rQNi6HCzNpY28ISyqBrFCkWLsIo7EPYviGDnrmcC2icmUvOZR5JQyNpmpE0yz68WZ9zvuLt-K_2C37xhgkxSo64mdlFVZlPx0dmrCV1gkuy9OG1VyrmdHu0PoGBOsEcWh3NVx3N2YpB_DrFnY4iuTZ2xa0hGj-1VCaKeU4m5EHit61dXYr_3cmnN1N_Bnci_rfQWOgO9OqLhXtOAKzOBuRvex_2JgPvdwPYmEbj38HyJOo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BeBg8MBggChtYCMEDRGrs2El5qyamDtYhtlXam-VcnL2gFC3tQ_89d67TLTCQeIzv7Mjns_0l9n0H8JYmn_FKeUZuZUIIfJgU5dAnxpe1I7xAWxjHO09PzGSWfbnQFzEorO1uu3dHkmGlvhHsJsPFK77iQ_tKsroL9wgMFJy3YCbHm7MDPQqM3gxlEqVyHUNlbm-jtx39vij_cToaNp3DR_AwokUxXg_vY7jjm13YichRxHnZUlGXnKEr24XtLuSYxA-mG3LW9gl8-tYIehRnjpmBBVdlVszFSszrIKDvU_J_8X3pKvYPFKfrhPXzq6cwO_x8fjBJYgqFBLXMFkmVKUSdqtqjyjJUThdG-VE10ljJvDBeZyqAGsk4qMyZuMGhwTytEHFYqmew1cwb_xxE7o1L66HG0rnMuNoRFqA26gJrL1GmA0g7S1qM_OKc5uKHvWZGZutbsr4N1rerAXzY1Pm5Ztf4p_YbHiDLtBUN34u5dMu2tUdnp3ZsFHWCE6cM4H1Uquf0enQxzIA6wUxXPc13Pc3LNc_3bYp7PUWagNgXdw5j4wLQWpnxykn4gMQfOye6Fv-9ky_-T_01bE_Op8f2-Ojk60u4L_lvQPDwPdhaXC39PkGmRfkqzJBfTrMIMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSFAOfBSqLrRgIQQHiLqxY2eX26qwaoEWaFmpN8uZ2L1U2arJHvbfM-M42wYKEsd4xo5sz9gvsecNY6_R-bST0hFyKxJE4MNkVAxdol3hLeIF3MIo3vnwSO_Pss-n6vRaFH-47d4dSbYxDcTSVDW7F6XfvRb4JsIlLLrug3tMsrzN7uBynJKlz8RkdY6gxoHdm2BNImWuYtjMzW30tqbfF-g_TkrDBjR9xB5E5Mgn7VQ_ZrdctcEeRhTJo4_WWNQlaujKNti9LvwYxfcPV0St9RP24VvF8ZGfWGIJ5lSVGDKbJZ_7IMBvVfQF_mNhS7IV4Mdt8vr55VM2m376ubefxHQKCSiRNUmZSQCVSu9AZhlIq0ZaunE5VlCKfKSdymQAOIIwUZETiYMFDXlaAsCwkJtsrZpXbovx3Gmb-qGCwtpMW28RF2AbfgTeCRDpgKXdSBqIXOOU8uLcXLEk0-gbHH0TRt8sB-zdqs5Fy7TxT-1XNEGGKCwquiNzZhd1bQ5Ojs1ES-wEJVEZsLdRyc_x9WBjyAF2gliveppveppnLef3TYrbPUV0RuiLO4MxcTGojchoFUWsgOL3nRFdif_eyWf_p_6S3f3-cWq-Hhx9ec7WBf0YCAa-zdaay4XbQfTUFC-Cg_wCg0IMbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Sample+Complexity+of+the+Linear+Quadratic+Regulator&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Dean%2C+Sarah&rft.au=Mania%2C+Horia&rft.au=Matni%2C+Nikolai&rft.au=Recht%2C+Benjamin&rft.date=2020-08-01&rft.pub=Springer&rft.issn=1615-3375&rft.volume=20&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1007%2Fs10208-019-09426-y&rft.externalDocID=A631516748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon