On the Sample Complexity of the Linear Quadratic Regulator
This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control , that estimates a model from a few experimental trials, estimates the error in that model with respect to t...
Saved in:
Published in | Foundations of computational mathematics Vol. 20; no. 4; pp. 633 - 679 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1615-3375 1615-3383 |
DOI | 10.1007/s10208-019-09426-y |
Cover
Abstract | This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called
Coarse-ID control
, that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called
System Level Synthesis
that enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system. |
---|---|
AbstractList | This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control, that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system. This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, called Coarse-ID control , that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system. |
Audience | Academic |
Author | Recht, Benjamin Dean, Sarah Mania, Horia Matni, Nikolai Tu, Stephen |
Author_xml | – sequence: 1 givenname: Sarah surname: Dean fullname: Dean, Sarah organization: Department of Electrical Engineering and Computer Sciences, University of California – sequence: 2 givenname: Horia surname: Mania fullname: Mania, Horia organization: Department of Electrical Engineering and Computer Sciences, University of California – sequence: 3 givenname: Nikolai surname: Matni fullname: Matni, Nikolai organization: Department of Computing and Mathematical Sciences, California Institute of Technology – sequence: 4 givenname: Benjamin surname: Recht fullname: Recht, Benjamin email: brecht@berkeley.edu organization: Department of Electrical Engineering and Computer Sciences, University of California – sequence: 5 givenname: Stephen surname: Tu fullname: Tu, Stephen organization: Department of Electrical Engineering and Computer Sciences, University of California |
BookMark | eNp9kctKAzEUhoMoWC8v4GrAlYvRZJLMxZ0UL4WCWHUd4pkzY8p0piYZaN_e1EqlUkoWCcn3nZPkPyGHbdciIReMXjNKsxvHaELzmLIipoVI0nh5QAYsZTLmPOeHm3Umj8mJc1NKmSyYGJDb5zbynxi96tm8wWjYraaF8cuoq34OxqZFbaOXXpdWewPRBOu-0b6zZ-So0o3D89_5lLw_3L8Nn-Lx8-NoeDeOQSbCx6XgAJLxCoELAVzLPOVYlIWEMsnyFKXgNNyOJTJN-EfGqMg0pJCxEgDoBz8ll-u6c9t99ei8mna9bUNLlQSVMU7DGzdUrRtUpq06bzXMjAN1l_JQPs3Eiop3UDW2aHUTvrQyYXuLv97Bh1HizMBO4WpLCIzHha9175wavU622WTNgu2cs1ipuTUzbZeKUbWKVa1jVSFW9ROrWgYp_yeB8SGY0Mdq0-xX-Vp1oU9bo_37yD3WNxKrtO4 |
CitedBy_id | crossref_primary_10_1016_j_sigpro_2022_108506 crossref_primary_10_1016_j_ifacol_2023_10_134 crossref_primary_10_1109_TAC_2023_3341757 crossref_primary_10_1109_TAC_2022_3202082 crossref_primary_10_1137_21M1414413 crossref_primary_10_1109_TAC_2020_3047577 crossref_primary_10_1109_MCS_2023_3291625 crossref_primary_10_1109_OJCSYS_2024_3507452 crossref_primary_10_1016_j_automatica_2021_109906 crossref_primary_10_1016_j_arcontrol_2023_03_006 crossref_primary_10_1016_j_sysconle_2024_106011 crossref_primary_10_1109_OJCSYS_2024_3441768 crossref_primary_10_1109_TAC_2022_3152724 crossref_primary_10_1002_asjc_2596 crossref_primary_10_1016_j_automatica_2024_111894 crossref_primary_10_1109_MCS_2023_3310345 crossref_primary_10_1137_21M1439729 crossref_primary_10_1109_TAC_2024_3430088 crossref_primary_10_3390_en14216909 crossref_primary_10_1007_s10208_023_09605_y crossref_primary_10_1109_TAC_2021_3137059 crossref_primary_10_1109_TAC_2022_3221705 crossref_primary_10_1109_TCST_2021_3088638 crossref_primary_10_1109_TSP_2024_3386396 crossref_primary_10_1109_TAC_2024_3366038 crossref_primary_10_1109_TAC_2021_3056582 crossref_primary_10_1109_TAC_2024_3422105 crossref_primary_10_1109_ACCESS_2023_3245570 crossref_primary_10_1145_3510414 crossref_primary_10_1109_TSMC_2024_3467057 crossref_primary_10_1137_23M1618570 crossref_primary_10_12677_PM_2024_141041 crossref_primary_10_1007_s11063_024_11502_6 crossref_primary_10_1016_j_automatica_2022_110599 crossref_primary_10_1109_LCSYS_2020_2993986 crossref_primary_10_1109_TAC_2023_3299551 crossref_primary_10_1051_cocv_2024014 crossref_primary_10_1016_j_mechmachtheory_2021_104654 crossref_primary_10_1109_LCSYS_2024_3514995 crossref_primary_10_1109_TCYB_2023_3324601 crossref_primary_10_1016_j_sysconle_2022_105392 crossref_primary_10_1109_ACCESS_2023_3241926 crossref_primary_10_2139_ssrn_3734179 crossref_primary_10_1109_ACCESS_2024_3410013 crossref_primary_10_1016_j_ifacol_2023_10_1086 crossref_primary_10_1109_LCSYS_2020_3045664 crossref_primary_10_1017_S0962492922000046 crossref_primary_10_1109_TAC_2021_3097706 crossref_primary_10_1109_TAC_2023_3335002 crossref_primary_10_1109_TAC_2022_3209342 crossref_primary_10_1145_3579452 crossref_primary_10_1109_TAC_2020_2979785 crossref_primary_10_1016_j_arcontrol_2023_100915 crossref_primary_10_1016_j_arcontrol_2023_100916 crossref_primary_10_1016_j_ifacol_2023_10_1873 crossref_primary_10_1080_03610926_2020_1836219 crossref_primary_10_1002_rnc_6485 crossref_primary_10_2514_1_G008321 crossref_primary_10_1016_j_automatica_2022_110253 crossref_primary_10_1109_TAC_2021_3087455 crossref_primary_10_1109_LCSYS_2020_3042924 crossref_primary_10_1016_j_automatica_2022_110537 crossref_primary_10_1109_OJCSYS_2023_3241486 crossref_primary_10_1109_ACCESS_2020_2973344 crossref_primary_10_1109_TAC_2021_3056398 crossref_primary_10_1109_TAC_2024_3455508 crossref_primary_10_1016_j_automatica_2021_109548 crossref_primary_10_1109_TAC_2021_3131148 crossref_primary_10_1137_22M1486807 crossref_primary_10_1177_00202940221144476 crossref_primary_10_1016_j_ifacol_2023_10_1381 crossref_primary_10_1007_s10107_023_01938_4 crossref_primary_10_1109_ACCESS_2022_3144933 crossref_primary_10_1109_ACCESS_2022_3185244 crossref_primary_10_1007_s40305_024_00546_z crossref_primary_10_1038_s42256_024_00829_3 crossref_primary_10_1109_TAC_2021_3128592 crossref_primary_10_1287_moor_2022_0134 crossref_primary_10_1109_TAC_2022_3180692 crossref_primary_10_1049_cth2_12761 crossref_primary_10_1109_TAC_2021_3083651 crossref_primary_10_1109_LCSYS_2021_3053180 crossref_primary_10_1109_TAC_2023_3235967 crossref_primary_10_1109_TCNS_2021_3089141 crossref_primary_10_1109_TIV_2022_3174029 crossref_primary_10_1155_2021_4827900 crossref_primary_10_1109_LCSYS_2020_2996581 crossref_primary_10_1109_TAC_2020_3030877 crossref_primary_10_1109_TAC_2022_3214055 crossref_primary_10_1287_moor_2021_1238 crossref_primary_10_1109_TCAD_2022_3197980 crossref_primary_10_1146_annurev_control_042920_020021 crossref_primary_10_1109_LCSYS_2024_3418755 crossref_primary_10_1109_ACCESS_2024_3376253 crossref_primary_10_1137_22M1515744 crossref_primary_10_1016_j_automatica_2024_112095 crossref_primary_10_1109_TAC_2022_3215940 crossref_primary_10_4271_13_05_01_0004 crossref_primary_10_1016_j_ejcon_2024_101051 crossref_primary_10_1016_j_ifacol_2023_10_763 crossref_primary_10_1109_TAC_2023_3253787 crossref_primary_10_1109_TCNS_2020_3028035 crossref_primary_10_1109_TAC_2023_3330792 crossref_primary_10_1109_TAC_2023_3234889 crossref_primary_10_1016_j_sysconle_2021_104985 crossref_primary_10_1137_20M1382386 crossref_primary_10_1109_TAC_2022_3145632 crossref_primary_10_1109_TAC_2023_3288623 crossref_primary_10_1016_j_ifacol_2023_10_1793 crossref_primary_10_1007_s10208_025_09689_8 crossref_primary_10_1109_TAC_2020_2966717 crossref_primary_10_1038_s41467_021_21554_0 crossref_primary_10_1016_j_ifacol_2023_10_924 crossref_primary_10_1016_j_automatica_2025_112262 |
Cites_doi | 10.1007/978-1-4612-4380-9_41 10.1109/TAC.2002.800750 10.1007/978-1-4757-2545-2_3 10.1016/j.jprocont.2007.10.009 10.1038/nature16961 10.1214/aos/1009210547 10.1016/S0005-1098(01)00299-0 10.1145/267460.267481 10.1214/aop/1176988849 10.1214/17-EJS1341SI 10.1109/9.62265 10.1109/CDC.2017.8264168 10.1109/9.90229 10.1017/9781108627771 10.1049/ip-d.1982.0053 10.1137/S0363012994266504 10.1016/0005-1098(93)90175-S 10.1109/ALLERTON.2017.8262873 10.1109/TAC.2018.2890753 10.1561/2200000070 10.1016/0005-1098(95)00024-Q 10.1109/CDC.1991.261579 10.1109/9.587335 10.1109/ALLERTON.2017.8262844 10.1017/9781139061759 10.1109/TAC.2016.2616644 10.1109/ACC.1995.532775 10.1038/nature14236 10.1109/TAC.1976.1101223 10.1109/CDC.1995.480635 10.1109/9.284879 10.1007/s10994-016-5588-2 10.1145/3127479.3128601 10.1109/18.661510 |
ContentType | Journal Article |
Copyright | SFoCM 2019 COPYRIGHT 2020 Springer SFoCM 2019. |
Copyright_xml | – notice: SFoCM 2019 – notice: COPYRIGHT 2020 Springer – notice: SFoCM 2019. |
DBID | AAYXX CITATION ISR 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s10208-019-09426-y |
DatabaseName | CrossRef Gale In Context: Science Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Mathematics Applied Sciences Computer Science |
EISSN | 1615-3383 |
EndPage | 679 |
ExternalDocumentID | A631516748 10_1007_s10208_019_09426_y |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD AEIIB 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c524t-d43cc513fec344c3a5863e9d95cd2786e5430615125623b71047ac6c71dccc0b3 |
IEDL.DBID | AGYKE |
ISSN | 1615-3375 |
IngestDate | Fri Jul 25 19:05:29 EDT 2025 Tue Jun 17 21:46:49 EDT 2025 Thu Jun 12 23:33:05 EDT 2025 Tue Jun 10 20:39:34 EDT 2025 Fri Jun 27 03:35:01 EDT 2025 Thu Apr 24 22:55:31 EDT 2025 Tue Jul 01 04:30:05 EDT 2025 Fri Feb 21 02:36:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Robust control System level synthesis 93D21 Optimal control 93E35 Reinforcement learning 93E12 93D09 49N05 Statistical learning theory System identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-d43cc513fec344c3a5863e9d95cd2786e5430615125623b71047ac6c71dccc0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2430113038 |
PQPubID | 43692 |
PageCount | 47 |
ParticipantIDs | proquest_journals_2430113038 gale_infotracmisc_A631516748 gale_infotracgeneralonefile_A631516748 gale_infotracacademiconefile_A631516748 gale_incontextgauss_ISR_A631516748 crossref_primary_10_1007_s10208_019_09426_y crossref_citationtrail_10_1007_s10208_019_09426_y springer_journals_10_1007_s10208_019_09426_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
PublicationTitle | Foundations of computational mathematics |
PublicationTitleAbbrev | Found Comput Math |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, pages 1329–1338, 2016. J. Chen and G. Gu. Control-Oriented System Identification: An H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document} Approach. Wiley, 2000. M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Transactions on Automatic Control, 36(1), 1991. ISSN 0018-9286. https://doi.org/10.1109/9.62265. MohriMRostamizadehAStability bounds for stationary ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing processesJournal of Machine Learning Research20101178981426006301242.68238 M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. https://doi.org/10.1017/9781108627771. G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. John Wiley & Sons, 2015. PackardADoyleJThe complex structured singular valueAutomatica19932917110912005420772.9302310.1016/0005-1098(93)90175-S M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 1467–1476. PMLR, 10–15 Jul 2018. YuBRates of convergence for empirical processes of stationary mixing sequencesThe Annals of Probability19942219411612588670802.60024 J. Chen and C. N. Nett. The Caratheodory-Fejer problem and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} identification: a time domain approach. In Proceedings of 32nd IEEE Conference on Decision and Control, pages 68–73. IEEE, 1993. Y. Abbasi-Yadkori and C. Szepesvári. Regret Bounds for the Adaptive Control of Linear Quadratic Systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages 1–26, 2011. S. Tu, R. Boczar, A. Packard, and B. Recht. Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification. arXiv:1707.04791, 2017. GoldenshlugerAZeeviANonasymptotic bounds for autoregressive time series modelingAnn. Statist.2001292417444, 0418639641041.6207410.1214/aos/1009210547 BraatzRPYoungPMDoyleJCMorariMComputational complexity of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} calculationIEEE Transactions on Automatic Control19943951000100212743480807.93020 P. Hall. The Bootstrap and Edgeworth Expansion. Springer Science & Business Media, 2013. HardtMMaTRechtBGradient descent learns linear dynamical systemsThe Journal of Machine Learning Research201819110251068386243606982320 KuznetsovVMohriMGeneralization bounds for non-stationary mixing processesMachine Learning201710619311735921511412.6818610.1007/s10994-016-5588-2 GoldenshlugerANonparametric estimation of transfer functions: rates of convergence and adaptationIEEE Transactions on Information Theory199844264465816077380902.6204310.1109/18.661510 VidyasagarMKarandikarRLA learning theory approach to system identification and stochastic adaptive controlJournal of Process Control200818342143010.1016/j.jprocont.2007.10.009 Y. Wang, N. Matni, and J. C. Doyle. A system level approach to controller synthesis. IEEE Transactions on Automatic Control, pages 1–1, 2019. https://doi.org/10.1109/TAC.2018.2890753. M. Abeille and A. Lazaric. Improved regret bounds for thompson sampling in linear quadratic control problems. In International Conference on Machine Learning, pages 1–9, 2018. F. Paganini. Necessary and sufficient conditions for robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance. In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume 2, pages 1970–1975 vol.2, Dec 1995. https://doi.org/10.1109/CDC.1995.480635. YoulaDJabrHBongiornoJModern wiener-hopf design of optimal controllers–part ii: The multivariable caseIEEE Transactions on Automatic Control19762133193384466370339.9303510.1109/TAC.1976.1101223 M. Abeille and A. Lazaric. Thompson sampling for linear-quadratic control problems. In AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, 2017. BorrelliFBemporadAMorariMPredictive control for linear and hybrid systems2017New York, NY, USACambridge University Press1365.93003 MegretskiARantzerASystem analysis via integral quadratic constraintsIEEE Transactions on Automatic Control199742681983014557110881.9306210.1109/9.587335 SznaierMAmishimaTParriloPTiernoJA convex approach to robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance analysisAutomatica200238695796621350921012.93023 B. Efron. Bootstrap Methods: Another Look at the Jackknife, pages 569–593. Springer New York, New York, NY, 1992. https://doi.org/10.1007/978-1-4612-4380-9_41. M. Ibrahimi, A. Javanmard, and B. V. Roy. Efficient reinforcement learning for high dimensional linear quadratic systems. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2636–2644, 2012. E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the 2017 Symposium on Cloud Computing, pages 445–451. ACM, 2017. 10.1145/3127479.3128601. J. Pereira, M. Ibrahimi, and A. Montanari. Learning networks of stochastic differential equations. In Advances in Neural Information Processing Systems, pages 172–180, 2010. HelmickiA. JJacobsonC. ANettC. NControl oriented system identification: a worst-case/deterministic approach in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document}IEEE Transactions on Automatic Control199136101163117611258970758.93020 N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1704–1713. PMLR, 06–11 Aug 2017. R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv:1011.3027, 2010. M. ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1 (Revision 25)., 2015. URL http://docs.mosek.com/8.1/toolbox/index.html. J. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings D - Control Theory and Applications, 129(6), 1982. ISSN 0143-7054. https://doi.org/10.1049/ip-d.1982.0053. FeronEAnalysis of robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance using multiplier theorySIAM Journal on Control and Optimization199735116017714302870871.93014 CampiMCWeyerEFinite sample properties of system identification methodsIEEE Transactions on Automatic Control20024781329133419174441364.93823 B. Dumitrescu. Positive trigonometric polynomials and signal processing applications, volume 103. Springer Science & Business Media, 2007. J. Anderson and N. Matni. Structured state space realizations for sls distributed controllers. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 982–987. IEEE, 2017. P. M. Young, M. P. Newlin, and J. C. Doyle. μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} analysis with real parametric uncertainty. In Proceedings of the 30th IEEE Conference on Decision and Control, volume 2, pages 1251–1256, Dec 1991. https://doi.org/10.1109/CDC.1991.261579. S. Dean, S. Tu, N. Matni, and B. Recht. Safely Learning to Control the Constrained Linear Quadratic Regulator. arXiv:1809.10121, 2018. PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Transactions on Automatic Control20176262736274936605591369.9353810.1109/TAC.2016.2616644 E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Spectral filtering for general linear dynamical systems. In Advances in Neural Information Proc 9426_CR12 V Mnih (9426_CR41) 2015; 518 9426_CR56 9426_CR15 L Ljung (9426_CR36) 1999 9426_CR59 9426_CR14 9426_CR58 9426_CR17 9426_CR16 9426_CR19 9426_CR18 M Mohri (9426_CR42) 2010; 11 V Kuznetsov (9426_CR33) 2017; 106 A. J Helmicki (9426_CR29) 1991; 36 M Sznaier (9426_CR53) 2002; 38 A Megretski (9426_CR40) 1997; 42 MC Campi (9426_CR10) 2002; 47 DJ McDonald (9426_CR39) 2017; 18 9426_CR50 R Postoyan (9426_CR47) 2017; 62 D Silver (9426_CR51) 2016; 529 9426_CR52 9426_CR11 9426_CR55 9426_CR54 9426_CR46 9426_CR45 D Youla (9426_CR61) 1976; 21 M Vidyasagar (9426_CR57) 2008; 18 F Borrelli (9426_CR6) 2017 S Levine (9426_CR34) 2016; 17 A Packard (9426_CR44) 1993; 29 E Feron (9426_CR21) 1997; 35 K Zhou (9426_CR64) 1996 9426_CR43 9426_CR35 9426_CR37 9426_CR38 RP Braatz (9426_CR8) 1994; 39 A Goldenshluger (9426_CR23) 1998; 44 9426_CR9 9426_CR7 M Hardt (9426_CR26) 2018; 19 9426_CR5 B Yu (9426_CR63) 1994; 22 9426_CR3 9426_CR4 9426_CR1 9426_CR31 9426_CR2 9426_CR30 A Goldenshluger (9426_CR24) 2001; 29 9426_CR32 9426_CR25 9426_CR28 9426_CR27 MA Dahleh (9426_CR13) 1994 DJ Russo (9426_CR49) 2018; 11 L Qiu (9426_CR48) 1995; 31 9426_CR60 9426_CR62 9426_CR20 9426_CR22 |
References_xml | – reference: McDonaldDJShaliziCRSchervishMNonparametric risk bounds for time-series forecastingJournal of Machine Learning Research201718110441083364662706781353 – reference: YoulaDJabrHBongiornoJModern wiener-hopf design of optimal controllers–part ii: The multivariable caseIEEE Transactions on Automatic Control19762133193384466370339.9303510.1109/TAC.1976.1101223 – reference: M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 1467–1476. PMLR, 10–15 Jul 2018. – reference: RussoDJVan RoyBKazerouniAOsbandIWenZA tutorial on thompson samplingFoundations and Trends on Machine Learning20181111961409.6202410.1561/2200000070 – reference: SznaierMAmishimaTParriloPTiernoJA convex approach to robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance analysisAutomatica200238695796621350921012.93023 – reference: M. Abeille and A. Lazaric. Thompson sampling for linear-quadratic control problems. In AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, 2017. – reference: Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, pages 1329–1338, 2016. – reference: J. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings D - Control Theory and Applications, 129(6), 1982. ISSN 0143-7054. https://doi.org/10.1049/ip-d.1982.0053. – reference: N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1704–1713. PMLR, 06–11 Aug 2017. – reference: KuznetsovVMohriMGeneralization bounds for non-stationary mixing processesMachine Learning201710619311735921511412.6818610.1007/s10994-016-5588-2 – reference: J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In IEEE International Symposium on Computer Aided Control System Design, 2004. – reference: HardtMMaTRechtBGradient descent learns linear dynamical systemsThe Journal of Machine Learning Research201819110251068386243606982320 – reference: M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Transactions on Automatic Control, 36(1), 1991. ISSN 0018-9286. https://doi.org/10.1109/9.62265. – reference: FeronEAnalysis of robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance using multiplier theorySIAM Journal on Control and Optimization199735116017714302870871.93014 – reference: ZhouKDoyleJCGloverKRobust and Optimal Control1996Upper Saddle River, NJ, USAPrentice-Hall Inc0999.49500 – reference: B. Efron. Bootstrap Methods: Another Look at the Jackknife, pages 569–593. Springer New York, New York, NY, 1992. https://doi.org/10.1007/978-1-4612-4380-9_41. – reference: GoldenshlugerAZeeviANonasymptotic bounds for autoregressive time series modelingAnn. Statist.2001292417444, 0418639641041.6207410.1214/aos/1009210547 – reference: M. ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1 (Revision 25)., 2015. URL http://docs.mosek.com/8.1/toolbox/index.html. – reference: CampiMCWeyerEFinite sample properties of system identification methodsIEEE Transactions on Automatic Control20024781329133419174441364.93823 – reference: M. Abeille and A. Lazaric. Improved regret bounds for thompson sampling in linear quadratic control problems. In International Conference on Machine Learning, pages 1–9, 2018. – reference: J. Chen and C. N. Nett. The Caratheodory-Fejer problem and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} identification: a time domain approach. In Proceedings of 32nd IEEE Conference on Decision and Control, pages 68–73. IEEE, 1993. – reference: E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Spectral filtering for general linear dynamical systems. In Advances in Neural Information Processing Systems, pages 4634–4643, 2018. – reference: YuBRates of convergence for empirical processes of stationary mixing sequencesThe Annals of Probability19942219411612588670802.60024 – reference: F. Paganini. Necessary and sufficient conditions for robust H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{H}}_2$$\end{document} performance. In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume 2, pages 1970–1975 vol.2, Dec 1995. https://doi.org/10.1109/CDC.1995.480635. – reference: Y. Abbasi-Yadkori and C. Szepesvári. Regret Bounds for the Adaptive Control of Linear Quadratic Systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages 1–26, 2011. – reference: A. W. Van Der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer Science & Business Media, 1996. – reference: G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. John Wiley & Sons, 2015. – reference: J. Chen and G. Gu. Control-Oriented System Identification: An H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document} Approach. Wiley, 2000. – reference: HelmickiA. JJacobsonC. ANettC. NControl oriented system identification: a worst-case/deterministic approach in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}_\infty $$\end{document}IEEE Transactions on Automatic Control199136101163117611258970758.93020 – reference: S. J. Bradtke, B. E. Ydstie, and A. G. Barto. Adaptive linear quadratic control using policy iteration. In Proceedings of 1994 American Control Conference-ACC’94, volume 3, pages 3475–3479. IEEE, 1994. – reference: W. Li and E. Todorov. Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems. In International Conference on Informatics in Control, Automation and Robotics, 2004. – reference: LevineSFinnCDarrellTAbbeelPEnd-to-end training of deep visuomotor policiesJournal of Machine Learning Research20161711334137334911331360.68687 – reference: M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. https://doi.org/10.1017/9781108627771. – reference: J. Anderson and N. Matni. Structured state space realizations for sls distributed controllers. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 982–987. IEEE, 2017. – reference: SilverDHuangAMaddisonC. JGuezASifreLvan den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMDielemanSGreweDNhamJKalchbrennerNSutskeverILillicrapTLeachMKavukcuogluKGraepelTHassabisDMastering the game of go with deep neural networks and tree searchNature2016529484489, 01 – reference: R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv:1011.3027, 2010. – reference: P. M. Young, M. P. Newlin, and J. C. Doyle. μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} analysis with real parametric uncertainty. In Proceedings of the 30th IEEE Conference on Decision and Control, volume 2, pages 1251–1256, Dec 1991. https://doi.org/10.1109/CDC.1991.261579. – reference: M. Simchowitz, H. Mania, S. Tu, M. I. Jordan, and B. Recht. Learning without mixing: Towards a sharp analysis of linear system identification. In Proceedings of the 31st Conference On Learning Theory, volume 75, pages 439–473. PMLR, 06–09 Jul 2018. – reference: B. Dumitrescu. Positive trigonometric polynomials and signal processing applications, volume 103. Springer Science & Business Media, 2007. – reference: M. Ibrahimi, A. Javanmard, and B. V. Roy. Efficient reinforcement learning for high dimensional linear quadratic systems. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2636–2644, 2012. – reference: MnihVKavukcuogluKSilverDRusuA. AVenessJBellemareM. GGravesARiedmillerMFidjelandA. KOstrovskiGPetersenSBeattieCSadikAAntonoglouIKingHKumaranDWierstraDLeggSHassabisDHuman-level control through deep reinforcement learningNature2015518529533, 02 – reference: E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the 2017 Symposium on Cloud Computing, pages 445–451. ACM, 2017. 10.1145/3127479.3128601. – reference: DahlehMADiaz-BobilloIJControl of uncertain systems: a linear programming approach1994Upper Saddle River, NJ, USAPrentice-Hall Inc0838.93007 – reference: P. Hall. The Bootstrap and Edgeworth Expansion. Springer Science & Business Media, 2013. – reference: E. Hazan, K. Singh, and C. Zhang. Learning linear dynamical systems via spectral filtering. In Advances in Neural Information Processing Systems, pages 6702–6712, 2017. – reference: PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Transactions on Automatic Control20176262736274936605591369.9353810.1109/TAC.2016.2616644 – reference: C.-N. Fiechter. PAC adaptive control of linear systems. In Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT ’97, pages 72–80, New York, NY, USA, 1997. ACM. https://doi.org/10.1145/267460.267481. – reference: QiuLBernhardssonBRantzerADavisonEYoungPDoyleJA formula for computation of the real stability radiusAutomatica199531687989013373360839.9303910.1016/0005-1098(95)00024-Q – reference: Y. Wang, N. Matni, and J. C. Doyle. A system level approach to controller synthesis. IEEE Transactions on Automatic Control, pages 1–1, 2019. https://doi.org/10.1109/TAC.2018.2890753. – reference: BraatzRPYoungPMDoyleJCMorariMComputational complexity of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} calculationIEEE Transactions on Automatic Control19943951000100212743480807.93020 – reference: N. Matni, Y. Wang, and J. Anderson. Scalable system level synthesis for virtually localizable systems. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 3473–3480, Dec 2017. https://doi.org/10.1109/CDC.2017.8264168. – reference: GoldenshlugerANonparametric estimation of transfer functions: rates of convergence and adaptationIEEE Transactions on Information Theory199844264465816077380902.6204310.1109/18.661510 – reference: BorrelliFBemporadAMorariMPredictive control for linear and hybrid systems2017New York, NY, USACambridge University Press1365.93003 – reference: S. Dean, S. Tu, N. Matni, and B. Recht. Safely Learning to Control the Constrained Linear Quadratic Regulator. arXiv:1809.10121, 2018. – reference: J. Pereira, M. Ibrahimi, and A. Montanari. Learning networks of stochastic differential equations. In Advances in Neural Information Processing Systems, pages 172–180, 2010. – reference: J. Shao and D. Tu. The Jackknife and Bootstrap. Springer Science & Business Media, 2012. – reference: MohriMRostamizadehAStability bounds for stationary ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing processesJournal of Machine Learning Research20101178981426006301242.68238 – reference: F. Wu and A. Packard. Optimal lqg performance of linear uncertain systems using state-feedback. In Proceedings of 1995 American Control Conference - ACC’95, volume 6, pages 4435–4439, June 1995. https://doi.org/10.1109/ACC.1995.532775. – reference: S. Tu, R. Boczar, A. Packard, and B. Recht. Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification. arXiv:1707.04791, 2017. – reference: VidyasagarMKarandikarRLA learning theory approach to system identification and stochastic adaptive controlJournal of Process Control200818342143010.1016/j.jprocont.2007.10.009 – reference: MegretskiARantzerASystem analysis via integral quadratic constraintsIEEE Transactions on Automatic Control199742681983014557110881.9306210.1109/9.587335 – reference: Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205, Oct 2017. https://doi.org/10.1109/ALLERTON.2017.8262873. – reference: PackardADoyleJThe complex structured singular valueAutomatica19932917110912005420772.9302310.1016/0005-1098(93)90175-S – reference: LjungLSystem Identification: Theory for the User1999Upper Saddle River, NJ, USAPrentice-Hall Inc0615.93004 – ident: 9426_CR18 doi: 10.1007/978-1-4612-4380-9_41 – ident: 9426_CR9 – ident: 9426_CR27 – ident: 9426_CR52 – ident: 9426_CR46 – volume: 47 start-page: 1329 issue: 8 year: 2002 ident: 9426_CR10 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2002.800750 – ident: 9426_CR55 doi: 10.1007/978-1-4757-2545-2_3 – volume: 18 start-page: 421 issue: 3 year: 2008 ident: 9426_CR57 publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2007.10.009 – volume: 11 start-page: 789 year: 2010 ident: 9426_CR42 publication-title: Journal of Machine Learning Research – ident: 9426_CR14 – volume: 529 start-page: 484 year: 2016 ident: 9426_CR51 publication-title: Nature doi: 10.1038/nature16961 – ident: 9426_CR56 – ident: 9426_CR37 – volume: 29 start-page: 417 issue: 2 year: 2001 ident: 9426_CR24 publication-title: Ann. Statist. doi: 10.1214/aos/1009210547 – volume: 38 start-page: 957 issue: 6 year: 2002 ident: 9426_CR53 publication-title: Automatica doi: 10.1016/S0005-1098(01)00299-0 – ident: 9426_CR22 doi: 10.1145/267460.267481 – volume: 22 start-page: 94 issue: 1 year: 1994 ident: 9426_CR63 publication-title: The Annals of Probability doi: 10.1214/aop/1176988849 – ident: 9426_CR2 doi: 10.1214/17-EJS1341SI – ident: 9426_CR28 – ident: 9426_CR19 doi: 10.1109/9.62265 – ident: 9426_CR38 doi: 10.1109/CDC.2017.8264168 – volume: 36 start-page: 1163 issue: 10 year: 1991 ident: 9426_CR29 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.90229 – ident: 9426_CR20 – volume-title: Robust and Optimal Control year: 1996 ident: 9426_CR64 – ident: 9426_CR58 doi: 10.1017/9781108627771 – ident: 9426_CR15 doi: 10.1049/ip-d.1982.0053 – ident: 9426_CR1 – volume: 18 start-page: 1044 issue: 1 year: 2017 ident: 9426_CR39 publication-title: Journal of Machine Learning Research – ident: 9426_CR5 – ident: 9426_CR17 – volume: 35 start-page: 160 issue: 1 year: 1997 ident: 9426_CR21 publication-title: SIAM Journal on Control and Optimization doi: 10.1137/S0363012994266504 – ident: 9426_CR30 – volume: 29 start-page: 71 issue: 1 year: 1993 ident: 9426_CR44 publication-title: Automatica doi: 10.1016/0005-1098(93)90175-S – volume: 19 start-page: 1025 issue: 1 year: 2018 ident: 9426_CR26 publication-title: The Journal of Machine Learning Research – ident: 9426_CR43 doi: 10.1109/ALLERTON.2017.8262873 – ident: 9426_CR59 doi: 10.1109/TAC.2018.2890753 – volume: 11 start-page: 1 issue: 1 year: 2018 ident: 9426_CR49 publication-title: Foundations and Trends on Machine Learning doi: 10.1561/2200000070 – ident: 9426_CR7 – ident: 9426_CR25 – ident: 9426_CR50 – volume: 31 start-page: 879 issue: 6 year: 1995 ident: 9426_CR48 publication-title: Automatica doi: 10.1016/0005-1098(95)00024-Q – ident: 9426_CR62 doi: 10.1109/CDC.1991.261579 – ident: 9426_CR35 – volume: 42 start-page: 819 issue: 6 year: 1997 ident: 9426_CR40 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.587335 – ident: 9426_CR12 – ident: 9426_CR4 doi: 10.1109/ALLERTON.2017.8262844 – volume-title: Predictive control for linear and hybrid systems year: 2017 ident: 9426_CR6 doi: 10.1017/9781139061759 – volume: 62 start-page: 2736 issue: 6 year: 2017 ident: 9426_CR47 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2616644 – ident: 9426_CR54 – ident: 9426_CR16 – ident: 9426_CR31 – ident: 9426_CR60 doi: 10.1109/ACC.1995.532775 – volume: 518 start-page: 529 year: 2015 ident: 9426_CR41 publication-title: Nature doi: 10.1038/nature14236 – volume: 21 start-page: 319 issue: 3 year: 1976 ident: 9426_CR61 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1976.1101223 – volume-title: System Identification: Theory for the User year: 1999 ident: 9426_CR36 – ident: 9426_CR45 doi: 10.1109/CDC.1995.480635 – volume: 39 start-page: 1000 issue: 5 year: 1994 ident: 9426_CR8 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.284879 – volume: 106 start-page: 93 issue: 1 year: 2017 ident: 9426_CR33 publication-title: Machine Learning doi: 10.1007/s10994-016-5588-2 – ident: 9426_CR32 doi: 10.1145/3127479.3128601 – ident: 9426_CR11 – volume: 17 start-page: 1334 issue: 1 year: 2016 ident: 9426_CR34 publication-title: Journal of Machine Learning Research – ident: 9426_CR3 – volume: 44 start-page: 644 issue: 2 year: 1998 ident: 9426_CR23 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.661510 – volume-title: Control of uncertain systems: a linear programming approach year: 1994 ident: 9426_CR13 |
SSID | ssj0015914 |
Score | 2.6416018 |
Snippet | This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 633 |
SubjectTerms | Analysis Applications of Mathematics Computational geometry Computer Science Control systems design Controllers Convexity Cost control Design optimization Economics Errors Linear and Multilinear Algebras Linear quadratic regulator Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Optimal control Robust control Synthesis Uncertainty |
Title | On the Sample Complexity of the Linear Quadratic Regulator |
URI | https://link.springer.com/article/10.1007/s10208-019-09426-y https://www.proquest.com/docview/2430113038 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7gF4YDBAFEZlIQQPkKmJYyflrYOVARqIjUrbk-VcnD4wpdOSPpS_nrvU6cgYSHuM7_LDzp39Jb77DuAlOZ92UjpGbllACHwYpNnQBdplhSW8QEsY5zsfftUH0_jziTrxSWFVG-3ebkk2M_UfyW5RE3jFIT60rgTLDdhUYTpKe7A5_nj6ZX-9e6BGDac3g5lAykT5ZJnrr9JZkK5Oy3_tjzbLzmQLpu0Dr6JNfu4u6mwXf13hcrxpj-7DPY9DxXhlOA_gliu3YctjUuE9vqKmtuxD27YNt9tkZhLfPVzTvlYP4d23UtChOLbMOSz4VObbrJdiXjQC-vIlzxLfFzZny0Nx5GZcP2x-8Qimk_0f7w8CX5whQBXFdZDHElGFsnAo4xilVamWbpSPFOZRkmqnYtnApYgRVpYwJYRFjUmYI-Iwk4-hV85L9wRE4rQNi6HCzNpY28ISyqBrFCkWLsIo7EPYviGDnrmcC2icmUvOZR5JQyNpmpE0yz68WZ9zvuLt-K_2C37xhgkxSo64mdlFVZlPx0dmrCV1gkuy9OG1VyrmdHu0PoGBOsEcWh3NVx3N2YpB_DrFnY4iuTZ2xa0hGj-1VCaKeU4m5EHit61dXYr_3cmnN1N_Bnci_rfQWOgO9OqLhXtOAKzOBuRvex_2JgPvdwPYmEbj38HyJOo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BeBg8MBggChtYCMEDRGrs2El5qyamDtYhtlXam-VcnL2gFC3tQ_89d67TLTCQeIzv7Mjns_0l9n0H8JYmn_FKeUZuZUIIfJgU5dAnxpe1I7xAWxjHO09PzGSWfbnQFzEorO1uu3dHkmGlvhHsJsPFK77iQ_tKsroL9wgMFJy3YCbHm7MDPQqM3gxlEqVyHUNlbm-jtx39vij_cToaNp3DR_AwokUxXg_vY7jjm13YichRxHnZUlGXnKEr24XtLuSYxA-mG3LW9gl8-tYIehRnjpmBBVdlVszFSszrIKDvU_J_8X3pKvYPFKfrhPXzq6cwO_x8fjBJYgqFBLXMFkmVKUSdqtqjyjJUThdG-VE10ljJvDBeZyqAGsk4qMyZuMGhwTytEHFYqmew1cwb_xxE7o1L66HG0rnMuNoRFqA26gJrL1GmA0g7S1qM_OKc5uKHvWZGZutbsr4N1rerAXzY1Pm5Ztf4p_YbHiDLtBUN34u5dMu2tUdnp3ZsFHWCE6cM4H1Uquf0enQxzIA6wUxXPc13Pc3LNc_3bYp7PUWagNgXdw5j4wLQWpnxykn4gMQfOye6Fv-9ky_-T_01bE_Op8f2-Ojk60u4L_lvQPDwPdhaXC39PkGmRfkqzJBfTrMIMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSFAOfBSqLrRgIQQHiLqxY2eX26qwaoEWaFmpN8uZ2L1U2arJHvbfM-M42wYKEsd4xo5sz9gvsecNY6_R-bST0hFyKxJE4MNkVAxdol3hLeIF3MIo3vnwSO_Pss-n6vRaFH-47d4dSbYxDcTSVDW7F6XfvRb4JsIlLLrug3tMsrzN7uBynJKlz8RkdY6gxoHdm2BNImWuYtjMzW30tqbfF-g_TkrDBjR9xB5E5Mgn7VQ_ZrdctcEeRhTJo4_WWNQlaujKNti9LvwYxfcPV0St9RP24VvF8ZGfWGIJ5lSVGDKbJZ_7IMBvVfQF_mNhS7IV4Mdt8vr55VM2m376ubefxHQKCSiRNUmZSQCVSu9AZhlIq0ZaunE5VlCKfKSdymQAOIIwUZETiYMFDXlaAsCwkJtsrZpXbovx3Gmb-qGCwtpMW28RF2AbfgTeCRDpgKXdSBqIXOOU8uLcXLEk0-gbHH0TRt8sB-zdqs5Fy7TxT-1XNEGGKCwquiNzZhd1bQ5Ojs1ES-wEJVEZsLdRyc_x9WBjyAF2gliveppveppnLef3TYrbPUV0RuiLO4MxcTGojchoFUWsgOL3nRFdif_eyWf_p_6S3f3-cWq-Hhx9ec7WBf0YCAa-zdaay4XbQfTUFC-Cg_wCg0IMbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Sample+Complexity+of+the+Linear+Quadratic+Regulator&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Dean%2C+Sarah&rft.au=Mania%2C+Horia&rft.au=Matni%2C+Nikolai&rft.au=Recht%2C+Benjamin&rft.date=2020-08-01&rft.pub=Springer&rft.issn=1615-3375&rft.volume=20&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1007%2Fs10208-019-09426-y&rft.externalDocID=A631516748 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |