HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells

In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 10; no. 9; p. 2371
Main Authors Lee, Shen-Han, Golinska, Monika, Griffiths, John R.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 09.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
AbstractList In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
Author Lee, Shen-Han
Griffiths, John R.
Golinska, Monika
AuthorAffiliation 3 Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
1 Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
2 Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; monika.golinska@cruk.cam.ac.uk (M.G.); john.griffiths@cruk.cam.ac.uk (J.R.G.)
AuthorAffiliation_xml – name: 3 Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
– name: 1 Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
– name: 2 Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; monika.golinska@cruk.cam.ac.uk (M.G.); john.griffiths@cruk.cam.ac.uk (J.R.G.)
Author_xml – sequence: 1
  givenname: Shen-Han
  orcidid: 0000-0002-6147-2963
  surname: Lee
  fullname: Lee, Shen-Han
– sequence: 2
  givenname: Monika
  surname: Golinska
  fullname: Golinska, Monika
– sequence: 3
  givenname: John R.
  orcidid: 0000-0001-7369-6836
  surname: Griffiths
  fullname: Griffiths, John R.
BookMark eNptks9rHCEUx6WkNGmaY-8DvfQyrb9m1EshLE13IaEQkrM4-mbjMqtTnQnNf1-nm0I3xIPK1-_76HvP9-gkxAAIfST4C2MKf7UwDJlgrCgT5A06o1iwmnOsTv7bn6KLnHe4DElagpt36JTxRlBM8Rm6W2-ualJvgoMRyhSm6gbsgwk-73N1C9t5MJMP26JOpouDt9WlM-NUxBgqH6r10xh_F3VlgoVUrZYXfUBvezNkuHhez9H91fe71bq-_vljs7q8rm1D-VQ7TBoJRIFTpLeu40IClr2kgjdOWSV4r2Rne244FU61DjeYcNljBrRV0rJztDlwXTQ7PSa_N-lJR-P1XyGmrTZp8nYAbZQsTGCCCswJA9VbCa1hvKMME9IW1rcDa5y7PThbKpHMcAQ9Pgn-QW_jo5ZcUN7KAvj8DEjx1wx50nuflwaZAHHOmjai5CUVX6yfXlh3cU6hlGpxtaWzxVtc7OCyKeacoNfWH-pe7veDJlgvn0AffYISVb-I-pfC6_4_K7CzFQ
CitedBy_id crossref_primary_10_1016_j_jff_2024_106531
crossref_primary_10_1016_j_intimp_2024_113736
crossref_primary_10_1111_apm_13447
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024053641
crossref_primary_10_3390_ijms26020669
crossref_primary_10_3390_biom14121607
crossref_primary_10_15690_vramn17946
crossref_primary_10_1002_cbdv_202401384
crossref_primary_10_1016_j_heliyon_2024_e39292
crossref_primary_10_1016_j_jpap_2024_100245
crossref_primary_10_2174_1568009622666220428111327
crossref_primary_10_3390_cancers15153942
crossref_primary_10_3389_fonc_2022_809279
crossref_primary_10_3390_molecules27217318
crossref_primary_10_1097_CEJ_0000000000000817
crossref_primary_10_3390_cells11223595
crossref_primary_10_3389_fonc_2023_1199105
crossref_primary_10_1002_jbt_70001
crossref_primary_10_3390_pharmaceutics16050619
crossref_primary_10_1016_j_cclet_2025_111047
crossref_primary_10_1007_s00109_024_02458_0
crossref_primary_10_1515_oncologie_2024_0157
crossref_primary_10_1038_s41401_022_01037_8
crossref_primary_10_1186_s43556_024_00229_4
crossref_primary_10_1002_smll_202309060
crossref_primary_10_3389_fimmu_2024_1370800
crossref_primary_10_1186_s13287_024_03935_6
crossref_primary_10_1111_jcmm_70443
crossref_primary_10_3389_fonc_2024_1439229
crossref_primary_10_1186_s13046_024_03202_9
crossref_primary_10_3390_cancers15010166
crossref_primary_10_3389_fbioe_2022_858558
crossref_primary_10_4049_immunohorizons_2300048
crossref_primary_10_1016_j_jddst_2024_105660
crossref_primary_10_1186_s40001_024_02050_9
crossref_primary_10_1016_j_biopha_2023_115690
crossref_primary_10_1002_mgg3_1893
crossref_primary_10_1186_s12890_023_02468_7
crossref_primary_10_1007_s00467_023_06031_8
crossref_primary_10_1016_j_neuroscience_2024_06_021
crossref_primary_10_1007_s00210_025_04018_w
crossref_primary_10_25122_jml_2022_0305
crossref_primary_10_1007_s12672_023_00836_7
crossref_primary_10_3390_biom14121592
crossref_primary_10_3389_fimmu_2024_1302587
crossref_primary_10_1038_s41401_024_01264_1
crossref_primary_10_1002_ddr_22168
crossref_primary_10_2147_DDDT_S511406
crossref_primary_10_15857_ksep_2023_00598
crossref_primary_10_3892_ijo_2024_5619
crossref_primary_10_1155_2022_4163188
crossref_primary_10_1007_s00044_024_03219_x
crossref_primary_10_3389_fbioe_2024_1462293
crossref_primary_10_3390_ijms25158423
crossref_primary_10_3390_metabo13050675
crossref_primary_10_3390_molecules29102218
crossref_primary_10_1016_j_humpath_2023_09_002
crossref_primary_10_1016_j_ijbiomac_2024_139090
crossref_primary_10_1016_j_isci_2025_111890
crossref_primary_10_1097_MD_0000000000038349
crossref_primary_10_3390_molecules27196187
crossref_primary_10_1007_s00210_024_03024_8
crossref_primary_10_1155_2022_5645944
crossref_primary_10_1016_j_semcancer_2022_09_007
crossref_primary_10_4254_wjh_v17_i3_104715
crossref_primary_10_1016_j_lfs_2024_122779
crossref_primary_10_1021_acsami_4c08174
crossref_primary_10_3389_fphar_2022_1035510
crossref_primary_10_3390_cancers15245765
crossref_primary_10_1016_j_aquaculture_2024_740786
crossref_primary_10_1007_s10330_021_0546_6
crossref_primary_10_3390_ncrna10020022
crossref_primary_10_3390_ijms23073749
crossref_primary_10_3390_cells12232758
crossref_primary_10_3390_ijms242015369
crossref_primary_10_1016_j_ncrna_2022_09_001
crossref_primary_10_1177_15330338241257490
crossref_primary_10_2174_0113816128293601240523063527
Cites_doi 10.1038/ncomms12700
10.1093/bja/41.3.245
10.1101/gad.217406.113
10.3390/cancers12061616
10.1038/srep36289
10.1038/s41467-018-04543-8
10.3389/fendo.2019.00206
10.1016/j.ccr.2012.02.014
10.1016/j.cmet.2012.12.001
10.3390/cells8030214
10.1038/nature10898
10.1038/nature08617
10.1038/nature19081
10.1002/jcb.25074
10.1016/j.ccr.2007.02.006
10.1016/j.nucmedbio.2013.05.006
10.1371/journal.pgen.1002229
10.1038/emboj.2011.158
10.1002/stem.3188
10.2147/OTT.S288332
10.1128/MCB.22.6.1734-1741.2002
10.1016/j.cancergen.2015.02.008
10.1038/s41574-020-0365-5
10.3390/cells9112359
10.1093/emboj/20.18.5197
10.1074/jbc.M114.575183
10.1158/0008-5472.CAN-04-2184
10.1007/s11306-005-0009-8
10.1158/1541-7786.MCR-18-0315
10.1073/pnas.92.12.5510
10.1146/annurev-pharmtox-010818-021637
10.1073/pnas.0709747104
10.1093/emboj/19.16.4298
10.1158/0008-5472.CAN-14-0772-T
10.1073/pnas.1711257115
10.1016/j.celrep.2014.08.028
10.1158/0008-5472.CAN-18-2847
10.1016/j.cmet.2006.01.012
10.1038/onc.2017.13
10.1016/j.cell.2012.01.021
10.1038/35017054
10.1021/acschembio.6b00849
10.1371/journal.pone.0202039
10.1074/jbc.M111.282046
10.1074/jbc.M800102200
10.1038/nrm2249
10.1038/20459
10.18632/oncotarget.3058
10.1016/j.bpj.2020.08.002
10.1038/embor.2011.43
10.1002/oby.20605
10.1007/s10456-018-9600-2
10.1042/BJ20101104
10.1126/science.aau5870
10.1038/nature06030
10.1101/gad.264036.115
10.1371/journal.pone.0063965
10.1210/en.2003-0982
10.1128/MCB.00444-09
10.20944/preprints202103.0007.v1
10.1038/onc.2009.441
10.1016/j.cmet.2012.05.001
10.1073/pnas.1525354113
10.1016/j.tibs.2008.08.002
10.1093/neuonc/not243
10.1016/0014-5793(80)80572-2
10.1038/nature12965
10.1007/s13277-014-1784-5
10.1038/nature11066
10.1126/science.1059817
10.1158/2159-8290.CD-13-0696
10.1086/427890
10.1113/jphysiol.2013.251470
10.1016/j.freeradbiomed.2016.11.014
10.1172/JCI69600
10.1038/nature10860
10.1080/15384101.2015.1120930
10.1186/2049-3002-1-8
10.1016/j.trecan.2017.12.005
10.1158/0008-5472.CAN-12-0429
10.1038/nature13264
10.1158/0008-5472.CAN-06-2355
10.1016/j.cmet.2013.02.002
10.1002/iub.393
10.1091/mbc.e06-07-0593
10.1158/0008-5472.CAN-03-2904
10.1098/rstb.1983.0036
10.1038/nature10602
10.1038/nature01045
10.1016/j.freeradbiomed.2009.02.019
10.1016/j.cmet.2007.10.002
10.7150/jca.28299
10.1016/S0021-9258(17)31580-6
10.3389/fcell.2020.590576
10.1074/jbc.270.49.29083
10.1172/jci.insight.94543
10.1002/hep.21284
10.1128/MCB.01710-13
10.1152/ajpcell.00279.2015
10.1083/jcb.200703099
10.18632/oncotarget.16904
10.1016/j.bbrc.2012.04.144
10.1016/j.celrep.2015.06.006
10.1126/science.1160809
10.1016/j.ccr.2010.01.020
10.1074/jbc.M002740200
10.1172/JCI137552
10.1038/nature17393
10.1016/j.cmet.2015.06.021
10.7150/jca.16486
10.1016/j.ymgme.2005.05.002
10.1073/pnas.0810199105
10.1038/nature07823
10.1098/rsob.190099
10.1111/joim.12268
10.1172/JCI89632
10.3390/ijms151119791
10.3390/ijms21072428
10.1093/jac/dkaa200
10.1038/nature06613
10.1002/path.2913
10.1126/sciadv.1600200
10.1158/0008-5472.CAN-05-1341
10.1016/j.advenzreg.2009.10.027
10.1016/j.ccr.2010.11.015
10.1128/MCB.06160-11
10.1111/jnc.13034
10.1016/0014-5793(96)00462-0
10.1038/srep32428
10.1101/gr.140988.112
10.1016/j.ccell.2015.11.006
10.1080/2162402X.2018.1445454
10.1073/pnas.1117773108
10.1161/ATVBAHA.108.181636
10.1038/sj.onc.1205047
10.1074/jbc.M116.738799
10.1073/pnas.1113483108
10.1016/j.cmet.2015.06.009
10.1111/j.1753-4887.1990.tb02967.x
10.1016/S0167-4889(97)00150-X
10.1158/0008-5472.CAN-06-2701
10.1089/ars.2019.7902
10.1073/pnas.94.15.8104
10.1038/nature12040
10.1101/sqb.2011.76.010868
10.1038/cdd.2008.84
10.1016/j.biocel.2015.05.012
10.1172/JCI93815
10.1074/jbc.M117.783050
10.1038/s41419-018-1291-5
10.15252/embj.201696010
10.1016/j.joen.2016.11.005
10.1016/j.cell.2014.12.018
10.1113/JP280572
10.1016/j.cmet.2016.01.007
10.1016/j.cmet.2017.10.005
10.1186/s13058-014-0415-9
10.1128/MCB.21.10.3436-3444.2001
10.1126/science.1059796
10.15252/embj.201696151
10.1038/nature12634
10.1172/JCI71180
10.1073/pnas.0702683104
10.1186/s13045-021-01041-1
10.1016/j.pharmthera.2015.05.003
10.1073/pnas.1815968116
10.1074/jbc.271.51.32529
10.1073/pnas.0337412100
10.1128/MCB.23.20.7315-7328.2003
10.1016/j.celrep.2017.06.082
10.1016/j.febslet.2004.05.079
10.1002/cncr.31729
10.1016/j.cell.2020.04.047
10.1016/j.tibs.2015.12.001
10.1042/BJ20140754
10.1111/jcmm.13202
10.1016/j.ccr.2010.12.014
10.1080/23723556.2018.1432260
10.1038/sj.emboj.7600196
10.1038/ncb1691
10.1074/jbc.M110.115931
10.1200/JCO.2020.38.15_suppl.5003
10.1073/pnas.0711677105
10.1038/s41467-019-12103-x
10.1016/j.cmet.2017.10.001
10.1128/MCB.00166-09
10.1038/s41591-021-01324-7
10.1016/j.molcel.2006.12.010
10.7554/eLife.48480
10.1007/s11912-019-0752-z
10.1186/1471-2407-11-198
10.1016/j.cmet.2015.06.023
10.1016/j.cmet.2006.02.002
10.5114/wo.2018.82642
10.1038/ncb3272
10.1073/pnas.1716589115
10.1038/hdy.2010.54
10.1126/science.aaw1026
10.1073/pnas.88.13.5680
10.1038/nrm2882
10.1016/j.molcel.2008.12.026
10.1016/j.ccell.2018.02.003
10.1074/jbc.M011688200
10.1101/gad.12.2.149
10.1038/s41388-019-1051-8
10.1073/pnas.0808801106
10.1016/j.cmet.2013.11.022
10.1158/0008-5472.CAN-03-2239
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.3390/cells10092371
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_a985d9e37270413e9fc8e6a34b230116
PMC8472468
10_3390_cells10092371
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c524t-d0158e19ed91fcdb478e08f82745d9c974f98bcf4a427d96d050148f03e2698c3
IEDL.DBID M48
ISSN 2073-4409
IngestDate Wed Aug 27 01:29:23 EDT 2025
Thu Aug 21 18:20:26 EDT 2025
Thu Jul 10 22:33:23 EDT 2025
Fri Jul 25 12:02:43 EDT 2025
Tue Jul 01 01:00:22 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-d0158e19ed91fcdb478e08f82745d9c974f98bcf4a427d96d050148f03e2698c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7369-6836
0000-0002-6147-2963
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells10092371
PMID 34572020
PQID 2576390577
PQPubID 2032536
ParticipantIDs doaj_primary_oai_doaj_org_article_a985d9e37270413e9fc8e6a34b230116
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8472468
proquest_miscellaneous_2577458948
proquest_journals_2576390577
crossref_citationtrail_10_3390_cells10092371
crossref_primary_10_3390_cells10092371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210909
PublicationDateYYYYMMDD 2021-09-09
PublicationDate_xml – month: 9
  year: 2021
  text: 20210909
  day: 9
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Cells (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Brunner (ref_142) 2019; 125
ref_92
Wang (ref_31) 1995; 92
Ohh (ref_37) 2000; 2
Ward (ref_68) 2012; 21
Semmler (ref_141) 2018; 22
Chin (ref_199) 2014; 510
Shoag (ref_205) 2010; 30
Andricovich (ref_119) 2018; 33
ref_126
Emerling (ref_193) 2009; 46
Leek (ref_56) 2005; 65
Ghirga (ref_61) 2020; 75
Wieman (ref_135) 2007; 18
Semenza (ref_8) 2019; 59
Das (ref_89) 2019; 79
Weinstein (ref_117) 2014; 507
Li (ref_86) 2020; 8
Rousset (ref_195) 2015; 133
ref_123
Tateishi (ref_150) 2015; 28
Zhang (ref_52) 2008; 283
Cui (ref_114) 2020; 39
Hiraga (ref_42) 2007; 67
Xiang (ref_85) 2019; 10
Shi (ref_107) 2007; 25
Wu (ref_120) 2018; 115
Zhang (ref_65) 2017; 36
Elstrom (ref_137) 2004; 64
ref_76
Chen (ref_167) 2016; 6
Wong (ref_43) 2011; 108
Yang (ref_66) 2012; 15
Nauta (ref_6) 2014; 15
Renner (ref_156) 2018; 7
Lu (ref_154) 2012; 483
Kohnhorst (ref_130) 2017; 292
Hensley (ref_74) 2013; 123
Park (ref_104) 2006; 66
Vanhaesebroeck (ref_131) 2010; 11
Ivan (ref_32) 2001; 292
Koshiji (ref_87) 2004; 23
Jalving (ref_4) 2020; 130
Chypre (ref_48) 2012; 422
Henderson (ref_23) 1969; 41
Hao (ref_145) 2016; 113
Zelenka (ref_172) 2015; 65
Lee (ref_183) 2012; 72
Sun (ref_94) 2014; 19
Comerford (ref_124) 2003; 100
Chandel (ref_95) 2016; 2
Son (ref_73) 2013; 496
Semenza (ref_51) 1996; 271
Arany (ref_206) 2008; 451
Vaapil (ref_91) 2017; 8
Carrera (ref_133) 2001; 276
Krieg (ref_97) 2010; 30
Valli (ref_58) 2019; 17
Terunuma (ref_174) 2014; 124
(ref_140) 2020; 33
Movafagh (ref_160) 2015; 116
Wan (ref_109) 2017; 36
Griffiths (ref_15) 2002; 62
Mishra (ref_176) 2018; 5
Massie (ref_102) 2011; 30
Kim (ref_49) 2006; 3
Gordan (ref_88) 2007; 11
Dang (ref_147) 2009; 462
Hou (ref_84) 2017; 43
Zheng (ref_184) 2009; 33
Davidson (ref_78) 2016; 23
Rubin (ref_70) 2019; 116
Papandreou (ref_198) 2008; 15
Xu (ref_152) 2011; 19
Hall (ref_64) 2017; 36
Wise (ref_80) 2008; 105
Mor (ref_21) 2011; 76
Bellot (ref_53) 2009; 29
LaGory (ref_202) 2015; 12
Ros (ref_101) 2013; 1
Bardella (ref_186) 2012; 32
Arsham (ref_134) 2004; 64
Struys (ref_164) 2005; 76
Dadhich (ref_81) 2016; 15
Gameiro (ref_83) 2013; 17
Iyer (ref_25) 1998; 12
Kersten (ref_93) 2020; 1865
Smith (ref_196) 2013; 40
Tang (ref_171) 2014; 16
Ji (ref_190) 2007; 448
Russell (ref_181) 2019; 9
Jiang (ref_122) 2020; 38
Scott (ref_82) 2011; 286
Li (ref_90) 2017; 21
Agbor (ref_98) 2011; 286
Gibney (ref_105) 2010; 105
Troy (ref_29) 2005; 1
Lombardi (ref_213) 2019; 10
Hardie (ref_179) 2003; 144
Yang (ref_112) 2021; 14
Semenza (ref_2) 2012; 148
Williamson (ref_46) 1980; 117
Fuller (ref_128) 2020; 9
Yang (ref_40) 2008; 10
Jin (ref_99) 2017; 20
ref_12
Semenza (ref_26) 1994; 269
Grassian (ref_138) 2014; 74
Stubbs (ref_28) 2010; 50
Maxwell (ref_13) 1997; 94
Xia (ref_207) 2019; 10
Hubbi (ref_39) 2015; 309
Liao (ref_41) 2007; 67
Wan (ref_201) 2014; 22
ref_16
Williams (ref_14) 2002; 21
Jeon (ref_188) 2012; 485
Xie (ref_100) 2019; 19
Kierans (ref_1) 2021; 599
Huang (ref_208) 2020; 2020
DeBerardinis (ref_69) 2007; 104
Cocchiglia (ref_204) 2009; 106
Semenza (ref_7) 2010; 29
Jaakkola (ref_33) 2001; 292
Tanimoto (ref_38) 2000; 19
Oldham (ref_157) 2015; 22
Semenza (ref_214) 1991; 88
Ureta (ref_19) 1998; 1401
Gao (ref_79) 2009; 458
Chowdhury (ref_151) 2011; 12
Michealraj (ref_121) 2020; 181
Shim (ref_162) 2014; 4
Rathmell (ref_132) 2003; 23
Loo (ref_60) 2015; 160
Ratcliffe (ref_3) 2013; 591
Ward (ref_144) 2010; 17
Faubert (ref_185) 2013; 17
Latini (ref_163) 2005; 86
Amary (ref_143) 2011; 224
Serocki (ref_159) 2018; 21
Liao (ref_118) 2015; 208
Hardie (ref_192) 2014; 276
Wykoff (ref_44) 2000; 60
Nadtochiy (ref_166) 2016; 291
Yuneva (ref_71) 2007; 178
Rohas (ref_210) 2007; 104
Ebert (ref_24) 1995; 270
Hu (ref_187) 2019; 10
Seagroves (ref_27) 2001; 21
Choueiri (ref_10) 2021; 27
Liberti (ref_17) 2016; 41
Gonsalves (ref_139) 2018; 3
Xiang (ref_175) 2018; 115
Lacey (ref_75) 1990; 48
Hardie (ref_191) 2007; 8
Koh (ref_158) 2008; 33
Shao (ref_125) 2004; 569
ref_178
DeBerardinis (ref_136) 2008; 7
Figueroa (ref_153) 2010; 18
Salnikow (ref_211) 2002; 22
ref_180
Mattevi (ref_22) 1996; 389
Wise (ref_54) 2011; 108
Papandreou (ref_50) 2006; 3
Ye (ref_169) 2018; 4
Thienpont (ref_108) 2016; 537
Colvin (ref_173) 2016; 6
Mishra (ref_177) 2018; 128
Carbonneau (ref_155) 2016; 7
Masson (ref_34) 2001; 20
Sweetlove (ref_127) 2018; 9
Coelho (ref_20) 2010; 62
Valli (ref_96) 2015; 6
Jang (ref_129) 2020; 120
Jiang (ref_77) 2016; 532
Choudhry (ref_30) 2018; 27
Kazak (ref_59) 2020; 16
Liu (ref_115) 2012; 22
Jonasch (ref_11) 2020; 38
Cockman (ref_36) 2000; 275
Chesnelong (ref_170) 2014; 16
Cantley (ref_18) 2009; 324
Shah (ref_72) 2017; 26
Kandoth (ref_116) 2013; 502
Fallah (ref_9) 2019; 21
Parker (ref_149) 2015; 152
Ao (ref_209) 2008; 105
Reitman (ref_168) 2014; 289
Fu (ref_200) 2015; 22
Denton (ref_47) 1983; 302
ref_194
Maxwell (ref_35) 1999; 399
Ohka (ref_148) 2014; 35
Bardeesy (ref_189) 2002; 419
Islam (ref_113) 2015; 29
Metallo (ref_55) 2012; 481
Knaup (ref_57) 2017; 8
Head (ref_182) 2018; 12
Jiang (ref_45) 1997; 57
Tampe (ref_62) 2018; 128
Moon (ref_103) 2011; 433
Shmakova (ref_106) 2014; 462
Huang (ref_203) 2014; 8
Batie (ref_111) 2019; 363
Koivunen (ref_165) 2012; 483
Seo (ref_197) 2016; 101
Tardito (ref_67) 2015; 17
Baresic (ref_212) 2014; 34
Yim (ref_63) 2006; 44
Intlekofer (ref_161) 2015; 22
Losman (ref_146) 2013; 27
Chakraborty (ref_110) 2019; 363
ref_5
References_xml – volume: 7
  start-page: 12700
  year: 2016
  ident: ref_155
  article-title: The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12700
– volume: 41
  start-page: 245
  year: 1969
  ident: ref_23
  article-title: Biochemistry of hypoxia: Current concepts I: An introduction to biochemical pathways and their control
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/41.3.245
– volume: 27
  start-page: 836
  year: 2013
  ident: ref_146
  article-title: What a difference a hydroxyl makes: Mutant IDH, (R)-2-hydroxyglutarate, and cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.217406.113
– ident: ref_5
  doi: 10.3390/cancers12061616
– volume: 6
  start-page: 36289
  year: 2016
  ident: ref_173
  article-title: Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep36289
– volume: 9
  start-page: 2136
  year: 2018
  ident: ref_127
  article-title: The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04543-8
– volume: 10
  start-page: 206
  year: 2019
  ident: ref_207
  article-title: ERRα as a bridge between transcription and function: Role in liver metabolism and disease
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2019.00206
– volume: 21
  start-page: 297
  year: 2012
  ident: ref_68
  article-title: Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.014
– volume: 17
  start-page: 113
  year: 2013
  ident: ref_185
  article-title: AMPK is a negative regulator of the warburg effect and suppresses tumor growth in vivo
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.12.001
– ident: ref_92
  doi: 10.3390/cells8030214
– volume: 483
  start-page: 484
  year: 2012
  ident: ref_165
  article-title: Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation
  publication-title: Nature
  doi: 10.1038/nature10898
– volume: 462
  start-page: 739
  year: 2009
  ident: ref_147
  article-title: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
  publication-title: Nature
  doi: 10.1038/nature08617
– volume: 537
  start-page: 63
  year: 2016
  ident: ref_108
  article-title: Tumour hypoxia causes DNA hypermethylation by reducing TET activity
  publication-title: Nature
  doi: 10.1038/nature19081
– volume: 116
  start-page: 696
  year: 2015
  ident: ref_160
  article-title: Regulation of Hypoxia-Inducible Factor-1a by Reactive Oxygen Species: New Developments in an Old Debate
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.25074
– volume: 11
  start-page: 335
  year: 2007
  ident: ref_88
  article-title: HIF-2α Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.02.006
– volume: 40
  start-page: 858
  year: 2013
  ident: ref_196
  article-title: Hypoxia stimulates 18F-Fluorodeoxyglucose uptake in breast cancer cells via Hypoxia inducible Factor-1 and AMP-activated protein kinase
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2013.05.006
– ident: ref_76
  doi: 10.1371/journal.pgen.1002229
– volume: 30
  start-page: 2719
  year: 2011
  ident: ref_102
  article-title: The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.158
– volume: 38
  start-page: 960
  year: 2020
  ident: ref_122
  article-title: Histone demethylase KDM6A promotes somatic cell reprogramming by epigenetically regulating the PTEN and IL-6 signal pathways
  publication-title: Stem Cells
  doi: 10.1002/stem.3188
– volume: 2020
  start-page: 13055
  year: 2020
  ident: ref_208
  article-title: Immunohistochemical analysis of pgc-1α and errα expression reveals their clinical significance in human ovarian cancer
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S288332
– volume: 22
  start-page: 1734
  year: 2002
  ident: ref_211
  article-title: The Regulation of Hypoxic Genes by Calcium Involves c-Jun/AP-1, Which Cooperates with Hypoxia-Inducible Factor 1 in Response to Hypoxia
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.6.1734-1741.2002
– volume: 208
  start-page: 206
  year: 2015
  ident: ref_118
  article-title: The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer
  publication-title: Cancer Genet.
  doi: 10.1016/j.cancergen.2015.02.008
– volume: 16
  start-page: 421
  year: 2020
  ident: ref_59
  article-title: Creatine metabolism: Energy homeostasis, immunity and cancer biology
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-020-0365-5
– volume: 57
  start-page: 5328
  year: 1997
  ident: ref_45
  article-title: V-SRC Induces Expression of Hypoxia-inducible Factor 1 (HIF-1) and Transcription of Genes Encoding Vascular Endothelial Growth Factor and Enolase 1: Involvement of HIF-1 in Tumor Progression
  publication-title: Cancer Res.
– ident: ref_123
  doi: 10.3390/cells9112359
– volume: 20
  start-page: 5197
  year: 2001
  ident: ref_34
  article-title: Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.18.5197
– volume: 289
  start-page: 23318
  year: 2014
  ident: ref_168
  article-title: Cancer-Associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and D-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.575183
– volume: 65
  start-page: 4147
  year: 2005
  ident: ref_56
  article-title: The role of hypoxia-inducible factor-1 in three-dimensional tumor growth, apoptosis, and regulation by the insulin-signaling pathway
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-2184
– volume: 1
  start-page: 293
  year: 2005
  ident: ref_29
  article-title: Metabolic profiling of hypoxia-inducible factor-1β-deficient and wild type Hepa-1 cells: Effects of hypoxia measured by 1H magnetic resonance spectroscopy
  publication-title: Metabolomics
  doi: 10.1007/s11306-005-0009-8
– volume: 17
  start-page: 1531
  year: 2019
  ident: ref_58
  article-title: Adaptation to HIF1a deletion in hypoxic cancer cells by upregulation of GLUT14 and creatine metabolism
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-18-0315
– volume: 92
  start-page: 5510
  year: 1995
  ident: ref_31
  article-title: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.12.5510
– volume: 59
  start-page: 379
  year: 2019
  ident: ref_8
  article-title: Pharmacologic targeting of hypoxia-inducible factors
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010818-021637
– volume: 104
  start-page: 19345
  year: 2007
  ident: ref_69
  article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709747104
– volume: 19
  start-page: 4298
  year: 2000
  ident: ref_38
  article-title: Mechanism of regulation of the hypoxia-inducible factor-1alpha by the von Hippel-Lindau tumor suppressor protein
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.16.4298
– volume: 74
  start-page: 3317
  year: 2014
  ident: ref_138
  article-title: IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0772-T
– volume: 62
  start-page: 688
  year: 2002
  ident: ref_15
  article-title: Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): Evidence of an anabolic role for the HIF-1 pathway
  publication-title: Cancer Res.
– volume: 115
  start-page: E1465
  year: 2018
  ident: ref_175
  article-title: LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1711257115
– volume: 8
  start-page: 1930
  year: 2014
  ident: ref_203
  article-title: HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.08.028
– volume: 79
  start-page: 4015
  year: 2019
  ident: ref_89
  article-title: Molecular Cell Biology MYC Regulates the HIF2a Stemness Pathway via Nanog and Sox2 to Maintain Self-Renewal in Cancer Stem Cells versus Non-Stem Cancer Cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-2847
– volume: 3
  start-page: 187
  year: 2006
  ident: ref_50
  article-title: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.01.012
– volume: 36
  start-page: 3868
  year: 2017
  ident: ref_109
  article-title: Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α
  publication-title: Oncogene
  doi: 10.1038/onc.2017.13
– volume: 148
  start-page: 399
  year: 2012
  ident: ref_2
  article-title: Hypoxia-inducible factors in physiology and medicine
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.021
– volume: 2
  start-page: 423
  year: 2000
  ident: ref_37
  article-title: Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel—Lindau protein
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35017054
– volume: 12
  start-page: 174
  year: 2018
  ident: ref_182
  article-title: Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00849
– ident: ref_194
  doi: 10.1371/journal.pone.0202039
– volume: 286
  start-page: 42626
  year: 2011
  ident: ref_82
  article-title: Comparative metabolic flux profiling of melanoma cell lines: Beyond the Warburg effect
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.282046
– volume: 283
  start-page: 10892
  year: 2008
  ident: ref_52
  article-title: Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800102200
– volume: 8
  start-page: 774
  year: 2007
  ident: ref_191
  article-title: AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2249
– volume: 399
  start-page: 271
  year: 1999
  ident: ref_35
  article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
  publication-title: Nature
  doi: 10.1038/20459
– volume: 6
  start-page: 1920
  year: 2015
  ident: ref_96
  article-title: Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3058
– volume: 120
  start-page: 1170
  year: 2020
  ident: ref_129
  article-title: Phosphofructokinase Relocalizes into Subcellular Compartments with Liquid-like Properties In Vivo
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2020.08.002
– volume: 12
  start-page: 463
  year: 2011
  ident: ref_151
  article-title: The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.43
– volume: 22
  start-page: 730
  year: 2014
  ident: ref_201
  article-title: Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue
  publication-title: Obesity
  doi: 10.1002/oby.20605
– volume: 21
  start-page: 183
  year: 2018
  ident: ref_159
  article-title: miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target
  publication-title: Angiogenesis
  doi: 10.1007/s10456-018-9600-2
– volume: 433
  start-page: 225
  year: 2011
  ident: ref_103
  article-title: Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase 2 in prostate cancer cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101104
– volume: 363
  start-page: 1222
  year: 2019
  ident: ref_111
  article-title: Hypoxia induces rapid changes to histone methylation and reprograms chromatin
  publication-title: Science
  doi: 10.1126/science.aau5870
– volume: 448
  start-page: 807
  year: 2007
  ident: ref_190
  article-title: LKB1 modulates lung cancer differentiation and metastasis
  publication-title: Nature
  doi: 10.1038/nature06030
– volume: 29
  start-page: 1817
  year: 2015
  ident: ref_113
  article-title: Increased mitochondrial function downstream from KDM5a histone demethylase rescues differentiation in pRB-deficient cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.264036.115
– ident: ref_126
  doi: 10.1371/journal.pone.0063965
– volume: 144
  start-page: 5179
  year: 2003
  ident: ref_179
  article-title: Minireview: The AMP-Activated Protein Kinase Cascade: The Key Sensor of Cellular Energy Status
  publication-title: Endocrinology
  doi: 10.1210/en.2003-0982
– volume: 30
  start-page: 344
  year: 2010
  ident: ref_97
  article-title: Regulation of the Histone Demethylase JMJD1A by Hypoxia-Inducible Factor 1α Enhances Hypoxic Gene Expression and Tumor Growth
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00444-09
– ident: ref_178
  doi: 10.20944/preprints202103.0007.v1
– volume: 29
  start-page: 625
  year: 2010
  ident: ref_7
  article-title: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics
  publication-title: Oncogene
  doi: 10.1038/onc.2009.441
– volume: 15
  start-page: 827
  year: 2012
  ident: ref_66
  article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.05.001
– volume: 113
  start-page: 1387
  year: 2016
  ident: ref_145
  article-title: Idh1 mutations contribute to the development of T-cell malignancies in genetically engineered mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1525354113
– volume: 19
  start-page: 783
  year: 2019
  ident: ref_100
  article-title: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)
  publication-title: Mol. Med. Rep.
– volume: 33
  start-page: 526
  year: 2008
  ident: ref_158
  article-title: HIF-1 regulation: Not so easy come, easy go
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2008.08.002
– volume: 16
  start-page: 686
  year: 2014
  ident: ref_170
  article-title: Lactate dehydrogenase A silencing in IDH mutant gliomas
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/not243
– volume: 117
  start-page: K73
  year: 1980
  ident: ref_46
  article-title: Regulation of the citric acid cycle in mammalian systems
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(80)80572-2
– volume: 507
  start-page: 315
  year: 2014
  ident: ref_117
  article-title: Comprehensive molecular characterization of urothelial bladder carcinoma
  publication-title: Nature
  doi: 10.1038/nature12965
– volume: 35
  start-page: 5911
  year: 2014
  ident: ref_148
  article-title: Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation
  publication-title: Tumor Biol.
  doi: 10.1007/s13277-014-1784-5
– volume: 485
  start-page: 661
  year: 2012
  ident: ref_188
  article-title: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
  publication-title: Nature
  doi: 10.1038/nature11066
– volume: 292
  start-page: 464
  year: 2001
  ident: ref_32
  article-title: HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing
  publication-title: Science
  doi: 10.1126/science.1059817
– volume: 4
  start-page: 1290
  year: 2014
  ident: ref_162
  article-title: l-2-Hydroxyglutarate: An Epigenetic Modifier and Putative Oncometabolite in Renal Cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0696
– volume: 76
  start-page: 358
  year: 2005
  ident: ref_164
  article-title: Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/427890
– volume: 591
  start-page: 2027
  year: 2013
  ident: ref_3
  article-title: Oxygen sensing and hypoxia signalling pathways in animals: The implications of physiology for cancer
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.251470
– volume: 101
  start-page: 511
  year: 2016
  ident: ref_197
  article-title: Free Radical Biology and Medicine mediated prolyl hydroxylase regulation
  publication-title: Free. Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.11.014
– volume: 123
  start-page: 3678
  year: 2013
  ident: ref_74
  article-title: Glutamine and cancer: Cell biology, physiology, and clinical opportunities
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI69600
– volume: 483
  start-page: 474
  year: 2012
  ident: ref_154
  article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation
  publication-title: Nature
  doi: 10.1038/nature10860
– volume: 15
  start-page: 72
  year: 2016
  ident: ref_81
  article-title: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1120930
– volume: 1
  start-page: 8
  year: 2013
  ident: ref_101
  article-title: Balancing glycolytic flux: The role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism
  publication-title: Cancer Metab.
  doi: 10.1186/2049-3002-1-8
– volume: 4
  start-page: 151
  year: 2018
  ident: ref_169
  article-title: Metabolism, Activity, and Targeting of D-and L-2-Hydroxyglutarates
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2017.12.005
– volume: 72
  start-page: 4394
  year: 2012
  ident: ref_183
  article-title: AMPK Promotes p53 Acetylation via Phosphorylation and Inactivation of SIRT1 in Liver Cancer Cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-0429
– volume: 510
  start-page: 397
  year: 2014
  ident: ref_199
  article-title: The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR
  publication-title: Nature
  doi: 10.1038/nature13264
– volume: 67
  start-page: 4157
  year: 2007
  ident: ref_42
  article-title: Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2355
– volume: 17
  start-page: 372
  year: 2013
  ident: ref_83
  article-title: In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.02.002
– volume: 62
  start-page: 791
  year: 2010
  ident: ref_20
  article-title: Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism
  publication-title: IUBMB Life
  doi: 10.1002/iub.393
– volume: 18
  start-page: 1437
  year: 2007
  ident: ref_135
  article-title: Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-07-0593
– volume: 64
  start-page: 3892
  year: 2004
  ident: ref_137
  article-title: Akt stimulates aerobic glycolysis in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-2904
– volume: 302
  start-page: 33
  year: 1983
  ident: ref_47
  article-title: The role of phosphorylation in the regulation of fatty acid synthesis by insulin and other hormones
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1983.0036
– volume: 481
  start-page: 380
  year: 2012
  ident: ref_55
  article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
  publication-title: Nature
  doi: 10.1038/nature10602
– volume: 419
  start-page: 162
  year: 2002
  ident: ref_189
  article-title: Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation
  publication-title: Nature
  doi: 10.1038/nature01045
– volume: 46
  start-page: 1386
  year: 2009
  ident: ref_193
  article-title: Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.02.019
– volume: 7
  start-page: 11
  year: 2008
  ident: ref_136
  article-title: The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.10.002
– volume: 10
  start-page: 1870
  year: 2019
  ident: ref_187
  article-title: AMPK inhibition suppresses the malignant phenotype of pancreatic cancer cells in part by attenuating aerobic glycolysis
  publication-title: J. Cancer
  doi: 10.7150/jca.28299
– volume: 269
  start-page: 23757
  year: 1994
  ident: ref_26
  article-title: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31580-6
– volume: 8
  start-page: 1319
  year: 2020
  ident: ref_86
  article-title: Molecular Crosstalk Between MYC and HIF in Cancer
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.590576
– volume: 270
  start-page: 29083
  year: 1995
  ident: ref_24
  article-title: Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.49.29083
– volume: 3
  start-page: 1
  year: 2018
  ident: ref_139
  article-title: Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.94543
– volume: 44
  start-page: 550
  year: 2006
  ident: ref_63
  article-title: Disruption of the Arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality in mice
  publication-title: Hepatology
  doi: 10.1002/hep.21284
– volume: 34
  start-page: 2996
  year: 2014
  ident: ref_212
  article-title: Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01710-13
– volume: 309
  start-page: C775
  year: 2015
  ident: ref_39
  article-title: Regulation of cell proliferation by hypoxia-inducible factors
  publication-title: Am. J. Physiol.-Cell Physiol.
  doi: 10.1152/ajpcell.00279.2015
– volume: 178
  start-page: 93
  year: 2007
  ident: ref_71
  article-title: Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200703099
– volume: 8
  start-page: 48983
  year: 2017
  ident: ref_91
  article-title: Myc-induced glutaminolysis bypasses HIF-driven glycolysis in hypoxic small cell lung carcinoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16904
– volume: 422
  start-page: 1
  year: 2012
  ident: ref_48
  article-title: ATP-citrate lyase: A mini-review
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.04.144
– volume: 12
  start-page: 116
  year: 2015
  ident: ref_202
  article-title: Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.06.006
– volume: 324
  start-page: 1029
  year: 2009
  ident: ref_18
  article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 17
  start-page: 225
  year: 2010
  ident: ref_144
  article-title: The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting α-Ketoglutarate to 2-Hydroxyglutarate
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.01.020
– volume: 275
  start-page: 25733
  year: 2000
  ident: ref_36
  article-title: Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002740200
– volume: 130
  start-page: 5074
  year: 2020
  ident: ref_4
  article-title: HIFs, angiogenesis, and metabolism: Elusive enemies in breast cancer
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI137552
– volume: 532
  start-page: 255
  year: 2016
  ident: ref_77
  article-title: Reductive carboxylation supports redox homeostasis during anchorage-independent growth
  publication-title: Nature
  doi: 10.1038/nature17393
– volume: 22
  start-page: 291
  year: 2015
  ident: ref_157
  article-title: Hypoxia-Mediated Increases in l-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.06.021
– volume: 8
  start-page: 1809
  year: 2017
  ident: ref_57
  article-title: HIF is not essential for suppression of experimental tumor growth by mTOR inhibition
  publication-title: J. Cancer
  doi: 10.7150/jca.16486
– volume: 86
  start-page: 188
  year: 2005
  ident: ref_163
  article-title: Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2005.05.002
– volume: 105
  start-page: 18782
  year: 2008
  ident: ref_80
  article-title: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810199105
– volume: 458
  start-page: 762
  year: 2009
  ident: ref_79
  article-title: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
  publication-title: Nature
  doi: 10.1038/nature07823
– volume: 9
  start-page: 190099
  year: 2019
  ident: ref_181
  article-title: The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde?
  publication-title: Open Biol.
  doi: 10.1098/rsob.190099
– volume: 276
  start-page: 543
  year: 2014
  ident: ref_192
  article-title: AMP-activated protein kinase: A key regulator of energy balance with many roles in human disease
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12268
– volume: 128
  start-page: 3053
  year: 2018
  ident: ref_62
  article-title: Pharmacological induction of hypoxia-inducible transcription factor ARNT attenuates chronic kidney failure
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI89632
– volume: 15
  start-page: 19791
  year: 2014
  ident: ref_6
  article-title: Hypoxic signaling during tissue repair and regenerative medicine
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151119791
– ident: ref_180
  doi: 10.3390/ijms21072428
– volume: 75
  start-page: 2564
  year: 2020
  ident: ref_61
  article-title: A novel colistin adjuvant identified by virtual screening for ArnT inhibitors
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkaa200
– volume: 451
  start-page: 1008
  year: 2008
  ident: ref_206
  article-title: HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
  publication-title: Nature
  doi: 10.1038/nature06613
– volume: 224
  start-page: 334
  year: 2011
  ident: ref_143
  article-title: IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours
  publication-title: J. Pathol.
  doi: 10.1002/path.2913
– volume: 2
  start-page: e1600200
  year: 2016
  ident: ref_95
  article-title: Fundamentals of cancer metabolism
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600200
– volume: 66
  start-page: 5121
  year: 2006
  ident: ref_104
  article-title: Hypoxia increases androgen receptor activity in prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1341
– volume: 50
  start-page: 44
  year: 2010
  ident: ref_28
  article-title: The altered metabolism of tumors: HIF-1 and its role in the Warburg effect
  publication-title: Adv. Enzym. Regul.
  doi: 10.1016/j.advenzreg.2009.10.027
– volume: 18
  start-page: 553
  year: 2010
  ident: ref_153
  article-title: Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.11.015
– volume: 32
  start-page: 3081
  year: 2012
  ident: ref_186
  article-title: Cells Lacking the Fumarase Tumor Suppressor Are Protected from Apoptosis through a Hypoxia-Inducible Factor-Independent, AMPK-Dependent Mechanism
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06160-11
– volume: 133
  start-page: 242
  year: 2015
  ident: ref_195
  article-title: A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13034
– volume: 389
  start-page: 15
  year: 1996
  ident: ref_22
  article-title: The allosteric regulation of pyruvate kinase
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(96)00462-0
– volume: 6
  start-page: 32428
  year: 2016
  ident: ref_167
  article-title: The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep32428
– volume: 22
  start-page: 2315
  year: 2012
  ident: ref_115
  article-title: Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events
  publication-title: Genome Res.
  doi: 10.1101/gr.140988.112
– volume: 28
  start-page: 773
  year: 2015
  ident: ref_150
  article-title: Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.11.006
– volume: 7
  start-page: e1445454
  year: 2018
  ident: ref_156
  article-title: D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1445454
– volume: 108
  start-page: 19611
  year: 2011
  ident: ref_54
  article-title: Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117773108
– volume: 30
  start-page: 662
  year: 2010
  ident: ref_205
  article-title: Regulation of hypoxia-inducible genes by PGC-1 alpha
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.181636
– volume: 21
  start-page: 282
  year: 2002
  ident: ref_14
  article-title: A protective role for HIF-1 in response to redox manipulation and glucose deprivation: Implications for tumorigenesis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205047
– volume: 291
  start-page: 20188
  year: 2016
  ident: ref_166
  article-title: Acidic pH is a metabolic switch for 2-Hydroxyglutarate generation and signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.738799
– volume: 108
  start-page: 16369
  year: 2011
  ident: ref_43
  article-title: Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1113483108
– volume: 22
  start-page: 508
  year: 2015
  ident: ref_200
  article-title: 2-hydroxyglutarate inhibits ATP synthase and mTOR Signaling
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.06.009
– volume: 48
  start-page: 297
  year: 1990
  ident: ref_75
  article-title: Is Glutamine a Conditionally Essential Amino Acid?
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.1990.tb02967.x
– volume: 1401
  start-page: 242
  year: 1998
  ident: ref_19
  article-title: Evolution and regulatory role of the hexokinases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4889(97)00150-X
– volume: 67
  start-page: 563
  year: 2007
  ident: ref_41
  article-title: Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2701
– volume: 33
  start-page: 903
  year: 2020
  ident: ref_140
  article-title: 2-Hydroxyglutarate in Cancer Cells
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2019.7902
– volume: 94
  start-page: 8104
  year: 1997
  ident: ref_13
  article-title: Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.15.8104
– volume: 496
  start-page: 101
  year: 2013
  ident: ref_73
  article-title: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
  publication-title: Nature
  doi: 10.1038/nature12040
– volume: 76
  start-page: 211
  year: 2011
  ident: ref_21
  article-title: Control of glycolysis through regulation of PFK1: Old friends and recent additions
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2011.76.010868
– volume: 15
  start-page: 1572
  year: 2008
  ident: ref_198
  article-title: Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2008.84
– volume: 65
  start-page: 125
  year: 2015
  ident: ref_172
  article-title: Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2015.05.012
– volume: 128
  start-page: 323
  year: 2018
  ident: ref_177
  article-title: ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI93815
– volume: 292
  start-page: 9191
  year: 2017
  ident: ref_130
  article-title: Identification of a multienzyme complex for glucose metabolism in living cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.783050
– volume: 10
  start-page: 40
  year: 2019
  ident: ref_85
  article-title: Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1291-5
– volume: 36
  start-page: 397
  year: 2017
  ident: ref_64
  article-title: Nutrient sensing and TOR signaling in yeast and mammals
  publication-title: EMBO J.
  doi: 10.15252/embj.201696010
– volume: 43
  start-page: 602
  year: 2017
  ident: ref_84
  article-title: Increased Expression of Glutaminase in Osteoblasts Promotes Macrophage Recruitment in Periapical Lesions
  publication-title: J. Endod.
  doi: 10.1016/j.joen.2016.11.005
– volume: 160
  start-page: 393
  year: 2015
  ident: ref_60
  article-title: Extracellular metabolic energetics can promote cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.018
– volume: 599
  start-page: 23
  year: 2021
  ident: ref_1
  article-title: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology
  publication-title: J. Physiol.
  doi: 10.1113/JP280572
– volume: 23
  start-page: 517
  year: 2016
  ident: ref_78
  article-title: Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.01.007
– volume: 27
  start-page: 281
  year: 2018
  ident: ref_30
  article-title: Advances in Hypoxia-Inducible Factor Biology
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.10.005
– volume: 16
  start-page: 415
  year: 2014
  ident: ref_171
  article-title: A joint analysis of metabolomics and genetics of breast cancer
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-014-0415-9
– volume: 21
  start-page: 3436
  year: 2001
  ident: ref_27
  article-title: Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.10.3436-3444.2001
– volume: 292
  start-page: 468
  year: 2001
  ident: ref_33
  article-title: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
  publication-title: Science
  doi: 10.1126/science.1059796
– volume: 36
  start-page: 1302
  year: 2017
  ident: ref_65
  article-title: Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine
  publication-title: EMBO J.
  doi: 10.15252/embj.201696151
– volume: 502
  start-page: 333
  year: 2013
  ident: ref_116
  article-title: Mutational landscape and significance across 12 major cancer types
  publication-title: Nature
  doi: 10.1038/nature12634
– volume: 124
  start-page: 398
  year: 2014
  ident: ref_174
  article-title: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI71180
– volume: 104
  start-page: 7933
  year: 2007
  ident: ref_210
  article-title: A fundamental system of cellular energy homeostasis regulated by PGC-1α
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0702683104
– volume: 14
  start-page: 30
  year: 2021
  ident: ref_112
  article-title: The emerging role of KDM5A in human cancer
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-021-01041-1
– volume: 152
  start-page: 54
  year: 2015
  ident: ref_149
  article-title: Metabolic consequences of oncogenic IDH mutations
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2015.05.003
– volume: 116
  start-page: 6964
  year: 2019
  ident: ref_70
  article-title: Deprivation of glutamine in cell culture reveals its potential for treating cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1815968116
– volume: 271
  start-page: 32529
  year: 1996
  ident: ref_51
  article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.51.32529
– volume: 100
  start-page: 986
  year: 2003
  ident: ref_124
  article-title: Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0337412100
– volume: 23
  start-page: 7315
  year: 2003
  ident: ref_132
  article-title: Akt-Directed Glucose Metabolism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.20.7315-7328.2003
– volume: 1865
  start-page: 158738
  year: 2020
  ident: ref_93
  article-title: Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA
  publication-title: Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids
– volume: 20
  start-page: 895
  year: 2017
  ident: ref_99
  article-title: Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.06.082
– volume: 569
  start-page: 293
  year: 2004
  ident: ref_125
  article-title: Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1α in adult mouse brain and heart in vivo
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.05.079
– volume: 125
  start-page: 541
  year: 2019
  ident: ref_142
  article-title: Isocitrate dehydrogenase 1 and 2 mutations, 2-hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia
  publication-title: Cancer
  doi: 10.1002/cncr.31729
– volume: 60
  start-page: 7075
  year: 2000
  ident: ref_44
  article-title: Hypoxia-inducible expression of tumor-associated carbonic anhydrases
  publication-title: Cancer Res.
– volume: 181
  start-page: 1329
  year: 2020
  ident: ref_121
  article-title: Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.047
– volume: 41
  start-page: 211
  year: 2016
  ident: ref_17
  article-title: The Warburg Effect: How Does it Benefit Cancer Cells?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.12.001
– volume: 462
  start-page: 385
  year: 2014
  ident: ref_106
  article-title: Chromatin and oxygen sensing in the context of JmjC histone demethylases
  publication-title: Biochem. J.
  doi: 10.1042/BJ20140754
– volume: 21
  start-page: 2896
  year: 2017
  ident: ref_90
  article-title: HIF-2α regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13202
– volume: 19
  start-page: 17
  year: 2011
  ident: ref_152
  article-title: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.12.014
– volume: 5
  start-page: 1432260
  year: 2018
  ident: ref_176
  article-title: ADHFE1 is a MYC-linked oncogene that induces metabolic reprogramming and cellular de-differentiation in breast cancer
  publication-title: Mol. Cell. Oncol.
  doi: 10.1080/23723556.2018.1432260
– volume: 23
  start-page: 1949
  year: 2004
  ident: ref_87
  article-title: HIF-1α induces cell cycle arrest by functionally counteracting Myc
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600196
– volume: 10
  start-page: 295
  year: 2008
  ident: ref_40
  article-title: Direct regulation of TWIST by HIF-1α promotes metastasis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1691
– volume: 286
  start-page: 4718
  year: 2011
  ident: ref_98
  article-title: Small Ubiquitin-related Modifier (SUMO)-1 promotes glycolysis in hypoxia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.115931
– volume: 38
  start-page: 5003
  year: 2020
  ident: ref_11
  article-title: Phase II study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau disease–associated renal cell carcinoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.15_suppl.5003
– volume: 105
  start-page: 7821
  year: 2008
  ident: ref_209
  article-title: Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711677105
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_213
  article-title: Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12103-x
– volume: 26
  start-page: 830
  year: 2017
  ident: ref_72
  article-title: In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.10.001
– volume: 29
  start-page: 2570
  year: 2009
  ident: ref_53
  article-title: Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00166-09
– volume: 27
  start-page: 802
  year: 2021
  ident: ref_10
  article-title: Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01324-7
– volume: 25
  start-page: 1
  year: 2007
  ident: ref_107
  article-title: Dynamic Regulation of Histone Lysine Methylation by Demethylases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.12.010
– volume: 9
  start-page: e48480
  year: 2020
  ident: ref_128
  article-title: RNA promotes phase separation of glycolysis enzymes into yeast g bodies in hypoxia
  publication-title: Elife
  doi: 10.7554/eLife.48480
– volume: 21
  start-page: 6
  year: 2019
  ident: ref_9
  article-title: HIF Inhibitors: Status of Current Clinical Development
  publication-title: Curr. Oncol. Rep.
  doi: 10.1007/s11912-019-0752-z
– ident: ref_16
  doi: 10.1186/1471-2407-11-198
– volume: 22
  start-page: 304
  year: 2015
  ident: ref_161
  article-title: Hypoxia Induces Production of L-2-Hydroxyglutarate
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.06.023
– volume: 3
  start-page: 177
  year: 2006
  ident: ref_49
  article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.02.002
– volume: 22
  start-page: 215
  year: 2018
  ident: ref_141
  article-title: The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas
  publication-title: Współczesna Onkol.
  doi: 10.5114/wo.2018.82642
– volume: 17
  start-page: 1556
  year: 2015
  ident: ref_67
  article-title: Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3272
– volume: 115
  start-page: E3978
  year: 2018
  ident: ref_120
  article-title: In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716589115
– volume: 105
  start-page: 4
  year: 2010
  ident: ref_105
  article-title: Epigenetics and gene expression
  publication-title: Heredity
  doi: 10.1038/hdy.2010.54
– volume: 363
  start-page: 1217
  year: 2019
  ident: ref_110
  article-title: Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate
  publication-title: Science
  doi: 10.1126/science.aaw1026
– ident: ref_12
– volume: 88
  start-page: 5680
  year: 1991
  ident: ref_214
  article-title: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.13.5680
– volume: 11
  start-page: 329
  year: 2010
  ident: ref_131
  article-title: The emerging mechanisms of isoform-specific PI3K signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2882
– volume: 33
  start-page: 237
  year: 2009
  ident: ref_184
  article-title: Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.12.026
– volume: 33
  start-page: 512
  year: 2018
  ident: ref_119
  article-title: Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.02.003
– volume: 276
  start-page: 22368
  year: 2001
  ident: ref_133
  article-title: Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells. Protective role in apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M011688200
– volume: 12
  start-page: 149
  year: 1998
  ident: ref_25
  article-title: Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1α
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.2.149
– volume: 39
  start-page: 1140
  year: 2020
  ident: ref_114
  article-title: A novel KDM5A/MPC-1 signaling pathway promotes pancreatic cancer progression via redirecting mitochondrial pyruvate metabolism
  publication-title: Oncogene
  doi: 10.1038/s41388-019-1051-8
– volume: 106
  start-page: 2188
  year: 2009
  ident: ref_204
  article-title: PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808801106
– volume: 19
  start-page: 285
  year: 2014
  ident: ref_94
  article-title: Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.11.022
– volume: 64
  start-page: 3500
  year: 2004
  ident: ref_134
  article-title: Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-2239
SSID ssj0000816105
Score 2.4997623
SecondaryResourceType review_article
Snippet In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2371
SubjectTerms 1-Phosphatidylinositol 3-kinase
Adenosine triphosphate
AKT protein
AMP-activated protein kinase
Angiogenesis
Autophagy
Binding sites
Cancer
cancer metabolism
Carbohydrate metabolism
Clinical trials
Creatine
creatine metabolism
Dehydrogenases
Drug resistance
Enzymes
Epigenetics
Genomics
Glucose
Glucose metabolism
Glutamine
glycolysis
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-inducible factor 1a
hypoxia-inducible factor-1 (HIF-1)
Kinases
Lipid metabolism
Metabolism
Metastasis
Microenvironments
Myc
Myc protein
Phosphorylation
Post-translation
Protein turnover
Review
Signal transduction
Solid tumors
Transcription factors
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA8iHPhy3IdiT--ocPhksc1Xk0dvuWU98B5EwbfSJBNc0O6yW0H_e2faumwfjnvxNRlIOjPJb6ZJfsPYT2tAWiEhq4XCBKV2MnM56Awsj9pFbZSnx8lXf_XsVv65U3dbpb7oTlhPD9wr7ry2RgULAnE2xw0XbPQGdC2k4-SbHdk2Yt5WMtXtwQYjmVz1pJoC8_pz-g--LohiSJTFCIQ6rv5RgDm-HrmFN9NP7OMQKKYX_QQ_sx1ovrAPfenIl6_sZnY5xbzsclPFtk2vgF7xzteP6_S6rzCPsIStLdr5Ye7Ti1Av-4P3dN6ks5fl4hlbJ2T2VTqhie-z2-nvm8ksGyokZF5x2WYBwdxAYSHYIvrgZGkgN9FgqolK85grRGucj7KWvAxWh5yOEU3MBXBtjRcHbLdZNHDI0iAKHVTkyiBge146EXVU1udFdFA4SNjZm8oqP9CHUxWLhwrTCNJwNdJwwk434sueN-Nfgr9I_xshorvuGtAJqsEJqv85QcKO36xXDWtwXVEqhcOpskzYyaYbVw-NXzeweOpkUFXGSpOwcmT10YTGPc38vuPhRmDnUptv7_EFR2yP020ZOqqyx2y3XT3Bdwx3Wvej8-xX0NX9wQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvIemDuk2LC6WnmtjWw9IpJEuWTSGhhARyM9arXUjs7dqB5N93xta69SG9SjKSZ6R5SvMR8kVJxxRlLqkoBwel0izRqROJU7kX2gvJDT5OPr8Qy2v2_YbfhIBbG65VbmViL6htYzBGfoiGMfjnvCiO1r8TRI3C7GqA0HhOdkAESzkjOyenFz8uxygLwkqABTEU16Tw_SHGw9sMSw3RIpsoo75m_8TQnF6T_EfvLPbIbjAY4-OBw_vkmatfkRcDhOTja3K1PFuAf3Y2otl28bnD17yr9q6NLwekeVBP0NoBv29XJj621XpIwMerOl4-rpsHaJ0j-zfxHBf-hlwvTq_myyQgJSSG56xLLCh16TLlrMq8sZoV0qXSS3A5uVUGfAavpDaeVSwvrBI2xXSi9Cl1uVDS0LdkVje1e0diSzNhuc-5BMVt8kJTLzxXJs28dpl2Efm2JVlpQhlxRLO4LcGdQAqXEwpH5Os4fD3Uz3hq4AnSfxyEZa_7hmbzswynqKyUhP9xFIyuFLSvU95IJyrKdI6CSkTkYMu9MpzFtvy7cyLyeeyGU4TzV7Vr7vsxQCqpmIxIMeH6ZEHTnnr1q6_HDQo-Z0K-___kH8jLHO_DYDJKHZBZt7l3H8Gg6fSnsGv_AFtr97s
  priority: 102
  providerName: ProQuest
Title HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells
URI https://www.proquest.com/docview/2576390577
https://www.proquest.com/docview/2577458948
https://pubmed.ncbi.nlm.nih.gov/PMC8472468
https://doaj.org/article/a985d9e37270413e9fc8e6a34b230116
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBejZbCX0e6DeeuCB2NP82bry9LDKG1oSAcpozTQN2N9rYHMyRIXmv--d7aT1myDvUqHZJ9O-t1PH3eEfNTKc824T0omgKCUhicm9TLxmgZpglTC4uPkyYUcT_n3a3H9EFKoU-D6r9QO80lNV_Mvd783xzDhvyHjBMr-Fbe41xlGD2L4mnwfQCnHZAaTztNvFmUFrk1zoZGCUSccaE0bcfPPFnoI1QTy73mf_buTj8BodECed15kfNIO-yF54qsX5GmbV3LzklyNz0dA2s53KW7reOLxie9s_WsdX7bp5wGzoLQGI5jPbHziymV7Kh_Pqni8WS7uoHSINrGKh_jhr8h0dHY1HCdd-oTECsrrxAHSK59p73QWrDM8Vz5VQQEPFU5bIBJBK2MDLznNnZYuxTNGFVLmqdTKstdkr1pU_g2JHcukE4EKBWhuaW5YkEFom2bB-Mz4iHzeqqywXWxxTHExL4BjoIaLnoYj8mknvmyDavxL8BT1vxPCWNhNwWL1s-imVlFqBf_jGXhiKUCy18EqL0vGDcXVS0bkaDt6xda-CuRZ0J3I84h82FXD1ML-y8ovbhsZUJXSXEUk741674P6NdXspgnSDahPuVRv_6P1d-QZxZsyeEylj8hevbr178HVqc2A7J-eXfy4HDRbBYPGpO8BaeT_zw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheED9FxoAgAU9ES2zHsR8Q2sqqlq0VmjppbyFxbKi0JaXtBP2n-Bu5a9JAHuBtr7YVO-ez7zuffR_Aa62s0FzYIOMxOihZLoI8tDKwmjmZO6liQ4-TxxM5PBefLuKLHfi1fQtD1yq3e-Jmoy4qQ2fkBwSM0T-Pk-TD_HtArFEUXd1SaNRqcWLXP9BlW74ffcT5fcPY4HjaHwYNq0BgYiZWQYEGUNlI20JHzhS5SJQNlVPonsWFNoivnVa5cSITLCm0LEIKvSkXcsukVobjd2_BruAyZD3YPTqefD5rT3WIxgIRS53Mk-N4D-j8fRlRaiOeRB3jt-EI6ADb7rXMv-zc4D7cawCqf1hr1APYseVDuF1TVq4fwXQ4GqA_OGrZc1f-2NLr4dnyaumf1cz2aA6xdIX6dTkz_mGRzeuAvz8r_eF6Xv3E0j6p28Lv08Afw_mNyPAJ9MqqtE_BL3gki9ixWCFQMCzJuZMu1iaMXG6j3Hrwbiuy1DRpy4k94zJF94UknHYk7MHbtvm8ztfxr4ZHJP-2EaXZ3hRUi69ps2rTTCv8H8sR5IVo7a12RlmZcZEz2hilB_vb2Uubtb9M_2iqB6_aaly11H9W2up60wZFpbRQHiSdWe8MqFtTzr5t8n8joGBCqr3_d_4S7gyn49P0dDQ5eQZ3Gd3FoUCY3ofeanFtnyOYWuUvGg324ctNL5rfr98z_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81pUCQgBPRJo7j2AeE2m1Xu5SuqqqVeguJY8NKJdnupoL9a_w6ZjYPyAFuvdpW7IzHnm889nwAb5Q0XIXceGkYoYOSZtzLfCM8o5gVmRUy0vQ4-WQmJhf802V0uQW_2rcwdK2y3RM3G3VeajojHxIwRv88iuOhba5FnB6OPy6uPWKQokhrS6dRq8ixWf9A9231YXqIc_2WsfHR-WjiNQwDno4Yr7wcjaE0gTK5CqzOMx5L40sr0VWLcqURa1slM215ylmcK5H7FIaT1g8NE0rqEL97B7Zj8ooGsH1wNDs96054iNIC0Uud2DPEsQ_pLH4VUJqjMA56hnDDF9ADuf0rmn_ZvPFDeNCAVXe_1q5HsGWKx3C3pq9cP4HzyXSMvuG0Y9Kt3BNDL4nnq-8r96xmuUfTiKUV6trVXLv7ebqog__uvHAn60X5E0tHpHpLd0QDfwoXtyLDZzAoysLsgJuHgcgjyyKJoEGzOAutsJHSfmAzE2TGgfetyBLdpDAnJo2rBF0ZknDSk7AD77rmizp3x78aHpD8u0aUcntTUC6_Js0KTlIl8X9MiIDPR8tvlNXSiDTkGaNNUjiw185e0uwDq-SP1jrwuqvGFUz9p4UpbzZtUFRScelA3Jv13oD6NcX82yYXOIILxoXc_X_nr-AeLpbk83R2_BzuM7qWQzExtQeDanljXiCuqrKXjQK78OW218xv0zU4Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIF-1-Independent+Mechanisms+Regulating+Metabolic+Adaptation+in+Hypoxic+Cancer+Cells&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Shen-Han&rft.au=Golinska%2C+Monika&rft.au=Griffiths%2C+John+R&rft.date=2021-09-09&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fcells10092371&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon