HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 10; no. 9; p. 2371 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms. |
---|---|
AbstractList | In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms. In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms. |
Author | Lee, Shen-Han Griffiths, John R. Golinska, Monika |
AuthorAffiliation | 3 Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK 1 Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia 2 Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; monika.golinska@cruk.cam.ac.uk (M.G.); john.griffiths@cruk.cam.ac.uk (J.R.G.) |
AuthorAffiliation_xml | – name: 3 Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK – name: 1 Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia – name: 2 Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; monika.golinska@cruk.cam.ac.uk (M.G.); john.griffiths@cruk.cam.ac.uk (J.R.G.) |
Author_xml | – sequence: 1 givenname: Shen-Han orcidid: 0000-0002-6147-2963 surname: Lee fullname: Lee, Shen-Han – sequence: 2 givenname: Monika surname: Golinska fullname: Golinska, Monika – sequence: 3 givenname: John R. orcidid: 0000-0001-7369-6836 surname: Griffiths fullname: Griffiths, John R. |
BookMark | eNptks9rHCEUx6WkNGmaY-8DvfQyrb9m1EshLE13IaEQkrM4-mbjMqtTnQnNf1-nm0I3xIPK1-_76HvP9-gkxAAIfST4C2MKf7UwDJlgrCgT5A06o1iwmnOsTv7bn6KLnHe4DElagpt36JTxRlBM8Rm6W2-ualJvgoMRyhSm6gbsgwk-73N1C9t5MJMP26JOpouDt9WlM-NUxBgqH6r10xh_F3VlgoVUrZYXfUBvezNkuHhez9H91fe71bq-_vljs7q8rm1D-VQ7TBoJRIFTpLeu40IClr2kgjdOWSV4r2Rne244FU61DjeYcNljBrRV0rJztDlwXTQ7PSa_N-lJR-P1XyGmrTZp8nYAbZQsTGCCCswJA9VbCa1hvKMME9IW1rcDa5y7PThbKpHMcAQ9Pgn-QW_jo5ZcUN7KAvj8DEjx1wx50nuflwaZAHHOmjai5CUVX6yfXlh3cU6hlGpxtaWzxVtc7OCyKeacoNfWH-pe7veDJlgvn0AffYISVb-I-pfC6_4_K7CzFQ |
CitedBy_id | crossref_primary_10_1016_j_jff_2024_106531 crossref_primary_10_1016_j_intimp_2024_113736 crossref_primary_10_1111_apm_13447 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024053641 crossref_primary_10_3390_ijms26020669 crossref_primary_10_3390_biom14121607 crossref_primary_10_15690_vramn17946 crossref_primary_10_1002_cbdv_202401384 crossref_primary_10_1016_j_heliyon_2024_e39292 crossref_primary_10_1016_j_jpap_2024_100245 crossref_primary_10_2174_1568009622666220428111327 crossref_primary_10_3390_cancers15153942 crossref_primary_10_3389_fonc_2022_809279 crossref_primary_10_3390_molecules27217318 crossref_primary_10_1097_CEJ_0000000000000817 crossref_primary_10_3390_cells11223595 crossref_primary_10_3389_fonc_2023_1199105 crossref_primary_10_1002_jbt_70001 crossref_primary_10_3390_pharmaceutics16050619 crossref_primary_10_1016_j_cclet_2025_111047 crossref_primary_10_1007_s00109_024_02458_0 crossref_primary_10_1515_oncologie_2024_0157 crossref_primary_10_1038_s41401_022_01037_8 crossref_primary_10_1186_s43556_024_00229_4 crossref_primary_10_1002_smll_202309060 crossref_primary_10_3389_fimmu_2024_1370800 crossref_primary_10_1186_s13287_024_03935_6 crossref_primary_10_1111_jcmm_70443 crossref_primary_10_3389_fonc_2024_1439229 crossref_primary_10_1186_s13046_024_03202_9 crossref_primary_10_3390_cancers15010166 crossref_primary_10_3389_fbioe_2022_858558 crossref_primary_10_4049_immunohorizons_2300048 crossref_primary_10_1016_j_jddst_2024_105660 crossref_primary_10_1186_s40001_024_02050_9 crossref_primary_10_1016_j_biopha_2023_115690 crossref_primary_10_1002_mgg3_1893 crossref_primary_10_1186_s12890_023_02468_7 crossref_primary_10_1007_s00467_023_06031_8 crossref_primary_10_1016_j_neuroscience_2024_06_021 crossref_primary_10_1007_s00210_025_04018_w crossref_primary_10_25122_jml_2022_0305 crossref_primary_10_1007_s12672_023_00836_7 crossref_primary_10_3390_biom14121592 crossref_primary_10_3389_fimmu_2024_1302587 crossref_primary_10_1038_s41401_024_01264_1 crossref_primary_10_1002_ddr_22168 crossref_primary_10_2147_DDDT_S511406 crossref_primary_10_15857_ksep_2023_00598 crossref_primary_10_3892_ijo_2024_5619 crossref_primary_10_1155_2022_4163188 crossref_primary_10_1007_s00044_024_03219_x crossref_primary_10_3389_fbioe_2024_1462293 crossref_primary_10_3390_ijms25158423 crossref_primary_10_3390_metabo13050675 crossref_primary_10_3390_molecules29102218 crossref_primary_10_1016_j_humpath_2023_09_002 crossref_primary_10_1016_j_ijbiomac_2024_139090 crossref_primary_10_1016_j_isci_2025_111890 crossref_primary_10_1097_MD_0000000000038349 crossref_primary_10_3390_molecules27196187 crossref_primary_10_1007_s00210_024_03024_8 crossref_primary_10_1155_2022_5645944 crossref_primary_10_1016_j_semcancer_2022_09_007 crossref_primary_10_4254_wjh_v17_i3_104715 crossref_primary_10_1016_j_lfs_2024_122779 crossref_primary_10_1021_acsami_4c08174 crossref_primary_10_3389_fphar_2022_1035510 crossref_primary_10_3390_cancers15245765 crossref_primary_10_1016_j_aquaculture_2024_740786 crossref_primary_10_1007_s10330_021_0546_6 crossref_primary_10_3390_ncrna10020022 crossref_primary_10_3390_ijms23073749 crossref_primary_10_3390_cells12232758 crossref_primary_10_3390_ijms242015369 crossref_primary_10_1016_j_ncrna_2022_09_001 crossref_primary_10_1177_15330338241257490 crossref_primary_10_2174_0113816128293601240523063527 |
Cites_doi | 10.1038/ncomms12700 10.1093/bja/41.3.245 10.1101/gad.217406.113 10.3390/cancers12061616 10.1038/srep36289 10.1038/s41467-018-04543-8 10.3389/fendo.2019.00206 10.1016/j.ccr.2012.02.014 10.1016/j.cmet.2012.12.001 10.3390/cells8030214 10.1038/nature10898 10.1038/nature08617 10.1038/nature19081 10.1002/jcb.25074 10.1016/j.ccr.2007.02.006 10.1016/j.nucmedbio.2013.05.006 10.1371/journal.pgen.1002229 10.1038/emboj.2011.158 10.1002/stem.3188 10.2147/OTT.S288332 10.1128/MCB.22.6.1734-1741.2002 10.1016/j.cancergen.2015.02.008 10.1038/s41574-020-0365-5 10.3390/cells9112359 10.1093/emboj/20.18.5197 10.1074/jbc.M114.575183 10.1158/0008-5472.CAN-04-2184 10.1007/s11306-005-0009-8 10.1158/1541-7786.MCR-18-0315 10.1073/pnas.92.12.5510 10.1146/annurev-pharmtox-010818-021637 10.1073/pnas.0709747104 10.1093/emboj/19.16.4298 10.1158/0008-5472.CAN-14-0772-T 10.1073/pnas.1711257115 10.1016/j.celrep.2014.08.028 10.1158/0008-5472.CAN-18-2847 10.1016/j.cmet.2006.01.012 10.1038/onc.2017.13 10.1016/j.cell.2012.01.021 10.1038/35017054 10.1021/acschembio.6b00849 10.1371/journal.pone.0202039 10.1074/jbc.M111.282046 10.1074/jbc.M800102200 10.1038/nrm2249 10.1038/20459 10.18632/oncotarget.3058 10.1016/j.bpj.2020.08.002 10.1038/embor.2011.43 10.1002/oby.20605 10.1007/s10456-018-9600-2 10.1042/BJ20101104 10.1126/science.aau5870 10.1038/nature06030 10.1101/gad.264036.115 10.1371/journal.pone.0063965 10.1210/en.2003-0982 10.1128/MCB.00444-09 10.20944/preprints202103.0007.v1 10.1038/onc.2009.441 10.1016/j.cmet.2012.05.001 10.1073/pnas.1525354113 10.1016/j.tibs.2008.08.002 10.1093/neuonc/not243 10.1016/0014-5793(80)80572-2 10.1038/nature12965 10.1007/s13277-014-1784-5 10.1038/nature11066 10.1126/science.1059817 10.1158/2159-8290.CD-13-0696 10.1086/427890 10.1113/jphysiol.2013.251470 10.1016/j.freeradbiomed.2016.11.014 10.1172/JCI69600 10.1038/nature10860 10.1080/15384101.2015.1120930 10.1186/2049-3002-1-8 10.1016/j.trecan.2017.12.005 10.1158/0008-5472.CAN-12-0429 10.1038/nature13264 10.1158/0008-5472.CAN-06-2355 10.1016/j.cmet.2013.02.002 10.1002/iub.393 10.1091/mbc.e06-07-0593 10.1158/0008-5472.CAN-03-2904 10.1098/rstb.1983.0036 10.1038/nature10602 10.1038/nature01045 10.1016/j.freeradbiomed.2009.02.019 10.1016/j.cmet.2007.10.002 10.7150/jca.28299 10.1016/S0021-9258(17)31580-6 10.3389/fcell.2020.590576 10.1074/jbc.270.49.29083 10.1172/jci.insight.94543 10.1002/hep.21284 10.1128/MCB.01710-13 10.1152/ajpcell.00279.2015 10.1083/jcb.200703099 10.18632/oncotarget.16904 10.1016/j.bbrc.2012.04.144 10.1016/j.celrep.2015.06.006 10.1126/science.1160809 10.1016/j.ccr.2010.01.020 10.1074/jbc.M002740200 10.1172/JCI137552 10.1038/nature17393 10.1016/j.cmet.2015.06.021 10.7150/jca.16486 10.1016/j.ymgme.2005.05.002 10.1073/pnas.0810199105 10.1038/nature07823 10.1098/rsob.190099 10.1111/joim.12268 10.1172/JCI89632 10.3390/ijms151119791 10.3390/ijms21072428 10.1093/jac/dkaa200 10.1038/nature06613 10.1002/path.2913 10.1126/sciadv.1600200 10.1158/0008-5472.CAN-05-1341 10.1016/j.advenzreg.2009.10.027 10.1016/j.ccr.2010.11.015 10.1128/MCB.06160-11 10.1111/jnc.13034 10.1016/0014-5793(96)00462-0 10.1038/srep32428 10.1101/gr.140988.112 10.1016/j.ccell.2015.11.006 10.1080/2162402X.2018.1445454 10.1073/pnas.1117773108 10.1161/ATVBAHA.108.181636 10.1038/sj.onc.1205047 10.1074/jbc.M116.738799 10.1073/pnas.1113483108 10.1016/j.cmet.2015.06.009 10.1111/j.1753-4887.1990.tb02967.x 10.1016/S0167-4889(97)00150-X 10.1158/0008-5472.CAN-06-2701 10.1089/ars.2019.7902 10.1073/pnas.94.15.8104 10.1038/nature12040 10.1101/sqb.2011.76.010868 10.1038/cdd.2008.84 10.1016/j.biocel.2015.05.012 10.1172/JCI93815 10.1074/jbc.M117.783050 10.1038/s41419-018-1291-5 10.15252/embj.201696010 10.1016/j.joen.2016.11.005 10.1016/j.cell.2014.12.018 10.1113/JP280572 10.1016/j.cmet.2016.01.007 10.1016/j.cmet.2017.10.005 10.1186/s13058-014-0415-9 10.1128/MCB.21.10.3436-3444.2001 10.1126/science.1059796 10.15252/embj.201696151 10.1038/nature12634 10.1172/JCI71180 10.1073/pnas.0702683104 10.1186/s13045-021-01041-1 10.1016/j.pharmthera.2015.05.003 10.1073/pnas.1815968116 10.1074/jbc.271.51.32529 10.1073/pnas.0337412100 10.1128/MCB.23.20.7315-7328.2003 10.1016/j.celrep.2017.06.082 10.1016/j.febslet.2004.05.079 10.1002/cncr.31729 10.1016/j.cell.2020.04.047 10.1016/j.tibs.2015.12.001 10.1042/BJ20140754 10.1111/jcmm.13202 10.1016/j.ccr.2010.12.014 10.1080/23723556.2018.1432260 10.1038/sj.emboj.7600196 10.1038/ncb1691 10.1074/jbc.M110.115931 10.1200/JCO.2020.38.15_suppl.5003 10.1073/pnas.0711677105 10.1038/s41467-019-12103-x 10.1016/j.cmet.2017.10.001 10.1128/MCB.00166-09 10.1038/s41591-021-01324-7 10.1016/j.molcel.2006.12.010 10.7554/eLife.48480 10.1007/s11912-019-0752-z 10.1186/1471-2407-11-198 10.1016/j.cmet.2015.06.023 10.1016/j.cmet.2006.02.002 10.5114/wo.2018.82642 10.1038/ncb3272 10.1073/pnas.1716589115 10.1038/hdy.2010.54 10.1126/science.aaw1026 10.1073/pnas.88.13.5680 10.1038/nrm2882 10.1016/j.molcel.2008.12.026 10.1016/j.ccell.2018.02.003 10.1074/jbc.M011688200 10.1101/gad.12.2.149 10.1038/s41388-019-1051-8 10.1073/pnas.0808801106 10.1016/j.cmet.2013.11.022 10.1158/0008-5472.CAN-03-2239 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.3390/cells10092371 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_a985d9e37270413e9fc8e6a34b230116 PMC8472468 10_3390_cells10092371 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c524t-d0158e19ed91fcdb478e08f82745d9c974f98bcf4a427d96d050148f03e2698c3 |
IEDL.DBID | M48 |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:29:23 EDT 2025 Thu Aug 21 18:20:26 EDT 2025 Thu Jul 10 22:33:23 EDT 2025 Fri Jul 25 12:02:43 EDT 2025 Tue Jul 01 01:00:22 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-d0158e19ed91fcdb478e08f82745d9c974f98bcf4a427d96d050148f03e2698c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7369-6836 0000-0002-6147-2963 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells10092371 |
PMID | 34572020 |
PQID | 2576390577 |
PQPubID | 2032536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a985d9e37270413e9fc8e6a34b230116 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8472468 proquest_miscellaneous_2577458948 proquest_journals_2576390577 crossref_citationtrail_10_3390_cells10092371 crossref_primary_10_3390_cells10092371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210909 |
PublicationDateYYYYMMDD | 2021-09-09 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210909 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Brunner (ref_142) 2019; 125 ref_92 Wang (ref_31) 1995; 92 Ohh (ref_37) 2000; 2 Ward (ref_68) 2012; 21 Semmler (ref_141) 2018; 22 Chin (ref_199) 2014; 510 Shoag (ref_205) 2010; 30 Andricovich (ref_119) 2018; 33 ref_126 Emerling (ref_193) 2009; 46 Leek (ref_56) 2005; 65 Ghirga (ref_61) 2020; 75 Wieman (ref_135) 2007; 18 Semenza (ref_8) 2019; 59 Das (ref_89) 2019; 79 Weinstein (ref_117) 2014; 507 Li (ref_86) 2020; 8 Rousset (ref_195) 2015; 133 ref_123 Tateishi (ref_150) 2015; 28 Zhang (ref_52) 2008; 283 Cui (ref_114) 2020; 39 Hiraga (ref_42) 2007; 67 Xiang (ref_85) 2019; 10 Shi (ref_107) 2007; 25 Wu (ref_120) 2018; 115 Zhang (ref_65) 2017; 36 Elstrom (ref_137) 2004; 64 ref_76 Chen (ref_167) 2016; 6 Wong (ref_43) 2011; 108 Yang (ref_66) 2012; 15 Nauta (ref_6) 2014; 15 Renner (ref_156) 2018; 7 Lu (ref_154) 2012; 483 Kohnhorst (ref_130) 2017; 292 Hensley (ref_74) 2013; 123 Park (ref_104) 2006; 66 Vanhaesebroeck (ref_131) 2010; 11 Ivan (ref_32) 2001; 292 Koshiji (ref_87) 2004; 23 Jalving (ref_4) 2020; 130 Chypre (ref_48) 2012; 422 Henderson (ref_23) 1969; 41 Hao (ref_145) 2016; 113 Zelenka (ref_172) 2015; 65 Lee (ref_183) 2012; 72 Sun (ref_94) 2014; 19 Comerford (ref_124) 2003; 100 Chandel (ref_95) 2016; 2 Son (ref_73) 2013; 496 Semenza (ref_51) 1996; 271 Arany (ref_206) 2008; 451 Vaapil (ref_91) 2017; 8 Carrera (ref_133) 2001; 276 Krieg (ref_97) 2010; 30 Valli (ref_58) 2019; 17 Terunuma (ref_174) 2014; 124 (ref_140) 2020; 33 Movafagh (ref_160) 2015; 116 Wan (ref_109) 2017; 36 Griffiths (ref_15) 2002; 62 Mishra (ref_176) 2018; 5 Massie (ref_102) 2011; 30 Kim (ref_49) 2006; 3 Gordan (ref_88) 2007; 11 Dang (ref_147) 2009; 462 Hou (ref_84) 2017; 43 Zheng (ref_184) 2009; 33 Davidson (ref_78) 2016; 23 Rubin (ref_70) 2019; 116 Papandreou (ref_198) 2008; 15 Xu (ref_152) 2011; 19 Hall (ref_64) 2017; 36 Wise (ref_80) 2008; 105 Mor (ref_21) 2011; 76 Bellot (ref_53) 2009; 29 LaGory (ref_202) 2015; 12 Ros (ref_101) 2013; 1 Bardella (ref_186) 2012; 32 Arsham (ref_134) 2004; 64 Struys (ref_164) 2005; 76 Dadhich (ref_81) 2016; 15 Gameiro (ref_83) 2013; 17 Iyer (ref_25) 1998; 12 Kersten (ref_93) 2020; 1865 Smith (ref_196) 2013; 40 Tang (ref_171) 2014; 16 Ji (ref_190) 2007; 448 Russell (ref_181) 2019; 9 Jiang (ref_122) 2020; 38 Scott (ref_82) 2011; 286 Li (ref_90) 2017; 21 Agbor (ref_98) 2011; 286 Gibney (ref_105) 2010; 105 Troy (ref_29) 2005; 1 Lombardi (ref_213) 2019; 10 Hardie (ref_179) 2003; 144 Yang (ref_112) 2021; 14 Semenza (ref_2) 2012; 148 Williamson (ref_46) 1980; 117 Fuller (ref_128) 2020; 9 Yang (ref_40) 2008; 10 Jin (ref_99) 2017; 20 ref_12 Semenza (ref_26) 1994; 269 Grassian (ref_138) 2014; 74 Stubbs (ref_28) 2010; 50 Maxwell (ref_13) 1997; 94 Xia (ref_207) 2019; 10 Hubbi (ref_39) 2015; 309 Liao (ref_41) 2007; 67 Wan (ref_201) 2014; 22 ref_16 Williams (ref_14) 2002; 21 Jeon (ref_188) 2012; 485 Xie (ref_100) 2019; 19 Kierans (ref_1) 2021; 599 Huang (ref_208) 2020; 2020 DeBerardinis (ref_69) 2007; 104 Cocchiglia (ref_204) 2009; 106 Semenza (ref_7) 2010; 29 Jaakkola (ref_33) 2001; 292 Tanimoto (ref_38) 2000; 19 Oldham (ref_157) 2015; 22 Semenza (ref_214) 1991; 88 Ureta (ref_19) 1998; 1401 Gao (ref_79) 2009; 458 Chowdhury (ref_151) 2011; 12 Michealraj (ref_121) 2020; 181 Shim (ref_162) 2014; 4 Rathmell (ref_132) 2003; 23 Loo (ref_60) 2015; 160 Ratcliffe (ref_3) 2013; 591 Ward (ref_144) 2010; 17 Faubert (ref_185) 2013; 17 Latini (ref_163) 2005; 86 Amary (ref_143) 2011; 224 Serocki (ref_159) 2018; 21 Liao (ref_118) 2015; 208 Hardie (ref_192) 2014; 276 Wykoff (ref_44) 2000; 60 Nadtochiy (ref_166) 2016; 291 Yuneva (ref_71) 2007; 178 Rohas (ref_210) 2007; 104 Ebert (ref_24) 1995; 270 Hu (ref_187) 2019; 10 Seagroves (ref_27) 2001; 21 Choueiri (ref_10) 2021; 27 Liberti (ref_17) 2016; 41 Gonsalves (ref_139) 2018; 3 Xiang (ref_175) 2018; 115 Lacey (ref_75) 1990; 48 Hardie (ref_191) 2007; 8 Koh (ref_158) 2008; 33 Shao (ref_125) 2004; 569 ref_178 DeBerardinis (ref_136) 2008; 7 Figueroa (ref_153) 2010; 18 Salnikow (ref_211) 2002; 22 ref_180 Mattevi (ref_22) 1996; 389 Wise (ref_54) 2011; 108 Papandreou (ref_50) 2006; 3 Ye (ref_169) 2018; 4 Thienpont (ref_108) 2016; 537 Colvin (ref_173) 2016; 6 Mishra (ref_177) 2018; 128 Carbonneau (ref_155) 2016; 7 Masson (ref_34) 2001; 20 Sweetlove (ref_127) 2018; 9 Coelho (ref_20) 2010; 62 Valli (ref_96) 2015; 6 Jang (ref_129) 2020; 120 Jiang (ref_77) 2016; 532 Choudhry (ref_30) 2018; 27 Kazak (ref_59) 2020; 16 Liu (ref_115) 2012; 22 Jonasch (ref_11) 2020; 38 Cockman (ref_36) 2000; 275 Chesnelong (ref_170) 2014; 16 Cantley (ref_18) 2009; 324 Shah (ref_72) 2017; 26 Kandoth (ref_116) 2013; 502 Fallah (ref_9) 2019; 21 Parker (ref_149) 2015; 152 Ao (ref_209) 2008; 105 Reitman (ref_168) 2014; 289 Fu (ref_200) 2015; 22 Denton (ref_47) 1983; 302 ref_194 Maxwell (ref_35) 1999; 399 Ohka (ref_148) 2014; 35 Bardeesy (ref_189) 2002; 419 Islam (ref_113) 2015; 29 Metallo (ref_55) 2012; 481 Knaup (ref_57) 2017; 8 Head (ref_182) 2018; 12 Jiang (ref_45) 1997; 57 Tampe (ref_62) 2018; 128 Moon (ref_103) 2011; 433 Shmakova (ref_106) 2014; 462 Huang (ref_203) 2014; 8 Batie (ref_111) 2019; 363 Koivunen (ref_165) 2012; 483 Seo (ref_197) 2016; 101 Tardito (ref_67) 2015; 17 Baresic (ref_212) 2014; 34 Yim (ref_63) 2006; 44 Intlekofer (ref_161) 2015; 22 Losman (ref_146) 2013; 27 Chakraborty (ref_110) 2019; 363 ref_5 |
References_xml | – volume: 7 start-page: 12700 year: 2016 ident: ref_155 article-title: The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway publication-title: Nat. Commun. doi: 10.1038/ncomms12700 – volume: 41 start-page: 245 year: 1969 ident: ref_23 article-title: Biochemistry of hypoxia: Current concepts I: An introduction to biochemical pathways and their control publication-title: Br. J. Anaesth. doi: 10.1093/bja/41.3.245 – volume: 27 start-page: 836 year: 2013 ident: ref_146 article-title: What a difference a hydroxyl makes: Mutant IDH, (R)-2-hydroxyglutarate, and cancer publication-title: Genes Dev. doi: 10.1101/gad.217406.113 – ident: ref_5 doi: 10.3390/cancers12061616 – volume: 6 start-page: 36289 year: 2016 ident: ref_173 article-title: Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer publication-title: Sci. Rep. doi: 10.1038/srep36289 – volume: 9 start-page: 2136 year: 2018 ident: ref_127 article-title: The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation publication-title: Nat. Commun. doi: 10.1038/s41467-018-04543-8 – volume: 10 start-page: 206 year: 2019 ident: ref_207 article-title: ERRα as a bridge between transcription and function: Role in liver metabolism and disease publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00206 – volume: 21 start-page: 297 year: 2012 ident: ref_68 article-title: Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.014 – volume: 17 start-page: 113 year: 2013 ident: ref_185 article-title: AMPK is a negative regulator of the warburg effect and suppresses tumor growth in vivo publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.12.001 – ident: ref_92 doi: 10.3390/cells8030214 – volume: 483 start-page: 484 year: 2012 ident: ref_165 article-title: Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation publication-title: Nature doi: 10.1038/nature10898 – volume: 462 start-page: 739 year: 2009 ident: ref_147 article-title: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate publication-title: Nature doi: 10.1038/nature08617 – volume: 537 start-page: 63 year: 2016 ident: ref_108 article-title: Tumour hypoxia causes DNA hypermethylation by reducing TET activity publication-title: Nature doi: 10.1038/nature19081 – volume: 116 start-page: 696 year: 2015 ident: ref_160 article-title: Regulation of Hypoxia-Inducible Factor-1a by Reactive Oxygen Species: New Developments in an Old Debate publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25074 – volume: 11 start-page: 335 year: 2007 ident: ref_88 article-title: HIF-2α Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.02.006 – volume: 40 start-page: 858 year: 2013 ident: ref_196 article-title: Hypoxia stimulates 18F-Fluorodeoxyglucose uptake in breast cancer cells via Hypoxia inducible Factor-1 and AMP-activated protein kinase publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2013.05.006 – ident: ref_76 doi: 10.1371/journal.pgen.1002229 – volume: 30 start-page: 2719 year: 2011 ident: ref_102 article-title: The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis publication-title: EMBO J. doi: 10.1038/emboj.2011.158 – volume: 38 start-page: 960 year: 2020 ident: ref_122 article-title: Histone demethylase KDM6A promotes somatic cell reprogramming by epigenetically regulating the PTEN and IL-6 signal pathways publication-title: Stem Cells doi: 10.1002/stem.3188 – volume: 2020 start-page: 13055 year: 2020 ident: ref_208 article-title: Immunohistochemical analysis of pgc-1α and errα expression reveals their clinical significance in human ovarian cancer publication-title: OncoTargets Ther. doi: 10.2147/OTT.S288332 – volume: 22 start-page: 1734 year: 2002 ident: ref_211 article-title: The Regulation of Hypoxic Genes by Calcium Involves c-Jun/AP-1, Which Cooperates with Hypoxia-Inducible Factor 1 in Response to Hypoxia publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.6.1734-1741.2002 – volume: 208 start-page: 206 year: 2015 ident: ref_118 article-title: The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer publication-title: Cancer Genet. doi: 10.1016/j.cancergen.2015.02.008 – volume: 16 start-page: 421 year: 2020 ident: ref_59 article-title: Creatine metabolism: Energy homeostasis, immunity and cancer biology publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-020-0365-5 – volume: 57 start-page: 5328 year: 1997 ident: ref_45 article-title: V-SRC Induces Expression of Hypoxia-inducible Factor 1 (HIF-1) and Transcription of Genes Encoding Vascular Endothelial Growth Factor and Enolase 1: Involvement of HIF-1 in Tumor Progression publication-title: Cancer Res. – ident: ref_123 doi: 10.3390/cells9112359 – volume: 20 start-page: 5197 year: 2001 ident: ref_34 article-title: Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation publication-title: EMBO J. doi: 10.1093/emboj/20.18.5197 – volume: 289 start-page: 23318 year: 2014 ident: ref_168 article-title: Cancer-Associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and D-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.575183 – volume: 65 start-page: 4147 year: 2005 ident: ref_56 article-title: The role of hypoxia-inducible factor-1 in three-dimensional tumor growth, apoptosis, and regulation by the insulin-signaling pathway publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-2184 – volume: 1 start-page: 293 year: 2005 ident: ref_29 article-title: Metabolic profiling of hypoxia-inducible factor-1β-deficient and wild type Hepa-1 cells: Effects of hypoxia measured by 1H magnetic resonance spectroscopy publication-title: Metabolomics doi: 10.1007/s11306-005-0009-8 – volume: 17 start-page: 1531 year: 2019 ident: ref_58 article-title: Adaptation to HIF1a deletion in hypoxic cancer cells by upregulation of GLUT14 and creatine metabolism publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-18-0315 – volume: 92 start-page: 5510 year: 1995 ident: ref_31 article-title: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.12.5510 – volume: 59 start-page: 379 year: 2019 ident: ref_8 article-title: Pharmacologic targeting of hypoxia-inducible factors publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010818-021637 – volume: 104 start-page: 19345 year: 2007 ident: ref_69 article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709747104 – volume: 19 start-page: 4298 year: 2000 ident: ref_38 article-title: Mechanism of regulation of the hypoxia-inducible factor-1alpha by the von Hippel-Lindau tumor suppressor protein publication-title: EMBO J. doi: 10.1093/emboj/19.16.4298 – volume: 74 start-page: 3317 year: 2014 ident: ref_138 article-title: IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0772-T – volume: 62 start-page: 688 year: 2002 ident: ref_15 article-title: Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): Evidence of an anabolic role for the HIF-1 pathway publication-title: Cancer Res. – volume: 115 start-page: E1465 year: 2018 ident: ref_175 article-title: LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1711257115 – volume: 8 start-page: 1930 year: 2014 ident: ref_203 article-title: HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.08.028 – volume: 79 start-page: 4015 year: 2019 ident: ref_89 article-title: Molecular Cell Biology MYC Regulates the HIF2a Stemness Pathway via Nanog and Sox2 to Maintain Self-Renewal in Cancer Stem Cells versus Non-Stem Cancer Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2847 – volume: 3 start-page: 187 year: 2006 ident: ref_50 article-title: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.01.012 – volume: 36 start-page: 3868 year: 2017 ident: ref_109 article-title: Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α publication-title: Oncogene doi: 10.1038/onc.2017.13 – volume: 148 start-page: 399 year: 2012 ident: ref_2 article-title: Hypoxia-inducible factors in physiology and medicine publication-title: Cell doi: 10.1016/j.cell.2012.01.021 – volume: 2 start-page: 423 year: 2000 ident: ref_37 article-title: Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel—Lindau protein publication-title: Nat. Cell Biol. doi: 10.1038/35017054 – volume: 12 start-page: 174 year: 2018 ident: ref_182 article-title: Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00849 – ident: ref_194 doi: 10.1371/journal.pone.0202039 – volume: 286 start-page: 42626 year: 2011 ident: ref_82 article-title: Comparative metabolic flux profiling of melanoma cell lines: Beyond the Warburg effect publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.282046 – volume: 283 start-page: 10892 year: 2008 ident: ref_52 article-title: Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800102200 – volume: 8 start-page: 774 year: 2007 ident: ref_191 article-title: AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2249 – volume: 399 start-page: 271 year: 1999 ident: ref_35 article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis publication-title: Nature doi: 10.1038/20459 – volume: 6 start-page: 1920 year: 2015 ident: ref_96 article-title: Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways publication-title: Oncotarget doi: 10.18632/oncotarget.3058 – volume: 120 start-page: 1170 year: 2020 ident: ref_129 article-title: Phosphofructokinase Relocalizes into Subcellular Compartments with Liquid-like Properties In Vivo publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.08.002 – volume: 12 start-page: 463 year: 2011 ident: ref_151 article-title: The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases publication-title: EMBO Rep. doi: 10.1038/embor.2011.43 – volume: 22 start-page: 730 year: 2014 ident: ref_201 article-title: Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue publication-title: Obesity doi: 10.1002/oby.20605 – volume: 21 start-page: 183 year: 2018 ident: ref_159 article-title: miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target publication-title: Angiogenesis doi: 10.1007/s10456-018-9600-2 – volume: 433 start-page: 225 year: 2011 ident: ref_103 article-title: Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase 2 in prostate cancer cells publication-title: Biochem. J. doi: 10.1042/BJ20101104 – volume: 363 start-page: 1222 year: 2019 ident: ref_111 article-title: Hypoxia induces rapid changes to histone methylation and reprograms chromatin publication-title: Science doi: 10.1126/science.aau5870 – volume: 448 start-page: 807 year: 2007 ident: ref_190 article-title: LKB1 modulates lung cancer differentiation and metastasis publication-title: Nature doi: 10.1038/nature06030 – volume: 29 start-page: 1817 year: 2015 ident: ref_113 article-title: Increased mitochondrial function downstream from KDM5a histone demethylase rescues differentiation in pRB-deficient cells publication-title: Genes Dev. doi: 10.1101/gad.264036.115 – ident: ref_126 doi: 10.1371/journal.pone.0063965 – volume: 144 start-page: 5179 year: 2003 ident: ref_179 article-title: Minireview: The AMP-Activated Protein Kinase Cascade: The Key Sensor of Cellular Energy Status publication-title: Endocrinology doi: 10.1210/en.2003-0982 – volume: 30 start-page: 344 year: 2010 ident: ref_97 article-title: Regulation of the Histone Demethylase JMJD1A by Hypoxia-Inducible Factor 1α Enhances Hypoxic Gene Expression and Tumor Growth publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00444-09 – ident: ref_178 doi: 10.20944/preprints202103.0007.v1 – volume: 29 start-page: 625 year: 2010 ident: ref_7 article-title: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics publication-title: Oncogene doi: 10.1038/onc.2009.441 – volume: 15 start-page: 827 year: 2012 ident: ref_66 article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.05.001 – volume: 113 start-page: 1387 year: 2016 ident: ref_145 article-title: Idh1 mutations contribute to the development of T-cell malignancies in genetically engineered mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1525354113 – volume: 19 start-page: 783 year: 2019 ident: ref_100 article-title: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review) publication-title: Mol. Med. Rep. – volume: 33 start-page: 526 year: 2008 ident: ref_158 article-title: HIF-1 regulation: Not so easy come, easy go publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.08.002 – volume: 16 start-page: 686 year: 2014 ident: ref_170 article-title: Lactate dehydrogenase A silencing in IDH mutant gliomas publication-title: Neuro-Oncology doi: 10.1093/neuonc/not243 – volume: 117 start-page: K73 year: 1980 ident: ref_46 article-title: Regulation of the citric acid cycle in mammalian systems publication-title: FEBS Lett. doi: 10.1016/0014-5793(80)80572-2 – volume: 507 start-page: 315 year: 2014 ident: ref_117 article-title: Comprehensive molecular characterization of urothelial bladder carcinoma publication-title: Nature doi: 10.1038/nature12965 – volume: 35 start-page: 5911 year: 2014 ident: ref_148 article-title: Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation publication-title: Tumor Biol. doi: 10.1007/s13277-014-1784-5 – volume: 485 start-page: 661 year: 2012 ident: ref_188 article-title: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress publication-title: Nature doi: 10.1038/nature11066 – volume: 292 start-page: 464 year: 2001 ident: ref_32 article-title: HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing publication-title: Science doi: 10.1126/science.1059817 – volume: 4 start-page: 1290 year: 2014 ident: ref_162 article-title: l-2-Hydroxyglutarate: An Epigenetic Modifier and Putative Oncometabolite in Renal Cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0696 – volume: 76 start-page: 358 year: 2005 ident: ref_164 article-title: Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria publication-title: Am. J. Hum. Genet. doi: 10.1086/427890 – volume: 591 start-page: 2027 year: 2013 ident: ref_3 article-title: Oxygen sensing and hypoxia signalling pathways in animals: The implications of physiology for cancer publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.251470 – volume: 101 start-page: 511 year: 2016 ident: ref_197 article-title: Free Radical Biology and Medicine mediated prolyl hydroxylase regulation publication-title: Free. Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.11.014 – volume: 123 start-page: 3678 year: 2013 ident: ref_74 article-title: Glutamine and cancer: Cell biology, physiology, and clinical opportunities publication-title: J. Clin. Investig. doi: 10.1172/JCI69600 – volume: 483 start-page: 474 year: 2012 ident: ref_154 article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation publication-title: Nature doi: 10.1038/nature10860 – volume: 15 start-page: 72 year: 2016 ident: ref_81 article-title: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells publication-title: Cell Cycle doi: 10.1080/15384101.2015.1120930 – volume: 1 start-page: 8 year: 2013 ident: ref_101 article-title: Balancing glycolytic flux: The role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism publication-title: Cancer Metab. doi: 10.1186/2049-3002-1-8 – volume: 4 start-page: 151 year: 2018 ident: ref_169 article-title: Metabolism, Activity, and Targeting of D-and L-2-Hydroxyglutarates publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.12.005 – volume: 72 start-page: 4394 year: 2012 ident: ref_183 article-title: AMPK Promotes p53 Acetylation via Phosphorylation and Inactivation of SIRT1 in Liver Cancer Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0429 – volume: 510 start-page: 397 year: 2014 ident: ref_199 article-title: The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR publication-title: Nature doi: 10.1038/nature13264 – volume: 67 start-page: 4157 year: 2007 ident: ref_42 article-title: Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2355 – volume: 17 start-page: 372 year: 2013 ident: ref_83 article-title: In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.02.002 – volume: 62 start-page: 791 year: 2010 ident: ref_20 article-title: Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism publication-title: IUBMB Life doi: 10.1002/iub.393 – volume: 18 start-page: 1437 year: 2007 ident: ref_135 article-title: Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-07-0593 – volume: 64 start-page: 3892 year: 2004 ident: ref_137 article-title: Akt stimulates aerobic glycolysis in cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-2904 – volume: 302 start-page: 33 year: 1983 ident: ref_47 article-title: The role of phosphorylation in the regulation of fatty acid synthesis by insulin and other hormones publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1983.0036 – volume: 481 start-page: 380 year: 2012 ident: ref_55 article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia publication-title: Nature doi: 10.1038/nature10602 – volume: 419 start-page: 162 year: 2002 ident: ref_189 article-title: Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation publication-title: Nature doi: 10.1038/nature01045 – volume: 46 start-page: 1386 year: 2009 ident: ref_193 article-title: Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.02.019 – volume: 7 start-page: 11 year: 2008 ident: ref_136 article-title: The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.10.002 – volume: 10 start-page: 1870 year: 2019 ident: ref_187 article-title: AMPK inhibition suppresses the malignant phenotype of pancreatic cancer cells in part by attenuating aerobic glycolysis publication-title: J. Cancer doi: 10.7150/jca.28299 – volume: 269 start-page: 23757 year: 1994 ident: ref_26 article-title: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31580-6 – volume: 8 start-page: 1319 year: 2020 ident: ref_86 article-title: Molecular Crosstalk Between MYC and HIF in Cancer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.590576 – volume: 270 start-page: 29083 year: 1995 ident: ref_24 article-title: Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.49.29083 – volume: 3 start-page: 1 year: 2018 ident: ref_139 article-title: Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies publication-title: JCI Insight doi: 10.1172/jci.insight.94543 – volume: 44 start-page: 550 year: 2006 ident: ref_63 article-title: Disruption of the Arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality in mice publication-title: Hepatology doi: 10.1002/hep.21284 – volume: 34 start-page: 2996 year: 2014 ident: ref_212 article-title: Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01710-13 – volume: 309 start-page: C775 year: 2015 ident: ref_39 article-title: Regulation of cell proliferation by hypoxia-inducible factors publication-title: Am. J. Physiol.-Cell Physiol. doi: 10.1152/ajpcell.00279.2015 – volume: 178 start-page: 93 year: 2007 ident: ref_71 article-title: Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200703099 – volume: 8 start-page: 48983 year: 2017 ident: ref_91 article-title: Myc-induced glutaminolysis bypasses HIF-driven glycolysis in hypoxic small cell lung carcinoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.16904 – volume: 422 start-page: 1 year: 2012 ident: ref_48 article-title: ATP-citrate lyase: A mini-review publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.04.144 – volume: 12 start-page: 116 year: 2015 ident: ref_202 article-title: Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.006 – volume: 324 start-page: 1029 year: 2009 ident: ref_18 article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 17 start-page: 225 year: 2010 ident: ref_144 article-title: The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting α-Ketoglutarate to 2-Hydroxyglutarate publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.01.020 – volume: 275 start-page: 25733 year: 2000 ident: ref_36 article-title: Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002740200 – volume: 130 start-page: 5074 year: 2020 ident: ref_4 article-title: HIFs, angiogenesis, and metabolism: Elusive enemies in breast cancer publication-title: J. Clin. Investig. doi: 10.1172/JCI137552 – volume: 532 start-page: 255 year: 2016 ident: ref_77 article-title: Reductive carboxylation supports redox homeostasis during anchorage-independent growth publication-title: Nature doi: 10.1038/nature17393 – volume: 22 start-page: 291 year: 2015 ident: ref_157 article-title: Hypoxia-Mediated Increases in l-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.021 – volume: 8 start-page: 1809 year: 2017 ident: ref_57 article-title: HIF is not essential for suppression of experimental tumor growth by mTOR inhibition publication-title: J. Cancer doi: 10.7150/jca.16486 – volume: 86 start-page: 188 year: 2005 ident: ref_163 article-title: Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2005.05.002 – volume: 105 start-page: 18782 year: 2008 ident: ref_80 article-title: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810199105 – volume: 458 start-page: 762 year: 2009 ident: ref_79 article-title: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism publication-title: Nature doi: 10.1038/nature07823 – volume: 9 start-page: 190099 year: 2019 ident: ref_181 article-title: The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? publication-title: Open Biol. doi: 10.1098/rsob.190099 – volume: 276 start-page: 543 year: 2014 ident: ref_192 article-title: AMP-activated protein kinase: A key regulator of energy balance with many roles in human disease publication-title: J. Intern. Med. doi: 10.1111/joim.12268 – volume: 128 start-page: 3053 year: 2018 ident: ref_62 article-title: Pharmacological induction of hypoxia-inducible transcription factor ARNT attenuates chronic kidney failure publication-title: J. Clin. Investig. doi: 10.1172/JCI89632 – volume: 15 start-page: 19791 year: 2014 ident: ref_6 article-title: Hypoxic signaling during tissue repair and regenerative medicine publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151119791 – ident: ref_180 doi: 10.3390/ijms21072428 – volume: 75 start-page: 2564 year: 2020 ident: ref_61 article-title: A novel colistin adjuvant identified by virtual screening for ArnT inhibitors publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkaa200 – volume: 451 start-page: 1008 year: 2008 ident: ref_206 article-title: HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha publication-title: Nature doi: 10.1038/nature06613 – volume: 224 start-page: 334 year: 2011 ident: ref_143 article-title: IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours publication-title: J. Pathol. doi: 10.1002/path.2913 – volume: 2 start-page: e1600200 year: 2016 ident: ref_95 article-title: Fundamentals of cancer metabolism publication-title: Sci. Adv. doi: 10.1126/sciadv.1600200 – volume: 66 start-page: 5121 year: 2006 ident: ref_104 article-title: Hypoxia increases androgen receptor activity in prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1341 – volume: 50 start-page: 44 year: 2010 ident: ref_28 article-title: The altered metabolism of tumors: HIF-1 and its role in the Warburg effect publication-title: Adv. Enzym. Regul. doi: 10.1016/j.advenzreg.2009.10.027 – volume: 18 start-page: 553 year: 2010 ident: ref_153 article-title: Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.11.015 – volume: 32 start-page: 3081 year: 2012 ident: ref_186 article-title: Cells Lacking the Fumarase Tumor Suppressor Are Protected from Apoptosis through a Hypoxia-Inducible Factor-Independent, AMPK-Dependent Mechanism publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06160-11 – volume: 133 start-page: 242 year: 2015 ident: ref_195 article-title: A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice publication-title: J. Neurochem. doi: 10.1111/jnc.13034 – volume: 389 start-page: 15 year: 1996 ident: ref_22 article-title: The allosteric regulation of pyruvate kinase publication-title: FEBS Lett. doi: 10.1016/0014-5793(96)00462-0 – volume: 6 start-page: 32428 year: 2016 ident: ref_167 article-title: The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells publication-title: Sci. Rep. doi: 10.1038/srep32428 – volume: 22 start-page: 2315 year: 2012 ident: ref_115 article-title: Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events publication-title: Genome Res. doi: 10.1101/gr.140988.112 – volume: 28 start-page: 773 year: 2015 ident: ref_150 article-title: Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.11.006 – volume: 7 start-page: e1445454 year: 2018 ident: ref_156 article-title: D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1445454 – volume: 108 start-page: 19611 year: 2011 ident: ref_54 article-title: Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117773108 – volume: 30 start-page: 662 year: 2010 ident: ref_205 article-title: Regulation of hypoxia-inducible genes by PGC-1 alpha publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.181636 – volume: 21 start-page: 282 year: 2002 ident: ref_14 article-title: A protective role for HIF-1 in response to redox manipulation and glucose deprivation: Implications for tumorigenesis publication-title: Oncogene doi: 10.1038/sj.onc.1205047 – volume: 291 start-page: 20188 year: 2016 ident: ref_166 article-title: Acidic pH is a metabolic switch for 2-Hydroxyglutarate generation and signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.738799 – volume: 108 start-page: 16369 year: 2011 ident: ref_43 article-title: Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1113483108 – volume: 22 start-page: 508 year: 2015 ident: ref_200 article-title: 2-hydroxyglutarate inhibits ATP synthase and mTOR Signaling publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.009 – volume: 48 start-page: 297 year: 1990 ident: ref_75 article-title: Is Glutamine a Conditionally Essential Amino Acid? publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.1990.tb02967.x – volume: 1401 start-page: 242 year: 1998 ident: ref_19 article-title: Evolution and regulatory role of the hexokinases publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4889(97)00150-X – volume: 67 start-page: 563 year: 2007 ident: ref_41 article-title: Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2701 – volume: 33 start-page: 903 year: 2020 ident: ref_140 article-title: 2-Hydroxyglutarate in Cancer Cells publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2019.7902 – volume: 94 start-page: 8104 year: 1997 ident: ref_13 article-title: Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.15.8104 – volume: 496 start-page: 101 year: 2013 ident: ref_73 article-title: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway publication-title: Nature doi: 10.1038/nature12040 – volume: 76 start-page: 211 year: 2011 ident: ref_21 article-title: Control of glycolysis through regulation of PFK1: Old friends and recent additions publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2011.76.010868 – volume: 15 start-page: 1572 year: 2008 ident: ref_198 article-title: Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L publication-title: Cell Death Differ. doi: 10.1038/cdd.2008.84 – volume: 65 start-page: 125 year: 2015 ident: ref_172 article-title: Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2015.05.012 – volume: 128 start-page: 323 year: 2018 ident: ref_177 article-title: ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming publication-title: J. Clin. Investig. doi: 10.1172/JCI93815 – volume: 292 start-page: 9191 year: 2017 ident: ref_130 article-title: Identification of a multienzyme complex for glucose metabolism in living cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.783050 – volume: 10 start-page: 40 year: 2019 ident: ref_85 article-title: Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1291-5 – volume: 36 start-page: 397 year: 2017 ident: ref_64 article-title: Nutrient sensing and TOR signaling in yeast and mammals publication-title: EMBO J. doi: 10.15252/embj.201696010 – volume: 43 start-page: 602 year: 2017 ident: ref_84 article-title: Increased Expression of Glutaminase in Osteoblasts Promotes Macrophage Recruitment in Periapical Lesions publication-title: J. Endod. doi: 10.1016/j.joen.2016.11.005 – volume: 160 start-page: 393 year: 2015 ident: ref_60 article-title: Extracellular metabolic energetics can promote cancer progression publication-title: Cell doi: 10.1016/j.cell.2014.12.018 – volume: 599 start-page: 23 year: 2021 ident: ref_1 article-title: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology publication-title: J. Physiol. doi: 10.1113/JP280572 – volume: 23 start-page: 517 year: 2016 ident: ref_78 article-title: Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.01.007 – volume: 27 start-page: 281 year: 2018 ident: ref_30 article-title: Advances in Hypoxia-Inducible Factor Biology publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.10.005 – volume: 16 start-page: 415 year: 2014 ident: ref_171 article-title: A joint analysis of metabolomics and genetics of breast cancer publication-title: Breast Cancer Res. doi: 10.1186/s13058-014-0415-9 – volume: 21 start-page: 3436 year: 2001 ident: ref_27 article-title: Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.10.3436-3444.2001 – volume: 292 start-page: 468 year: 2001 ident: ref_33 article-title: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation publication-title: Science doi: 10.1126/science.1059796 – volume: 36 start-page: 1302 year: 2017 ident: ref_65 article-title: Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine publication-title: EMBO J. doi: 10.15252/embj.201696151 – volume: 502 start-page: 333 year: 2013 ident: ref_116 article-title: Mutational landscape and significance across 12 major cancer types publication-title: Nature doi: 10.1038/nature12634 – volume: 124 start-page: 398 year: 2014 ident: ref_174 article-title: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis publication-title: J. Clin. Investig. doi: 10.1172/JCI71180 – volume: 104 start-page: 7933 year: 2007 ident: ref_210 article-title: A fundamental system of cellular energy homeostasis regulated by PGC-1α publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0702683104 – volume: 14 start-page: 30 year: 2021 ident: ref_112 article-title: The emerging role of KDM5A in human cancer publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-021-01041-1 – volume: 152 start-page: 54 year: 2015 ident: ref_149 article-title: Metabolic consequences of oncogenic IDH mutations publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2015.05.003 – volume: 116 start-page: 6964 year: 2019 ident: ref_70 article-title: Deprivation of glutamine in cell culture reveals its potential for treating cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1815968116 – volume: 271 start-page: 32529 year: 1996 ident: ref_51 article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.51.32529 – volume: 100 start-page: 986 year: 2003 ident: ref_124 article-title: Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0337412100 – volume: 23 start-page: 7315 year: 2003 ident: ref_132 article-title: Akt-Directed Glucose Metabolism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.20.7315-7328.2003 – volume: 1865 start-page: 158738 year: 2020 ident: ref_93 article-title: Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA publication-title: Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids – volume: 20 start-page: 895 year: 2017 ident: ref_99 article-title: Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.06.082 – volume: 569 start-page: 293 year: 2004 ident: ref_125 article-title: Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1α in adult mouse brain and heart in vivo publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.05.079 – volume: 125 start-page: 541 year: 2019 ident: ref_142 article-title: Isocitrate dehydrogenase 1 and 2 mutations, 2-hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia publication-title: Cancer doi: 10.1002/cncr.31729 – volume: 60 start-page: 7075 year: 2000 ident: ref_44 article-title: Hypoxia-inducible expression of tumor-associated carbonic anhydrases publication-title: Cancer Res. – volume: 181 start-page: 1329 year: 2020 ident: ref_121 article-title: Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma publication-title: Cell doi: 10.1016/j.cell.2020.04.047 – volume: 41 start-page: 211 year: 2016 ident: ref_17 article-title: The Warburg Effect: How Does it Benefit Cancer Cells? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.12.001 – volume: 462 start-page: 385 year: 2014 ident: ref_106 article-title: Chromatin and oxygen sensing in the context of JmjC histone demethylases publication-title: Biochem. J. doi: 10.1042/BJ20140754 – volume: 21 start-page: 2896 year: 2017 ident: ref_90 article-title: HIF-2α regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13202 – volume: 19 start-page: 17 year: 2011 ident: ref_152 article-title: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.12.014 – volume: 5 start-page: 1432260 year: 2018 ident: ref_176 article-title: ADHFE1 is a MYC-linked oncogene that induces metabolic reprogramming and cellular de-differentiation in breast cancer publication-title: Mol. Cell. Oncol. doi: 10.1080/23723556.2018.1432260 – volume: 23 start-page: 1949 year: 2004 ident: ref_87 article-title: HIF-1α induces cell cycle arrest by functionally counteracting Myc publication-title: EMBO J. doi: 10.1038/sj.emboj.7600196 – volume: 10 start-page: 295 year: 2008 ident: ref_40 article-title: Direct regulation of TWIST by HIF-1α promotes metastasis publication-title: Nat. Cell Biol. doi: 10.1038/ncb1691 – volume: 286 start-page: 4718 year: 2011 ident: ref_98 article-title: Small Ubiquitin-related Modifier (SUMO)-1 promotes glycolysis in hypoxia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.115931 – volume: 38 start-page: 5003 year: 2020 ident: ref_11 article-title: Phase II study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau disease–associated renal cell carcinoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.5003 – volume: 105 start-page: 7821 year: 2008 ident: ref_209 article-title: Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711677105 – volume: 10 start-page: 1 year: 2019 ident: ref_213 article-title: Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation publication-title: Nat. Commun. doi: 10.1038/s41467-019-12103-x – volume: 26 start-page: 830 year: 2017 ident: ref_72 article-title: In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.10.001 – volume: 29 start-page: 2570 year: 2009 ident: ref_53 article-title: Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00166-09 – volume: 27 start-page: 802 year: 2021 ident: ref_10 article-title: Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis publication-title: Nat. Med. doi: 10.1038/s41591-021-01324-7 – volume: 25 start-page: 1 year: 2007 ident: ref_107 article-title: Dynamic Regulation of Histone Lysine Methylation by Demethylases publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.12.010 – volume: 9 start-page: e48480 year: 2020 ident: ref_128 article-title: RNA promotes phase separation of glycolysis enzymes into yeast g bodies in hypoxia publication-title: Elife doi: 10.7554/eLife.48480 – volume: 21 start-page: 6 year: 2019 ident: ref_9 article-title: HIF Inhibitors: Status of Current Clinical Development publication-title: Curr. Oncol. Rep. doi: 10.1007/s11912-019-0752-z – ident: ref_16 doi: 10.1186/1471-2407-11-198 – volume: 22 start-page: 304 year: 2015 ident: ref_161 article-title: Hypoxia Induces Production of L-2-Hydroxyglutarate publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.023 – volume: 3 start-page: 177 year: 2006 ident: ref_49 article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.02.002 – volume: 22 start-page: 215 year: 2018 ident: ref_141 article-title: The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas publication-title: Współczesna Onkol. doi: 10.5114/wo.2018.82642 – volume: 17 start-page: 1556 year: 2015 ident: ref_67 article-title: Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma publication-title: Nat. Cell Biol. doi: 10.1038/ncb3272 – volume: 115 start-page: E3978 year: 2018 ident: ref_120 article-title: In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716589115 – volume: 105 start-page: 4 year: 2010 ident: ref_105 article-title: Epigenetics and gene expression publication-title: Heredity doi: 10.1038/hdy.2010.54 – volume: 363 start-page: 1217 year: 2019 ident: ref_110 article-title: Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate publication-title: Science doi: 10.1126/science.aaw1026 – ident: ref_12 – volume: 88 start-page: 5680 year: 1991 ident: ref_214 article-title: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.13.5680 – volume: 11 start-page: 329 year: 2010 ident: ref_131 article-title: The emerging mechanisms of isoform-specific PI3K signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2882 – volume: 33 start-page: 237 year: 2009 ident: ref_184 article-title: Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.12.026 – volume: 33 start-page: 512 year: 2018 ident: ref_119 article-title: Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.02.003 – volume: 276 start-page: 22368 year: 2001 ident: ref_133 article-title: Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells. Protective role in apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M011688200 – volume: 12 start-page: 149 year: 1998 ident: ref_25 article-title: Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1α publication-title: Genes Dev. doi: 10.1101/gad.12.2.149 – volume: 39 start-page: 1140 year: 2020 ident: ref_114 article-title: A novel KDM5A/MPC-1 signaling pathway promotes pancreatic cancer progression via redirecting mitochondrial pyruvate metabolism publication-title: Oncogene doi: 10.1038/s41388-019-1051-8 – volume: 106 start-page: 2188 year: 2009 ident: ref_204 article-title: PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808801106 – volume: 19 start-page: 285 year: 2014 ident: ref_94 article-title: Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.11.022 – volume: 64 start-page: 3500 year: 2004 ident: ref_134 article-title: Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-2239 |
SSID | ssj0000816105 |
Score | 2.4997623 |
SecondaryResourceType | review_article |
Snippet | In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2371 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase Adenosine triphosphate AKT protein AMP-activated protein kinase Angiogenesis Autophagy Binding sites Cancer cancer metabolism Carbohydrate metabolism Clinical trials Creatine creatine metabolism Dehydrogenases Drug resistance Enzymes Epigenetics Genomics Glucose Glucose metabolism Glutamine glycolysis Hypoxia Hypoxia-inducible factor 1 Hypoxia-inducible factor 1a hypoxia-inducible factor-1 (HIF-1) Kinases Lipid metabolism Metabolism Metastasis Microenvironments Myc Myc protein Phosphorylation Post-translation Protein turnover Review Signal transduction Solid tumors Transcription factors Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA8iHPhy3IdiT--ocPhksc1Xk0dvuWU98B5EwbfSJBNc0O6yW0H_e2faumwfjnvxNRlIOjPJb6ZJfsPYT2tAWiEhq4XCBKV2MnM56Awsj9pFbZSnx8lXf_XsVv65U3dbpb7oTlhPD9wr7ry2RgULAnE2xw0XbPQGdC2k4-SbHdk2Yt5WMtXtwQYjmVz1pJoC8_pz-g--LohiSJTFCIQ6rv5RgDm-HrmFN9NP7OMQKKYX_QQ_sx1ovrAPfenIl6_sZnY5xbzsclPFtk2vgF7xzteP6_S6rzCPsIStLdr5Ye7Ti1Av-4P3dN6ks5fl4hlbJ2T2VTqhie-z2-nvm8ksGyokZF5x2WYBwdxAYSHYIvrgZGkgN9FgqolK85grRGucj7KWvAxWh5yOEU3MBXBtjRcHbLdZNHDI0iAKHVTkyiBge146EXVU1udFdFA4SNjZm8oqP9CHUxWLhwrTCNJwNdJwwk434sueN-Nfgr9I_xshorvuGtAJqsEJqv85QcKO36xXDWtwXVEqhcOpskzYyaYbVw-NXzeweOpkUFXGSpOwcmT10YTGPc38vuPhRmDnUptv7_EFR2yP020ZOqqyx2y3XT3Bdwx3Wvej8-xX0NX9wQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvIemDuk2LC6WnmtjWw9IpJEuWTSGhhARyM9arXUjs7dqB5N93xta69SG9SjKSZ6R5SvMR8kVJxxRlLqkoBwel0izRqROJU7kX2gvJDT5OPr8Qy2v2_YbfhIBbG65VbmViL6htYzBGfoiGMfjnvCiO1r8TRI3C7GqA0HhOdkAESzkjOyenFz8uxygLwkqABTEU16Tw_SHGw9sMSw3RIpsoo75m_8TQnF6T_EfvLPbIbjAY4-OBw_vkmatfkRcDhOTja3K1PFuAf3Y2otl28bnD17yr9q6NLwekeVBP0NoBv29XJj621XpIwMerOl4-rpsHaJ0j-zfxHBf-hlwvTq_myyQgJSSG56xLLCh16TLlrMq8sZoV0qXSS3A5uVUGfAavpDaeVSwvrBI2xXSi9Cl1uVDS0LdkVje1e0diSzNhuc-5BMVt8kJTLzxXJs28dpl2Efm2JVlpQhlxRLO4LcGdQAqXEwpH5Os4fD3Uz3hq4AnSfxyEZa_7hmbzswynqKyUhP9xFIyuFLSvU95IJyrKdI6CSkTkYMu9MpzFtvy7cyLyeeyGU4TzV7Vr7vsxQCqpmIxIMeH6ZEHTnnr1q6_HDQo-Z0K-___kH8jLHO_DYDJKHZBZt7l3H8Gg6fSnsGv_AFtr97s priority: 102 providerName: ProQuest |
Title | HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells |
URI | https://www.proquest.com/docview/2576390577 https://www.proquest.com/docview/2577458948 https://pubmed.ncbi.nlm.nih.gov/PMC8472468 https://doaj.org/article/a985d9e37270413e9fc8e6a34b230116 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBejZbCX0e6DeeuCB2NP82bry9LDKG1oSAcpozTQN2N9rYHMyRIXmv--d7aT1myDvUqHZJ9O-t1PH3eEfNTKc824T0omgKCUhicm9TLxmgZpglTC4uPkyYUcT_n3a3H9EFKoU-D6r9QO80lNV_Mvd783xzDhvyHjBMr-Fbe41xlGD2L4mnwfQCnHZAaTztNvFmUFrk1zoZGCUSccaE0bcfPPFnoI1QTy73mf_buTj8BodECed15kfNIO-yF54qsX5GmbV3LzklyNz0dA2s53KW7reOLxie9s_WsdX7bp5wGzoLQGI5jPbHziymV7Kh_Pqni8WS7uoHSINrGKh_jhr8h0dHY1HCdd-oTECsrrxAHSK59p73QWrDM8Vz5VQQEPFU5bIBJBK2MDLznNnZYuxTNGFVLmqdTKstdkr1pU_g2JHcukE4EKBWhuaW5YkEFom2bB-Mz4iHzeqqywXWxxTHExL4BjoIaLnoYj8mknvmyDavxL8BT1vxPCWNhNwWL1s-imVlFqBf_jGXhiKUCy18EqL0vGDcXVS0bkaDt6xda-CuRZ0J3I84h82FXD1ML-y8ovbhsZUJXSXEUk741674P6NdXspgnSDahPuVRv_6P1d-QZxZsyeEylj8hevbr178HVqc2A7J-eXfy4HDRbBYPGpO8BaeT_zw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheED9FxoAgAU9ES2zHsR8Q2sqqlq0VmjppbyFxbKi0JaXtBP2n-Bu5a9JAHuBtr7YVO-ez7zuffR_Aa62s0FzYIOMxOihZLoI8tDKwmjmZO6liQ4-TxxM5PBefLuKLHfi1fQtD1yq3e-Jmoy4qQ2fkBwSM0T-Pk-TD_HtArFEUXd1SaNRqcWLXP9BlW74ffcT5fcPY4HjaHwYNq0BgYiZWQYEGUNlI20JHzhS5SJQNlVPonsWFNoivnVa5cSITLCm0LEIKvSkXcsukVobjd2_BruAyZD3YPTqefD5rT3WIxgIRS53Mk-N4D-j8fRlRaiOeRB3jt-EI6ADb7rXMv-zc4D7cawCqf1hr1APYseVDuF1TVq4fwXQ4GqA_OGrZc1f-2NLr4dnyaumf1cz2aA6xdIX6dTkz_mGRzeuAvz8r_eF6Xv3E0j6p28Lv08Afw_mNyPAJ9MqqtE_BL3gki9ixWCFQMCzJuZMu1iaMXG6j3Hrwbiuy1DRpy4k94zJF94UknHYk7MHbtvm8ztfxr4ZHJP-2EaXZ3hRUi69ps2rTTCv8H8sR5IVo7a12RlmZcZEz2hilB_vb2Uubtb9M_2iqB6_aaly11H9W2up60wZFpbRQHiSdWe8MqFtTzr5t8n8joGBCqr3_d_4S7gyn49P0dDQ5eQZ3Gd3FoUCY3ofeanFtnyOYWuUvGg324ctNL5rfr98z_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81pUCQgBPRJo7j2AeE2m1Xu5SuqqqVeguJY8NKJdnupoL9a_w6ZjYPyAFuvdpW7IzHnm889nwAb5Q0XIXceGkYoYOSZtzLfCM8o5gVmRUy0vQ4-WQmJhf802V0uQW_2rcwdK2y3RM3G3VeajojHxIwRv88iuOhba5FnB6OPy6uPWKQokhrS6dRq8ixWf9A9231YXqIc_2WsfHR-WjiNQwDno4Yr7wcjaE0gTK5CqzOMx5L40sr0VWLcqURa1slM215ylmcK5H7FIaT1g8NE0rqEL97B7Zj8ooGsH1wNDs96054iNIC0Uud2DPEsQ_pLH4VUJqjMA56hnDDF9ADuf0rmn_ZvPFDeNCAVXe_1q5HsGWKx3C3pq9cP4HzyXSMvuG0Y9Kt3BNDL4nnq-8r96xmuUfTiKUV6trVXLv7ebqog__uvHAn60X5E0tHpHpLd0QDfwoXtyLDZzAoysLsgJuHgcgjyyKJoEGzOAutsJHSfmAzE2TGgfetyBLdpDAnJo2rBF0ZknDSk7AD77rmizp3x78aHpD8u0aUcntTUC6_Js0KTlIl8X9MiIDPR8tvlNXSiDTkGaNNUjiw185e0uwDq-SP1jrwuqvGFUz9p4UpbzZtUFRScelA3Jv13oD6NcX82yYXOIILxoXc_X_nr-AeLpbk83R2_BzuM7qWQzExtQeDanljXiCuqrKXjQK78OW218xv0zU4Mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIF-1-Independent+Mechanisms+Regulating+Metabolic+Adaptation+in+Hypoxic+Cancer+Cells&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Shen-Han&rft.au=Golinska%2C+Monika&rft.au=Griffiths%2C+John+R&rft.date=2021-09-09&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fcells10092371&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |