Hierarchical Bayes methods for systems with spatially varying condition states

In engineering decision making, we often face problems where the conditions governing certain response models vary spatially. In such cases, the use of hierarchical Bayesian models is often beneficial. Such models are based on a "condition state" vector that is assumed to be conditionally...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of civil engineering Vol. 34; no. 10; pp. 1289 - 1298
Main Authors Maes, Marc A, Dann, Markus
Format Journal Article
LanguageEnglish
Published Ottawa, Canada NRC Research Press 01.10.2007
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In engineering decision making, we often face problems where the conditions governing certain response models vary spatially. In such cases, the use of hierarchical Bayesian models is often beneficial. Such models are based on a "condition state" vector that is assumed to be conditionally independent given a set of "hyper-parameters." All other process parameters are then conditional on this state variable vector. Such models can be applied to a large variety of problems where data from various systems or sources need to be spatially "mixed," such as in deteriorating infrastructure, spatial aspects of corrosion, preference and consequence modeling, and system failure models for large industrial plants. The models are especially useful for performing statistical inference and for updating in the context of life-cycle optimization, optimal inspection, and maintenance planning. A detailed extension is explored that allows for the spatial correlation of the individual "states" given the hyper-parameters. This allows an efficient posterior assessment of high-level upcrossing rates for the purpose of risk analysis.Key words: spatially distributed processes, hierarchical Bayes models, statistical inference for large systems, spatial correlation.
AbstractList In engineering decision making, we often face problems where the conditions governing certain response models vary spatially. In such cases, the use of hierarchical Bayesian models is often beneficial. Such models are based on a 'condition state' vector that is assumed to be conditionally independent given a set of 'hyper-parameters.' All other process parameters are then conditional on this state variable vector. Such models can be applied to a large variety of problems where data from various systems or sources need to be spatially 'mixed,'such as in deteriorating infrastructure, spatial aspects of corrosion, preference and consequence modeling, and system failure models for large industrial plants. The models are especially useful for performing statistical inference and for updating in the context of life-cycle optimization, optimal inspection, and maintenance planning. A detailed extension is explored that allows for the spatial correlation of the individual 'states' given the hyper-parameters. This allows an efficient posterior assessment of high-level upcrossing rates for the purpose of risk analysis.
In engineering decision making, we often face problems where the conditions governing certain response models vary spatially. In such cases, the use of hierarchical Bayesian models is often beneficial. Such models are based on a “condition state” vector that is assumed to be conditionally independent given a set of “hyper-parameters.” All other process parameters are then conditional on this state variable vector. Such models can be applied to a large variety of problems where data from various systems or sources need to be spatially “mixed,” such as in deteriorating infrastructure, spatial aspects of corrosion, preference and consequence modeling, and system failure models for large industrial plants. The models are especially useful for performing statistical inference and for updating in the context of life-cycle optimization, optimal inspection, and maintenance planning. A detailed extension is explored that allows for the spatial correlation of the individual “states” given the hyper-parameters. This allows an efficient posterior assessment of high-level upcrossing rates for the purpose of risk analysis.Key words: spatially distributed processes, hierarchical Bayes models, statistical inference for large systems, spatial correlation.
In engineering decision making, we often face problems where the conditions governing certain response models vary spatially. In such cases, the use of hierarchical Bayesian models is often beneficial. Such models are based on a "condition state" vector that is assumed to be conditionally independent given a set of "hyper-parameters." All other process parameters are then conditional on this state variable vector. Such models can be applied to a large variety of problems where data from various systems or sources need to be spatially "mixed," such as in deteriorating infrastructure, spatial aspects of corrosion, preference and consequence modeling, and system failure models for large industrial plants. The models are especially useful for performing statistical inference and for updating in the context of life-cycle optimization, optimal inspection, and maintenance planning. A detailed extension is explored that allows for the spatial correlation of the individual "states" given the hyper-parameters. This allows an efficient posterior assessment of high-level upcrossing rates for the purpose of risk analysis. [PUBLICATION ABSTRACT]
Abstract_FL Lors de la prise de décisions d'ingénierie, nous sommes souvent confrontés à des problèmes pour lesquels les conditions régissant certains modèles de réponse varient dans l'espace. Dans de tels cas, il est souvent bénéfique d'utiliser les modèles hiérarchiques bayesiens. Ces modèles sont basés sur un vecteur « d'état » qui est présumé conditionnellement indépendant pour un ensemble « d'hyper-paramètres » choisi. Tous les autres paramètres du procédé dépendent ensuite de ce vecteur variable d'état. De tels modèles peuvent être utilisés sur une grande plage de problèmes où les données provenant de divers systèmes ou sources doivent être « mélangées » dans l'espace, comme dans le cas d'une infrastructure se détériorant, les aspects spatiaux de la corrosion, la modélisation des préférences et des conséquences, ainsi que les modèles de défaillance des systèmes pour les grandes usines industrielles. Les modèles sont particulièrement utiles pour réaliser une inférence statistique ainsi que pour les mises à jour dans le contexte d'optimisation du cycle de vie, d'inspection optimale et de planification de la maintenance. Une extension détaillée est étudiée qui permet la corrélation spatiale des « états » individuels pour les hyper-paramètres donnés. Cela permet une évaluation efficace a posteriori des taux élevés de passages ascendants (« upcrossing ») aux fins d'analyse des risques.Mots-clés : procédés distribués dans l'espace, modèles hiérarchiques bayesiens, inférence statistique de grands systèmes, corrélation spatiale.[Traduit par la Rédaction]
Audience Academic
Author Maes, Marc A
Dann, Markus
Author_xml – sequence: 1
  givenname: Marc A
  surname: Maes
  fullname: Maes, Marc A
– sequence: 2
  givenname: Markus
  surname: Dann
  fullname: Dann, Markus
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19943456$$DView record in Pascal Francis
BookMark eNqV0m1rFDEQAOAgFbxW8S8sgpUKW_O22-RjW6otlAq-fA7Z3OxdSjY5Mzn1_r057kAqVZCQBMKTIZmZQ3IQUwRCXjJ6ypjQ7wI9a6nUT8iMcarannJ9QGZUsK5lslfPyCHiPaWMCqFn5O7aQ7bZLb2zobmwG8BmgrJMc2zGlBvcYIEJmx--LBtc2eJtCJvmu80bHxeNS3Hui0-xwWIL4HPydLQB4cV-PyJf3199ubxubz9-uLk8v21dx2VpB1ASNNdgOXNMK6c6QXtQlkNdJddaD053wvWDtEzAODg1WD6osX6Ry0EckeNd3FVO39aAxUweHYRgI6Q1GsHOeiV7VuGrP-B9WudY32Y4E7JOzStqd2hhAxgfx1SydQuINTWhZnf09fh8G5Ip1anqTx_xdcxh8u7RCycPLlRT4GdZ2DWiufn86T_s3UP7ZmddTogZRrPKfqq1MYyabTeY2g2mdkOVr_d5sFgrPWYbncffXGspZNdX93bnYnYZELat8Y-gx3_He2RW81H8AlahztU
CODEN CJCEB8
CitedBy_id crossref_primary_10_1016_j_upstre_2020_100008
crossref_primary_10_1080_15732479_2013_821139
crossref_primary_10_1016_j_marstruc_2022_103271
crossref_primary_10_1016_j_oceaneng_2021_108852
crossref_primary_10_1016_j_strusafe_2016_09_002
crossref_primary_10_1016_j_strusafe_2016_03_004
crossref_primary_10_1016_j_strusafe_2018_08_002
crossref_primary_10_3390_s22186777
Cites_doi 10.1080/02286203.2003.11442254
10.1111/j.1539-6924.1987.tb00468.x
10.1115/1.1491973
10.1016/j.ress.2004.10.016
10.1111/j.1467-8667.2006.00429.x
10.1016/S0951-8320(99)00016-2
10.1016/S0304-3800(01)00328-3
10.1016/j.ress.2005.04.003
ContentType Journal Article
Copyright 2008 INIST-CNRS
COPYRIGHT 2007 NRC Research Press
Copyright National Research Council of Canada Oct 2007
Copyright_xml – notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2007 NRC Research Press
– notice: Copyright National Research Council of Canada Oct 2007
DBID IQODW
AAYXX
CITATION
ISN
ISR
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7SE
JG9
DOI 10.1139/l07-049
DatabaseName Pascal-Francis
CrossRef
Gale In Context: Canada
Gale In Context: Science
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Corrosion Abstracts
Materials Research Database
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database
CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1208-6029
EndPage 1298
ExternalDocumentID 1385708021
A176818858
10_1139_l07_049
19943456
Genre Article
Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID 02
0R
29B
3V.
4.4
4IJ
4S
5GY
5RP
88I
8FQ
8RP
AAIKC
ABDBF
ABJCF
ABPTK
ABUWG
ACGFS
ACGOD
ACIWK
ADKZR
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BEC
BENPR
BGLVJ
BPHCQ
CAG
COF
CS3
D8U
DU5
EAD
EAP
EAS
EBS
ECC
EDH
EDO
EJD
EMK
EPL
EST
ESX
HCIFZ
HZ
I-F
IAO
ICQ
IEA
IOF
ISN
ISR
ITC
L7B
M2P
MV1
N95
NRXXU
O9-
OVD
P2P
PATMY
PYCSY
QF4
QM1
QN7
QO4
QRP
RIG
RRP
TAE
TUS
U5U
X
XHC
-~X
..I
.4S
.DC
00T
0R~
2QL
6J9
7XC
8AF
8FE
8FG
8FH
AAMNW
AAYJJ
ACGFO
AEGXH
AFKRA
AIAGR
AZQEC
BCR
BCU
BES
BHPHI
BLC
CCPQU
DATHI
DWQXO
GNUQQ
HZ~
IPNFZ
IQODW
L6V
M2Q
M3C
M3E
M3G
M7S
NMEPN
NYCZX
ONR
PEA
PQQKQ
PROAC
PTHSS
PV9
RRCRK
RZL
SJFOW
TEORI
VQG
~02
AAYXX
ABJNI
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7SE
JG9
ID FETCH-LOGICAL-c524t-be84e929ea21c198c85306e8a2e6e842999bc953c6b4a13efbc8ba2b8f11324b3
ISSN 0315-1468
IngestDate Fri Aug 16 07:29:09 EDT 2024
Fri Sep 13 03:09:35 EDT 2024
Wed Oct 02 03:41:10 EDT 2024
Fri Feb 02 04:41:16 EST 2024
Sat Sep 28 21:23:48 EDT 2024
Thu Aug 01 19:20:50 EDT 2024
Fri Aug 23 03:06:38 EDT 2024
Sun Oct 22 16:07:34 EDT 2023
Wed Nov 11 00:34:09 EST 2020
Thu May 23 14:05:02 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Markov chain
Monte Carlo method
Spatial distribution
Decision making
Example
Large system
Bayes forecasting
Statistical decision
Hierarchical system
Civil engineering
Method study
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-be84e929ea21c198c85306e8a2e6e842999bc953c6b4a13efbc8ba2b8f11324b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 213421392
PQPubID 47617
PageCount 10
ParticipantIDs proquest_miscellaneous_31768461
gale_infotracgeneralonefile_A176818858
gale_infotracacademiconefile_A176818858
gale_incontextgauss_ISN_A176818858
gale_incontextgauss_ISR_A176818858
crossref_primary_10_1139_l07_049
pascalfrancis_primary_19943456
nrcresearch_primary_10_1139_l07_049
proquest_journals_213421392
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Ottawa, Canada
PublicationPlace_xml – name: Ottawa, Canada
– name: Ottawa, ON
– name: Ottawa
PublicationTitle Canadian journal of civil engineering
PublicationTitleAlternate Canadian Journal of Civil Engineering
PublicationYear 2007
Publisher NRC Research Press
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: National Research Council of Canada
– name: Canadian Science Publishing NRC Research Press
References Maes M.A. (p_13/p_13_1) 2003; 23
Faber M.H. (p_6/p_6_1) 2006; 21
Vaurio J.K. (p_21/p_21_1) 1987; 17
Borsuk M. (p_2/p_2_1) 2001; 143
Maes M.A. (p_12/p_12_1) 2002; 124
Bunea C. (p_3/p_3_1) 2005; 90
Hofer E. (p_9/p_9_1) 1999; 67
Maes M.A. (p_14/p_14_1) 2006; 91
References_xml – volume: 23
  start-page: 43
  issue: 1
  year: 2003
  ident: p_13/p_13_1
  publication-title: International Journal of Modelling and Simulation
  doi: 10.1080/02286203.2003.11442254
  contributor:
    fullname: Maes M.A.
– volume: 17
  start-page: 329
  issue: 3
  year: 1987
  ident: p_21/p_21_1
  publication-title: Risk Analysis
  doi: 10.1111/j.1539-6924.1987.tb00468.x
  contributor:
    fullname: Vaurio J.K.
– volume: 124
  start-page: 239
  issue: 4
  year: 2002
  ident: p_12/p_12_1
  publication-title: Journal of Offshore Mechanics and Arctic Engineering, ASME
  doi: 10.1115/1.1491973
  contributor:
    fullname: Maes M.A.
– volume: 90
  start-page: 123
  year: 2005
  ident: p_3/p_3_1
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2004.10.016
  contributor:
    fullname: Bunea C.
– volume: 21
  start-page: 216
  issue: 3
  year: 2006
  ident: p_6/p_6_1
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2006.00429.x
  contributor:
    fullname: Faber M.H.
– volume: 67
  start-page: 97
  year: 1999
  ident: p_9/p_9_1
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(99)00016-2
  contributor:
    fullname: Hofer E.
– volume: 143
  start-page: 165
  year: 2001
  ident: p_2/p_2_1
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(01)00328-3
  contributor:
    fullname: Borsuk M.
– volume: 91
  start-page: 556
  issue: 5
  year: 2006
  ident: p_14/p_14_1
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.04.003
  contributor:
    fullname: Maes M.A.
SSID ssj0010339
Score 1.8507769
Snippet In engineering decision making, we often face problems where the conditions governing certain response models vary spatially. In such cases, the use of...
SourceID proquest
gale
crossref
pascalfrancis
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1289
SubjectTerms Applied sciences
Bayesian analysis
Bayesian statistical decision theory
Buildings. Public works
Civil engineering
Computation methods. Tables. Charts
Correlation analysis
Decision analysis
Evaluation
Exact sciences and technology
Industrial plants
Infrastructure
Methods
Methods engineering
Project management. Process of design
Spatial analysis (Statistics)
Statistical inference
Structural analysis. Stresses
Title Hierarchical Bayes methods for systems with spatially varying condition states
URI http://www.nrcresearchpress.com/doi/abs/10.1139/l07-049
https://www.proquest.com/docview/213421392/abstract/
https://search.proquest.com/docview/31768461
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgfWEPiE9RBsMCBA9VWPPhNH5cN6aCtD6MTdpbZDvOqFSlU9NOKn89d_EtH9BJg4dGUXKKXd8v57Nz9zvGPlqYYsMsT7zcCOFFRktPAXA8A9PTKLNhNtK4oX86jScX0fdLcdmUO6qyS1b6i_m1Na_kf7QK10CvmCX7D5qtHwoX4Bz0C0fQMBzvpePJDNOHq2om88FYbWxJFaErkgViaab8tRJDp9V8vhncqOXGpdri52pUf5VVVLb91Jq0oMUsYWY3s_nANgSGzW62szWnmPdfI-KYyi9jNtAfuwujOk6Ngi_OjuoQwE5QSJVw5QsPM7fcVOLsZzBMvHhImxhkYGm3koA0bJlLmBzldjseIg3qHLdRHaNplyn7249p9yIx-MLayU8SkTxkvWAkBSzGe4fj4_FJr6lpUdWWq7vu0qixuQNqrOOf0Cy9WywNcS_9xOBZVYJac1f45K85vHJMzp-wx7Si4IcOHk_ZA1s8Y7stnsnnbNoGCq-AwgkoHIDCCSgcgcJroHACCq-Bwh1QXrCLk6_nRxOPCml4RgTRytM2iSz4wVYFvvFlYsBHG8Y2UYGFI3okUhspQhPrSPmhzbVJtAp0ksPIBJEOX7KdYlHYV4xLkfvKqEBkoyzK4TxXuOQNAjQFkZF9xm-HL712fClptc4MZQojnMII99l7HNYU2UcKDG-6UuuyTEGnaaPBO4XOOkKfSShfrJbQLUopga4iq1lH8lNH8spxum8T_NBS9t1_4d02KbqbXmd5n-13YNI8SSIjo4j7bO8WNym9ymWK9IrwkwE0UN8Fe48f8VRhF-syDbGrUey_vs8o7rFHzUv9hu2slmv7Fpzold6nN-M3P0PMXA
link.rule.ids 315,786,790,27957,27958
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Bayes+methods+for+systems+with+spatially+varying+condition+states&rft.jtitle=Canadian+journal+of+civil+engineering&rft.au=Maes%2C+Marc+A&rft.au=Dann%2C+Markus&rft.date=2007-10-01&rft.pub=NRC+Research+Press&rft.issn=0315-1468&rft.eissn=1208-6029&rft.volume=34&rft.issue=10&rft.spage=1289&rft_id=info:doi/10.1139%2Fl07-049&rft.externalDBID=ISN&rft.externalDocID=A176818858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0315-1468&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0315-1468&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0315-1468&client=summon