SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering
Nonnegative matrix factorization (NMF) provides a lower rank approximation of a matrix by a product of two nonnegative factors. NMF has been shown to produce clustering results that are often superior to those by other methods such as K-means. In this paper, we provide further interpretation of NMF...
Saved in:
Published in | Journal of global optimization Vol. 62; no. 3; pp. 545 - 574 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2015
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonnegative matrix factorization (NMF) provides a lower rank approximation of a matrix by a product of two nonnegative factors. NMF has been shown to produce clustering results that are often superior to those by other methods such as K-means. In this paper, we provide further interpretation of NMF as a clustering method and study an extended formulation for graph clustering called Symmetric NMF (SymNMF). In contrast to NMF that takes a data matrix as an input, SymNMF takes a nonnegative similarity matrix as an input, and a symmetric nonnegative lower rank approximation is computed. We show that SymNMF is related to spectral clustering, justify SymNMF as a general graph clustering method, and discuss the strengths and shortcomings of SymNMF and spectral clustering. We propose two optimization algorithms for SymNMF and discuss their convergence properties and computational efficiencies. Our experiments on document clustering, image clustering, and image segmentation support SymNMF as a graph clustering method that captures latent linear and nonlinear relationships in the data. |
---|---|
AbstractList | Nonnegative matrix factorization (NMF) provides a lower rank approximation of a matrix by a product of two nonnegative factors. NMF has been shown to produce clustering results that are often superior to those by other methods such as K-means. In this paper, we provide further interpretation of NMF as a clustering method and study an extended formulation for graph clustering called Symmetric NMF (SymNMF). In contrast to NMF that takes a data matrix as an input, SymNMF takes a nonnegative similarity matrix as an input, and a symmetric nonnegative lower rank approximation is computed. We show that SymNMF is related to spectral clustering, justify SymNMF as a general graph clustering method, and discuss the strengths and shortcomings of SymNMF and spectral clustering. We propose two optimization algorithms for SymNMF and discuss their convergence properties and computational efficiencies. Our experiments on document clustering, image clustering, and image segmentation support SymNMF as a graph clustering method that captures latent linear and nonlinear relationships in the data. |
Audience | Academic |
Author | Yun, Sangwoon Kuang, Da Park, Haesun |
Author_xml | – sequence: 1 givenname: Da surname: Kuang fullname: Kuang, Da organization: School of Computational Science and Engineering, Georgia Institute of Technology – sequence: 2 givenname: Sangwoon surname: Yun fullname: Yun, Sangwoon organization: Department of Mathematics Education, Sungkyunkwan University, Korea Institute for Advanced Study – sequence: 3 givenname: Haesun surname: Park fullname: Park, Haesun email: hpark@cc.gatech.edu organization: School of Computational Science and Engineering, Georgia Institute of Technology |
BookMark | eNp9kU9vVCEUxYlpE6fVD-COxI0bKpf3B3DXNFabVF20dUsY5jJS34MnvNHOty_jc2GaaFiQ3Jzf5XDOCTmKKSIhr4CfAefybQGutGIcWsZFK5l4RlbQyYYJDf0RWXEtOtZxDs_JSSn3nHOtOrEiX2_24-dPl-9o3Rdxa-fwE-mQfrFs43dqpymnhzDWcYo0eWppCWMYbA7zntZxDg_Up0y32U7fqBt2ZcYc4vYFOfZ2KPjyz31K7i7f3158ZNdfPlxdnF8z14l2Zmtx8NFz5RV6h7xbew_Si07BxjatWGtr5dprhSjQc3TWbza2l0op3UnfNKfkzbK3-vyxwzKbMRSHw2Ajpl0xIEHpvhWCV-nrJ9L7tMuxujPQqx5030hZVWeLamsHNCH6NGfr6tngGFzN3Ic6P69rWwCp2grAAricSsnozZRrYHlvgJtDNWapxtRqzKEaIyojnzAuzL8zro-F4b-kWMgyHWLG_Ncn_gk9AlEepRU |
CitedBy_id | crossref_primary_10_1016_j_patcog_2023_109388 crossref_primary_10_1038_s41467_020_18526_1 crossref_primary_10_1080_21680566_2025_2459928 crossref_primary_10_1109_TBME_2019_2937228 crossref_primary_10_1016_j_infrared_2023_104666 crossref_primary_10_1016_j_engappai_2024_109914 crossref_primary_10_1007_s11063_019_10170_1 crossref_primary_10_1109_TSP_2016_2591510 crossref_primary_10_1016_j_knosys_2023_111192 crossref_primary_10_3389_fmolb_2021_643014 crossref_primary_10_1007_s10618_014_0384_8 crossref_primary_10_1016_j_physa_2019_01_091 crossref_primary_10_14778_3377369_3377378 crossref_primary_10_1137_19M1298639 crossref_primary_10_1109_ACCESS_2019_2946744 crossref_primary_10_1109_TPAMI_2021_3085858 crossref_primary_10_1016_j_inffus_2017_12_002 crossref_primary_10_1016_j_eswa_2022_118092 crossref_primary_10_1007_s10044_022_01062_7 crossref_primary_10_3390_s22062377 crossref_primary_10_1080_01431161_2020_1783711 crossref_primary_10_1007_s10898_017_0515_z crossref_primary_10_1038_s41598_025_92564_x crossref_primary_10_1109_TASE_2023_3240335 crossref_primary_10_1109_TCSVT_2024_3471877 crossref_primary_10_1109_TSP_2020_3001906 crossref_primary_10_1109_TCSVT_2021_3129365 crossref_primary_10_3390_sym12071187 crossref_primary_10_1007_s10957_021_01820_3 crossref_primary_10_1002_int_22896 crossref_primary_10_1007_s11063_020_10383_9 crossref_primary_10_1109_TNNLS_2019_2933223 crossref_primary_10_1016_j_inffus_2022_08_031 crossref_primary_10_1587_transinf_2017EDP7004 crossref_primary_10_1109_TNSE_2022_3206802 crossref_primary_10_3390_bdcc8070072 crossref_primary_10_1016_j_trb_2016_05_008 crossref_primary_10_1109_ACCESS_2021_3105692 crossref_primary_10_1109_TPAMI_2022_3224978 crossref_primary_10_2196_10262 crossref_primary_10_1016_j_eswa_2022_118230 crossref_primary_10_1109_JSEN_2024_3515115 crossref_primary_10_1109_TCBB_2017_2756628 crossref_primary_10_1093_nar_gkz204 crossref_primary_10_1016_j_trc_2019_10_016 crossref_primary_10_1109_TCYB_2020_2969684 crossref_primary_10_1109_TBDATA_2020_3012656 crossref_primary_10_1007_s11227_018_2500_9 crossref_primary_10_1093_nar_gkaa725 crossref_primary_10_1007_s10589_018_9998_x crossref_primary_10_1016_j_is_2024_102379 crossref_primary_10_1016_j_ipl_2016_09_004 crossref_primary_10_1109_TKDE_2021_3125947 crossref_primary_10_1016_j_eswa_2023_120825 crossref_primary_10_1109_TNNLS_2020_3041360 crossref_primary_10_1016_j_neucom_2023_126721 crossref_primary_10_1109_TNSE_2023_3302530 crossref_primary_10_1080_21680566_2023_2240961 crossref_primary_10_1093_cercor_bhac378 crossref_primary_10_1016_j_cam_2024_116218 crossref_primary_10_1089_cmb_2021_0052 crossref_primary_10_1109_TSP_2017_2679687 crossref_primary_10_1162_neco_a_01007 crossref_primary_10_1155_2019_8085303 crossref_primary_10_3390_sym13091757 crossref_primary_10_1109_TGRS_2020_3018150 crossref_primary_10_1109_TPAMI_2022_3206465 crossref_primary_10_1007_s10115_024_02226_z crossref_primary_10_1007_s10898_017_0578_x crossref_primary_10_3233_JIFS_191690 crossref_primary_10_3390_sym11121512 crossref_primary_10_1007_s10898_021_01024_z crossref_primary_10_3390_a12100216 crossref_primary_10_1109_JAS_2022_105794 crossref_primary_10_1109_ACCESS_2016_2605704 crossref_primary_10_1109_TSIPN_2020_2988572 crossref_primary_10_1093_bib_bbae707 crossref_primary_10_1093_jmcb_mjaa052 crossref_primary_10_1109_TSP_2017_2731321 crossref_primary_10_1109_ACCESS_2022_3168659 crossref_primary_10_1016_j_ymeth_2016_06_017 crossref_primary_10_1186_s40649_017_0043_5 crossref_primary_10_1007_s11263_021_01544_x crossref_primary_10_1007_s40324_019_00211_z crossref_primary_10_1016_j_asoc_2016_12_019 crossref_primary_10_1109_LSP_2018_2865857 crossref_primary_10_1109_TKDE_2023_3279369 crossref_primary_10_1145_3016078_2851152 crossref_primary_10_1111_mice_12895 crossref_primary_10_1137_20M1352405 crossref_primary_10_1088_1741_2552_aa9666 crossref_primary_10_1109_ACCESS_2019_2951393 crossref_primary_10_1137_24M1638355 crossref_primary_10_1109_TPAMI_2022_3153126 crossref_primary_10_1016_j_ins_2017_11_038 crossref_primary_10_3390_a12050109 crossref_primary_10_1137_22M1510509 crossref_primary_10_1109_TSMC_2018_2820084 crossref_primary_10_1007_s11075_020_01063_9 crossref_primary_10_1080_10556788_2023_2189717 crossref_primary_10_1109_TCSVT_2023_3258926 crossref_primary_10_1109_TCSVT_2024_3382761 crossref_primary_10_1016_j_is_2023_102195 crossref_primary_10_3389_fgene_2021_763263 crossref_primary_10_1109_TETCI_2022_3230930 crossref_primary_10_1016_j_ress_2023_109554 crossref_primary_10_1109_ACCESS_2021_3113934 crossref_primary_10_1007_s10489_024_05687_5 |
Cites_doi | 10.1109/TNN.2011.2169087 10.1109/TPAMI.2008.277 10.1109/TNN.2007.895831 10.1017/CBO9780511809071 10.1137/1.9781611971262 10.1109/43.310898 10.1137/07069239X 10.1109/TPAMI.2004.1273918 10.1142/5273 10.1137/1.9781611970944 10.1162/neco.2007.19.10.2756 10.1137/0320018 10.1007/s10618-010-0181-y 10.1007/s10115-013-0710-2 10.1109/TPAMI.2003.1251154 10.1109/TPAMI.2010.161 10.1016/j.physa.2009.09.018 10.1109/34.868688 10.1007/s11222-007-9033-z 10.1109/TPAMI.2005.92 10.1023/A:1011174803800 10.1093/bioinformatics/btm134 10.1023/A:1007612920971 10.1007/s10898-009-9430-2 10.1109/TVCG.2013.212 10.1007/s10898-013-0035-4 10.1137/110821172 10.1109/TPAMI.2010.231 10.1016/j.patcog.2004.02.013 10.1016/j.laa.2003.11.024 10.1038/44565 10.1007/s10107-011-0471-1 10.1038/35065725 10.1016/j.ipm.2004.11.005 10.1007/BF02592071 10.1145/2487575.2487606 10.1109/ICDM.2008.130 10.1137/1.9781611972825.10 10.1137/1.9781611972740.45 10.1109/ICCV.2001.937655 10.1109/ICCV.2003.1238361 10.1145/1102351.1102409 10.1109/ICDM.2008.149 10.1137/1.9781611972757.70 10.1109/CVPR.2005.332 10.1145/2339530.2339629 10.1109/TNN.2011.2172457 10.1109/ICCV.2005.27 10.1103/PhysRevE.87.062803 10.1103/PhysRevE.77.016107 10.1016/S0927-0507(89)01010-8 10.1109/ICDM.2007.98 10.1145/860435.860485 10.1109/TGRS.2014.2352857 10.1145/1014052.1014118 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 COPYRIGHT 2015 Springer Springer Science+Business Media New York 2015 |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: COPYRIGHT 2015 Springer – notice: Springer Science+Business Media New York 2015 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10898-014-0247-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Proquest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 574 |
ExternalDocumentID | 3706345741 A718411784 10_1007_s10898_014_0247_2 |
Genre | Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c524t-b20098608f8efce05bff17f2581da342b9aa7bf98ee2ef0ecafdda67888957f33 |
IEDL.DBID | BENPR |
ISSN | 0925-5001 |
IngestDate | Fri Jul 11 12:05:26 EDT 2025 Sat Aug 23 13:59:41 EDT 2025 Tue Jun 10 20:37:36 EDT 2025 Tue Jul 01 00:52:57 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Fri Feb 21 02:42:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Graph clustering Spectral clustering Symmetric nonnegative matrix factorization Low-rank approximation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-b20098608f8efce05bff17f2581da342b9aa7bf98ee2ef0ecafdda67888957f33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1686196377 |
PQPubID | 29930 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_1718964220 proquest_journals_1686196377 gale_infotracacademiconefile_A718411784 crossref_primary_10_1007_s10898_014_0247_2 crossref_citationtrail_10_1007_s10898_014_0247_2 springer_journals_10_1007_s10898_014_0247_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2015 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Kim, Park (CR28) 2008; 30 Ding, Li, Jordan (CR17) 2010; 32 Chan, Schlag, Zien (CR10) 1994; 13 Lewis, Yang, Rose, Li (CR40) 2004; 5 Catral, Han, Neumann, Plemmons (CR9) 2004; 393 CR36 CR35 CR34 CR31 CR30 Wang, Li, Wang, Zhu, Ding (CR62) 2011; 22 Zelnik-Manor, Perona (CR70) 2004; 17 CR72 Martin, Fowlkes, Malik (CR48) 2004; 26 CR71 van der Maaten, Hinton (CR60) 2008; 9 Choo, Lee, Reddy, Park (CR11) 2013; 19 Kleinberg (CR33) 2002; 15 Cai, He, Han, Huang (CR8) 2011; 33 CR2 Dhillon, Modha (CR14) 2001; 42 Lin (CR43) 2007; 19 Kannan, Ishteva, Park (CR25) 2014; 39 CR49 Yang, Hao, Dikmen, Chen, Oja (CR65) 2012; 25 Bertsekas (CR6) 1982; 20 Kim, He, Park (CR29) 2014; 58 He, Xie, Zdunek, Zhou, Cichocki (CR23) 2011; 22 Ma, Gao, Yong, Fu (CR45) 2010; 389 CR41 Banerjee, Dhillon, Ghosh, Sra (CR3) 2005; 6 Ng, Jordan, Weiss (CR51) 2001; 14 Shahnaz, Berry, Pauca, Plemmons (CR55) 2006; 42 Bertsekas (CR7) 1999 CR19 Kim, Park (CR32) 2011; 33 CR16 CR15 CR13 CR12 Lawson, Hanson (CR37) 1974 Strogatz (CR59) 2001; 410 CR54 Berman, Plemmons (CR4) 1994 Globerson, Chechik, Pereira, Tishby (CR21) 2007; 8 CR52 CR50 Berman, Shaked-Monderer (CR5) 2003 Lucena, Ribeiro, Santos (CR44) 2010; 46 Lin (CR42) 2007; 18 Yun, Tseng, Toh (CR68) 2011; 129 Lee, Ho, Kriegman (CR39) 2005; 27 Lee, Seung (CR38) 1999; 401 Sim, Baker, Bsat (CR57) 2003; 25 von Luxburg (CR61) 2007; 17 Arbelaez, Maire, Fowlkes, Malik (CR1) 2011; 33 Duda, Hart, Stork (CR18) 2000 Wild, Curry, Dougherty (CR63) 2004; 37 Rinnooy Kan, Timmer (CR53) 1987; 39 Stewart, Sun (CR58) 1990 Shi, Malik (CR56) 2000; 22 Manning, Raghavan, Schütze (CR47) 2008 CR69 CR24 CR67 CR22 CR66 Kim, Park (CR27) 2007; 23 CR20 CR64 Malik, Belongie, Leung, Shi (CR46) 2001; 43 Kelley (CR26) 1995 X Ma (247_CR45) 2010; 389 T Sim (247_CR57) 2003; 25 F Wang (247_CR62) 2011; 22 247_CR41 DD Lee (247_CR38) 1999; 401 L Maaten van der (247_CR60) 2008; 9 RO Duda (247_CR18) 2000 247_CR49 CL Lawson (247_CR37) 1974 SH Strogatz (247_CR59) 2001; 410 DP Bertsekas (247_CR6) 1982; 20 S Wild (247_CR63) 2004; 37 247_CR71 A Rinnooy Kan (247_CR53) 1987; 39 247_CR31 247_CR30 247_CR72 J Kim (247_CR32) 2011; 33 247_CR35 247_CR34 A Berman (247_CR5) 2003 J Malik (247_CR46) 2001; 43 H Kim (247_CR28) 2008; 30 247_CR36 P Chan (247_CR10) 1994; 13 J Kim (247_CR29) 2014; 58 AY Ng (247_CR51) 2001; 14 R Kannan (247_CR25) 2014; 39 F Shahnaz (247_CR55) 2006; 42 CD Manning (247_CR47) 2008 A Berman (247_CR4) 1994 CT Kelley (247_CR26) 1995 KC Lee (247_CR39) 2005; 27 247_CR20 247_CR64 M Catral (247_CR9) 2004; 393 CJ Lin (247_CR42) 2007; 18 247_CR24 247_CR67 247_CR22 247_CR66 J Kleinberg (247_CR33) 2002; 15 DP Bertsekas (247_CR7) 1999 Z Yang (247_CR65) 2012; 25 L Zelnik-Manor (247_CR70) 2004; 17 P Arbelaez (247_CR1) 2011; 33 247_CR69 247_CR19 GW Stewart (247_CR58) 1990 A Lucena (247_CR44) 2010; 46 DD Lewis (247_CR40) 2004; 5 I Dhillon (247_CR14) 2001; 42 CJ Lin (247_CR43) 2007; 19 J Choo (247_CR11) 2013; 19 C Ding (247_CR17) 2010; 32 S Yun (247_CR68) 2011; 129 A Banerjee (247_CR3) 2005; 6 247_CR52 Z He (247_CR23) 2011; 22 D Cai (247_CR8) 2011; 33 247_CR50 247_CR13 247_CR12 247_CR54 J Shi (247_CR56) 2000; 22 U Luxburg von (247_CR61) 2007; 17 247_CR16 247_CR15 A Globerson (247_CR21) 2007; 8 D Martin (247_CR48) 2004; 26 247_CR2 H Kim (247_CR27) 2007; 23 |
References_xml | – volume: 8 start-page: 2265 year: 2007 end-page: 2295 ident: CR21 article-title: Euclidean embedding of co-occurrence data publication-title: J. Mach. Learn. Res. – ident: CR22 – volume: 22 start-page: 2117 issue: 12 year: 2011 end-page: 2131 ident: CR23 article-title: Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2169087 – volume: 32 start-page: 45 issue: 1 year: 2010 end-page: 55 ident: CR17 article-title: Convex and semi-nonnegative matrix factorization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.277 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR60 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 1589 issue: 6 year: 2007 end-page: 1596 ident: CR42 article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization publication-title: Trans. Neural Netw. doi: 10.1109/TNN.2007.895831 – ident: CR49 – year: 2008 ident: CR47 publication-title: Introduction to Information Retrieval doi: 10.1017/CBO9780511809071 – ident: CR16 – ident: CR12 – year: 1994 ident: CR4 publication-title: Nonnegative Matrices in the Mathematical Sciences doi: 10.1137/1.9781611971262 – volume: 13 start-page: 1088 issue: 9 year: 1994 end-page: 1096 ident: CR10 article-title: Spectral k-way ratio-cut partitioning and clustering publication-title: IEEE Trans. CAD Integr. Circuits Syst. doi: 10.1109/43.310898 – ident: CR35 – ident: CR54 – volume: 30 start-page: 713 issue: 2 year: 2008 end-page: 730 ident: CR28 article-title: Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method publication-title: SIAM J. Matrix. Anal. Appl. doi: 10.1137/07069239X – volume: 26 start-page: 530 issue: 5 year: 2004 end-page: 549 ident: CR48 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1273918 – year: 2003 ident: CR5 publication-title: Completely Positive Matrices doi: 10.1142/5273 – year: 1995 ident: CR26 publication-title: Iterative Methods for Linear and Nonlinear Equations doi: 10.1137/1.9781611970944 – volume: 19 start-page: 2756 issue: 10 year: 2007 end-page: 2779 ident: CR43 article-title: Projected gradient methods for nonnegative matrix factorization publication-title: Neural Comput. doi: 10.1162/neco.2007.19.10.2756 – volume: 20 start-page: 221 issue: 2 year: 1982 end-page: 246 ident: CR6 article-title: Projected newton methods for optimization problems with simple constraints publication-title: SIAM J. Control Optim. doi: 10.1137/0320018 – volume: 22 start-page: 493 issue: 3 year: 2011 end-page: 521 ident: CR62 article-title: Community discovery using nonnegative matrix factorization publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0181-y – volume: 39 start-page: 491 issue: 3 year: 2014 end-page: 511 ident: CR25 article-title: Bounded matrix factorization for recommender system publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0710-2 – ident: CR71 – ident: CR19 – volume: 6 start-page: 1345 year: 2005 end-page: 1382 ident: CR3 article-title: Clustering on the unit hypersphere using von Mises–Fisher distributions publication-title: J. Mach. Learn. Res. – ident: CR67 – ident: CR15 – ident: CR50 – volume: 25 start-page: 1615 issue: 12 year: 2003 end-page: 1618 ident: CR57 article-title: The CMU pose, illumination, and expression database publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1251154 – volume: 17 start-page: 1601 year: 2004 end-page: 1608 ident: CR70 article-title: Self-tuning spectral clustering publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 898 issue: 5 year: 2011 end-page: 916 ident: CR1 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – volume: 25 start-page: 1088 year: 2012 end-page: 1096 ident: CR65 article-title: Clustering by nonnegative matrix factorization using graph random walk publication-title: Adv. Neural Inf. Process. Syst. – ident: CR36 – volume: 389 start-page: 187 issue: 1 year: 2010 end-page: 197 ident: CR45 article-title: Semi-supervised clustering algorithm for community structure detection in complex networks publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2009.09.018 – volume: 14 start-page: 849 year: 2001 end-page: 856 ident: CR51 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv. Neural Inf. Process. Syst. – year: 1974 ident: CR37 publication-title: Solving Least Squares Problems – volume: 22 start-page: 888 issue: 8 year: 2000 end-page: 905 ident: CR56 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – ident: CR64 – volume: 17 start-page: 395 issue: 4 year: 2007 end-page: 416 ident: CR61 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – ident: CR66 – ident: CR72 – volume: 27 start-page: 684 issue: 5 year: 2005 end-page: 698 ident: CR39 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.92 – volume: 43 start-page: 7 issue: 1 year: 2001 end-page: 27 ident: CR46 article-title: Contour and texture analysis for image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011174803800 – volume: 23 start-page: 1495 issue: 12 year: 2007 end-page: 1502 ident: CR27 article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm134 – ident: CR2 – volume: 42 start-page: 143 year: 2001 end-page: 175 ident: CR14 article-title: Concept decompositions for large sparse text data using clustering publication-title: Mach. Learn. doi: 10.1023/A:1007612920971 – ident: CR30 – volume: 46 start-page: 363 issue: 3 year: 2010 end-page: 381 ident: CR44 article-title: A hybrid heuristic for the diameter constrained minimum spanning tree problem publication-title: J. Glob. Optim. doi: 10.1007/s10898-009-9430-2 – volume: 19 start-page: 1992 issue: 12 year: 2013 end-page: 2001 ident: CR11 article-title: Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2013.212 – year: 1990 ident: CR58 publication-title: Matrix Perturbation Theory – volume: 58 start-page: 285 issue: 2 year: 2014 end-page: 319 ident: CR29 article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0035-4 – volume: 33 start-page: 3261 issue: 6 year: 2011 end-page: 3281 ident: CR32 article-title: Fast nonnegative matrix factorization: An active-set-like method and comparisons publication-title: SIAM J. Sci. Comput. doi: 10.1137/110821172 – volume: 33 start-page: 1548 issue: 8 year: 2011 end-page: 1560 ident: CR8 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.231 – volume: 37 start-page: 2217 year: 2004 end-page: 2232 ident: CR63 article-title: Improving non-negative matrix factorizations through structured initialization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.02.013 – ident: CR69 – year: 2000 ident: CR18 publication-title: Pattern Classification – volume: 393 start-page: 107 year: 2004 end-page: 126 ident: CR9 article-title: On reduced rank nonnegative matrix factorization for symmetric matrices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2003.11.024 – volume: 15 start-page: 446 year: 2002 end-page: 453 ident: CR33 article-title: An impossibility theorem for clustering publication-title: Adv. Neural Inf. Process. Syst. – ident: CR52 – ident: CR31 – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: CR38 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 129 start-page: 331 year: 2011 end-page: 355 ident: CR68 article-title: A block coordinate gradient descent method for regularized convex separable optimization and covariance selection publication-title: Math. Program. doi: 10.1007/s10107-011-0471-1 – ident: CR13 – volume: 410 start-page: 268 year: 2001 end-page: 276 ident: CR59 article-title: Exploring complex networks publication-title: Nature doi: 10.1038/35065725 – volume: 5 start-page: 361 year: 2004 end-page: 397 ident: CR40 article-title: Rcv1: A new benchmark collection for text categorization research publication-title: J. Mach. Learn. Res. – ident: CR34 – ident: CR41 – volume: 42 start-page: 373 year: 2006 end-page: 386 ident: CR55 article-title: Document clustering using nonnegative matrix factorization publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2004.11.005 – volume: 39 start-page: 57 year: 1987 end-page: 78 ident: CR53 article-title: Stochastic global optimization methods, part II: multi level methods publication-title: Math. Program. doi: 10.1007/BF02592071 – ident: CR24 – year: 1999 ident: CR7 publication-title: Nonlinear Programming – ident: CR20 – ident: 247_CR35 doi: 10.1145/2487575.2487606 – ident: 247_CR16 doi: 10.1109/ICDM.2008.130 – volume-title: Solving Least Squares Problems year: 1974 ident: 247_CR37 – volume: 23 start-page: 1495 issue: 12 year: 2007 ident: 247_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm134 – volume-title: Completely Positive Matrices year: 2003 ident: 247_CR5 doi: 10.1142/5273 – ident: 247_CR34 doi: 10.1137/1.9781611972825.10 – volume: 39 start-page: 491 issue: 3 year: 2014 ident: 247_CR25 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0710-2 – volume: 389 start-page: 187 issue: 1 year: 2010 ident: 247_CR45 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2009.09.018 – volume: 25 start-page: 1615 issue: 12 year: 2003 ident: 247_CR57 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1251154 – volume: 18 start-page: 1589 issue: 6 year: 2007 ident: 247_CR42 publication-title: Trans. Neural Netw. doi: 10.1109/TNN.2007.895831 – ident: 247_CR52 doi: 10.1137/1.9781611972740.45 – volume: 410 start-page: 268 year: 2001 ident: 247_CR59 publication-title: Nature doi: 10.1038/35065725 – volume-title: Iterative Methods for Linear and Nonlinear Equations year: 1995 ident: 247_CR26 doi: 10.1137/1.9781611970944 – volume-title: Nonnegative Matrices in the Mathematical Sciences year: 1994 ident: 247_CR4 doi: 10.1137/1.9781611971262 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 247_CR56 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – volume-title: Nonlinear Programming year: 1999 ident: 247_CR7 – volume: 33 start-page: 898 issue: 5 year: 2011 ident: 247_CR1 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – volume: 393 start-page: 107 year: 2004 ident: 247_CR9 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2003.11.024 – ident: 247_CR30 – volume-title: Introduction to Information Retrieval year: 2008 ident: 247_CR47 doi: 10.1017/CBO9780511809071 – volume: 22 start-page: 493 issue: 3 year: 2011 ident: 247_CR62 publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0181-y – ident: 247_CR49 doi: 10.1109/ICCV.2001.937655 – volume: 25 start-page: 1088 year: 2012 ident: 247_CR65 publication-title: Adv. Neural Inf. Process. Syst. – ident: 247_CR67 doi: 10.1109/ICCV.2003.1238361 – ident: 247_CR36 doi: 10.1145/1102351.1102409 – volume: 39 start-page: 57 year: 1987 ident: 247_CR53 publication-title: Math. Program. doi: 10.1007/BF02592071 – volume: 58 start-page: 285 issue: 2 year: 2014 ident: 247_CR29 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0035-4 – ident: 247_CR66 – ident: 247_CR31 doi: 10.1109/ICDM.2008.149 – volume: 15 start-page: 446 year: 2002 ident: 247_CR33 publication-title: Adv. Neural Inf. Process. Syst. – volume: 42 start-page: 143 year: 2001 ident: 247_CR14 publication-title: Mach. Learn. doi: 10.1023/A:1007612920971 – volume: 14 start-page: 849 year: 2001 ident: 247_CR51 publication-title: Adv. Neural Inf. Process. Syst. – volume: 27 start-page: 684 issue: 5 year: 2005 ident: 247_CR39 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.92 – volume: 401 start-page: 788 year: 1999 ident: 247_CR38 publication-title: Nature doi: 10.1038/44565 – ident: 247_CR15 doi: 10.1137/1.9781611972757.70 – ident: 247_CR24 – volume: 19 start-page: 1992 issue: 12 year: 2013 ident: 247_CR11 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2013.212 – volume: 26 start-page: 530 issue: 5 year: 2004 ident: 247_CR48 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1273918 – volume: 9 start-page: 2579 year: 2008 ident: 247_CR60 publication-title: J. Mach. Learn. Res. – ident: 247_CR12 doi: 10.1109/CVPR.2005.332 – volume: 46 start-page: 363 issue: 3 year: 2010 ident: 247_CR44 publication-title: J. Glob. Optim. doi: 10.1007/s10898-009-9430-2 – ident: 247_CR71 doi: 10.1145/2339530.2339629 – volume: 22 start-page: 2117 issue: 12 year: 2011 ident: 247_CR23 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2172457 – volume: 37 start-page: 2217 year: 2004 ident: 247_CR63 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.02.013 – volume: 43 start-page: 7 issue: 1 year: 2001 ident: 247_CR46 publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011174803800 – volume: 129 start-page: 331 year: 2011 ident: 247_CR68 publication-title: Math. Program. doi: 10.1007/s10107-011-0471-1 – volume: 32 start-page: 45 issue: 1 year: 2010 ident: 247_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.277 – ident: 247_CR69 doi: 10.1109/ICCV.2005.27 – ident: 247_CR72 doi: 10.1103/PhysRevE.87.062803 – ident: 247_CR2 – volume: 5 start-page: 361 year: 2004 ident: 247_CR40 publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 2756 issue: 10 year: 2007 ident: 247_CR43 publication-title: Neural Comput. doi: 10.1162/neco.2007.19.10.2756 – volume: 8 start-page: 2265 year: 2007 ident: 247_CR21 publication-title: J. Mach. Learn. Res. – ident: 247_CR50 doi: 10.1103/PhysRevE.77.016107 – volume: 33 start-page: 3261 issue: 6 year: 2011 ident: 247_CR32 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110821172 – ident: 247_CR54 doi: 10.1016/S0927-0507(89)01010-8 – volume: 20 start-page: 221 issue: 2 year: 1982 ident: 247_CR6 publication-title: SIAM J. Control Optim. doi: 10.1137/0320018 – volume: 33 start-page: 1548 issue: 8 year: 2011 ident: 247_CR8 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.231 – volume-title: Pattern Classification year: 2000 ident: 247_CR18 – volume-title: Matrix Perturbation Theory year: 1990 ident: 247_CR58 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 247_CR61 publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 6 start-page: 1345 year: 2005 ident: 247_CR3 publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 1088 issue: 9 year: 1994 ident: 247_CR10 publication-title: IEEE Trans. CAD Integr. Circuits Syst. doi: 10.1109/43.310898 – volume: 42 start-page: 373 year: 2006 ident: 247_CR55 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2004.11.005 – volume: 30 start-page: 713 issue: 2 year: 2008 ident: 247_CR28 publication-title: SIAM J. Matrix. Anal. Appl. doi: 10.1137/07069239X – ident: 247_CR19 – ident: 247_CR41 doi: 10.1109/ICDM.2007.98 – ident: 247_CR64 doi: 10.1145/860435.860485 – ident: 247_CR20 doi: 10.1109/TGRS.2014.2352857 – volume: 17 start-page: 1601 year: 2004 ident: 247_CR70 publication-title: Adv. Neural Inf. Process. Syst. – ident: 247_CR13 doi: 10.1145/1014052.1014118 – ident: 247_CR22 |
SSID | ssj0009852 |
Score | 2.5058486 |
Snippet | Nonnegative matrix factorization (NMF) provides a lower rank approximation of a matrix by a product of two nonnegative factors. NMF has been shown to produce... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | Approximation Cluster analysis Clustering Computer Science Datasets Graph theory Graphs Image processing Mathematical analysis Mathematical optimization Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Optimization algorithms Real Functions Similarity Spectra Studies Symmetry |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5KekkPbeO21E1SNlDoiwVpH9pVbibUhIJzaV1yW1bybjH4USqbJP8-M_LKcdMH9Cg8Hg2anRez8w3AG4z5Ofq8mpdoPFyFsuRVpQkbD6uNaHPpW7T90UVxPlafL_VlmuNuutvuXUuy9dQ7w26WxsFyxTGuGI5-96Gm0h0P8VgM7pB2bbtmJyuF5hqdcNfK_BOLX4LRfZf8W2-0DTnDp_A45YpssFHuATwIix486fYwsGSWPXi0AyqIT6MtEmvTg4NE1bB3CWH6_TP49uVmfjEanrIFXXP53mJ_s9nyitMGd9bCjF9PNzONbBmZZ810PsUSGDN2NidM_2uGuS5rwa5ZPVsT2AK--zmMh5--np3ztGCB11qoFa-oNWKLzEYbYh0yXcWYmyg0JrFeKlGV3psqljYEEWIWah8nE19Q1VxqE6V8AXsoaHgJTEoZPVbaWhqlZGWwjPOFMPUk2Dwob_qQdV_a1Ql9nJZgzNwdbjIpx6FyHCnHiT582P7lxwZ641_Eb0l9jswS-dY-TRegdARw5QYYg1WeG6v6cNRp2CV7bVxe2IJ8kUFBT7Y_o6VR-8QvwnKNNMiixHJNZH342J2MHRZ_E-3Vf1Efwj7mZHpzI_gI9lY_1-EY855V9bo957f4j_eo priority: 102 providerName: Springer Nature |
Title | SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering |
URI | https://link.springer.com/article/10.1007/s10898-014-0247-2 https://www.proquest.com/docview/1686196377 https://www.proquest.com/docview/1718964220 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9QUe0DZABEZlJCS-ZJE4duzwglrUbgKtQkDReIqc1J4q9WOsrRj_PXeJsw4Qe8qDHds6-758vt8BPEOdn6DMq3iOzMOly3Neloqw8dDb8CZJbY22fzLKjsfyw6k6DRduq_CsspWJtaCeLCu6I3-TZCaj06L1u_MfnKpGUXQ1lNDYgQ6KYIPOV6c_GH36vIXdNXXNnTgXiiuUyG1cs0meM5RelkiOekpz8Ydm-ls-_xMorfXPcA_uBsOR9Zqd3odbbnEAd67BCR7AfmDUFXsR0KRf3oNvX37NRyfDt2xBT1rOapxvNlv-5FStndWQ4pfTJn-RLT2zbDWdT9HdReuczQm__5KhXctqYGtWzTYErICz3YfxcPD1_TEPxRR4pYRc85LCICaLjTfOVy5WpfeJ9kKhwWpTKcrcWl363DgnnI9dZf1kYjPykHOlfZo-gF1cqHsILE1Tb9GrVqmWMi01umw2E7qaOJM4aXUEcUvIogpI41TwYlZsMZKJ9gXSviDaFyKCV1e_nDcwGzd1fk67UxAL4riVDZkEuDoCsyp6qG9lkmgjIzhsN7AIvLkqticpgqdXzchVFCqxC7fcYB8cIkfXTMQRvG43_toQ_1vao5snfAy30eBSzXPfQ9hdX2zcEzRq1mUXdszwqAud3rDfH9H36PvHQTecZ2wdi95vU272oA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEC0gAgWMBOIli8SxY6dShSpg2dLuXmhRb8bJ2milfRR2V23_VH9jZ_LoFhC99RzHtsbz9Hi-AXiBNj9BnVfyHIWHS5_nvCgUYeNhtBFMkroKbb_Xz7oH8uuhOlyBs7YWhp5VtjqxUtSDaUl35O-TzGTELVp_OPrFqWsUZVfbFho1W-z602MM2WZbO5_wfF8K0fm8_7HLm64CvFRCznlB-QCTxSYYH0ofqyKERAeh0HNzqRRF7pwuQm68Fz7EvnRhMHAZhYq50oEuQFHl35BpmpNEmc6XJcivqTr8xLlQXKH-b7OodameoWK2RHK0ipqLP-zg39bgn7RsZe06d-FO46ay7Zqv1mDFT9bh9iXwwnVYa9TCjL1usKvf3IPv307H_V5nk03oAc3PClWcjabHnHrDswrA_GRYV0uyaWCOzYbjIQbXGAuwMXULOGHoRbMKRpuVowXBOOBq9-HgWoj8AFZxo_4hsDRNg8MYXqVayrTQGCC6TOhy4E3ipdMRxC0hbdngmlN7jZFdIjIT7S3S3hLtrYjg7cUvRzWox1WDX9HpWBJ4nLd0Td0C7o6gs-w2WneZJNrICDbaA7SNJpjZJd9G8PziM8owJWbcxE8XOAanyDEQFHEE79qDvzTF_7b26OoFn8HN7n5vz-7t9Hcfwy109VT90HgDVue_F_4JulPz4mnFwwx-XLfQnAO5BC8u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6ULYg-iK2Ko1UjKN4Inckkk4wgUm2X1tqlqC19i5nZRBb2Ut1d2v41f53nzKVbFfvW553NhJNz--bkfAfgKcb8BH1eyXM0Hi59nvOiUMSNh2gjmCR1Fdv-Xi_bPpAfj9TREvxqe2HoWmXrEytH3Z-U9I18PclMRtqi9XporkXsb3bfHf_gNEGKKq3tOI1aRXb92QnCt-nbnU0862dCdLe-ftjmzYQBXiohZ7yg2oDJYhOMD6WPVRFCooNQmMW5VIoid04XITfeCx9iX7rQ77uMYGOudKCPoej-lzWiorgDy--3evufF5S_ppr3E-dCcYXRoK2p1o17hlrbEskxRmou_oiKf8eGf4q0Vezr3oKbTdLKNmotW4ElP16FGxeoDFdhpXESU_aiYbJ-eRsOv5yNenvdN2xM12m-VxzjbDg54TQpnlV05qeDuneSTQJzbDoYDRBqIzJgI5odcMowp2YVqTYrh3MidcC33YGDKxHzXejgRv09YGmaBoeIXqVayrTQCBddJnTZ9ybx0ukI4laQtmxYzmnYxtAu-JlJ9hZlb0n2VkTw6vwvxzXFx2UPP6fTsWT-uG7pmi4G3B0RadkNjPUySbSREay1B2gbvzC1Cy2O4Mn5z2jRVKZxYz-Z4zO4RI6wUMQRvG4P_sIS_9va_ctf-BiuocHYTzu93QdwHfM-Vd86XoPO7OfcP8TcalY8apSYwbertpvf-lk0wA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SymNMF%3A+nonnegative+low-rank+approximation+of+a+similarity+matrix+for+graph+clustering&rft.jtitle=Journal+of+global+optimization&rft.au=Kuang%2C+Da&rft.au=Yun%2C+Sangwoon&rft.au=Park%2C+Haesun&rft.date=2015-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=62&rft.issue=3&rft.spage=545&rft_id=info:doi/10.1007%2Fs10898-014-0247-2&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3706345741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |