Luminal Bacteria Recruit CD103+ Dendritic Cells into the Intestinal Epithelium to Sample Bacterial Antigens for Presentation

CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp ×Cd11c-YFP mice to study thes...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 38; no. 3; pp. 581 - 595
Main Authors Farache, Julia, Koren, Idan, Milo, Idan, Gurevich, Irina, Kim, Ki-Wook, Zigmond, Ehud, Furtado, Glaucia C., Lira, Sergio A., Shakhar, Guy
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.03.2013
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. ► CD103+ DCs patrol the epithelium of the small intestine ► Salmonella infection recruits more DCs in a TLR and chemokine-dependent manner ► The DCs efficiently phagocytose salmonella using intraepithelial dendrites ► Soluble luminal antigens are sampled more efficiently by CX3CR1+ macrophages
AbstractList CD103+dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in liveCx3cr1+/gfpxCd11c-YFP mice to study these processes. At steady state, sparse CD103+DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge withSalmonellatriggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. ► CD103+ DCs patrol the epithelium of the small intestine ► Salmonella infection recruits more DCs in a TLR and chemokine-dependent manner ► The DCs efficiently phagocytose salmonella using intraepithelial dendrites ► Soluble luminal antigens are sampled more efficiently by CX3CR1+ macrophages
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
CD103 + dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1 +/gfp × Cd11c-YFP mice to study these processes. At steady state, sparse CD103 + DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103 + DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103 + DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103 + DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
Author Farache, Julia
Koren, Idan
Shakhar, Guy
Kim, Ki-Wook
Furtado, Glaucia C.
Milo, Idan
Zigmond, Ehud
Lira, Sergio A.
Gurevich, Irina
AuthorAffiliation 2 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
1 Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
AuthorAffiliation_xml – name: 2 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
– name: 1 Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
Author_xml – sequence: 1
  givenname: Julia
  surname: Farache
  fullname: Farache, Julia
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Idan
  surname: Koren
  fullname: Koren, Idan
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 3
  givenname: Idan
  surname: Milo
  fullname: Milo, Idan
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 4
  givenname: Irina
  surname: Gurevich
  fullname: Gurevich, Irina
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 5
  givenname: Ki-Wook
  surname: Kim
  fullname: Kim, Ki-Wook
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 6
  givenname: Ehud
  surname: Zigmond
  fullname: Zigmond, Ehud
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 7
  givenname: Glaucia C.
  surname: Furtado
  fullname: Furtado, Glaucia C.
  organization: Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
– sequence: 8
  givenname: Sergio A.
  surname: Lira
  fullname: Lira, Sergio A.
  organization: Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
– sequence: 9
  givenname: Guy
  surname: Shakhar
  fullname: Shakhar, Guy
  email: shakhar@weizmann.ac.il
  organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23395676$$D View this record in MEDLINE/PubMed
BookMark eNqFUt9rFDEQDlKx7el_IBLwRSh3ZjZ7ycYHoV6rFg4UfzyHXC7bzrGbXJNsQegfb9a7Fu2DzUvCzDfffPNljsmBD94R8hLYDBiIt5sZ9v3gcVYx4DMGM8bUE3IETMlpDQ07GN-ynkoB_JAcp7RhDOq5Ys_IYcW5mgspjsjtcujRm45-MDa7iIZ-czYOmOniDBg_oWfOryNmtHThui5R9DnQfOXohc8u5T-151sskQ6Hnpbkd9NvO3dP2NFTn_HS-UTbEOnX6JLz2WQM_jl52pouuRf7e0J-fjz_sfg8XX75dLE4XU7tvKrzVDEni-DacWiFlbASDQcl2Eo2ohK1bJpW2Xo9XzFhbDltCbSSrRppWia55RPyfse7HVa9W9vSP5pObyP2Jv7SwaD-N-PxSl-GG10DzKvSe0Le7AliuB7K2LrHZIsfxrswJA2irgQHAPk4dJQOqqmgQF8_gG7CEIuhI2GluBIKxt6v_hZ_r_ruDwvg3Q5gY0gpulZb3PlbZsFOA9PjwuiN3i2MHhdGM9BlYUpx_aD4jv-Rsr2jrnzbDbqok0XnrVtjdDbrdcD_E_wGWjjceQ
CitedBy_id crossref_primary_10_1080_10408398_2021_1949577
crossref_primary_10_1111_all_14082
crossref_primary_10_1038_s41423_021_00647_2
crossref_primary_10_3390_ijms19051365
crossref_primary_10_1038_mi_2014_110
crossref_primary_10_3389_fimmu_2016_00231
crossref_primary_10_1016_j_jaut_2017_05_007
crossref_primary_10_1016_j_jim_2015_03_014
crossref_primary_10_1039_C8FO00387D
crossref_primary_10_1038_nri_2015_17
crossref_primary_10_3934_Allergy_2019_1_13
crossref_primary_10_1084_jem_20130903
crossref_primary_10_1002_eji_201948327
crossref_primary_10_1002_JLB_4RI1218_503R
crossref_primary_10_1016_j_coi_2013_06_001
crossref_primary_10_1111_imr_12189
crossref_primary_10_3389_fimmu_2021_616215
crossref_primary_10_3390_app11167247
crossref_primary_10_1111_imr_12181
crossref_primary_10_1016_j_azn_2025_01_005
crossref_primary_10_1016_j_imlet_2023_01_003
crossref_primary_10_3390_ijms24021526
crossref_primary_10_1016_j_pathophys_2016_02_002
crossref_primary_10_3389_fnut_2017_00061
crossref_primary_10_1053_j_gastro_2013_08_049
crossref_primary_10_1371_journal_ppat_1009465
crossref_primary_10_1016_j_foodchem_2020_127184
crossref_primary_10_1146_annurev_immunol_061020_053707
crossref_primary_10_3389_falgy_2024_1505834
crossref_primary_10_1016_j_vetimm_2018_01_011
crossref_primary_10_3390_v10040146
crossref_primary_10_1016_j_jim_2014_01_014
crossref_primary_10_1016_j_molmed_2020_04_001
crossref_primary_10_3389_fimmu_2018_00408
crossref_primary_10_3389_fimmu_2024_1333967
crossref_primary_10_1128_microbiolspec_MCHD_0047_2016
crossref_primary_10_1146_annurev_immunol_032713_120238
crossref_primary_10_1136_gutjnl_2020_320937
crossref_primary_10_1371_journal_ppat_1003801
crossref_primary_10_1186_s41232_023_00262_w
crossref_primary_10_1111_imr_12179
crossref_primary_10_3389_fimmu_2021_639902
crossref_primary_10_1002_eji_201948332
crossref_primary_10_1016_j_clinthera_2015_03_009
crossref_primary_10_1111_imr_12171
crossref_primary_10_1371_journal_ppat_1006075
crossref_primary_10_1016_j_autrev_2024_103678
crossref_primary_10_1038_s41385_018_0007_6
crossref_primary_10_3390_pathogens7020055
crossref_primary_10_3389_fimmu_2020_568598
crossref_primary_10_1016_j_tim_2017_06_006
crossref_primary_10_1128_IAI_00820_15
crossref_primary_10_1016_j_imlet_2015_11_005
crossref_primary_10_1016_j_immuni_2021_11_008
crossref_primary_10_1186_s12964_020_0514_4
crossref_primary_10_1038_ncomms4704
crossref_primary_10_1111_imr_12167
crossref_primary_10_3920_BM2015_0094
crossref_primary_10_1128_MMBR_00007_17
crossref_primary_10_3389_fcimb_2023_1140765
crossref_primary_10_3389_fimmu_2024_1413485
crossref_primary_10_1016_j_coi_2013_10_002
crossref_primary_10_1016_j_celrep_2023_112483
crossref_primary_10_1080_19490976_2021_2007743
crossref_primary_10_1371_journal_pone_0188600
crossref_primary_10_3389_fcell_2021_635221
crossref_primary_10_1002_adfm_201907170
crossref_primary_10_1016_j_ceb_2017_04_007
crossref_primary_10_1038_mi_2014_58
crossref_primary_10_3389_fcimb_2018_00006
crossref_primary_10_1016_j_jim_2015_03_008
crossref_primary_10_1038_ncomms8526
crossref_primary_10_4049_jimmunol_1401835
crossref_primary_10_3389_fimmu_2019_02949
crossref_primary_10_1038_s41577_023_00932_3
crossref_primary_10_1073_pnas_2318767121
crossref_primary_10_1186_s12917_017_1194_1
crossref_primary_10_1155_2015_527696
crossref_primary_10_1097_MOG_0b013e328365d30f
crossref_primary_10_17352_ojpch_000019
crossref_primary_10_3389_fmicb_2022_1039884
crossref_primary_10_1093_femspd_ftw051
crossref_primary_10_1371_journal_pone_0153351
crossref_primary_10_1038_ni_3408
crossref_primary_10_1039_C4FO00529E
crossref_primary_10_1002_eji_201847671
crossref_primary_10_1016_j_immuni_2013_12_012
crossref_primary_10_1038_mi_2015_121
crossref_primary_10_1093_cei_uxac057
crossref_primary_10_1146_annurev_cellbio_120420_112849
crossref_primary_10_7554_eLife_63296
crossref_primary_10_3389_fnut_2021_759507
crossref_primary_10_1016_j_immuni_2014_04_016
crossref_primary_10_3390_vaccines12020191
crossref_primary_10_1016_j_jaut_2018_06_003
crossref_primary_10_1111_imm_12801
crossref_primary_10_1155_2019_2525984
crossref_primary_10_1007_s00281_022_00955_3
crossref_primary_10_1016_j_cell_2015_08_030
crossref_primary_10_1038_mi_2017_22
crossref_primary_10_1007_s10522_014_9498_z
crossref_primary_10_1007_s13238_017_0398_2
crossref_primary_10_1084_jem_20222008
crossref_primary_10_1128_microbiolspec_BAI_0007_2019
crossref_primary_10_3389_fimmu_2022_944982
crossref_primary_10_1038_s41577_018_0002_x
crossref_primary_10_3389_fcell_2022_932472
crossref_primary_10_3390_cancers16173040
crossref_primary_10_3390_antiox11010047
crossref_primary_10_1038_nri_2016_36
crossref_primary_10_3389_fimmu_2018_00846
crossref_primary_10_1016_j_fsi_2021_05_007
crossref_primary_10_1111_hel_70015
crossref_primary_10_1189_jlb_3A0516_236R
crossref_primary_10_1155_2020_2032057
crossref_primary_10_1111_1462_2920_13926
crossref_primary_10_1002_1873_3468_12122
crossref_primary_10_1016_j_bbrc_2019_12_021
crossref_primary_10_1038_s41586_022_05141_x
crossref_primary_10_3389_fmicb_2024_1417864
crossref_primary_10_4110_in_2022_22_e16
crossref_primary_10_1007_s11882_018_0815_5
crossref_primary_10_4110_in_2015_15_1_1
crossref_primary_10_1016_j_ijpara_2017_08_001
crossref_primary_10_1007_s10565_016_9320_6
crossref_primary_10_1128_JVI_03733_14
crossref_primary_10_1016_j_ejcb_2022_151283
crossref_primary_10_1371_journal_ppat_1004405
crossref_primary_10_1016_j_smim_2023_101757
crossref_primary_10_3389_fcimb_2021_689401
crossref_primary_10_1111_jcmm_15250
crossref_primary_10_1007_s00018_022_04664_w
crossref_primary_10_1038_mi_2015_64
crossref_primary_10_1038_nri_2016_116
crossref_primary_10_1084_jem_20162014
crossref_primary_10_1111_imr_13050
crossref_primary_10_1016_j_ajpath_2015_02_024
crossref_primary_10_1038_emm_2014_16
crossref_primary_10_7554_eLife_54792
crossref_primary_10_3390_life13091936
crossref_primary_10_1016_j_smim_2017_08_008
crossref_primary_10_1016_j_clim_2014_11_005
crossref_primary_10_4161_21688370_2014_982426
crossref_primary_10_1016_j_cell_2017_08_046
crossref_primary_10_1016_j_jaut_2022_102867
crossref_primary_10_4049_jimmunol_1502548
crossref_primary_10_1002_eji_201343740
crossref_primary_10_7554_eLife_72082
crossref_primary_10_1021_acs_bioconjchem_7b00738
crossref_primary_10_1038_ncb3284
crossref_primary_10_3389_fmed_2024_1409409
crossref_primary_10_1080_19490976_2019_1629236
crossref_primary_10_1111_febs_16945
crossref_primary_10_1371_journal_pone_0071338
crossref_primary_10_1371_journal_pone_0069936
crossref_primary_10_1038_srep23820
crossref_primary_10_1128_microbiolspec_MCHD_0046_2016
crossref_primary_10_1016_j_immuni_2017_04_004
crossref_primary_10_1038_nri3738
crossref_primary_10_1111_imr_12192
crossref_primary_10_1111_imr_12194
crossref_primary_10_1111_imr_12195
crossref_primary_10_1038_s41467_020_15068_4
crossref_primary_10_1089_vim_2017_0026
crossref_primary_10_1016_j_coi_2024_102452
crossref_primary_10_1016_j_conb_2019_10_006
crossref_primary_10_1242_jcs_141226
crossref_primary_10_1128_JVI_01544_15
crossref_primary_10_1093_intimm_dxac054
crossref_primary_10_3389_fcell_2020_624213
crossref_primary_10_1002_eji_202250131
crossref_primary_10_1038_s41551_021_00834_6
crossref_primary_10_1080_19490976_2022_2158034
crossref_primary_10_1111_cmi_12301
crossref_primary_10_1111_imr_12108
crossref_primary_10_1016_j_it_2014_04_003
crossref_primary_10_1016_j_bbrc_2020_05_022
crossref_primary_10_4049_jimmunol_1600244
crossref_primary_10_1016_j_immuni_2014_01_008
crossref_primary_10_1111_imm_12687
crossref_primary_10_1189_jlb_0413222
crossref_primary_10_1038_mi_2017_62
crossref_primary_10_1016_j_biomaterials_2019_119396
crossref_primary_10_1016_j_chom_2017_07_009
crossref_primary_10_1080_21645515_2018_1514354
crossref_primary_10_1016_j_coi_2017_12_004
crossref_primary_10_1021_acs_jproteome_9b00558
crossref_primary_10_23950_jcmk_10926
crossref_primary_10_1093_ecco_jcc_jjy088
crossref_primary_10_1097_MIB_0000000000000299
crossref_primary_10_1186_s40168_017_0263_9
crossref_primary_10_1186_s12885_022_10032_5
crossref_primary_10_1016_j_actbio_2021_05_045
crossref_primary_10_2220_biomedres_43_59
crossref_primary_10_1084_jem_20122588
crossref_primary_10_1038_mi_2013_30
crossref_primary_10_1186_s40168_017_0300_8
crossref_primary_10_1038_icb_2013_70
crossref_primary_10_1016_j_ijmm_2016_04_002
crossref_primary_10_3390_nu9010068
crossref_primary_10_1002_eji_201948177
crossref_primary_10_3389_fimmu_2016_00503
crossref_primary_10_1007_s00253_020_10832_4
crossref_primary_10_1016_j_micpath_2015_10_004
crossref_primary_10_1038_s41385_021_00448_w
crossref_primary_10_3389_fimmu_2022_916066
crossref_primary_10_1099_jgv_0_000507
crossref_primary_10_1126_science_1246252
crossref_primary_10_1016_j_semcdb_2015_03_011
crossref_primary_10_3389_fimmu_2015_00569
crossref_primary_10_1080_19490976_2017_1299846
crossref_primary_10_1038_s41577_024_01077_7
crossref_primary_10_3389_fimmu_2016_00054
crossref_primary_10_37871_jbres1165
crossref_primary_10_1155_2022_2655801
crossref_primary_10_3389_fimmu_2016_00290
crossref_primary_10_1016_j_foodres_2022_112150
crossref_primary_10_1051_jbio_2017009
crossref_primary_10_1371_journal_pone_0153402
crossref_primary_10_1128_jvi_00987_24
crossref_primary_10_1016_j_imlet_2019_01_006
crossref_primary_10_1371_journal_ppat_1005132
crossref_primary_10_1007_s00441_021_03457_0
crossref_primary_10_1126_sciimmunol_aao1314
crossref_primary_10_3390_app112412000
crossref_primary_10_3390_cells9102162
crossref_primary_10_1016_j_vaccine_2015_01_022
crossref_primary_10_3389_fimmu_2014_00104
crossref_primary_10_1189_jlb_1RU1216_521R
crossref_primary_10_1111_imr_12429
crossref_primary_10_1093_ndt_gfy385
crossref_primary_10_1038_ncomms14715
crossref_primary_10_1248_yakushi_14_00006_3
crossref_primary_10_3389_fimmu_2018_02320
crossref_primary_10_1002_ar_23106
crossref_primary_10_1016_j_it_2024_09_011
crossref_primary_10_1016_j_antiviral_2016_02_003
crossref_primary_10_1038_nri3535
crossref_primary_10_1038_s41467_021_26446_x
crossref_primary_10_3748_wjg_v25_i27_3503
crossref_primary_10_1016_j_tifs_2019_03_017
crossref_primary_10_1016_j_coisb_2017_02_001
crossref_primary_10_3389_fmicb_2024_1477187
crossref_primary_10_1016_j_it_2013_02_001
crossref_primary_10_1038_s41590_020_0645_1
crossref_primary_10_1097_MIB_0000000000000511
crossref_primary_10_1128_microbiolspec_MCHD_0042_2016
crossref_primary_10_1002_cpim_11
crossref_primary_10_1007_s10974_025_09691_1
crossref_primary_10_1155_2016_1958650
crossref_primary_10_1513_AnnalsATS_201405_218AW
crossref_primary_10_3390_cells12131779
crossref_primary_10_2147_JIR_S348079
crossref_primary_10_3390_ijms232415572
crossref_primary_10_1016_j_it_2016_05_002
crossref_primary_10_26508_lsa_202201442
crossref_primary_10_1002_path_4277
crossref_primary_10_1016_j_it_2017_07_009
crossref_primary_10_1016_j_freeradbiomed_2013_11_008
crossref_primary_10_1111_cmi_12501
crossref_primary_10_7554_eLife_15251
crossref_primary_10_1038_nmicrobiol_2017_99
crossref_primary_10_1038_s41385_022_00509_8
crossref_primary_10_1080_07853890_2021_1927170
crossref_primary_10_1007_s10522_015_9628_2
crossref_primary_10_1007_s12975_023_01151_7
crossref_primary_10_1371_journal_ppat_1004385
crossref_primary_10_3389_fimmu_2020_00712
crossref_primary_10_1038_s41467_018_03318_5
crossref_primary_10_3390_microorganisms9010034
crossref_primary_10_1371_journal_pone_0158775
crossref_primary_10_1007_s12016_018_8680_5
crossref_primary_10_1038_s41385_019_0240_7
crossref_primary_10_3389_fimmu_2018_02989
crossref_primary_10_1016_j_jim_2015_12_005
crossref_primary_10_1111_andr_13509
crossref_primary_10_1016_j_cell_2016_11_040
crossref_primary_10_3389_fimmu_2019_01873
crossref_primary_10_1016_j_jaut_2023_103034
crossref_primary_10_3389_fimmu_2019_00787
crossref_primary_10_1371_journal_pone_0118067
crossref_primary_10_3389_fimmu_2020_00282
crossref_primary_10_1016_j_coi_2013_10_016
crossref_primary_10_1038_s41586_019_0884_1
crossref_primary_10_3390_microorganisms7120625
crossref_primary_10_1111_imm_13048
crossref_primary_10_1128_MMBR_00044_18
crossref_primary_10_1016_j_cell_2015_12_023
crossref_primary_10_1093_discim_kyad018
crossref_primary_10_1038_mi_2013_70
crossref_primary_10_3389_fvets_2022_878467
crossref_primary_10_4103_0366_6999_185872
crossref_primary_10_1371_journal_pone_0114601
crossref_primary_10_1038_ni_2611
crossref_primary_10_3168_jds_2018_15156
crossref_primary_10_1111_aji_13653
crossref_primary_10_1016_j_ijmm_2017_09_011
crossref_primary_10_1007_s12403_023_00578_5
crossref_primary_10_1016_j_immuni_2015_08_011
crossref_primary_10_3389_fimmu_2018_00350
crossref_primary_10_4049_jimmunol_1800236
crossref_primary_10_1189_jlb_0413207
crossref_primary_10_1111_febs_16558
crossref_primary_10_1111_imm_12747
crossref_primary_10_1016_j_foodres_2024_115383
crossref_primary_10_1016_j_smim_2015_03_012
crossref_primary_10_1038_ni_3396
crossref_primary_10_1016_j_cotox_2020_02_007
crossref_primary_10_1038_s41423_019_0208_2
crossref_primary_10_1038_s41598_018_20243_1
crossref_primary_10_1111_brv_13000
crossref_primary_10_1016_j_jsbmb_2020_105663
crossref_primary_10_1126_sciimmunol_aax6085
crossref_primary_10_1371_journal_pone_0086656
crossref_primary_10_1126_sciimmunol_aaw1941
crossref_primary_10_3389_fimmu_2019_01891
crossref_primary_10_1080_19490976_2023_2211184
crossref_primary_10_3389_fimmu_2015_00254
crossref_primary_10_1007_s00424_016_1882_x
crossref_primary_10_3389_fimmu_2018_02883
crossref_primary_10_1038_nrgastro_2017_79
crossref_primary_10_1126_science_1237910
crossref_primary_10_1016_j_cell_2016_04_041
crossref_primary_10_1016_j_chom_2015_01_009
crossref_primary_10_4049_jimmunol_1303167
crossref_primary_10_7759_cureus_16533
crossref_primary_10_1016_j_jim_2015_02_013
crossref_primary_10_3389_fimmu_2024_1379798
crossref_primary_10_4161_cib_29084
crossref_primary_10_1038_s41575_024_00997_y
Cites_doi 10.1084/jem.180.1.15
10.1016/j.immuni.2011.12.011
10.4049/jimmunol.178.12.7747
10.1038/mi.2011.61
10.4049/jimmunol.156.4.1408
10.1679/aohc.62.471
10.1016/j.immuni.2010.06.015
10.1002/eji.200939957
10.1038/nature10863
10.4049/jimmunol.154.11.5684
10.1016/B978-0-12-381300-8.00004-6
10.4049/jimmunol.176.4.2465
10.1016/j.immuni.2009.08.010
10.1016/0076-6879(94)36039-1
10.1038/sj.jid.5700882
10.1002/eji.200636356
10.1126/science.1145697
10.1038/86373
10.1084/jem.20070590
10.1083/jcb.100.1.327
10.1084/jem.20091925
10.1084/jem.20051100
10.1016/j.immuni.2009.06.025
10.4049/jimmunol.176.2.803
10.1016/1074-7613(95)90167-1
10.1073/pnas.89.5.1924
10.4049/jimmunol.173.8.5103
10.1038/mi.2009.13
10.1016/j.immuni.2004.08.011
10.1038/nature11809
10.1016/j.it.2011.06.003
10.1038/372190a0
10.1016/j.immuni.2012.08.026
10.1152/ajpgi.2001.280.4.G710
10.1053/j.gastro.2009.04.010
10.4049/jimmunol.176.4.2161
10.1016/j.ajpath.2011.11.009
10.1038/ni1362
10.4049/jimmunol.0802749
10.1073/pnas.0400969101
10.1038/ni1139
10.1182/blood-2008-01-134833
10.1128/iai.62.5.1669-1676.1994
10.1038/nri2335
10.1084/jem.194.8.1171
10.1016/j.imbio.2010.05.013
10.1084/jem.20070602
10.1126/science.1102901
10.1083/jcb.129.2.489
10.1016/S1074-7613(00)80596-8
10.1084/jem.20061884
10.1084/jem.20080414
10.1128/IAI.01392-06
10.1084/jem.20102392
10.1038/ni.1622
10.1128/IAI.69.9.5726-5735.2001
10.1128/MCB.20.11.4106-4114.2000
10.1038/nri2707
10.1084/jem.20040662
10.4049/jimmunol.1004036
10.1126/science.1087262
10.1007/s00535-009-0094-y
10.1084/jem.20101387
10.1016/j.immuni.2006.01.005
10.1165/ajrcmb.19.4.2870
10.4049/jimmunol.174.3.1675
10.1038/nri2778
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Mar 21, 2013
2013 Elsevier Inc. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Mar 21, 2013
– notice: 2013 Elsevier Inc. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2013.01.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
AIDS and Cancer Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 595
ExternalDocumentID PMC4115273
3513123091
23395676
10_1016_j_immuni_2013_01_009
S1074761313000496
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK067381
– fundername: NIDDK NIH HHS
  grantid: P01 DK072201
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
3V.
4.4
457
4G.
53G
5GY
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGHFR
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c524t-90e73394e31f6c71b6831960b786264788f9c4d5b06accccf88ff70b87af073c3
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 14:06:12 EDT 2025
Fri Jul 11 05:33:47 EDT 2025
Fri Jul 11 11:00:42 EDT 2025
Fri Jul 25 11:11:46 EDT 2025
Thu Apr 03 06:59:14 EDT 2025
Thu Apr 24 23:08:05 EDT 2025
Fri Jul 04 04:46:10 EDT 2025
Fri Feb 23 02:28:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-90e73394e31f6c71b6831960b786264788f9c4d5b06accccf88ff70b87af073c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761313000496
PMID 23395676
PQID 1629396913
PQPubID 2031079
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115273
proquest_miscellaneous_1642631117
proquest_miscellaneous_1319619821
proquest_journals_1629396913
pubmed_primary_23395676
crossref_citationtrail_10_1016_j_immuni_2013_01_009
crossref_primary_10_1016_j_immuni_2013_01_009
elsevier_sciencedirect_doi_10_1016_j_immuni_2013_01_009
PublicationCentury 2000
PublicationDate 2013-03-21
PublicationDateYYYYMMDD 2013-03-21
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Coombes, Powrie (bib12) 2008; 8
Le Borgne, Etchart, Goubier, Lira, Sirard, van Rooijen, Caux, Aït-Yahia, Vicari, Kaiserlian, Dubois (bib35) 2006; 24
Schödel, Kelly, Peterson, Milich, Curtiss (bib51) 1994; 62
McDonald, Leach, Brooke, Wang, Wheeler, Hanly, Rowley, Levin, Wagner, Li, Newberry (bib41) 2012; 180
Bowe, Heffron (bib8) 1994; 236
Bogunovic, Ginhoux, Helft, Shang, Hashimoto, Greter, Liu, Jakubzick, Ingersoll, Leboeuf (bib6) 2009; 31
Sun, Hall, Blank, Bouladoux, Oukka, Mora, Belkaid (bib55) 2007; 204
Jung, Aliberti, Graemmel, Sunshine, Kreutzberg, Sher, Littman (bib32) 2000; 20
Hebel, Griewank, Inamine, Chang, Müller-Hilke, Fillatreau, Manz, Radbruch, Jung (bib20) 2006; 36
Chieppa, Rescigno, Huang, Germain (bib11) 2006; 203
Izadpanah, Dwinell, Eckmann, Varki, Kagnoff (bib26) 2001; 280
Uematsu, Fujimoto, Jang, Yang, Jung, Nishiyama, Sato, Tsujimura, Yamamoto, Yokota (bib61) 2008; 9
Jaensson, Uronen-Hansson, Pabst, Eksteen, Tian, Coombes, Berg, Davidsson, Powrie, Johansson-Lindbom, Agace (bib27) 2008; 205
Nakano, Yanagita, Gunn (bib43) 2001; 194
Mucida, Park, Kim, Turovskaya, Scott, Kronenberg, Cheroutre (bib42) 2007; 317
Zigmond, Varol, Farache, Elmaliah, Ansuman, Friedlander, Mack, Shpigel, Boneca (bib67) 2012
Uematsu, Akira (bib59) 2009; 44
Halle, Bumann, Herbrand, Willer, Dähne, Förster, Pabst (bib18) 2007; 75
Varol, Vallon-Eberhard, Elinav, Aychek, Shapira, Luche, Fehling, Hardt, Shakhar, Jung (bib63) 2009; 31
Niess, Brand, Gu, Landsman, Jung, McCormick, Vyas, Boes, Ploegh, Fox (bib44) 2005; 307
Parker, Cepek, Russell, Shaw, Posnett, Schwarting, Brenner (bib45) 1992; 89
Lindquist, Shakhar, Dudziak, Wardemann, Eisenreich, Dustin, Nussenzweig (bib36) 2004; 5
Vallon-Eberhard, Landsman, Yogev, Verrier, Jung (bib62) 2006; 176
Jang, Sougawa, Tanaka, Hirata, Hiroi, Tohya, Guo, Umemoto, Ebisuno, Yang (bib29) 2006; 176
Arques, Hautefort, Ivory, Bertelli, Regoli, Clare, Hinton, Nicoletti (bib5) 2009; 137
Kinnebrew, Buffie, Diehl, Zenewicz, Leiner, Hohl, Flavell, Littman, Pamer (bib33) 2012; 36
Fooksman, Schwickert, Victora, Dustin, Nussenzweig, Skokos (bib16) 2010; 33
Schlickum, Sennefelder, Friedrich, Harms, Lohse, Kilshaw, Schön (bib50) 2008; 112
Jones, Ghori, Falkow (bib31) 1994; 180
Boller, Vestweber, Kemler (bib7) 1985; 100
Schulz, Jaensson, Persson, Liu, Worbs, Agace, Pabst (bib52) 2009; 206
Huang, Cárdenas-Navia, Caldwell, Plumb, Radu, Rocha, Wilder, Bromberg, Cronstein, Sitkovsky (bib22) 2007; 178
Rescigno (bib47) 2010; 107
Coombes, Siddiqui, Arancibia-Cárcamo, Hall, Sun, Belkaid, Powrie (bib13) 2007; 204
Laffont, Siddiqui, Powrie (bib34) 2010; 40
Varol, Zigmond, Jung (bib64) 2010; 10
Rivollier, He, Kole, Valatas, Kelsall (bib49) 2012; 209
Zimmerli, Hauser (bib68) 2007; 127
Mach, Gillessen, Wilson, Sheehan, Mihm, Dranoff (bib37) 2000; 60
Cruickshank, Deschoolmeester, Svensson, Howell, Bazakou, Logunova, Little, English, Mack, Grencis (bib14) 2009; 182
Takahashi-Iwanaga, Iwanaga, Isayama (bib57) 1999; 62
Iwata, Hirakiyama, Eshima, Kagechika, Kato, Song (bib25) 2004; 21
Sung, Fu, Rose, Gaskin, Ju, Beaty (bib56) 2006; 176
Yrlid, Svensson, Håkansson, Chambers, Ljunggren, Wick (bib66) 2001; 69
Uematsu, Jang, Chevrier, Guo, Kumagai, Yamamoto, Kato, Sougawa, Matsui, Kuwata (bib60) 2006; 7
Adachi, Kawai, Takeda, Matsumoto, Tsutsui, Sakagami, Nakanishi, Akira (bib2) 1998; 9
Yamamoto, Sato, Hemmi, Hoshino, Kaisho, Sanjo, Takeuchi, Sugiyama, Okabe, Takeda, Akira (bib65) 2003; 301
Jang, Kweon, Iwatani, Yamamoto, Terahara, Sasakawa, Suzuki, Nochi, Yokota, Rennert (bib28) 2004; 101
Annacker, Coombes, Malmstrom, Uhlig, Bourne, Johansson-Lindbom, Agace, Parker, Powrie (bib4) 2005; 202
Huleatt, Lefrançois (bib23) 1995; 154
Maric, Holt, Perdue, Bienenstock (bib39) 1996; 156
Iliev, Mileti, Matteoli, Chieppa, Rescigno (bib24) 2009; 2
Cepek, Shaw, Parker, Russell, Morrow, Rimm, Brenner (bib10) 1994; 372
Abreu (bib1) 2010; 10
Scott, Aumeunier, Mowat (bib53) 2011; 32
Fujimoto, Karuppuchamy, Takemura, Shimohigoshi, Machida, Haseda, Aoshi, Ishii, Akira, Uematsu (bib17) 2011; 186
Persson, Jaensson, Agace (bib46) 2010; 215
Johansson-Lindbom, Svensson, Pabst, Palmqvist, Marquez, Förster, Agace (bib30) 2005; 202
McDole, Wheeler, McDonald, Wang, Konjufca, Knoop, Newberry, Miller (bib40) 2012; 483
Rescigno, Urbano, Valzasina, Francolini, Rotta, Bonasio, Granucci, Kraehenbuhl, Ricciardi-Castagnoli (bib48) 2001; 2
Semmrich, Plantinga, Svensson-Frej, Uronen-Hansson, Gustafsson, Mowat, Yrlid, Lambrecht, Agace (bib54) 2012; 5
Anjuère, Luci, Lebens, Rousseau, Hervouet, Milon, Holmgren, Ardavin, Czerkinsky (bib3) 2004; 173
Mackarehtschian, Hardin, Moore, Boast, Goff, Lemischka (bib38) 1995; 3
Hapfelmeier, Stecher, Barthel, Kremer, Müller, Heikenwalder, Stallmach, Hensel, Pfeffer, Akira, Hardt (bib19) 2005; 174
Hermiston, Gordon (bib21) 1995; 129
Brokaw, White, Baluk, Anderson, Umemoto, McDonald (bib9) 1998; 19
Diehl, Longman, Zhang, Breart, Galan, Cuesta, Schwab, Littman (bib15) 2013
Tal, Lim, Gurevich, Milo, Shipony, Ng, Angeli, Shakhar (bib58) 2011; 208
Uematsu (10.1016/j.immuni.2013.01.009_bib61) 2008; 9
Adachi (10.1016/j.immuni.2013.01.009_bib2) 1998; 9
Schulz (10.1016/j.immuni.2013.01.009_bib52) 2009; 206
Scott (10.1016/j.immuni.2013.01.009_bib53) 2011; 32
Iliev (10.1016/j.immuni.2013.01.009_bib24) 2009; 2
Lindquist (10.1016/j.immuni.2013.01.009_bib36) 2004; 5
Fooksman (10.1016/j.immuni.2013.01.009_bib16) 2010; 33
McDole (10.1016/j.immuni.2013.01.009_bib40) 2012; 483
Hermiston (10.1016/j.immuni.2013.01.009_bib21) 1995; 129
Schödel (10.1016/j.immuni.2013.01.009_bib51) 1994; 62
Johansson-Lindbom (10.1016/j.immuni.2013.01.009_bib30) 2005; 202
Zimmerli (10.1016/j.immuni.2013.01.009_bib68) 2007; 127
Halle (10.1016/j.immuni.2013.01.009_bib18) 2007; 75
Coombes (10.1016/j.immuni.2013.01.009_bib12) 2008; 8
Jang (10.1016/j.immuni.2013.01.009_bib28) 2004; 101
Le Borgne (10.1016/j.immuni.2013.01.009_bib35) 2006; 24
Fujimoto (10.1016/j.immuni.2013.01.009_bib17) 2011; 186
Takahashi-Iwanaga (10.1016/j.immuni.2013.01.009_bib57) 1999; 62
Jones (10.1016/j.immuni.2013.01.009_bib31) 1994; 180
Hapfelmeier (10.1016/j.immuni.2013.01.009_bib19) 2005; 174
Varol (10.1016/j.immuni.2013.01.009_bib64) 2010; 10
Chieppa (10.1016/j.immuni.2013.01.009_bib11) 2006; 203
Abreu (10.1016/j.immuni.2013.01.009_bib1) 2010; 10
Tal (10.1016/j.immuni.2013.01.009_bib58) 2011; 208
Jung (10.1016/j.immuni.2013.01.009_bib32) 2000; 20
Yamamoto (10.1016/j.immuni.2013.01.009_bib65) 2003; 301
McDonald (10.1016/j.immuni.2013.01.009_bib41) 2012; 180
Annacker (10.1016/j.immuni.2013.01.009_bib4) 2005; 202
Anjuère (10.1016/j.immuni.2013.01.009_bib3) 2004; 173
Rescigno (10.1016/j.immuni.2013.01.009_bib48) 2001; 2
Jang (10.1016/j.immuni.2013.01.009_bib29) 2006; 176
Kinnebrew (10.1016/j.immuni.2013.01.009_bib33) 2012; 36
Diehl (10.1016/j.immuni.2013.01.009_bib15) 2013
Uematsu (10.1016/j.immuni.2013.01.009_bib60) 2006; 7
Niess (10.1016/j.immuni.2013.01.009_bib44) 2005; 307
Vallon-Eberhard (10.1016/j.immuni.2013.01.009_bib62) 2006; 176
Persson (10.1016/j.immuni.2013.01.009_bib46) 2010; 215
Schlickum (10.1016/j.immuni.2013.01.009_bib50) 2008; 112
Huleatt (10.1016/j.immuni.2013.01.009_bib23) 1995; 154
Arques (10.1016/j.immuni.2013.01.009_bib5) 2009; 137
Sun (10.1016/j.immuni.2013.01.009_bib55) 2007; 204
Rivollier (10.1016/j.immuni.2013.01.009_bib49) 2012; 209
Jaensson (10.1016/j.immuni.2013.01.009_bib27) 2008; 205
Nakano (10.1016/j.immuni.2013.01.009_bib43) 2001; 194
Coombes (10.1016/j.immuni.2013.01.009_bib13) 2007; 204
Boller (10.1016/j.immuni.2013.01.009_bib7) 1985; 100
Sung (10.1016/j.immuni.2013.01.009_bib56) 2006; 176
Bogunovic (10.1016/j.immuni.2013.01.009_bib6) 2009; 31
Brokaw (10.1016/j.immuni.2013.01.009_bib9) 1998; 19
Yrlid (10.1016/j.immuni.2013.01.009_bib66) 2001; 69
Iwata (10.1016/j.immuni.2013.01.009_bib25) 2004; 21
Maric (10.1016/j.immuni.2013.01.009_bib39) 1996; 156
Mackarehtschian (10.1016/j.immuni.2013.01.009_bib38) 1995; 3
Cruickshank (10.1016/j.immuni.2013.01.009_bib14) 2009; 182
Hebel (10.1016/j.immuni.2013.01.009_bib20) 2006; 36
Laffont (10.1016/j.immuni.2013.01.009_bib34) 2010; 40
Mucida (10.1016/j.immuni.2013.01.009_bib42) 2007; 317
Rescigno (10.1016/j.immuni.2013.01.009_bib47) 2010; 107
Varol (10.1016/j.immuni.2013.01.009_bib63) 2009; 31
Izadpanah (10.1016/j.immuni.2013.01.009_bib26) 2001; 280
Semmrich (10.1016/j.immuni.2013.01.009_bib54) 2012; 5
Cepek (10.1016/j.immuni.2013.01.009_bib10) 1994; 372
Zigmond (10.1016/j.immuni.2013.01.009_bib67) 2012
Uematsu (10.1016/j.immuni.2013.01.009_bib59) 2009; 44
Bowe (10.1016/j.immuni.2013.01.009_bib8) 1994; 236
Huang (10.1016/j.immuni.2013.01.009_bib22) 2007; 178
Mach (10.1016/j.immuni.2013.01.009_bib37) 2000; 60
Parker (10.1016/j.immuni.2013.01.009_bib45) 1992; 89
23219392 - Immunity. 2012 Dec 14;37(6):1076-90
18492951 - Blood. 2008 Aug 1;112(3):619-25
16456006 - J Immunol. 2006 Feb 15;176(4):2465-9
16473831 - Immunity. 2006 Feb;24(2):191-201
20498668 - Nat Rev Immunol. 2010 Jun;10(6):415-26
22222225 - Am J Pathol. 2012 Mar;180(3):984-97
19733097 - Immunity. 2009 Sep 18;31(3):502-12
17051619 - Eur J Immunol. 2006 Nov;36(11):2912-9
3880756 - J Cell Biol. 1985 Jan;100(1):327-32
18516037 - Nat Immunol. 2008 Jul;9(7):769-76
22422267 - Nature. 2012 Mar 15;483(7389):345-9
10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
11500449 - Infect Immun. 2001 Sep;69(9):5726-35
23334413 - Nature. 2013 Feb 7;494(7435):116-20
7721948 - J Cell Biol. 1995 Apr;129(2):489-506
17283101 - Infect Immun. 2007 Apr;75(4):1577-85
15543150 - Nat Immunol. 2004 Dec;5(12):1243-50
11602645 - J Exp Med. 2001 Oct 15;194(8):1171-8
22166938 - Mucosal Immunol. 2012 Mar;5(2):150-60
12855817 - Science. 2003 Aug 1;301(5633):640-3
17569825 - Science. 2007 Jul 13;317(5835):256-60
22306017 - Immunity. 2012 Feb 24;36(2):276-87
10866317 - Cancer Res. 2000 Jun 15;60(12):3239-46
19234202 - J Immunol. 2009 Mar 1;182(5):3055-62
21930767 - J Exp Med. 2011 Sep 26;208(10):2141-53
7969453 - Nature. 1994 Nov 10;372(6502):190-3
15485630 - Immunity. 2004 Oct;21(4):527-38
22231304 - J Exp Med. 2012 Jan 16;209(1):139-55
15661931 - J Immunol. 2005 Feb 1;174(3):1675-85
19387433 - Mucosal Immunol. 2009 Jul;2(4):340-50
17508021 - J Invest Dermatol. 2007 Oct;127(10):2381-90
9697844 - Immunity. 1998 Jul;9(1):143-50
21525388 - J Immunol. 2011 Jun 1;186(11):6287-95
16393963 - J Immunol. 2006 Jan 15;176(2):803-10
19375423 - Gastroenterology. 2009 Aug;137(2):579-87, 587.e1-2
11276208 - Nat Immunol. 2001 Apr;2(4):361-7
8568241 - J Immunol. 1996 Feb 15;156(4):1408-14
17548612 - J Immunol. 2007 Jun 15;178(12):7747-55
15470054 - J Immunol. 2004 Oct 15;173(8):5103-11
8006579 - J Exp Med. 1994 Jul 1;180(1):15-23
20580119 - Immunobiology. 2010 Sep-Oct;215(9-10):692-7
20619695 - Immunity. 2010 Jul 23;33(1):118-27
21816673 - Trends Immunol. 2011 Sep;32(9):412-9
20098461 - Nat Rev Immunol. 2010 Feb;10(2):131-44
8168928 - Infect Immun. 1994 May;62(5):1669-76
9761756 - Am J Respir Cell Mol Biol. 1998 Oct;19(4):598-605
7621074 - Immunity. 1995 Jul;3(1):147-61
15071180 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6110-5
16216890 - J Exp Med. 2005 Oct 17;202(8):1063-73
1542691 - Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1924-8
7751620 - J Immunol. 1995 Jun 1;154(11):5684-93
17620361 - J Exp Med. 2007 Aug 6;204(8):1757-64
19733489 - Immunity. 2009 Sep 18;31(3):513-25
21034972 - Adv Immunol. 2010;107:109-38
7968635 - Methods Enzymol. 1994;236:509-26
18710932 - J Exp Med. 2008 Sep 1;205(9):2139-49
10678576 - Arch Histol Cytol. 1999 Dec;62(5):471-81
17145958 - J Exp Med. 2006 Dec 25;203(13):2841-52
16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61
18500229 - Nat Rev Immunol. 2008 Jun;8(6):435-46
20432234 - Eur J Immunol. 2010 Jul;40(7):1877-83
19547909 - J Gastroenterol. 2009;44(8):803-11
20008524 - J Exp Med. 2009 Dec 21;206(13):3101-14
16829963 - Nat Immunol. 2006 Aug;7(8):868-74
11254498 - Am J Physiol Gastrointest Liver Physiol. 2001 Apr;280(4):G710-9
17620362 - J Exp Med. 2007 Aug 6;204(8):1775-85
15653504 - Science. 2005 Jan 14;307(5707):254-8
16455972 - J Immunol. 2006 Feb 15;176(4):2161-72
References_xml – volume: 301
  start-page: 640
  year: 2003
  end-page: 643
  ident: bib65
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
– volume: 75
  start-page: 1577
  year: 2007
  end-page: 1585
  ident: bib18
  article-title: Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium
  publication-title: Infect. Immun.
– volume: 3
  start-page: 147
  year: 1995
  end-page: 161
  ident: bib38
  article-title: Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors
  publication-title: Immunity
– volume: 317
  start-page: 256
  year: 2007
  end-page: 260
  ident: bib42
  article-title: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid
  publication-title: Science
– volume: 9
  start-page: 769
  year: 2008
  end-page: 776
  ident: bib61
  article-title: Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5
  publication-title: Nat. Immunol.
– volume: 107
  start-page: 109
  year: 2010
  end-page: 138
  ident: bib47
  article-title: Intestinal dendritic cells
  publication-title: Adv. Immunol.
– volume: 36
  start-page: 2912
  year: 2006
  end-page: 2919
  ident: bib20
  article-title: Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11c(high) dendritic cells
  publication-title: Eur. J. Immunol.
– volume: 2
  start-page: 361
  year: 2001
  end-page: 367
  ident: bib48
  article-title: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
  publication-title: Nat. Immunol.
– volume: 100
  start-page: 327
  year: 1985
  end-page: 332
  ident: bib7
  article-title: Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells
  publication-title: J. Cell Biol.
– volume: 209
  start-page: 139
  year: 2012
  end-page: 155
  ident: bib49
  article-title: Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon
  publication-title: J. Exp. Med.
– volume: 208
  start-page: 2141
  year: 2011
  end-page: 2153
  ident: bib58
  article-title: DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling
  publication-title: J. Exp. Med.
– volume: 89
  start-page: 1924
  year: 1992
  end-page: 1928
  ident: bib45
  article-title: A family of beta 7 integrins on human mucosal lymphocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 143
  year: 1998
  end-page: 150
  ident: bib2
  article-title: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function
  publication-title: Immunity
– volume: 182
  start-page: 3055
  year: 2009
  end-page: 3062
  ident: bib14
  article-title: Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection
  publication-title: J. Immunol.
– volume: 176
  start-page: 2161
  year: 2006
  end-page: 2172
  ident: bib56
  article-title: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins
  publication-title: J. Immunol.
– volume: 180
  start-page: 15
  year: 1994
  end-page: 23
  ident: bib31
  article-title: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches
  publication-title: J. Exp. Med.
– volume: 202
  start-page: 1051
  year: 2005
  end-page: 1061
  ident: bib4
  article-title: Essential role for CD103 in the T cell-mediated regulation of experimental colitis
  publication-title: J. Exp. Med.
– volume: 19
  start-page: 598
  year: 1998
  end-page: 605
  ident: bib9
  article-title: Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 483
  start-page: 345
  year: 2012
  end-page: 349
  ident: bib40
  article-title: Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
  publication-title: Nature
– volume: 10
  start-page: 415
  year: 2010
  end-page: 426
  ident: bib64
  article-title: Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
  publication-title: Nat. Rev. Immunol.
– volume: 24
  start-page: 191
  year: 2006
  end-page: 201
  ident: bib35
  article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo
  publication-title: Immunity
– volume: 176
  start-page: 2465
  year: 2006
  end-page: 2469
  ident: bib62
  article-title: Transepithelial pathogen uptake into the small intestinal lamina propria
  publication-title: J. Immunol.
– volume: 2
  start-page: 340
  year: 2009
  end-page: 350
  ident: bib24
  article-title: Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning
  publication-title: Mucosal Immunol.
– volume: 307
  start-page: 254
  year: 2005
  end-page: 258
  ident: bib44
  article-title: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
  publication-title: Science
– volume: 127
  start-page: 2381
  year: 2007
  end-page: 2390
  ident: bib68
  article-title: Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1
  publication-title: J. Invest. Dermatol.
– volume: 215
  start-page: 692
  year: 2010
  end-page: 697
  ident: bib46
  article-title: The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets
  publication-title: Immunobiology
– volume: 280
  start-page: G710
  year: 2001
  end-page: G719
  ident: bib26
  article-title: Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 202
  start-page: 1063
  year: 2005
  end-page: 1073
  ident: bib30
  article-title: Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
  publication-title: J. Exp. Med.
– volume: 112
  start-page: 619
  year: 2008
  end-page: 625
  ident: bib50
  article-title: Integrin α E(CD103)β 7 influences cellular shape and motility in a ligand-dependent fashion
  publication-title: Blood
– volume: 180
  start-page: 984
  year: 2012
  end-page: 997
  ident: bib41
  article-title: Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids
  publication-title: Am. J. Pathol.
– volume: 62
  start-page: 1669
  year: 1994
  end-page: 1676
  ident: bib51
  article-title: Hybrid hepatitis B virus core-pre-S proteins synthesized in avirulent Salmonella typhimurium and Salmonella typhi for oral vaccination
  publication-title: Infect. Immun.
– volume: 178
  start-page: 7747
  year: 2007
  end-page: 7755
  ident: bib22
  article-title: Requirements for T lymphocyte migration in explanted lymph nodes
  publication-title: J. Immunol.
– volume: 31
  start-page: 502
  year: 2009
  end-page: 512
  ident: bib63
  article-title: Intestinal lamina propria dendritic cell subsets have different origin and functions
  publication-title: Immunity
– volume: 204
  start-page: 1775
  year: 2007
  end-page: 1785
  ident: bib55
  article-title: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
  publication-title: J. Exp. Med.
– volume: 101
  start-page: 6110
  year: 2004
  end-page: 6115
  ident: bib28
  article-title: Intestinal villous M cells: an antigen entry site in the mucosal epithelium
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 1076
  year: 2012
  end-page: 1090
  ident: bib67
  article-title: Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen presenting cells
  publication-title: Immunity
– volume: 186
  start-page: 6287
  year: 2011
  end-page: 6295
  ident: bib17
  article-title: A new subset of CD103+CD8alpha+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity
  publication-title: J. Immunol.
– volume: 154
  start-page: 5684
  year: 1995
  end-page: 5693
  ident: bib23
  article-title: Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo
  publication-title: J. Immunol.
– volume: 176
  start-page: 803
  year: 2006
  end-page: 810
  ident: bib29
  article-title: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes
  publication-title: J. Immunol.
– volume: 10
  start-page: 131
  year: 2010
  end-page: 144
  ident: bib1
  article-title: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function
  publication-title: Nat. Rev. Immunol.
– volume: 7
  start-page: 868
  year: 2006
  end-page: 874
  ident: bib60
  article-title: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells
  publication-title: Nat. Immunol.
– volume: 31
  start-page: 513
  year: 2009
  end-page: 525
  ident: bib6
  article-title: Origin of the lamina propria dendritic cell network
  publication-title: Immunity
– volume: 20
  start-page: 4106
  year: 2000
  end-page: 4114
  ident: bib32
  article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
  publication-title: Mol. Cell. Biol.
– volume: 156
  start-page: 1408
  year: 1996
  end-page: 1414
  ident: bib39
  article-title: Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine
  publication-title: J. Immunol.
– volume: 44
  start-page: 803
  year: 2009
  end-page: 811
  ident: bib59
  article-title: Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection
  publication-title: J. Gastroenterol.
– volume: 204
  start-page: 1757
  year: 2007
  end-page: 1764
  ident: bib13
  article-title: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
  publication-title: J. Exp. Med.
– volume: 60
  start-page: 3239
  year: 2000
  end-page: 3246
  ident: bib37
  article-title: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand
  publication-title: Cancer Res.
– volume: 32
  start-page: 412
  year: 2011
  end-page: 419
  ident: bib53
  article-title: Intestinal CD103+ dendritic cells: master regulators of tolerance?
  publication-title: Trends Immunol.
– volume: 174
  start-page: 1675
  year: 2005
  end-page: 1685
  ident: bib19
  article-title: The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms
  publication-title: J. Immunol.
– volume: 40
  start-page: 1877
  year: 2010
  end-page: 1883
  ident: bib34
  article-title: Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells
  publication-title: Eur. J. Immunol.
– volume: 69
  start-page: 5726
  year: 2001
  end-page: 5735
  ident: bib66
  article-title: In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection
  publication-title: Infect. Immun.
– volume: 173
  start-page: 5103
  year: 2004
  end-page: 5111
  ident: bib3
  article-title: In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin
  publication-title: J. Immunol.
– volume: 62
  start-page: 471
  year: 1999
  end-page: 481
  ident: bib57
  article-title: Porosity of the epithelial basement membrane as an indicator of macrophage-enterocyte interaction in the intestinal mucosa
  publication-title: Arch. Histol. Cytol.
– volume: 203
  start-page: 2841
  year: 2006
  end-page: 2852
  ident: bib11
  article-title: Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
  publication-title: J. Exp. Med.
– volume: 194
  start-page: 1171
  year: 2001
  end-page: 1178
  ident: bib43
  article-title: CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells
  publication-title: J. Exp. Med.
– volume: 236
  start-page: 509
  year: 1994
  end-page: 526
  ident: bib8
  article-title: Isolation of Salmonella mutants defective for intracellular survival
  publication-title: Methods Enzymol.
– volume: 137
  start-page: 579
  year: 2009
  end-page: 587
  ident: bib5
  article-title: Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen
  publication-title: Gastroenterology
– volume: 129
  start-page: 489
  year: 1995
  end-page: 506
  ident: bib21
  article-title: In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death
  publication-title: J. Cell Biol.
– volume: 205
  start-page: 2139
  year: 2008
  end-page: 2149
  ident: bib27
  article-title: Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans
  publication-title: J. Exp. Med.
– volume: 372
  start-page: 190
  year: 1994
  end-page: 193
  ident: bib10
  article-title: Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin
  publication-title: Nature
– volume: 206
  start-page: 3101
  year: 2009
  end-page: 3114
  ident: bib52
  article-title: Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
  publication-title: J. Exp. Med.
– volume: 8
  start-page: 435
  year: 2008
  end-page: 446
  ident: bib12
  article-title: Dendritic cells in intestinal immune regulation
  publication-title: Nat. Rev. Immunol.
– volume: 5
  start-page: 1243
  year: 2004
  end-page: 1250
  ident: bib36
  article-title: Visualizing dendritic cell networks in vivo
  publication-title: Nat. Immunol.
– volume: 5
  start-page: 150
  year: 2012
  end-page: 160
  ident: bib54
  article-title: Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses
  publication-title: Mucosal Immunol.
– volume: 33
  start-page: 118
  year: 2010
  end-page: 127
  ident: bib16
  article-title: Development and migration of plasma cells in the mouse lymph node
  publication-title: Immunity
– volume: 21
  start-page: 527
  year: 2004
  end-page: 538
  ident: bib25
  article-title: Retinoic acid imprints gut-homing specificity on T cells
  publication-title: Immunity
– volume: 36
  start-page: 276
  year: 2012
  end-page: 287
  ident: bib33
  article-title: Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
  publication-title: Immunity
– year: 2013
  ident: bib15
  article-title: Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX
  publication-title: Nature
– volume: 180
  start-page: 15
  year: 1994
  ident: 10.1016/j.immuni.2013.01.009_bib31
  article-title: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.180.1.15
– volume: 36
  start-page: 276
  year: 2012
  ident: 10.1016/j.immuni.2013.01.009_bib33
  article-title: Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.011
– volume: 178
  start-page: 7747
  year: 2007
  ident: 10.1016/j.immuni.2013.01.009_bib22
  article-title: Requirements for T lymphocyte migration in explanted lymph nodes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.12.7747
– volume: 5
  start-page: 150
  year: 2012
  ident: 10.1016/j.immuni.2013.01.009_bib54
  article-title: Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2011.61
– volume: 156
  start-page: 1408
  year: 1996
  ident: 10.1016/j.immuni.2013.01.009_bib39
  article-title: Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.156.4.1408
– volume: 62
  start-page: 471
  year: 1999
  ident: 10.1016/j.immuni.2013.01.009_bib57
  article-title: Porosity of the epithelial basement membrane as an indicator of macrophage-enterocyte interaction in the intestinal mucosa
  publication-title: Arch. Histol. Cytol.
  doi: 10.1679/aohc.62.471
– volume: 33
  start-page: 118
  year: 2010
  ident: 10.1016/j.immuni.2013.01.009_bib16
  article-title: Development and migration of plasma cells in the mouse lymph node
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.06.015
– volume: 40
  start-page: 1877
  year: 2010
  ident: 10.1016/j.immuni.2013.01.009_bib34
  article-title: Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939957
– volume: 483
  start-page: 345
  year: 2012
  ident: 10.1016/j.immuni.2013.01.009_bib40
  article-title: Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
  publication-title: Nature
  doi: 10.1038/nature10863
– volume: 154
  start-page: 5684
  year: 1995
  ident: 10.1016/j.immuni.2013.01.009_bib23
  article-title: Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.154.11.5684
– volume: 107
  start-page: 109
  year: 2010
  ident: 10.1016/j.immuni.2013.01.009_bib47
  article-title: Intestinal dendritic cells
  publication-title: Adv. Immunol.
  doi: 10.1016/B978-0-12-381300-8.00004-6
– volume: 176
  start-page: 2465
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib62
  article-title: Transepithelial pathogen uptake into the small intestinal lamina propria
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.4.2465
– volume: 31
  start-page: 513
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib6
  article-title: Origin of the lamina propria dendritic cell network
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.010
– volume: 236
  start-page: 509
  year: 1994
  ident: 10.1016/j.immuni.2013.01.009_bib8
  article-title: Isolation of Salmonella mutants defective for intracellular survival
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(94)36039-1
– volume: 127
  start-page: 2381
  year: 2007
  ident: 10.1016/j.immuni.2013.01.009_bib68
  article-title: Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/sj.jid.5700882
– volume: 36
  start-page: 2912
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib20
  article-title: Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11c(high) dendritic cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200636356
– volume: 317
  start-page: 256
  year: 2007
  ident: 10.1016/j.immuni.2013.01.009_bib42
  article-title: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid
  publication-title: Science
  doi: 10.1126/science.1145697
– volume: 2
  start-page: 361
  year: 2001
  ident: 10.1016/j.immuni.2013.01.009_bib48
  article-title: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
  publication-title: Nat. Immunol.
  doi: 10.1038/86373
– volume: 204
  start-page: 1757
  year: 2007
  ident: 10.1016/j.immuni.2013.01.009_bib13
  article-title: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070590
– volume: 100
  start-page: 327
  year: 1985
  ident: 10.1016/j.immuni.2013.01.009_bib7
  article-title: Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.100.1.327
– volume: 206
  start-page: 3101
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib52
  article-title: Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091925
– volume: 202
  start-page: 1063
  year: 2005
  ident: 10.1016/j.immuni.2013.01.009_bib30
  article-title: Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051100
– volume: 31
  start-page: 502
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib63
  article-title: Intestinal lamina propria dendritic cell subsets have different origin and functions
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.06.025
– volume: 176
  start-page: 803
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib29
  article-title: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.2.803
– volume: 3
  start-page: 147
  year: 1995
  ident: 10.1016/j.immuni.2013.01.009_bib38
  article-title: Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors
  publication-title: Immunity
  doi: 10.1016/1074-7613(95)90167-1
– volume: 89
  start-page: 1924
  year: 1992
  ident: 10.1016/j.immuni.2013.01.009_bib45
  article-title: A family of beta 7 integrins on human mucosal lymphocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.5.1924
– volume: 173
  start-page: 5103
  year: 2004
  ident: 10.1016/j.immuni.2013.01.009_bib3
  article-title: In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.8.5103
– volume: 2
  start-page: 340
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib24
  article-title: Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2009.13
– volume: 21
  start-page: 527
  year: 2004
  ident: 10.1016/j.immuni.2013.01.009_bib25
  article-title: Retinoic acid imprints gut-homing specificity on T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.08.011
– year: 2013
  ident: 10.1016/j.immuni.2013.01.009_bib15
  article-title: Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells
  publication-title: Nature
  doi: 10.1038/nature11809
– volume: 32
  start-page: 412
  year: 2011
  ident: 10.1016/j.immuni.2013.01.009_bib53
  article-title: Intestinal CD103+ dendritic cells: master regulators of tolerance?
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2011.06.003
– volume: 372
  start-page: 190
  year: 1994
  ident: 10.1016/j.immuni.2013.01.009_bib10
  article-title: Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin
  publication-title: Nature
  doi: 10.1038/372190a0
– start-page: 1076
  year: 2012
  ident: 10.1016/j.immuni.2013.01.009_bib67
  article-title: Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen presenting cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.08.026
– volume: 280
  start-page: G710
  year: 2001
  ident: 10.1016/j.immuni.2013.01.009_bib26
  article-title: Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.2001.280.4.G710
– volume: 137
  start-page: 579
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib5
  article-title: Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.04.010
– volume: 176
  start-page: 2161
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib56
  article-title: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.4.2161
– volume: 60
  start-page: 3239
  year: 2000
  ident: 10.1016/j.immuni.2013.01.009_bib37
  article-title: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand
  publication-title: Cancer Res.
– volume: 180
  start-page: 984
  year: 2012
  ident: 10.1016/j.immuni.2013.01.009_bib41
  article-title: Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2011.11.009
– volume: 7
  start-page: 868
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib60
  article-title: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1362
– volume: 182
  start-page: 3055
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib14
  article-title: Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0802749
– volume: 101
  start-page: 6110
  year: 2004
  ident: 10.1016/j.immuni.2013.01.009_bib28
  article-title: Intestinal villous M cells: an antigen entry site in the mucosal epithelium
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400969101
– volume: 5
  start-page: 1243
  year: 2004
  ident: 10.1016/j.immuni.2013.01.009_bib36
  article-title: Visualizing dendritic cell networks in vivo
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1139
– volume: 112
  start-page: 619
  year: 2008
  ident: 10.1016/j.immuni.2013.01.009_bib50
  article-title: Integrin α E(CD103)β 7 influences cellular shape and motility in a ligand-dependent fashion
  publication-title: Blood
  doi: 10.1182/blood-2008-01-134833
– volume: 62
  start-page: 1669
  year: 1994
  ident: 10.1016/j.immuni.2013.01.009_bib51
  article-title: Hybrid hepatitis B virus core-pre-S proteins synthesized in avirulent Salmonella typhimurium and Salmonella typhi for oral vaccination
  publication-title: Infect. Immun.
  doi: 10.1128/iai.62.5.1669-1676.1994
– volume: 8
  start-page: 435
  year: 2008
  ident: 10.1016/j.immuni.2013.01.009_bib12
  article-title: Dendritic cells in intestinal immune regulation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2335
– volume: 194
  start-page: 1171
  year: 2001
  ident: 10.1016/j.immuni.2013.01.009_bib43
  article-title: CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.194.8.1171
– volume: 215
  start-page: 692
  year: 2010
  ident: 10.1016/j.immuni.2013.01.009_bib46
  article-title: The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2010.05.013
– volume: 204
  start-page: 1775
  year: 2007
  ident: 10.1016/j.immuni.2013.01.009_bib55
  article-title: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070602
– volume: 307
  start-page: 254
  year: 2005
  ident: 10.1016/j.immuni.2013.01.009_bib44
  article-title: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
  publication-title: Science
  doi: 10.1126/science.1102901
– volume: 129
  start-page: 489
  year: 1995
  ident: 10.1016/j.immuni.2013.01.009_bib21
  article-title: In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.129.2.489
– volume: 9
  start-page: 143
  year: 1998
  ident: 10.1016/j.immuni.2013.01.009_bib2
  article-title: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80596-8
– volume: 203
  start-page: 2841
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib11
  article-title: Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061884
– volume: 205
  start-page: 2139
  year: 2008
  ident: 10.1016/j.immuni.2013.01.009_bib27
  article-title: Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080414
– volume: 75
  start-page: 1577
  year: 2007
  ident: 10.1016/j.immuni.2013.01.009_bib18
  article-title: Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01392-06
– volume: 208
  start-page: 2141
  year: 2011
  ident: 10.1016/j.immuni.2013.01.009_bib58
  article-title: DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20102392
– volume: 9
  start-page: 769
  year: 2008
  ident: 10.1016/j.immuni.2013.01.009_bib61
  article-title: Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1622
– volume: 69
  start-page: 5726
  year: 2001
  ident: 10.1016/j.immuni.2013.01.009_bib66
  article-title: In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.69.9.5726-5735.2001
– volume: 20
  start-page: 4106
  year: 2000
  ident: 10.1016/j.immuni.2013.01.009_bib32
  article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.11.4106-4114.2000
– volume: 10
  start-page: 131
  year: 2010
  ident: 10.1016/j.immuni.2013.01.009_bib1
  article-title: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2707
– volume: 202
  start-page: 1051
  year: 2005
  ident: 10.1016/j.immuni.2013.01.009_bib4
  article-title: Essential role for CD103 in the T cell-mediated regulation of experimental colitis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040662
– volume: 186
  start-page: 6287
  year: 2011
  ident: 10.1016/j.immuni.2013.01.009_bib17
  article-title: A new subset of CD103+CD8alpha+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1004036
– volume: 301
  start-page: 640
  year: 2003
  ident: 10.1016/j.immuni.2013.01.009_bib65
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– volume: 44
  start-page: 803
  year: 2009
  ident: 10.1016/j.immuni.2013.01.009_bib59
  article-title: Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection
  publication-title: J. Gastroenterol.
  doi: 10.1007/s00535-009-0094-y
– volume: 209
  start-page: 139
  year: 2012
  ident: 10.1016/j.immuni.2013.01.009_bib49
  article-title: Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101387
– volume: 24
  start-page: 191
  year: 2006
  ident: 10.1016/j.immuni.2013.01.009_bib35
  article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.01.005
– volume: 19
  start-page: 598
  year: 1998
  ident: 10.1016/j.immuni.2013.01.009_bib9
  article-title: Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/ajrcmb.19.4.2870
– volume: 174
  start-page: 1675
  year: 2005
  ident: 10.1016/j.immuni.2013.01.009_bib19
  article-title: The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.3.1675
– volume: 10
  start-page: 415
  year: 2010
  ident: 10.1016/j.immuni.2013.01.009_bib64
  article-title: Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2778
– reference: 8006579 - J Exp Med. 1994 Jul 1;180(1):15-23
– reference: 15485630 - Immunity. 2004 Oct;21(4):527-38
– reference: 15661931 - J Immunol. 2005 Feb 1;174(3):1675-85
– reference: 16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61
– reference: 15071180 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6110-5
– reference: 19733489 - Immunity. 2009 Sep 18;31(3):513-25
– reference: 23334413 - Nature. 2013 Feb 7;494(7435):116-20
– reference: 17283101 - Infect Immun. 2007 Apr;75(4):1577-85
– reference: 18516037 - Nat Immunol. 2008 Jul;9(7):769-76
– reference: 8568241 - J Immunol. 1996 Feb 15;156(4):1408-14
– reference: 17548612 - J Immunol. 2007 Jun 15;178(12):7747-55
– reference: 20580119 - Immunobiology. 2010 Sep-Oct;215(9-10):692-7
– reference: 17508021 - J Invest Dermatol. 2007 Oct;127(10):2381-90
– reference: 1542691 - Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1924-8
– reference: 12855817 - Science. 2003 Aug 1;301(5633):640-3
– reference: 15653504 - Science. 2005 Jan 14;307(5707):254-8
– reference: 15543150 - Nat Immunol. 2004 Dec;5(12):1243-50
– reference: 16393963 - J Immunol. 2006 Jan 15;176(2):803-10
– reference: 22422267 - Nature. 2012 Mar 15;483(7389):345-9
– reference: 23219392 - Immunity. 2012 Dec 14;37(6):1076-90
– reference: 22231304 - J Exp Med. 2012 Jan 16;209(1):139-55
– reference: 22222225 - Am J Pathol. 2012 Mar;180(3):984-97
– reference: 20008524 - J Exp Med. 2009 Dec 21;206(13):3101-14
– reference: 10678576 - Arch Histol Cytol. 1999 Dec;62(5):471-81
– reference: 11276208 - Nat Immunol. 2001 Apr;2(4):361-7
– reference: 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
– reference: 11500449 - Infect Immun. 2001 Sep;69(9):5726-35
– reference: 9697844 - Immunity. 1998 Jul;9(1):143-50
– reference: 18492951 - Blood. 2008 Aug 1;112(3):619-25
– reference: 18710932 - J Exp Med. 2008 Sep 1;205(9):2139-49
– reference: 16455972 - J Immunol. 2006 Feb 15;176(4):2161-72
– reference: 8168928 - Infect Immun. 1994 May;62(5):1669-76
– reference: 16829963 - Nat Immunol. 2006 Aug;7(8):868-74
– reference: 20098461 - Nat Rev Immunol. 2010 Feb;10(2):131-44
– reference: 20619695 - Immunity. 2010 Jul 23;33(1):118-27
– reference: 17620362 - J Exp Med. 2007 Aug 6;204(8):1775-85
– reference: 19547909 - J Gastroenterol. 2009;44(8):803-11
– reference: 19234202 - J Immunol. 2009 Mar 1;182(5):3055-62
– reference: 22306017 - Immunity. 2012 Feb 24;36(2):276-87
– reference: 11602645 - J Exp Med. 2001 Oct 15;194(8):1171-8
– reference: 20432234 - Eur J Immunol. 2010 Jul;40(7):1877-83
– reference: 17620361 - J Exp Med. 2007 Aug 6;204(8):1757-64
– reference: 16216890 - J Exp Med. 2005 Oct 17;202(8):1063-73
– reference: 16473831 - Immunity. 2006 Feb;24(2):191-201
– reference: 7968635 - Methods Enzymol. 1994;236:509-26
– reference: 7969453 - Nature. 1994 Nov 10;372(6502):190-3
– reference: 21930767 - J Exp Med. 2011 Sep 26;208(10):2141-53
– reference: 10866317 - Cancer Res. 2000 Jun 15;60(12):3239-46
– reference: 16456006 - J Immunol. 2006 Feb 15;176(4):2465-9
– reference: 7751620 - J Immunol. 1995 Jun 1;154(11):5684-93
– reference: 11254498 - Am J Physiol Gastrointest Liver Physiol. 2001 Apr;280(4):G710-9
– reference: 21034972 - Adv Immunol. 2010;107:109-38
– reference: 21525388 - J Immunol. 2011 Jun 1;186(11):6287-95
– reference: 3880756 - J Cell Biol. 1985 Jan;100(1):327-32
– reference: 19733097 - Immunity. 2009 Sep 18;31(3):502-12
– reference: 17051619 - Eur J Immunol. 2006 Nov;36(11):2912-9
– reference: 17569825 - Science. 2007 Jul 13;317(5835):256-60
– reference: 7621074 - Immunity. 1995 Jul;3(1):147-61
– reference: 19375423 - Gastroenterology. 2009 Aug;137(2):579-87, 587.e1-2
– reference: 18500229 - Nat Rev Immunol. 2008 Jun;8(6):435-46
– reference: 17145958 - J Exp Med. 2006 Dec 25;203(13):2841-52
– reference: 19387433 - Mucosal Immunol. 2009 Jul;2(4):340-50
– reference: 20498668 - Nat Rev Immunol. 2010 Jun;10(6):415-26
– reference: 15470054 - J Immunol. 2004 Oct 15;173(8):5103-11
– reference: 7721948 - J Cell Biol. 1995 Apr;129(2):489-506
– reference: 21816673 - Trends Immunol. 2011 Sep;32(9):412-9
– reference: 9761756 - Am J Respir Cell Mol Biol. 1998 Oct;19(4):598-605
– reference: 22166938 - Mucosal Immunol. 2012 Mar;5(2):150-60
SSID ssj0014590
Score 2.5659192
Snippet CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal...
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal...
CD103+dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal...
CD103 + dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 581
SubjectTerms Animals
Antigen Presentation - immunology
Antigens, Bacterial - immunology
Antigens, CD - immunology
Antigens, CD - metabolism
Bacteria
Behavior
Bone marrow
CD11c Antigen - genetics
CD11c Antigen - immunology
CD11c Antigen - metabolism
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell Line, Tumor
Cell Movement - immunology
Cells, Cultured
CX3C Chemokine Receptor 1
Dendritic Cells - immunology
Dendritic Cells - metabolism
Flow Cytometry
Host-Pathogen Interactions - immunology
Integrin alpha Chains - immunology
Integrin alpha Chains - metabolism
Intestinal Mucosa - immunology
Intestinal Mucosa - metabolism
Intestinal Mucosa - microbiology
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Lymphocyte Activation - immunology
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy
Microscopy, Fluorescence, Multiphoton
Morphology
Motility
Mucous Membrane - immunology
Mucous Membrane - metabolism
Mucous Membrane - microbiology
Receptors, Chemokine - genetics
Receptors, Chemokine - immunology
Receptors, Chemokine - metabolism
Salmonella
Salmonella typhi - immunology
Salmonella typhi - physiology
Salmonella typhimurium - immunology
Salmonella typhimurium - physiology
Toll-Like Receptors - immunology
Toll-Like Receptors - metabolism
Title Luminal Bacteria Recruit CD103+ Dendritic Cells into the Intestinal Epithelium to Sample Bacterial Antigens for Presentation
URI https://dx.doi.org/10.1016/j.immuni.2013.01.009
https://www.ncbi.nlm.nih.gov/pubmed/23395676
https://www.proquest.com/docview/1629396913
https://www.proquest.com/docview/1319619821
https://www.proquest.com/docview/1642631117
https://pubmed.ncbi.nlm.nih.gov/PMC4115273
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqViAuqJTXQlsZiRuKNrZjJzm221YVpQhRKvZm2YmjBi3eFZsckPjxzDiPsoCoRI7xOLI9nofjmW8IeW1AzErw7SNubBYlRakiKx2PnCwyKxITmwqTky_fq_Pr5O1czrfIbMiFwbDKXvd3Oj1o6_7NtF_N6aqup1cYSgiHcIEXMuDnIuy2SLKQxDc_Hm8SEpnHY9whUA_pcyHGqw45GBjgJQJ4J4Yl_t08_el-_h5F-YtZOtslD3t_kh51Q35EtpzfI_e6CpPf98j9y_7u_DH58a4NBbzocQfQbCi6jG3d0NkJi8UbeuJ8GQof0JlbLNa09s2Sgn9I8a8haALse7rCHI5F3X6l0HhlEFt4_CAMwzeI7rmm4ArTD7eZTf4JuT47_TQ7j_raC1EhedJEeexSIfLECVapImVWZSissU3xCISY-1VeJKW0sTIFPBW8qNLYZqmpQGsU4inZ9kvvnhNqmLBSclAUsgJTCGrNWQNn8qLikpdcTogYllwXPTA51sdY6CEC7YvuGKWRUTpmGhg1IdHYa9UBc9xBnw7c1BsbTIPtuKPn_sB83Qv4WjMFflKuciYm5NXYDKKJ9y3Gu2ULNLhiLM84-weNQsR8MDjphDzr9tM4HQ4MkCpVMPSNnTYSIDT4ZouvbwJEeMKwXLF48d-Tfkke8FD4Q0Sc7ZPt5lvrDsD9auwh2Tm6-Pj54jDI2U-uNjBP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEB8vCAZjhQFGgicUNbZjp3nggbWbWtZOSNukvhk7cURQl1Y0EZrEf8U_yF2-oICYhLQ8xnbk-M53v8R3vyPklYFtlgC297ixAy-IE-VZ6bjnZDywIjC-STE5eXaixufB-7mcb5HvbS4MhlU2tr-26ZW1bu70m9Xsr7Ksf4qhhPARLvBABnCuaiIrj93lV_huW7-djEDIrzk_Ojwbjr2mtIAXSx4UXuS7UIgocIKlKg6ZVQPURd-GiPCRUj6N4iCR1lcmhiuFG2no20FoUtgUsYDn3iA3AX2EaA0m84Pu6CKQkd8FOsL02ny9Kqgsq5I-MKJMVGyhGAf5d3_4J979PWzzFz94dJ_cawAsfVev0QOy5fIdcqsuaXm5Q27PmsP6h-TbtKwqhtGDmhHaUMSoZVbQ4Yj54g0duTypKi3QoVss1jTLiyUFQErxNyWYHhx7uMKkkUVWXlBoPDVIZtw9EKaRF0gnuqaAvemHn6lU-SNyfi0S2SXb-TJ3e4QaJqyUHCyTTMH3gh111kR-GKdc8oTLHhHtkuu4YULHghwL3Ya8fda1oDQKSvtMg6B6xOtGrWomkCv6h6009YZGa3BWV4zcb4WvG4uy1kwBMItUxESPvOyawRbgAY_J3bKEPrhiLBpw9o8-Cin6wcOFPfK41qfudTgIADRawdQ3NK3rgFzkmy159qniJA8Y1kcWT_77pV-QO-Oz2VRPJyfHT8ldXlUdER5n-2S7-FK6Z4D9Cvu82muUfLzuzf0DXTdrJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Luminal+Bacteria+Recruit+CD103%2B+Dendritic+Cells+into+the+Intestinal+Epithelium+to+Sample+Bacterial+Antigens+for+Presentation&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Farache%2C+Julia&rft.au=Koren%2C+Idan&rft.au=Milo%2C+Idan&rft.au=Gurevich%2C+Irina&rft.date=2013-03-21&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=38&rft.issue=3&rft.spage=581&rft.epage=595&rft_id=info:doi/10.1016%2Fj.immuni.2013.01.009&rft.externalDocID=S1074761313000496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon