Luminal Bacteria Recruit CD103+ Dendritic Cells into the Intestinal Epithelium to Sample Bacterial Antigens for Presentation
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp ×Cd11c-YFP mice to study thes...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 38; no. 3; pp. 581 - 595 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.03.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
► CD103+ DCs patrol the epithelium of the small intestine ► Salmonella infection recruits more DCs in a TLR and chemokine-dependent manner ► The DCs efficiently phagocytose salmonella using intraepithelial dendrites ► Soluble luminal antigens are sampled more efficiently by CX3CR1+ macrophages |
---|---|
AbstractList | CD103+dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in liveCx3cr1+/gfpxCd11c-YFP mice to study these processes. At steady state, sparse CD103+DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge withSalmonellatriggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. ► CD103+ DCs patrol the epithelium of the small intestine ► Salmonella infection recruits more DCs in a TLR and chemokine-dependent manner ► The DCs efficiently phagocytose salmonella using intraepithelial dendrites ► Soluble luminal antigens are sampled more efficiently by CX3CR1+ macrophages CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. CD103 + dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1 +/gfp × Cd11c-YFP mice to study these processes. At steady state, sparse CD103 + DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103 + DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103 + DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103 + DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. |
Author | Farache, Julia Koren, Idan Shakhar, Guy Kim, Ki-Wook Furtado, Glaucia C. Milo, Idan Zigmond, Ehud Lira, Sergio A. Gurevich, Irina |
AuthorAffiliation | 2 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA 1 Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel |
AuthorAffiliation_xml | – name: 2 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA – name: 1 Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel |
Author_xml | – sequence: 1 givenname: Julia surname: Farache fullname: Farache, Julia organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 2 givenname: Idan surname: Koren fullname: Koren, Idan organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 3 givenname: Idan surname: Milo fullname: Milo, Idan organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 4 givenname: Irina surname: Gurevich fullname: Gurevich, Irina organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 5 givenname: Ki-Wook surname: Kim fullname: Kim, Ki-Wook organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 6 givenname: Ehud surname: Zigmond fullname: Zigmond, Ehud organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 7 givenname: Glaucia C. surname: Furtado fullname: Furtado, Glaucia C. organization: Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA – sequence: 8 givenname: Sergio A. surname: Lira fullname: Lira, Sergio A. organization: Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA – sequence: 9 givenname: Guy surname: Shakhar fullname: Shakhar, Guy email: shakhar@weizmann.ac.il organization: Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23395676$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUt9rFDEQDlKx7el_IBLwRSh3ZjZ7ycYHoV6rFg4UfzyHXC7bzrGbXJNsQegfb9a7Fu2DzUvCzDfffPNljsmBD94R8hLYDBiIt5sZ9v3gcVYx4DMGM8bUE3IETMlpDQ07GN-ynkoB_JAcp7RhDOq5Ys_IYcW5mgspjsjtcujRm45-MDa7iIZ-czYOmOniDBg_oWfOryNmtHThui5R9DnQfOXohc8u5T-151sskQ6Hnpbkd9NvO3dP2NFTn_HS-UTbEOnX6JLz2WQM_jl52pouuRf7e0J-fjz_sfg8XX75dLE4XU7tvKrzVDEni-DacWiFlbASDQcl2Eo2ohK1bJpW2Xo9XzFhbDltCbSSrRppWia55RPyfse7HVa9W9vSP5pObyP2Jv7SwaD-N-PxSl-GG10DzKvSe0Le7AliuB7K2LrHZIsfxrswJA2irgQHAPk4dJQOqqmgQF8_gG7CEIuhI2GluBIKxt6v_hZ_r_ruDwvg3Q5gY0gpulZb3PlbZsFOA9PjwuiN3i2MHhdGM9BlYUpx_aD4jv-Rsr2jrnzbDbqok0XnrVtjdDbrdcD_E_wGWjjceQ |
CitedBy_id | crossref_primary_10_1080_10408398_2021_1949577 crossref_primary_10_1111_all_14082 crossref_primary_10_1038_s41423_021_00647_2 crossref_primary_10_3390_ijms19051365 crossref_primary_10_1038_mi_2014_110 crossref_primary_10_3389_fimmu_2016_00231 crossref_primary_10_1016_j_jaut_2017_05_007 crossref_primary_10_1016_j_jim_2015_03_014 crossref_primary_10_1039_C8FO00387D crossref_primary_10_1038_nri_2015_17 crossref_primary_10_3934_Allergy_2019_1_13 crossref_primary_10_1084_jem_20130903 crossref_primary_10_1002_eji_201948327 crossref_primary_10_1002_JLB_4RI1218_503R crossref_primary_10_1016_j_coi_2013_06_001 crossref_primary_10_1111_imr_12189 crossref_primary_10_3389_fimmu_2021_616215 crossref_primary_10_3390_app11167247 crossref_primary_10_1111_imr_12181 crossref_primary_10_1016_j_azn_2025_01_005 crossref_primary_10_1016_j_imlet_2023_01_003 crossref_primary_10_3390_ijms24021526 crossref_primary_10_1016_j_pathophys_2016_02_002 crossref_primary_10_3389_fnut_2017_00061 crossref_primary_10_1053_j_gastro_2013_08_049 crossref_primary_10_1371_journal_ppat_1009465 crossref_primary_10_1016_j_foodchem_2020_127184 crossref_primary_10_1146_annurev_immunol_061020_053707 crossref_primary_10_3389_falgy_2024_1505834 crossref_primary_10_1016_j_vetimm_2018_01_011 crossref_primary_10_3390_v10040146 crossref_primary_10_1016_j_jim_2014_01_014 crossref_primary_10_1016_j_molmed_2020_04_001 crossref_primary_10_3389_fimmu_2018_00408 crossref_primary_10_3389_fimmu_2024_1333967 crossref_primary_10_1128_microbiolspec_MCHD_0047_2016 crossref_primary_10_1146_annurev_immunol_032713_120238 crossref_primary_10_1136_gutjnl_2020_320937 crossref_primary_10_1371_journal_ppat_1003801 crossref_primary_10_1186_s41232_023_00262_w crossref_primary_10_1111_imr_12179 crossref_primary_10_3389_fimmu_2021_639902 crossref_primary_10_1002_eji_201948332 crossref_primary_10_1016_j_clinthera_2015_03_009 crossref_primary_10_1111_imr_12171 crossref_primary_10_1371_journal_ppat_1006075 crossref_primary_10_1016_j_autrev_2024_103678 crossref_primary_10_1038_s41385_018_0007_6 crossref_primary_10_3390_pathogens7020055 crossref_primary_10_3389_fimmu_2020_568598 crossref_primary_10_1016_j_tim_2017_06_006 crossref_primary_10_1128_IAI_00820_15 crossref_primary_10_1016_j_imlet_2015_11_005 crossref_primary_10_1016_j_immuni_2021_11_008 crossref_primary_10_1186_s12964_020_0514_4 crossref_primary_10_1038_ncomms4704 crossref_primary_10_1111_imr_12167 crossref_primary_10_3920_BM2015_0094 crossref_primary_10_1128_MMBR_00007_17 crossref_primary_10_3389_fcimb_2023_1140765 crossref_primary_10_3389_fimmu_2024_1413485 crossref_primary_10_1016_j_coi_2013_10_002 crossref_primary_10_1016_j_celrep_2023_112483 crossref_primary_10_1080_19490976_2021_2007743 crossref_primary_10_1371_journal_pone_0188600 crossref_primary_10_3389_fcell_2021_635221 crossref_primary_10_1002_adfm_201907170 crossref_primary_10_1016_j_ceb_2017_04_007 crossref_primary_10_1038_mi_2014_58 crossref_primary_10_3389_fcimb_2018_00006 crossref_primary_10_1016_j_jim_2015_03_008 crossref_primary_10_1038_ncomms8526 crossref_primary_10_4049_jimmunol_1401835 crossref_primary_10_3389_fimmu_2019_02949 crossref_primary_10_1038_s41577_023_00932_3 crossref_primary_10_1073_pnas_2318767121 crossref_primary_10_1186_s12917_017_1194_1 crossref_primary_10_1155_2015_527696 crossref_primary_10_1097_MOG_0b013e328365d30f crossref_primary_10_17352_ojpch_000019 crossref_primary_10_3389_fmicb_2022_1039884 crossref_primary_10_1093_femspd_ftw051 crossref_primary_10_1371_journal_pone_0153351 crossref_primary_10_1038_ni_3408 crossref_primary_10_1039_C4FO00529E crossref_primary_10_1002_eji_201847671 crossref_primary_10_1016_j_immuni_2013_12_012 crossref_primary_10_1038_mi_2015_121 crossref_primary_10_1093_cei_uxac057 crossref_primary_10_1146_annurev_cellbio_120420_112849 crossref_primary_10_7554_eLife_63296 crossref_primary_10_3389_fnut_2021_759507 crossref_primary_10_1016_j_immuni_2014_04_016 crossref_primary_10_3390_vaccines12020191 crossref_primary_10_1016_j_jaut_2018_06_003 crossref_primary_10_1111_imm_12801 crossref_primary_10_1155_2019_2525984 crossref_primary_10_1007_s00281_022_00955_3 crossref_primary_10_1016_j_cell_2015_08_030 crossref_primary_10_1038_mi_2017_22 crossref_primary_10_1007_s10522_014_9498_z crossref_primary_10_1007_s13238_017_0398_2 crossref_primary_10_1084_jem_20222008 crossref_primary_10_1128_microbiolspec_BAI_0007_2019 crossref_primary_10_3389_fimmu_2022_944982 crossref_primary_10_1038_s41577_018_0002_x crossref_primary_10_3389_fcell_2022_932472 crossref_primary_10_3390_cancers16173040 crossref_primary_10_3390_antiox11010047 crossref_primary_10_1038_nri_2016_36 crossref_primary_10_3389_fimmu_2018_00846 crossref_primary_10_1016_j_fsi_2021_05_007 crossref_primary_10_1111_hel_70015 crossref_primary_10_1189_jlb_3A0516_236R crossref_primary_10_1155_2020_2032057 crossref_primary_10_1111_1462_2920_13926 crossref_primary_10_1002_1873_3468_12122 crossref_primary_10_1016_j_bbrc_2019_12_021 crossref_primary_10_1038_s41586_022_05141_x crossref_primary_10_3389_fmicb_2024_1417864 crossref_primary_10_4110_in_2022_22_e16 crossref_primary_10_1007_s11882_018_0815_5 crossref_primary_10_4110_in_2015_15_1_1 crossref_primary_10_1016_j_ijpara_2017_08_001 crossref_primary_10_1007_s10565_016_9320_6 crossref_primary_10_1128_JVI_03733_14 crossref_primary_10_1016_j_ejcb_2022_151283 crossref_primary_10_1371_journal_ppat_1004405 crossref_primary_10_1016_j_smim_2023_101757 crossref_primary_10_3389_fcimb_2021_689401 crossref_primary_10_1111_jcmm_15250 crossref_primary_10_1007_s00018_022_04664_w crossref_primary_10_1038_mi_2015_64 crossref_primary_10_1038_nri_2016_116 crossref_primary_10_1084_jem_20162014 crossref_primary_10_1111_imr_13050 crossref_primary_10_1016_j_ajpath_2015_02_024 crossref_primary_10_1038_emm_2014_16 crossref_primary_10_7554_eLife_54792 crossref_primary_10_3390_life13091936 crossref_primary_10_1016_j_smim_2017_08_008 crossref_primary_10_1016_j_clim_2014_11_005 crossref_primary_10_4161_21688370_2014_982426 crossref_primary_10_1016_j_cell_2017_08_046 crossref_primary_10_1016_j_jaut_2022_102867 crossref_primary_10_4049_jimmunol_1502548 crossref_primary_10_1002_eji_201343740 crossref_primary_10_7554_eLife_72082 crossref_primary_10_1021_acs_bioconjchem_7b00738 crossref_primary_10_1038_ncb3284 crossref_primary_10_3389_fmed_2024_1409409 crossref_primary_10_1080_19490976_2019_1629236 crossref_primary_10_1111_febs_16945 crossref_primary_10_1371_journal_pone_0071338 crossref_primary_10_1371_journal_pone_0069936 crossref_primary_10_1038_srep23820 crossref_primary_10_1128_microbiolspec_MCHD_0046_2016 crossref_primary_10_1016_j_immuni_2017_04_004 crossref_primary_10_1038_nri3738 crossref_primary_10_1111_imr_12192 crossref_primary_10_1111_imr_12194 crossref_primary_10_1111_imr_12195 crossref_primary_10_1038_s41467_020_15068_4 crossref_primary_10_1089_vim_2017_0026 crossref_primary_10_1016_j_coi_2024_102452 crossref_primary_10_1016_j_conb_2019_10_006 crossref_primary_10_1242_jcs_141226 crossref_primary_10_1128_JVI_01544_15 crossref_primary_10_1093_intimm_dxac054 crossref_primary_10_3389_fcell_2020_624213 crossref_primary_10_1002_eji_202250131 crossref_primary_10_1038_s41551_021_00834_6 crossref_primary_10_1080_19490976_2022_2158034 crossref_primary_10_1111_cmi_12301 crossref_primary_10_1111_imr_12108 crossref_primary_10_1016_j_it_2014_04_003 crossref_primary_10_1016_j_bbrc_2020_05_022 crossref_primary_10_4049_jimmunol_1600244 crossref_primary_10_1016_j_immuni_2014_01_008 crossref_primary_10_1111_imm_12687 crossref_primary_10_1189_jlb_0413222 crossref_primary_10_1038_mi_2017_62 crossref_primary_10_1016_j_biomaterials_2019_119396 crossref_primary_10_1016_j_chom_2017_07_009 crossref_primary_10_1080_21645515_2018_1514354 crossref_primary_10_1016_j_coi_2017_12_004 crossref_primary_10_1021_acs_jproteome_9b00558 crossref_primary_10_23950_jcmk_10926 crossref_primary_10_1093_ecco_jcc_jjy088 crossref_primary_10_1097_MIB_0000000000000299 crossref_primary_10_1186_s40168_017_0263_9 crossref_primary_10_1186_s12885_022_10032_5 crossref_primary_10_1016_j_actbio_2021_05_045 crossref_primary_10_2220_biomedres_43_59 crossref_primary_10_1084_jem_20122588 crossref_primary_10_1038_mi_2013_30 crossref_primary_10_1186_s40168_017_0300_8 crossref_primary_10_1038_icb_2013_70 crossref_primary_10_1016_j_ijmm_2016_04_002 crossref_primary_10_3390_nu9010068 crossref_primary_10_1002_eji_201948177 crossref_primary_10_3389_fimmu_2016_00503 crossref_primary_10_1007_s00253_020_10832_4 crossref_primary_10_1016_j_micpath_2015_10_004 crossref_primary_10_1038_s41385_021_00448_w crossref_primary_10_3389_fimmu_2022_916066 crossref_primary_10_1099_jgv_0_000507 crossref_primary_10_1126_science_1246252 crossref_primary_10_1016_j_semcdb_2015_03_011 crossref_primary_10_3389_fimmu_2015_00569 crossref_primary_10_1080_19490976_2017_1299846 crossref_primary_10_1038_s41577_024_01077_7 crossref_primary_10_3389_fimmu_2016_00054 crossref_primary_10_37871_jbres1165 crossref_primary_10_1155_2022_2655801 crossref_primary_10_3389_fimmu_2016_00290 crossref_primary_10_1016_j_foodres_2022_112150 crossref_primary_10_1051_jbio_2017009 crossref_primary_10_1371_journal_pone_0153402 crossref_primary_10_1128_jvi_00987_24 crossref_primary_10_1016_j_imlet_2019_01_006 crossref_primary_10_1371_journal_ppat_1005132 crossref_primary_10_1007_s00441_021_03457_0 crossref_primary_10_1126_sciimmunol_aao1314 crossref_primary_10_3390_app112412000 crossref_primary_10_3390_cells9102162 crossref_primary_10_1016_j_vaccine_2015_01_022 crossref_primary_10_3389_fimmu_2014_00104 crossref_primary_10_1189_jlb_1RU1216_521R crossref_primary_10_1111_imr_12429 crossref_primary_10_1093_ndt_gfy385 crossref_primary_10_1038_ncomms14715 crossref_primary_10_1248_yakushi_14_00006_3 crossref_primary_10_3389_fimmu_2018_02320 crossref_primary_10_1002_ar_23106 crossref_primary_10_1016_j_it_2024_09_011 crossref_primary_10_1016_j_antiviral_2016_02_003 crossref_primary_10_1038_nri3535 crossref_primary_10_1038_s41467_021_26446_x crossref_primary_10_3748_wjg_v25_i27_3503 crossref_primary_10_1016_j_tifs_2019_03_017 crossref_primary_10_1016_j_coisb_2017_02_001 crossref_primary_10_3389_fmicb_2024_1477187 crossref_primary_10_1016_j_it_2013_02_001 crossref_primary_10_1038_s41590_020_0645_1 crossref_primary_10_1097_MIB_0000000000000511 crossref_primary_10_1128_microbiolspec_MCHD_0042_2016 crossref_primary_10_1002_cpim_11 crossref_primary_10_1007_s10974_025_09691_1 crossref_primary_10_1155_2016_1958650 crossref_primary_10_1513_AnnalsATS_201405_218AW crossref_primary_10_3390_cells12131779 crossref_primary_10_2147_JIR_S348079 crossref_primary_10_3390_ijms232415572 crossref_primary_10_1016_j_it_2016_05_002 crossref_primary_10_26508_lsa_202201442 crossref_primary_10_1002_path_4277 crossref_primary_10_1016_j_it_2017_07_009 crossref_primary_10_1016_j_freeradbiomed_2013_11_008 crossref_primary_10_1111_cmi_12501 crossref_primary_10_7554_eLife_15251 crossref_primary_10_1038_nmicrobiol_2017_99 crossref_primary_10_1038_s41385_022_00509_8 crossref_primary_10_1080_07853890_2021_1927170 crossref_primary_10_1007_s10522_015_9628_2 crossref_primary_10_1007_s12975_023_01151_7 crossref_primary_10_1371_journal_ppat_1004385 crossref_primary_10_3389_fimmu_2020_00712 crossref_primary_10_1038_s41467_018_03318_5 crossref_primary_10_3390_microorganisms9010034 crossref_primary_10_1371_journal_pone_0158775 crossref_primary_10_1007_s12016_018_8680_5 crossref_primary_10_1038_s41385_019_0240_7 crossref_primary_10_3389_fimmu_2018_02989 crossref_primary_10_1016_j_jim_2015_12_005 crossref_primary_10_1111_andr_13509 crossref_primary_10_1016_j_cell_2016_11_040 crossref_primary_10_3389_fimmu_2019_01873 crossref_primary_10_1016_j_jaut_2023_103034 crossref_primary_10_3389_fimmu_2019_00787 crossref_primary_10_1371_journal_pone_0118067 crossref_primary_10_3389_fimmu_2020_00282 crossref_primary_10_1016_j_coi_2013_10_016 crossref_primary_10_1038_s41586_019_0884_1 crossref_primary_10_3390_microorganisms7120625 crossref_primary_10_1111_imm_13048 crossref_primary_10_1128_MMBR_00044_18 crossref_primary_10_1016_j_cell_2015_12_023 crossref_primary_10_1093_discim_kyad018 crossref_primary_10_1038_mi_2013_70 crossref_primary_10_3389_fvets_2022_878467 crossref_primary_10_4103_0366_6999_185872 crossref_primary_10_1371_journal_pone_0114601 crossref_primary_10_1038_ni_2611 crossref_primary_10_3168_jds_2018_15156 crossref_primary_10_1111_aji_13653 crossref_primary_10_1016_j_ijmm_2017_09_011 crossref_primary_10_1007_s12403_023_00578_5 crossref_primary_10_1016_j_immuni_2015_08_011 crossref_primary_10_3389_fimmu_2018_00350 crossref_primary_10_4049_jimmunol_1800236 crossref_primary_10_1189_jlb_0413207 crossref_primary_10_1111_febs_16558 crossref_primary_10_1111_imm_12747 crossref_primary_10_1016_j_foodres_2024_115383 crossref_primary_10_1016_j_smim_2015_03_012 crossref_primary_10_1038_ni_3396 crossref_primary_10_1016_j_cotox_2020_02_007 crossref_primary_10_1038_s41423_019_0208_2 crossref_primary_10_1038_s41598_018_20243_1 crossref_primary_10_1111_brv_13000 crossref_primary_10_1016_j_jsbmb_2020_105663 crossref_primary_10_1126_sciimmunol_aax6085 crossref_primary_10_1371_journal_pone_0086656 crossref_primary_10_1126_sciimmunol_aaw1941 crossref_primary_10_3389_fimmu_2019_01891 crossref_primary_10_1080_19490976_2023_2211184 crossref_primary_10_3389_fimmu_2015_00254 crossref_primary_10_1007_s00424_016_1882_x crossref_primary_10_3389_fimmu_2018_02883 crossref_primary_10_1038_nrgastro_2017_79 crossref_primary_10_1126_science_1237910 crossref_primary_10_1016_j_cell_2016_04_041 crossref_primary_10_1016_j_chom_2015_01_009 crossref_primary_10_4049_jimmunol_1303167 crossref_primary_10_7759_cureus_16533 crossref_primary_10_1016_j_jim_2015_02_013 crossref_primary_10_3389_fimmu_2024_1379798 crossref_primary_10_4161_cib_29084 crossref_primary_10_1038_s41575_024_00997_y |
Cites_doi | 10.1084/jem.180.1.15 10.1016/j.immuni.2011.12.011 10.4049/jimmunol.178.12.7747 10.1038/mi.2011.61 10.4049/jimmunol.156.4.1408 10.1679/aohc.62.471 10.1016/j.immuni.2010.06.015 10.1002/eji.200939957 10.1038/nature10863 10.4049/jimmunol.154.11.5684 10.1016/B978-0-12-381300-8.00004-6 10.4049/jimmunol.176.4.2465 10.1016/j.immuni.2009.08.010 10.1016/0076-6879(94)36039-1 10.1038/sj.jid.5700882 10.1002/eji.200636356 10.1126/science.1145697 10.1038/86373 10.1084/jem.20070590 10.1083/jcb.100.1.327 10.1084/jem.20091925 10.1084/jem.20051100 10.1016/j.immuni.2009.06.025 10.4049/jimmunol.176.2.803 10.1016/1074-7613(95)90167-1 10.1073/pnas.89.5.1924 10.4049/jimmunol.173.8.5103 10.1038/mi.2009.13 10.1016/j.immuni.2004.08.011 10.1038/nature11809 10.1016/j.it.2011.06.003 10.1038/372190a0 10.1016/j.immuni.2012.08.026 10.1152/ajpgi.2001.280.4.G710 10.1053/j.gastro.2009.04.010 10.4049/jimmunol.176.4.2161 10.1016/j.ajpath.2011.11.009 10.1038/ni1362 10.4049/jimmunol.0802749 10.1073/pnas.0400969101 10.1038/ni1139 10.1182/blood-2008-01-134833 10.1128/iai.62.5.1669-1676.1994 10.1038/nri2335 10.1084/jem.194.8.1171 10.1016/j.imbio.2010.05.013 10.1084/jem.20070602 10.1126/science.1102901 10.1083/jcb.129.2.489 10.1016/S1074-7613(00)80596-8 10.1084/jem.20061884 10.1084/jem.20080414 10.1128/IAI.01392-06 10.1084/jem.20102392 10.1038/ni.1622 10.1128/IAI.69.9.5726-5735.2001 10.1128/MCB.20.11.4106-4114.2000 10.1038/nri2707 10.1084/jem.20040662 10.4049/jimmunol.1004036 10.1126/science.1087262 10.1007/s00535-009-0094-y 10.1084/jem.20101387 10.1016/j.immuni.2006.01.005 10.1165/ajrcmb.19.4.2870 10.4049/jimmunol.174.3.1675 10.1038/nri2778 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Mar 21, 2013 2013 Elsevier Inc. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Mar 21, 2013 – notice: 2013 Elsevier Inc. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2013.01.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 595 |
ExternalDocumentID | PMC4115273 3513123091 23395676 10_1016_j_immuni_2013_01_009 S1074761313000496 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK067381 – fundername: NIDDK NIH HHS grantid: P01 DK072201 |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAQFI AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c524t-90e73394e31f6c71b6831960b786264788f9c4d5b06accccf88ff70b87af073c3 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 14:06:12 EDT 2025 Fri Jul 11 05:33:47 EDT 2025 Fri Jul 11 11:00:42 EDT 2025 Fri Jul 25 11:11:46 EDT 2025 Thu Apr 03 06:59:14 EDT 2025 Thu Apr 24 23:08:05 EDT 2025 Fri Jul 04 04:46:10 EDT 2025 Fri Feb 23 02:28:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-90e73394e31f6c71b6831960b786264788f9c4d5b06accccf88ff70b87af073c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761313000496 |
PMID | 23395676 |
PQID | 1629396913 |
PQPubID | 2031079 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115273 proquest_miscellaneous_1642631117 proquest_miscellaneous_1319619821 proquest_journals_1629396913 pubmed_primary_23395676 crossref_citationtrail_10_1016_j_immuni_2013_01_009 crossref_primary_10_1016_j_immuni_2013_01_009 elsevier_sciencedirect_doi_10_1016_j_immuni_2013_01_009 |
PublicationCentury | 2000 |
PublicationDate | 2013-03-21 |
PublicationDateYYYYMMDD | 2013-03-21 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Coombes, Powrie (bib12) 2008; 8 Le Borgne, Etchart, Goubier, Lira, Sirard, van Rooijen, Caux, Aït-Yahia, Vicari, Kaiserlian, Dubois (bib35) 2006; 24 Schödel, Kelly, Peterson, Milich, Curtiss (bib51) 1994; 62 McDonald, Leach, Brooke, Wang, Wheeler, Hanly, Rowley, Levin, Wagner, Li, Newberry (bib41) 2012; 180 Bowe, Heffron (bib8) 1994; 236 Bogunovic, Ginhoux, Helft, Shang, Hashimoto, Greter, Liu, Jakubzick, Ingersoll, Leboeuf (bib6) 2009; 31 Sun, Hall, Blank, Bouladoux, Oukka, Mora, Belkaid (bib55) 2007; 204 Jung, Aliberti, Graemmel, Sunshine, Kreutzberg, Sher, Littman (bib32) 2000; 20 Hebel, Griewank, Inamine, Chang, Müller-Hilke, Fillatreau, Manz, Radbruch, Jung (bib20) 2006; 36 Chieppa, Rescigno, Huang, Germain (bib11) 2006; 203 Izadpanah, Dwinell, Eckmann, Varki, Kagnoff (bib26) 2001; 280 Uematsu, Fujimoto, Jang, Yang, Jung, Nishiyama, Sato, Tsujimura, Yamamoto, Yokota (bib61) 2008; 9 Jaensson, Uronen-Hansson, Pabst, Eksteen, Tian, Coombes, Berg, Davidsson, Powrie, Johansson-Lindbom, Agace (bib27) 2008; 205 Nakano, Yanagita, Gunn (bib43) 2001; 194 Mucida, Park, Kim, Turovskaya, Scott, Kronenberg, Cheroutre (bib42) 2007; 317 Zigmond, Varol, Farache, Elmaliah, Ansuman, Friedlander, Mack, Shpigel, Boneca (bib67) 2012 Uematsu, Akira (bib59) 2009; 44 Halle, Bumann, Herbrand, Willer, Dähne, Förster, Pabst (bib18) 2007; 75 Varol, Vallon-Eberhard, Elinav, Aychek, Shapira, Luche, Fehling, Hardt, Shakhar, Jung (bib63) 2009; 31 Niess, Brand, Gu, Landsman, Jung, McCormick, Vyas, Boes, Ploegh, Fox (bib44) 2005; 307 Parker, Cepek, Russell, Shaw, Posnett, Schwarting, Brenner (bib45) 1992; 89 Lindquist, Shakhar, Dudziak, Wardemann, Eisenreich, Dustin, Nussenzweig (bib36) 2004; 5 Vallon-Eberhard, Landsman, Yogev, Verrier, Jung (bib62) 2006; 176 Jang, Sougawa, Tanaka, Hirata, Hiroi, Tohya, Guo, Umemoto, Ebisuno, Yang (bib29) 2006; 176 Arques, Hautefort, Ivory, Bertelli, Regoli, Clare, Hinton, Nicoletti (bib5) 2009; 137 Kinnebrew, Buffie, Diehl, Zenewicz, Leiner, Hohl, Flavell, Littman, Pamer (bib33) 2012; 36 Fooksman, Schwickert, Victora, Dustin, Nussenzweig, Skokos (bib16) 2010; 33 Schlickum, Sennefelder, Friedrich, Harms, Lohse, Kilshaw, Schön (bib50) 2008; 112 Jones, Ghori, Falkow (bib31) 1994; 180 Boller, Vestweber, Kemler (bib7) 1985; 100 Schulz, Jaensson, Persson, Liu, Worbs, Agace, Pabst (bib52) 2009; 206 Huang, Cárdenas-Navia, Caldwell, Plumb, Radu, Rocha, Wilder, Bromberg, Cronstein, Sitkovsky (bib22) 2007; 178 Rescigno (bib47) 2010; 107 Coombes, Siddiqui, Arancibia-Cárcamo, Hall, Sun, Belkaid, Powrie (bib13) 2007; 204 Laffont, Siddiqui, Powrie (bib34) 2010; 40 Varol, Zigmond, Jung (bib64) 2010; 10 Rivollier, He, Kole, Valatas, Kelsall (bib49) 2012; 209 Zimmerli, Hauser (bib68) 2007; 127 Mach, Gillessen, Wilson, Sheehan, Mihm, Dranoff (bib37) 2000; 60 Cruickshank, Deschoolmeester, Svensson, Howell, Bazakou, Logunova, Little, English, Mack, Grencis (bib14) 2009; 182 Takahashi-Iwanaga, Iwanaga, Isayama (bib57) 1999; 62 Iwata, Hirakiyama, Eshima, Kagechika, Kato, Song (bib25) 2004; 21 Sung, Fu, Rose, Gaskin, Ju, Beaty (bib56) 2006; 176 Yrlid, Svensson, Håkansson, Chambers, Ljunggren, Wick (bib66) 2001; 69 Uematsu, Jang, Chevrier, Guo, Kumagai, Yamamoto, Kato, Sougawa, Matsui, Kuwata (bib60) 2006; 7 Adachi, Kawai, Takeda, Matsumoto, Tsutsui, Sakagami, Nakanishi, Akira (bib2) 1998; 9 Yamamoto, Sato, Hemmi, Hoshino, Kaisho, Sanjo, Takeuchi, Sugiyama, Okabe, Takeda, Akira (bib65) 2003; 301 Jang, Kweon, Iwatani, Yamamoto, Terahara, Sasakawa, Suzuki, Nochi, Yokota, Rennert (bib28) 2004; 101 Annacker, Coombes, Malmstrom, Uhlig, Bourne, Johansson-Lindbom, Agace, Parker, Powrie (bib4) 2005; 202 Huleatt, Lefrançois (bib23) 1995; 154 Maric, Holt, Perdue, Bienenstock (bib39) 1996; 156 Iliev, Mileti, Matteoli, Chieppa, Rescigno (bib24) 2009; 2 Cepek, Shaw, Parker, Russell, Morrow, Rimm, Brenner (bib10) 1994; 372 Abreu (bib1) 2010; 10 Scott, Aumeunier, Mowat (bib53) 2011; 32 Fujimoto, Karuppuchamy, Takemura, Shimohigoshi, Machida, Haseda, Aoshi, Ishii, Akira, Uematsu (bib17) 2011; 186 Persson, Jaensson, Agace (bib46) 2010; 215 Johansson-Lindbom, Svensson, Pabst, Palmqvist, Marquez, Förster, Agace (bib30) 2005; 202 McDole, Wheeler, McDonald, Wang, Konjufca, Knoop, Newberry, Miller (bib40) 2012; 483 Rescigno, Urbano, Valzasina, Francolini, Rotta, Bonasio, Granucci, Kraehenbuhl, Ricciardi-Castagnoli (bib48) 2001; 2 Semmrich, Plantinga, Svensson-Frej, Uronen-Hansson, Gustafsson, Mowat, Yrlid, Lambrecht, Agace (bib54) 2012; 5 Anjuère, Luci, Lebens, Rousseau, Hervouet, Milon, Holmgren, Ardavin, Czerkinsky (bib3) 2004; 173 Mackarehtschian, Hardin, Moore, Boast, Goff, Lemischka (bib38) 1995; 3 Hapfelmeier, Stecher, Barthel, Kremer, Müller, Heikenwalder, Stallmach, Hensel, Pfeffer, Akira, Hardt (bib19) 2005; 174 Hermiston, Gordon (bib21) 1995; 129 Brokaw, White, Baluk, Anderson, Umemoto, McDonald (bib9) 1998; 19 Diehl, Longman, Zhang, Breart, Galan, Cuesta, Schwab, Littman (bib15) 2013 Tal, Lim, Gurevich, Milo, Shipony, Ng, Angeli, Shakhar (bib58) 2011; 208 Uematsu (10.1016/j.immuni.2013.01.009_bib61) 2008; 9 Adachi (10.1016/j.immuni.2013.01.009_bib2) 1998; 9 Schulz (10.1016/j.immuni.2013.01.009_bib52) 2009; 206 Scott (10.1016/j.immuni.2013.01.009_bib53) 2011; 32 Iliev (10.1016/j.immuni.2013.01.009_bib24) 2009; 2 Lindquist (10.1016/j.immuni.2013.01.009_bib36) 2004; 5 Fooksman (10.1016/j.immuni.2013.01.009_bib16) 2010; 33 McDole (10.1016/j.immuni.2013.01.009_bib40) 2012; 483 Hermiston (10.1016/j.immuni.2013.01.009_bib21) 1995; 129 Schödel (10.1016/j.immuni.2013.01.009_bib51) 1994; 62 Johansson-Lindbom (10.1016/j.immuni.2013.01.009_bib30) 2005; 202 Zimmerli (10.1016/j.immuni.2013.01.009_bib68) 2007; 127 Halle (10.1016/j.immuni.2013.01.009_bib18) 2007; 75 Coombes (10.1016/j.immuni.2013.01.009_bib12) 2008; 8 Jang (10.1016/j.immuni.2013.01.009_bib28) 2004; 101 Le Borgne (10.1016/j.immuni.2013.01.009_bib35) 2006; 24 Fujimoto (10.1016/j.immuni.2013.01.009_bib17) 2011; 186 Takahashi-Iwanaga (10.1016/j.immuni.2013.01.009_bib57) 1999; 62 Jones (10.1016/j.immuni.2013.01.009_bib31) 1994; 180 Hapfelmeier (10.1016/j.immuni.2013.01.009_bib19) 2005; 174 Varol (10.1016/j.immuni.2013.01.009_bib64) 2010; 10 Chieppa (10.1016/j.immuni.2013.01.009_bib11) 2006; 203 Abreu (10.1016/j.immuni.2013.01.009_bib1) 2010; 10 Tal (10.1016/j.immuni.2013.01.009_bib58) 2011; 208 Jung (10.1016/j.immuni.2013.01.009_bib32) 2000; 20 Yamamoto (10.1016/j.immuni.2013.01.009_bib65) 2003; 301 McDonald (10.1016/j.immuni.2013.01.009_bib41) 2012; 180 Annacker (10.1016/j.immuni.2013.01.009_bib4) 2005; 202 Anjuère (10.1016/j.immuni.2013.01.009_bib3) 2004; 173 Rescigno (10.1016/j.immuni.2013.01.009_bib48) 2001; 2 Jang (10.1016/j.immuni.2013.01.009_bib29) 2006; 176 Kinnebrew (10.1016/j.immuni.2013.01.009_bib33) 2012; 36 Diehl (10.1016/j.immuni.2013.01.009_bib15) 2013 Uematsu (10.1016/j.immuni.2013.01.009_bib60) 2006; 7 Niess (10.1016/j.immuni.2013.01.009_bib44) 2005; 307 Vallon-Eberhard (10.1016/j.immuni.2013.01.009_bib62) 2006; 176 Persson (10.1016/j.immuni.2013.01.009_bib46) 2010; 215 Schlickum (10.1016/j.immuni.2013.01.009_bib50) 2008; 112 Huleatt (10.1016/j.immuni.2013.01.009_bib23) 1995; 154 Arques (10.1016/j.immuni.2013.01.009_bib5) 2009; 137 Sun (10.1016/j.immuni.2013.01.009_bib55) 2007; 204 Rivollier (10.1016/j.immuni.2013.01.009_bib49) 2012; 209 Jaensson (10.1016/j.immuni.2013.01.009_bib27) 2008; 205 Nakano (10.1016/j.immuni.2013.01.009_bib43) 2001; 194 Coombes (10.1016/j.immuni.2013.01.009_bib13) 2007; 204 Boller (10.1016/j.immuni.2013.01.009_bib7) 1985; 100 Sung (10.1016/j.immuni.2013.01.009_bib56) 2006; 176 Bogunovic (10.1016/j.immuni.2013.01.009_bib6) 2009; 31 Brokaw (10.1016/j.immuni.2013.01.009_bib9) 1998; 19 Yrlid (10.1016/j.immuni.2013.01.009_bib66) 2001; 69 Iwata (10.1016/j.immuni.2013.01.009_bib25) 2004; 21 Maric (10.1016/j.immuni.2013.01.009_bib39) 1996; 156 Mackarehtschian (10.1016/j.immuni.2013.01.009_bib38) 1995; 3 Cruickshank (10.1016/j.immuni.2013.01.009_bib14) 2009; 182 Hebel (10.1016/j.immuni.2013.01.009_bib20) 2006; 36 Laffont (10.1016/j.immuni.2013.01.009_bib34) 2010; 40 Mucida (10.1016/j.immuni.2013.01.009_bib42) 2007; 317 Rescigno (10.1016/j.immuni.2013.01.009_bib47) 2010; 107 Varol (10.1016/j.immuni.2013.01.009_bib63) 2009; 31 Izadpanah (10.1016/j.immuni.2013.01.009_bib26) 2001; 280 Semmrich (10.1016/j.immuni.2013.01.009_bib54) 2012; 5 Cepek (10.1016/j.immuni.2013.01.009_bib10) 1994; 372 Zigmond (10.1016/j.immuni.2013.01.009_bib67) 2012 Uematsu (10.1016/j.immuni.2013.01.009_bib59) 2009; 44 Bowe (10.1016/j.immuni.2013.01.009_bib8) 1994; 236 Huang (10.1016/j.immuni.2013.01.009_bib22) 2007; 178 Mach (10.1016/j.immuni.2013.01.009_bib37) 2000; 60 Parker (10.1016/j.immuni.2013.01.009_bib45) 1992; 89 23219392 - Immunity. 2012 Dec 14;37(6):1076-90 18492951 - Blood. 2008 Aug 1;112(3):619-25 16456006 - J Immunol. 2006 Feb 15;176(4):2465-9 16473831 - Immunity. 2006 Feb;24(2):191-201 20498668 - Nat Rev Immunol. 2010 Jun;10(6):415-26 22222225 - Am J Pathol. 2012 Mar;180(3):984-97 19733097 - Immunity. 2009 Sep 18;31(3):502-12 17051619 - Eur J Immunol. 2006 Nov;36(11):2912-9 3880756 - J Cell Biol. 1985 Jan;100(1):327-32 18516037 - Nat Immunol. 2008 Jul;9(7):769-76 22422267 - Nature. 2012 Mar 15;483(7389):345-9 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 11500449 - Infect Immun. 2001 Sep;69(9):5726-35 23334413 - Nature. 2013 Feb 7;494(7435):116-20 7721948 - J Cell Biol. 1995 Apr;129(2):489-506 17283101 - Infect Immun. 2007 Apr;75(4):1577-85 15543150 - Nat Immunol. 2004 Dec;5(12):1243-50 11602645 - J Exp Med. 2001 Oct 15;194(8):1171-8 22166938 - Mucosal Immunol. 2012 Mar;5(2):150-60 12855817 - Science. 2003 Aug 1;301(5633):640-3 17569825 - Science. 2007 Jul 13;317(5835):256-60 22306017 - Immunity. 2012 Feb 24;36(2):276-87 10866317 - Cancer Res. 2000 Jun 15;60(12):3239-46 19234202 - J Immunol. 2009 Mar 1;182(5):3055-62 21930767 - J Exp Med. 2011 Sep 26;208(10):2141-53 7969453 - Nature. 1994 Nov 10;372(6502):190-3 15485630 - Immunity. 2004 Oct;21(4):527-38 22231304 - J Exp Med. 2012 Jan 16;209(1):139-55 15661931 - J Immunol. 2005 Feb 1;174(3):1675-85 19387433 - Mucosal Immunol. 2009 Jul;2(4):340-50 17508021 - J Invest Dermatol. 2007 Oct;127(10):2381-90 9697844 - Immunity. 1998 Jul;9(1):143-50 21525388 - J Immunol. 2011 Jun 1;186(11):6287-95 16393963 - J Immunol. 2006 Jan 15;176(2):803-10 19375423 - Gastroenterology. 2009 Aug;137(2):579-87, 587.e1-2 11276208 - Nat Immunol. 2001 Apr;2(4):361-7 8568241 - J Immunol. 1996 Feb 15;156(4):1408-14 17548612 - J Immunol. 2007 Jun 15;178(12):7747-55 15470054 - J Immunol. 2004 Oct 15;173(8):5103-11 8006579 - J Exp Med. 1994 Jul 1;180(1):15-23 20580119 - Immunobiology. 2010 Sep-Oct;215(9-10):692-7 20619695 - Immunity. 2010 Jul 23;33(1):118-27 21816673 - Trends Immunol. 2011 Sep;32(9):412-9 20098461 - Nat Rev Immunol. 2010 Feb;10(2):131-44 8168928 - Infect Immun. 1994 May;62(5):1669-76 9761756 - Am J Respir Cell Mol Biol. 1998 Oct;19(4):598-605 7621074 - Immunity. 1995 Jul;3(1):147-61 15071180 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6110-5 16216890 - J Exp Med. 2005 Oct 17;202(8):1063-73 1542691 - Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1924-8 7751620 - J Immunol. 1995 Jun 1;154(11):5684-93 17620361 - J Exp Med. 2007 Aug 6;204(8):1757-64 19733489 - Immunity. 2009 Sep 18;31(3):513-25 21034972 - Adv Immunol. 2010;107:109-38 7968635 - Methods Enzymol. 1994;236:509-26 18710932 - J Exp Med. 2008 Sep 1;205(9):2139-49 10678576 - Arch Histol Cytol. 1999 Dec;62(5):471-81 17145958 - J Exp Med. 2006 Dec 25;203(13):2841-52 16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61 18500229 - Nat Rev Immunol. 2008 Jun;8(6):435-46 20432234 - Eur J Immunol. 2010 Jul;40(7):1877-83 19547909 - J Gastroenterol. 2009;44(8):803-11 20008524 - J Exp Med. 2009 Dec 21;206(13):3101-14 16829963 - Nat Immunol. 2006 Aug;7(8):868-74 11254498 - Am J Physiol Gastrointest Liver Physiol. 2001 Apr;280(4):G710-9 17620362 - J Exp Med. 2007 Aug 6;204(8):1775-85 15653504 - Science. 2005 Jan 14;307(5707):254-8 16455972 - J Immunol. 2006 Feb 15;176(4):2161-72 |
References_xml | – volume: 301 start-page: 640 year: 2003 end-page: 643 ident: bib65 article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway publication-title: Science – volume: 75 start-page: 1577 year: 2007 end-page: 1585 ident: bib18 article-title: Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium publication-title: Infect. Immun. – volume: 3 start-page: 147 year: 1995 end-page: 161 ident: bib38 article-title: Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors publication-title: Immunity – volume: 317 start-page: 256 year: 2007 end-page: 260 ident: bib42 article-title: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid publication-title: Science – volume: 9 start-page: 769 year: 2008 end-page: 776 ident: bib61 article-title: Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5 publication-title: Nat. Immunol. – volume: 107 start-page: 109 year: 2010 end-page: 138 ident: bib47 article-title: Intestinal dendritic cells publication-title: Adv. Immunol. – volume: 36 start-page: 2912 year: 2006 end-page: 2919 ident: bib20 article-title: Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11c(high) dendritic cells publication-title: Eur. J. Immunol. – volume: 2 start-page: 361 year: 2001 end-page: 367 ident: bib48 article-title: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria publication-title: Nat. Immunol. – volume: 100 start-page: 327 year: 1985 end-page: 332 ident: bib7 article-title: Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells publication-title: J. Cell Biol. – volume: 209 start-page: 139 year: 2012 end-page: 155 ident: bib49 article-title: Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon publication-title: J. Exp. Med. – volume: 208 start-page: 2141 year: 2011 end-page: 2153 ident: bib58 article-title: DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling publication-title: J. Exp. Med. – volume: 89 start-page: 1924 year: 1992 end-page: 1928 ident: bib45 article-title: A family of beta 7 integrins on human mucosal lymphocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 143 year: 1998 end-page: 150 ident: bib2 article-title: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function publication-title: Immunity – volume: 182 start-page: 3055 year: 2009 end-page: 3062 ident: bib14 article-title: Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection publication-title: J. Immunol. – volume: 176 start-page: 2161 year: 2006 end-page: 2172 ident: bib56 article-title: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins publication-title: J. Immunol. – volume: 180 start-page: 15 year: 1994 end-page: 23 ident: bib31 article-title: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches publication-title: J. Exp. Med. – volume: 202 start-page: 1051 year: 2005 end-page: 1061 ident: bib4 article-title: Essential role for CD103 in the T cell-mediated regulation of experimental colitis publication-title: J. Exp. Med. – volume: 19 start-page: 598 year: 1998 end-page: 605 ident: bib9 article-title: Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 483 start-page: 345 year: 2012 end-page: 349 ident: bib40 article-title: Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine publication-title: Nature – volume: 10 start-page: 415 year: 2010 end-page: 426 ident: bib64 article-title: Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria publication-title: Nat. Rev. Immunol. – volume: 24 start-page: 191 year: 2006 end-page: 201 ident: bib35 article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo publication-title: Immunity – volume: 176 start-page: 2465 year: 2006 end-page: 2469 ident: bib62 article-title: Transepithelial pathogen uptake into the small intestinal lamina propria publication-title: J. Immunol. – volume: 2 start-page: 340 year: 2009 end-page: 350 ident: bib24 article-title: Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning publication-title: Mucosal Immunol. – volume: 307 start-page: 254 year: 2005 end-page: 258 ident: bib44 article-title: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance publication-title: Science – volume: 127 start-page: 2381 year: 2007 end-page: 2390 ident: bib68 article-title: Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1 publication-title: J. Invest. Dermatol. – volume: 215 start-page: 692 year: 2010 end-page: 697 ident: bib46 article-title: The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets publication-title: Immunobiology – volume: 280 start-page: G710 year: 2001 end-page: G719 ident: bib26 article-title: Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 202 start-page: 1063 year: 2005 end-page: 1073 ident: bib30 article-title: Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing publication-title: J. Exp. Med. – volume: 112 start-page: 619 year: 2008 end-page: 625 ident: bib50 article-title: Integrin α E(CD103)β 7 influences cellular shape and motility in a ligand-dependent fashion publication-title: Blood – volume: 180 start-page: 984 year: 2012 end-page: 997 ident: bib41 article-title: Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids publication-title: Am. J. Pathol. – volume: 62 start-page: 1669 year: 1994 end-page: 1676 ident: bib51 article-title: Hybrid hepatitis B virus core-pre-S proteins synthesized in avirulent Salmonella typhimurium and Salmonella typhi for oral vaccination publication-title: Infect. Immun. – volume: 178 start-page: 7747 year: 2007 end-page: 7755 ident: bib22 article-title: Requirements for T lymphocyte migration in explanted lymph nodes publication-title: J. Immunol. – volume: 31 start-page: 502 year: 2009 end-page: 512 ident: bib63 article-title: Intestinal lamina propria dendritic cell subsets have different origin and functions publication-title: Immunity – volume: 204 start-page: 1775 year: 2007 end-page: 1785 ident: bib55 article-title: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid publication-title: J. Exp. Med. – volume: 101 start-page: 6110 year: 2004 end-page: 6115 ident: bib28 article-title: Intestinal villous M cells: an antigen entry site in the mucosal epithelium publication-title: Proc. Natl. Acad. Sci. USA – start-page: 1076 year: 2012 end-page: 1090 ident: bib67 article-title: Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen presenting cells publication-title: Immunity – volume: 186 start-page: 6287 year: 2011 end-page: 6295 ident: bib17 article-title: A new subset of CD103+CD8alpha+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity publication-title: J. Immunol. – volume: 154 start-page: 5684 year: 1995 end-page: 5693 ident: bib23 article-title: Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo publication-title: J. Immunol. – volume: 176 start-page: 803 year: 2006 end-page: 810 ident: bib29 article-title: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes publication-title: J. Immunol. – volume: 10 start-page: 131 year: 2010 end-page: 144 ident: bib1 article-title: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function publication-title: Nat. Rev. Immunol. – volume: 7 start-page: 868 year: 2006 end-page: 874 ident: bib60 article-title: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells publication-title: Nat. Immunol. – volume: 31 start-page: 513 year: 2009 end-page: 525 ident: bib6 article-title: Origin of the lamina propria dendritic cell network publication-title: Immunity – volume: 20 start-page: 4106 year: 2000 end-page: 4114 ident: bib32 article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion publication-title: Mol. Cell. Biol. – volume: 156 start-page: 1408 year: 1996 end-page: 1414 ident: bib39 article-title: Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine publication-title: J. Immunol. – volume: 44 start-page: 803 year: 2009 end-page: 811 ident: bib59 article-title: Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection publication-title: J. Gastroenterol. – volume: 204 start-page: 1757 year: 2007 end-page: 1764 ident: bib13 article-title: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism publication-title: J. Exp. Med. – volume: 60 start-page: 3239 year: 2000 end-page: 3246 ident: bib37 article-title: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand publication-title: Cancer Res. – volume: 32 start-page: 412 year: 2011 end-page: 419 ident: bib53 article-title: Intestinal CD103+ dendritic cells: master regulators of tolerance? publication-title: Trends Immunol. – volume: 174 start-page: 1675 year: 2005 end-page: 1685 ident: bib19 article-title: The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms publication-title: J. Immunol. – volume: 40 start-page: 1877 year: 2010 end-page: 1883 ident: bib34 article-title: Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells publication-title: Eur. J. Immunol. – volume: 69 start-page: 5726 year: 2001 end-page: 5735 ident: bib66 article-title: In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection publication-title: Infect. Immun. – volume: 173 start-page: 5103 year: 2004 end-page: 5111 ident: bib3 article-title: In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin publication-title: J. Immunol. – volume: 62 start-page: 471 year: 1999 end-page: 481 ident: bib57 article-title: Porosity of the epithelial basement membrane as an indicator of macrophage-enterocyte interaction in the intestinal mucosa publication-title: Arch. Histol. Cytol. – volume: 203 start-page: 2841 year: 2006 end-page: 2852 ident: bib11 article-title: Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement publication-title: J. Exp. Med. – volume: 194 start-page: 1171 year: 2001 end-page: 1178 ident: bib43 article-title: CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells publication-title: J. Exp. Med. – volume: 236 start-page: 509 year: 1994 end-page: 526 ident: bib8 article-title: Isolation of Salmonella mutants defective for intracellular survival publication-title: Methods Enzymol. – volume: 137 start-page: 579 year: 2009 end-page: 587 ident: bib5 article-title: Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen publication-title: Gastroenterology – volume: 129 start-page: 489 year: 1995 end-page: 506 ident: bib21 article-title: In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death publication-title: J. Cell Biol. – volume: 205 start-page: 2139 year: 2008 end-page: 2149 ident: bib27 article-title: Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans publication-title: J. Exp. Med. – volume: 372 start-page: 190 year: 1994 end-page: 193 ident: bib10 article-title: Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin publication-title: Nature – volume: 206 start-page: 3101 year: 2009 end-page: 3114 ident: bib52 article-title: Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions publication-title: J. Exp. Med. – volume: 8 start-page: 435 year: 2008 end-page: 446 ident: bib12 article-title: Dendritic cells in intestinal immune regulation publication-title: Nat. Rev. Immunol. – volume: 5 start-page: 1243 year: 2004 end-page: 1250 ident: bib36 article-title: Visualizing dendritic cell networks in vivo publication-title: Nat. Immunol. – volume: 5 start-page: 150 year: 2012 end-page: 160 ident: bib54 article-title: Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses publication-title: Mucosal Immunol. – volume: 33 start-page: 118 year: 2010 end-page: 127 ident: bib16 article-title: Development and migration of plasma cells in the mouse lymph node publication-title: Immunity – volume: 21 start-page: 527 year: 2004 end-page: 538 ident: bib25 article-title: Retinoic acid imprints gut-homing specificity on T cells publication-title: Immunity – volume: 36 start-page: 276 year: 2012 end-page: 287 ident: bib33 article-title: Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense publication-title: Immunity – year: 2013 ident: bib15 article-title: Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX publication-title: Nature – volume: 180 start-page: 15 year: 1994 ident: 10.1016/j.immuni.2013.01.009_bib31 article-title: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches publication-title: J. Exp. Med. doi: 10.1084/jem.180.1.15 – volume: 36 start-page: 276 year: 2012 ident: 10.1016/j.immuni.2013.01.009_bib33 article-title: Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense publication-title: Immunity doi: 10.1016/j.immuni.2011.12.011 – volume: 178 start-page: 7747 year: 2007 ident: 10.1016/j.immuni.2013.01.009_bib22 article-title: Requirements for T lymphocyte migration in explanted lymph nodes publication-title: J. Immunol. doi: 10.4049/jimmunol.178.12.7747 – volume: 5 start-page: 150 year: 2012 ident: 10.1016/j.immuni.2013.01.009_bib54 article-title: Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses publication-title: Mucosal Immunol. doi: 10.1038/mi.2011.61 – volume: 156 start-page: 1408 year: 1996 ident: 10.1016/j.immuni.2013.01.009_bib39 article-title: Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine publication-title: J. Immunol. doi: 10.4049/jimmunol.156.4.1408 – volume: 62 start-page: 471 year: 1999 ident: 10.1016/j.immuni.2013.01.009_bib57 article-title: Porosity of the epithelial basement membrane as an indicator of macrophage-enterocyte interaction in the intestinal mucosa publication-title: Arch. Histol. Cytol. doi: 10.1679/aohc.62.471 – volume: 33 start-page: 118 year: 2010 ident: 10.1016/j.immuni.2013.01.009_bib16 article-title: Development and migration of plasma cells in the mouse lymph node publication-title: Immunity doi: 10.1016/j.immuni.2010.06.015 – volume: 40 start-page: 1877 year: 2010 ident: 10.1016/j.immuni.2013.01.009_bib34 article-title: Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.200939957 – volume: 483 start-page: 345 year: 2012 ident: 10.1016/j.immuni.2013.01.009_bib40 article-title: Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine publication-title: Nature doi: 10.1038/nature10863 – volume: 154 start-page: 5684 year: 1995 ident: 10.1016/j.immuni.2013.01.009_bib23 article-title: Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo publication-title: J. Immunol. doi: 10.4049/jimmunol.154.11.5684 – volume: 107 start-page: 109 year: 2010 ident: 10.1016/j.immuni.2013.01.009_bib47 article-title: Intestinal dendritic cells publication-title: Adv. Immunol. doi: 10.1016/B978-0-12-381300-8.00004-6 – volume: 176 start-page: 2465 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib62 article-title: Transepithelial pathogen uptake into the small intestinal lamina propria publication-title: J. Immunol. doi: 10.4049/jimmunol.176.4.2465 – volume: 31 start-page: 513 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib6 article-title: Origin of the lamina propria dendritic cell network publication-title: Immunity doi: 10.1016/j.immuni.2009.08.010 – volume: 236 start-page: 509 year: 1994 ident: 10.1016/j.immuni.2013.01.009_bib8 article-title: Isolation of Salmonella mutants defective for intracellular survival publication-title: Methods Enzymol. doi: 10.1016/0076-6879(94)36039-1 – volume: 127 start-page: 2381 year: 2007 ident: 10.1016/j.immuni.2013.01.009_bib68 article-title: Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1 publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5700882 – volume: 36 start-page: 2912 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib20 article-title: Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11c(high) dendritic cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.200636356 – volume: 317 start-page: 256 year: 2007 ident: 10.1016/j.immuni.2013.01.009_bib42 article-title: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid publication-title: Science doi: 10.1126/science.1145697 – volume: 2 start-page: 361 year: 2001 ident: 10.1016/j.immuni.2013.01.009_bib48 article-title: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria publication-title: Nat. Immunol. doi: 10.1038/86373 – volume: 204 start-page: 1757 year: 2007 ident: 10.1016/j.immuni.2013.01.009_bib13 article-title: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism publication-title: J. Exp. Med. doi: 10.1084/jem.20070590 – volume: 100 start-page: 327 year: 1985 ident: 10.1016/j.immuni.2013.01.009_bib7 article-title: Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells publication-title: J. Cell Biol. doi: 10.1083/jcb.100.1.327 – volume: 206 start-page: 3101 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib52 article-title: Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions publication-title: J. Exp. Med. doi: 10.1084/jem.20091925 – volume: 202 start-page: 1063 year: 2005 ident: 10.1016/j.immuni.2013.01.009_bib30 article-title: Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing publication-title: J. Exp. Med. doi: 10.1084/jem.20051100 – volume: 31 start-page: 502 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib63 article-title: Intestinal lamina propria dendritic cell subsets have different origin and functions publication-title: Immunity doi: 10.1016/j.immuni.2009.06.025 – volume: 176 start-page: 803 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib29 article-title: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes publication-title: J. Immunol. doi: 10.4049/jimmunol.176.2.803 – volume: 3 start-page: 147 year: 1995 ident: 10.1016/j.immuni.2013.01.009_bib38 article-title: Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors publication-title: Immunity doi: 10.1016/1074-7613(95)90167-1 – volume: 89 start-page: 1924 year: 1992 ident: 10.1016/j.immuni.2013.01.009_bib45 article-title: A family of beta 7 integrins on human mucosal lymphocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.5.1924 – volume: 173 start-page: 5103 year: 2004 ident: 10.1016/j.immuni.2013.01.009_bib3 article-title: In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin publication-title: J. Immunol. doi: 10.4049/jimmunol.173.8.5103 – volume: 2 start-page: 340 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib24 article-title: Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning publication-title: Mucosal Immunol. doi: 10.1038/mi.2009.13 – volume: 21 start-page: 527 year: 2004 ident: 10.1016/j.immuni.2013.01.009_bib25 article-title: Retinoic acid imprints gut-homing specificity on T cells publication-title: Immunity doi: 10.1016/j.immuni.2004.08.011 – year: 2013 ident: 10.1016/j.immuni.2013.01.009_bib15 article-title: Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells publication-title: Nature doi: 10.1038/nature11809 – volume: 32 start-page: 412 year: 2011 ident: 10.1016/j.immuni.2013.01.009_bib53 article-title: Intestinal CD103+ dendritic cells: master regulators of tolerance? publication-title: Trends Immunol. doi: 10.1016/j.it.2011.06.003 – volume: 372 start-page: 190 year: 1994 ident: 10.1016/j.immuni.2013.01.009_bib10 article-title: Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin publication-title: Nature doi: 10.1038/372190a0 – start-page: 1076 year: 2012 ident: 10.1016/j.immuni.2013.01.009_bib67 article-title: Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen presenting cells publication-title: Immunity doi: 10.1016/j.immuni.2012.08.026 – volume: 280 start-page: G710 year: 2001 ident: 10.1016/j.immuni.2013.01.009_bib26 article-title: Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.2001.280.4.G710 – volume: 137 start-page: 579 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib5 article-title: Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.04.010 – volume: 176 start-page: 2161 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib56 article-title: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins publication-title: J. Immunol. doi: 10.4049/jimmunol.176.4.2161 – volume: 60 start-page: 3239 year: 2000 ident: 10.1016/j.immuni.2013.01.009_bib37 article-title: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand publication-title: Cancer Res. – volume: 180 start-page: 984 year: 2012 ident: 10.1016/j.immuni.2013.01.009_bib41 article-title: Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.11.009 – volume: 7 start-page: 868 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib60 article-title: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells publication-title: Nat. Immunol. doi: 10.1038/ni1362 – volume: 182 start-page: 3055 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib14 article-title: Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection publication-title: J. Immunol. doi: 10.4049/jimmunol.0802749 – volume: 101 start-page: 6110 year: 2004 ident: 10.1016/j.immuni.2013.01.009_bib28 article-title: Intestinal villous M cells: an antigen entry site in the mucosal epithelium publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400969101 – volume: 5 start-page: 1243 year: 2004 ident: 10.1016/j.immuni.2013.01.009_bib36 article-title: Visualizing dendritic cell networks in vivo publication-title: Nat. Immunol. doi: 10.1038/ni1139 – volume: 112 start-page: 619 year: 2008 ident: 10.1016/j.immuni.2013.01.009_bib50 article-title: Integrin α E(CD103)β 7 influences cellular shape and motility in a ligand-dependent fashion publication-title: Blood doi: 10.1182/blood-2008-01-134833 – volume: 62 start-page: 1669 year: 1994 ident: 10.1016/j.immuni.2013.01.009_bib51 article-title: Hybrid hepatitis B virus core-pre-S proteins synthesized in avirulent Salmonella typhimurium and Salmonella typhi for oral vaccination publication-title: Infect. Immun. doi: 10.1128/iai.62.5.1669-1676.1994 – volume: 8 start-page: 435 year: 2008 ident: 10.1016/j.immuni.2013.01.009_bib12 article-title: Dendritic cells in intestinal immune regulation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2335 – volume: 194 start-page: 1171 year: 2001 ident: 10.1016/j.immuni.2013.01.009_bib43 article-title: CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.194.8.1171 – volume: 215 start-page: 692 year: 2010 ident: 10.1016/j.immuni.2013.01.009_bib46 article-title: The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets publication-title: Immunobiology doi: 10.1016/j.imbio.2010.05.013 – volume: 204 start-page: 1775 year: 2007 ident: 10.1016/j.immuni.2013.01.009_bib55 article-title: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid publication-title: J. Exp. Med. doi: 10.1084/jem.20070602 – volume: 307 start-page: 254 year: 2005 ident: 10.1016/j.immuni.2013.01.009_bib44 article-title: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance publication-title: Science doi: 10.1126/science.1102901 – volume: 129 start-page: 489 year: 1995 ident: 10.1016/j.immuni.2013.01.009_bib21 article-title: In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death publication-title: J. Cell Biol. doi: 10.1083/jcb.129.2.489 – volume: 9 start-page: 143 year: 1998 ident: 10.1016/j.immuni.2013.01.009_bib2 article-title: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function publication-title: Immunity doi: 10.1016/S1074-7613(00)80596-8 – volume: 203 start-page: 2841 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib11 article-title: Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement publication-title: J. Exp. Med. doi: 10.1084/jem.20061884 – volume: 205 start-page: 2139 year: 2008 ident: 10.1016/j.immuni.2013.01.009_bib27 article-title: Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans publication-title: J. Exp. Med. doi: 10.1084/jem.20080414 – volume: 75 start-page: 1577 year: 2007 ident: 10.1016/j.immuni.2013.01.009_bib18 article-title: Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium publication-title: Infect. Immun. doi: 10.1128/IAI.01392-06 – volume: 208 start-page: 2141 year: 2011 ident: 10.1016/j.immuni.2013.01.009_bib58 article-title: DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling publication-title: J. Exp. Med. doi: 10.1084/jem.20102392 – volume: 9 start-page: 769 year: 2008 ident: 10.1016/j.immuni.2013.01.009_bib61 article-title: Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5 publication-title: Nat. Immunol. doi: 10.1038/ni.1622 – volume: 69 start-page: 5726 year: 2001 ident: 10.1016/j.immuni.2013.01.009_bib66 article-title: In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection publication-title: Infect. Immun. doi: 10.1128/IAI.69.9.5726-5735.2001 – volume: 20 start-page: 4106 year: 2000 ident: 10.1016/j.immuni.2013.01.009_bib32 article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.11.4106-4114.2000 – volume: 10 start-page: 131 year: 2010 ident: 10.1016/j.immuni.2013.01.009_bib1 article-title: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2707 – volume: 202 start-page: 1051 year: 2005 ident: 10.1016/j.immuni.2013.01.009_bib4 article-title: Essential role for CD103 in the T cell-mediated regulation of experimental colitis publication-title: J. Exp. Med. doi: 10.1084/jem.20040662 – volume: 186 start-page: 6287 year: 2011 ident: 10.1016/j.immuni.2013.01.009_bib17 article-title: A new subset of CD103+CD8alpha+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity publication-title: J. Immunol. doi: 10.4049/jimmunol.1004036 – volume: 301 start-page: 640 year: 2003 ident: 10.1016/j.immuni.2013.01.009_bib65 article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway publication-title: Science doi: 10.1126/science.1087262 – volume: 44 start-page: 803 year: 2009 ident: 10.1016/j.immuni.2013.01.009_bib59 article-title: Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection publication-title: J. Gastroenterol. doi: 10.1007/s00535-009-0094-y – volume: 209 start-page: 139 year: 2012 ident: 10.1016/j.immuni.2013.01.009_bib49 article-title: Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon publication-title: J. Exp. Med. doi: 10.1084/jem.20101387 – volume: 24 start-page: 191 year: 2006 ident: 10.1016/j.immuni.2013.01.009_bib35 article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo publication-title: Immunity doi: 10.1016/j.immuni.2006.01.005 – volume: 19 start-page: 598 year: 1998 ident: 10.1016/j.immuni.2013.01.009_bib9 article-title: Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb.19.4.2870 – volume: 174 start-page: 1675 year: 2005 ident: 10.1016/j.immuni.2013.01.009_bib19 article-title: The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms publication-title: J. Immunol. doi: 10.4049/jimmunol.174.3.1675 – volume: 10 start-page: 415 year: 2010 ident: 10.1016/j.immuni.2013.01.009_bib64 article-title: Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2778 – reference: 8006579 - J Exp Med. 1994 Jul 1;180(1):15-23 – reference: 15485630 - Immunity. 2004 Oct;21(4):527-38 – reference: 15661931 - J Immunol. 2005 Feb 1;174(3):1675-85 – reference: 16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61 – reference: 15071180 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6110-5 – reference: 19733489 - Immunity. 2009 Sep 18;31(3):513-25 – reference: 23334413 - Nature. 2013 Feb 7;494(7435):116-20 – reference: 17283101 - Infect Immun. 2007 Apr;75(4):1577-85 – reference: 18516037 - Nat Immunol. 2008 Jul;9(7):769-76 – reference: 8568241 - J Immunol. 1996 Feb 15;156(4):1408-14 – reference: 17548612 - J Immunol. 2007 Jun 15;178(12):7747-55 – reference: 20580119 - Immunobiology. 2010 Sep-Oct;215(9-10):692-7 – reference: 17508021 - J Invest Dermatol. 2007 Oct;127(10):2381-90 – reference: 1542691 - Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1924-8 – reference: 12855817 - Science. 2003 Aug 1;301(5633):640-3 – reference: 15653504 - Science. 2005 Jan 14;307(5707):254-8 – reference: 15543150 - Nat Immunol. 2004 Dec;5(12):1243-50 – reference: 16393963 - J Immunol. 2006 Jan 15;176(2):803-10 – reference: 22422267 - Nature. 2012 Mar 15;483(7389):345-9 – reference: 23219392 - Immunity. 2012 Dec 14;37(6):1076-90 – reference: 22231304 - J Exp Med. 2012 Jan 16;209(1):139-55 – reference: 22222225 - Am J Pathol. 2012 Mar;180(3):984-97 – reference: 20008524 - J Exp Med. 2009 Dec 21;206(13):3101-14 – reference: 10678576 - Arch Histol Cytol. 1999 Dec;62(5):471-81 – reference: 11276208 - Nat Immunol. 2001 Apr;2(4):361-7 – reference: 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 – reference: 11500449 - Infect Immun. 2001 Sep;69(9):5726-35 – reference: 9697844 - Immunity. 1998 Jul;9(1):143-50 – reference: 18492951 - Blood. 2008 Aug 1;112(3):619-25 – reference: 18710932 - J Exp Med. 2008 Sep 1;205(9):2139-49 – reference: 16455972 - J Immunol. 2006 Feb 15;176(4):2161-72 – reference: 8168928 - Infect Immun. 1994 May;62(5):1669-76 – reference: 16829963 - Nat Immunol. 2006 Aug;7(8):868-74 – reference: 20098461 - Nat Rev Immunol. 2010 Feb;10(2):131-44 – reference: 20619695 - Immunity. 2010 Jul 23;33(1):118-27 – reference: 17620362 - J Exp Med. 2007 Aug 6;204(8):1775-85 – reference: 19547909 - J Gastroenterol. 2009;44(8):803-11 – reference: 19234202 - J Immunol. 2009 Mar 1;182(5):3055-62 – reference: 22306017 - Immunity. 2012 Feb 24;36(2):276-87 – reference: 11602645 - J Exp Med. 2001 Oct 15;194(8):1171-8 – reference: 20432234 - Eur J Immunol. 2010 Jul;40(7):1877-83 – reference: 17620361 - J Exp Med. 2007 Aug 6;204(8):1757-64 – reference: 16216890 - J Exp Med. 2005 Oct 17;202(8):1063-73 – reference: 16473831 - Immunity. 2006 Feb;24(2):191-201 – reference: 7968635 - Methods Enzymol. 1994;236:509-26 – reference: 7969453 - Nature. 1994 Nov 10;372(6502):190-3 – reference: 21930767 - J Exp Med. 2011 Sep 26;208(10):2141-53 – reference: 10866317 - Cancer Res. 2000 Jun 15;60(12):3239-46 – reference: 16456006 - J Immunol. 2006 Feb 15;176(4):2465-9 – reference: 7751620 - J Immunol. 1995 Jun 1;154(11):5684-93 – reference: 11254498 - Am J Physiol Gastrointest Liver Physiol. 2001 Apr;280(4):G710-9 – reference: 21034972 - Adv Immunol. 2010;107:109-38 – reference: 21525388 - J Immunol. 2011 Jun 1;186(11):6287-95 – reference: 3880756 - J Cell Biol. 1985 Jan;100(1):327-32 – reference: 19733097 - Immunity. 2009 Sep 18;31(3):502-12 – reference: 17051619 - Eur J Immunol. 2006 Nov;36(11):2912-9 – reference: 17569825 - Science. 2007 Jul 13;317(5835):256-60 – reference: 7621074 - Immunity. 1995 Jul;3(1):147-61 – reference: 19375423 - Gastroenterology. 2009 Aug;137(2):579-87, 587.e1-2 – reference: 18500229 - Nat Rev Immunol. 2008 Jun;8(6):435-46 – reference: 17145958 - J Exp Med. 2006 Dec 25;203(13):2841-52 – reference: 19387433 - Mucosal Immunol. 2009 Jul;2(4):340-50 – reference: 20498668 - Nat Rev Immunol. 2010 Jun;10(6):415-26 – reference: 15470054 - J Immunol. 2004 Oct 15;173(8):5103-11 – reference: 7721948 - J Cell Biol. 1995 Apr;129(2):489-506 – reference: 21816673 - Trends Immunol. 2011 Sep;32(9):412-9 – reference: 9761756 - Am J Respir Cell Mol Biol. 1998 Oct;19(4):598-605 – reference: 22166938 - Mucosal Immunol. 2012 Mar;5(2):150-60 |
SSID | ssj0014590 |
Score | 2.5659192 |
Snippet | CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal... CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal... CD103+dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal... CD103 + dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 581 |
SubjectTerms | Animals Antigen Presentation - immunology Antigens, Bacterial - immunology Antigens, CD - immunology Antigens, CD - metabolism Bacteria Behavior Bone marrow CD11c Antigen - genetics CD11c Antigen - immunology CD11c Antigen - metabolism CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell Line, Tumor Cell Movement - immunology Cells, Cultured CX3C Chemokine Receptor 1 Dendritic Cells - immunology Dendritic Cells - metabolism Flow Cytometry Host-Pathogen Interactions - immunology Integrin alpha Chains - immunology Integrin alpha Chains - metabolism Intestinal Mucosa - immunology Intestinal Mucosa - metabolism Intestinal Mucosa - microbiology Luminescent Proteins - genetics Luminescent Proteins - metabolism Lymphocyte Activation - immunology Mice Mice, Inbred C57BL Mice, Knockout Microscopy Microscopy, Fluorescence, Multiphoton Morphology Motility Mucous Membrane - immunology Mucous Membrane - metabolism Mucous Membrane - microbiology Receptors, Chemokine - genetics Receptors, Chemokine - immunology Receptors, Chemokine - metabolism Salmonella Salmonella typhi - immunology Salmonella typhi - physiology Salmonella typhimurium - immunology Salmonella typhimurium - physiology Toll-Like Receptors - immunology Toll-Like Receptors - metabolism |
Title | Luminal Bacteria Recruit CD103+ Dendritic Cells into the Intestinal Epithelium to Sample Bacterial Antigens for Presentation |
URI | https://dx.doi.org/10.1016/j.immuni.2013.01.009 https://www.ncbi.nlm.nih.gov/pubmed/23395676 https://www.proquest.com/docview/1629396913 https://www.proquest.com/docview/1319619821 https://www.proquest.com/docview/1642631117 https://pubmed.ncbi.nlm.nih.gov/PMC4115273 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqViAuqJTXQlsZiRuKNrZjJzm221YVpQhRKvZm2YmjBi3eFZsckPjxzDiPsoCoRI7xOLI9nofjmW8IeW1AzErw7SNubBYlRakiKx2PnCwyKxITmwqTky_fq_Pr5O1czrfIbMiFwbDKXvd3Oj1o6_7NtF_N6aqup1cYSgiHcIEXMuDnIuy2SLKQxDc_Hm8SEpnHY9whUA_pcyHGqw45GBjgJQJ4J4Yl_t08_el-_h5F-YtZOtslD3t_kh51Q35EtpzfI_e6CpPf98j9y_7u_DH58a4NBbzocQfQbCi6jG3d0NkJi8UbeuJ8GQof0JlbLNa09s2Sgn9I8a8haALse7rCHI5F3X6l0HhlEFt4_CAMwzeI7rmm4ArTD7eZTf4JuT47_TQ7j_raC1EhedJEeexSIfLECVapImVWZSissU3xCISY-1VeJKW0sTIFPBW8qNLYZqmpQGsU4inZ9kvvnhNqmLBSclAUsgJTCGrNWQNn8qLikpdcTogYllwXPTA51sdY6CEC7YvuGKWRUTpmGhg1IdHYa9UBc9xBnw7c1BsbTIPtuKPn_sB83Qv4WjMFflKuciYm5NXYDKKJ9y3Gu2ULNLhiLM84-weNQsR8MDjphDzr9tM4HQ4MkCpVMPSNnTYSIDT4ZouvbwJEeMKwXLF48d-Tfkke8FD4Q0Sc7ZPt5lvrDsD9auwh2Tm6-Pj54jDI2U-uNjBP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEB8vCAZjhQFGgicUNbZjp3nggbWbWtZOSNukvhk7cURQl1Y0EZrEf8U_yF2-oICYhLQ8xnbk-M53v8R3vyPklYFtlgC297ixAy-IE-VZ6bjnZDywIjC-STE5eXaixufB-7mcb5HvbS4MhlU2tr-26ZW1bu70m9Xsr7Ksf4qhhPARLvBABnCuaiIrj93lV_huW7-djEDIrzk_Ojwbjr2mtIAXSx4UXuS7UIgocIKlKg6ZVQPURd-GiPCRUj6N4iCR1lcmhiuFG2no20FoUtgUsYDn3iA3AX2EaA0m84Pu6CKQkd8FOsL02ny9Kqgsq5I-MKJMVGyhGAf5d3_4J979PWzzFz94dJ_cawAsfVev0QOy5fIdcqsuaXm5Q27PmsP6h-TbtKwqhtGDmhHaUMSoZVbQ4Yj54g0duTypKi3QoVss1jTLiyUFQErxNyWYHhx7uMKkkUVWXlBoPDVIZtw9EKaRF0gnuqaAvemHn6lU-SNyfi0S2SXb-TJ3e4QaJqyUHCyTTMH3gh111kR-GKdc8oTLHhHtkuu4YULHghwL3Ya8fda1oDQKSvtMg6B6xOtGrWomkCv6h6009YZGa3BWV4zcb4WvG4uy1kwBMItUxESPvOyawRbgAY_J3bKEPrhiLBpw9o8-Cin6wcOFPfK41qfudTgIADRawdQ3NK3rgFzkmy159qniJA8Y1kcWT_77pV-QO-Oz2VRPJyfHT8ldXlUdER5n-2S7-FK6Z4D9Cvu82muUfLzuzf0DXTdrJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Luminal+Bacteria+Recruit+CD103%2B+Dendritic+Cells+into+the+Intestinal+Epithelium+to+Sample+Bacterial+Antigens+for+Presentation&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Farache%2C+Julia&rft.au=Koren%2C+Idan&rft.au=Milo%2C+Idan&rft.au=Gurevich%2C+Irina&rft.date=2013-03-21&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=38&rft.issue=3&rft.spage=581&rft.epage=595&rft_id=info:doi/10.1016%2Fj.immuni.2013.01.009&rft.externalDocID=S1074761313000496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |