Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison

The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 50; no. 4; pp. 1589 - 1598
Main Authors la Fougère, Christian, Zwergal, Andreas, Rominger, Axel, Förster, Stefan, Fesl, Gunther, Dieterich, Marianne, Brandt, Thomas, Strupp, Michael, Bartenstein, Peter, Jahn, Klaus
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2010
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [18F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [18F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [18F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop.
AbstractList The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [18F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [18F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [18F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop.
The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [ super(18)F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [ super(18)F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [ super(18)F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [ super(18)F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop.
The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [(18)F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [(18)F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [(18)F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [(18)F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop.
The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [18F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [18F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [18F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop.
Author Jahn, Klaus
Dieterich, Marianne
Fesl, Gunther
Zwergal, Andreas
Rominger, Axel
Brandt, Thomas
Strupp, Michael
Förster, Stefan
la Fougère, Christian
Bartenstein, Peter
Author_xml – sequence: 1
  givenname: Christian
  surname: la Fougère
  fullname: la Fougère, Christian
  organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany
– sequence: 2
  givenname: Andreas
  surname: Zwergal
  fullname: Zwergal, Andreas
  email: andreas.zwergal@med.uni-muenchen.de
  organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
– sequence: 3
  givenname: Axel
  surname: Rominger
  fullname: Rominger, Axel
  organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany
– sequence: 4
  givenname: Stefan
  surname: Förster
  fullname: Förster, Stefan
  organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany
– sequence: 5
  givenname: Gunther
  surname: Fesl
  fullname: Fesl, Gunther
  organization: Department of Neuroradiology, Ludwig-Maximilians-University of Munich, Germany
– sequence: 6
  givenname: Marianne
  surname: Dieterich
  fullname: Dieterich, Marianne
  organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
– sequence: 7
  givenname: Thomas
  surname: Brandt
  fullname: Brandt, Thomas
  organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
– sequence: 8
  givenname: Michael
  surname: Strupp
  fullname: Strupp, Michael
  organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
– sequence: 9
  givenname: Peter
  surname: Bartenstein
  fullname: Bartenstein, Peter
  organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany
– sequence: 10
  givenname: Klaus
  surname: Jahn
  fullname: Jahn, Klaus
  organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20034578$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEUhkNR6kf7F8pAL3o103zOJr0oWuuqYKmIXpUSssmZku1ssiYzgv--GVYt7NVehATyvA_Je47QXogBEKoIbggm7edlE2BM0a_MH2goxqohtMEtfoMOCVaiVmJG96azYLUkRB2go5yXuICEy7fooEQYFzN5iE5uwfTVI6Q85mry-QCu6qONqzj4GL5Up9UvIue_6_n3i-rm_K7uftxeVeV6bZLPMbxD-53pM7x_3o_R_fz87uyyvv55cXV2el1bQflQS9cKR0xZyuCFo6JlrQXcMqYAOw62I5zRBeeOUxAKrARK3QJU1xnJ7Ywdo08b7zrFhxHyoFc-W-h7EyCOWc-4UIy0YiI_bpHLOKZQHqeJ4EoxLLEs1IdnalyswOl1Kr9PT_qlmgLIDWBTzDlB94oQrKcp6KX-P4UppzShukyhRL9uRa0fzFTnkIzvdxF82wigNProIelsPQQLziewg3bR7yI52ZLY3gdvTf8XnnZT_AOHVb2b
CitedBy_id crossref_primary_10_1002_hbm_23131
crossref_primary_10_1007_s00221_019_05706_9
crossref_primary_10_1007_s00415_017_8446_7
crossref_primary_10_1093_gerona_glaa118
crossref_primary_10_1371_journal_pone_0103211
crossref_primary_10_1016_j_neuroscience_2017_02_005
crossref_primary_10_1007_s00429_024_02808_1
crossref_primary_10_17116_jnevro201811821100_104
crossref_primary_10_3389_fnhum_2018_00312
crossref_primary_10_1002_hbm_22717
crossref_primary_10_1186_s12984_019_0636_3
crossref_primary_10_3389_fnagi_2021_657308
crossref_primary_10_1016_j_ejpn_2011_04_010
crossref_primary_10_1016_j_neulet_2013_06_050
crossref_primary_10_1016_j_isci_2019_04_008
crossref_primary_10_1093_brain_aww268
crossref_primary_10_3389_fnhum_2017_00106
crossref_primary_10_1002_mds_25682
crossref_primary_10_1016_j_neuroscience_2023_07_010
crossref_primary_10_1016_j_neuroimage_2013_02_010
crossref_primary_10_1177_1545968317693304
crossref_primary_10_1093_gerona_gly158
crossref_primary_10_1177_10738584211013723
crossref_primary_10_1007_s12311_022_01373_9
crossref_primary_10_3389_fneur_2020_00948
crossref_primary_10_1186_1743_0003_10_77
crossref_primary_10_1007_s15016_014_0004_2
crossref_primary_10_1186_s12984_017_0263_9
crossref_primary_10_1177_1545968320969940
crossref_primary_10_1002_ana_25086
crossref_primary_10_3389_fnagi_2024_1395553
crossref_primary_10_1097_MD_0000000000010453
crossref_primary_10_1016_j_neubiorev_2024_105718
crossref_primary_10_3233_JAD_201576
crossref_primary_10_1080_10255842_2020_1812583
crossref_primary_10_1109_TNSRE_2023_3325215
crossref_primary_10_3389_fneur_2021_746599
crossref_primary_10_1007_s00702_023_02608_7
crossref_primary_10_1016_j_neuroscience_2015_11_032
crossref_primary_10_3389_fnagi_2021_731332
crossref_primary_10_1016_j_humov_2016_11_002
crossref_primary_10_1016_j_neuroimage_2015_10_021
crossref_primary_10_1002_hbm_24326
crossref_primary_10_3389_fnagi_2019_00367
crossref_primary_10_1016_j_neurad_2012_10_001
crossref_primary_10_1093_brain_awv047
crossref_primary_10_1002_mds_25673
crossref_primary_10_3389_fnagi_2014_00104
crossref_primary_10_1002_mds_25675
crossref_primary_10_31083_j_jin2003074
crossref_primary_10_1177_0883073820909274
crossref_primary_10_1186_1743_0003_11_14
crossref_primary_10_1002_hbm_25691
crossref_primary_10_1016_j_neuroscience_2015_07_089
crossref_primary_10_1177_1877718X241305713
crossref_primary_10_1002_hbm_23829
crossref_primary_10_1089_neu_2016_4500
crossref_primary_10_3174_ajnr_A5036
crossref_primary_10_1002_mds_28977
crossref_primary_10_1038_s41598_021_82427_6
crossref_primary_10_1002_hbm_24919
crossref_primary_10_1038_s41598_021_03147_5
crossref_primary_10_1177_15459683211000736
crossref_primary_10_1007_s00115_010_3103_8
crossref_primary_10_1016_j_jneumeth_2021_109108
crossref_primary_10_2463_mrms_mp_2015_0015
crossref_primary_10_1080_0361073X_2018_1560108
crossref_primary_10_1186_1471_2377_13_102
crossref_primary_10_3109_09638288_2015_1103790
crossref_primary_10_1038_s41598_022_09936_w
crossref_primary_10_1186_s12984_025_01543_w
crossref_primary_10_1016_j_neuroscience_2021_08_019
crossref_primary_10_3389_fnagi_2020_610962
crossref_primary_10_1016_j_bbr_2020_112829
crossref_primary_10_1109_TNSRE_2014_2371391
crossref_primary_10_3389_fnhum_2022_806513
crossref_primary_10_1161_STROKEAHA_110_596122
crossref_primary_10_3389_fmed_2020_546344
crossref_primary_10_3389_fnagi_2016_00066
crossref_primary_10_1186_1743_0003_10_111
crossref_primary_10_1007_s11055_024_01727_2
crossref_primary_10_1212_WNL_0000000000006779
crossref_primary_10_1016_j_neulet_2016_11_015
crossref_primary_10_1016_j_jneumeth_2021_109339
crossref_primary_10_1016_j_gaitpost_2019_10_005
crossref_primary_10_3389_fnagi_2021_739998
crossref_primary_10_3389_fnhum_2015_00084
crossref_primary_10_1007_s00415_024_12504_z
crossref_primary_10_1007_s11910_013_0350_7
crossref_primary_10_1016_j_neulet_2012_03_049
crossref_primary_10_1371_journal_pone_0091183
crossref_primary_10_1016_j_cortex_2014_09_022
crossref_primary_10_1016_j_nicl_2019_102059
crossref_primary_10_14326_abe_6_15
crossref_primary_10_18632_aging_104135
crossref_primary_10_3389_fphys_2014_00204
crossref_primary_10_1002_hbm_26284
crossref_primary_10_1007_s10548_021_00841_5
crossref_primary_10_1177_1545968320953824
crossref_primary_10_1016_j_jocn_2024_110920
crossref_primary_10_1016_j_neuroimage_2011_08_005
crossref_primary_10_1016_j_nicl_2023_103443
crossref_primary_10_1093_brain_aww223
crossref_primary_10_1016_j_neucli_2015_07_001
crossref_primary_10_1016_j_neubiorev_2017_10_002
crossref_primary_10_1038_s41598_021_82696_1
crossref_primary_10_1177_1545968320924430
crossref_primary_10_3389_fnsys_2014_00138
crossref_primary_10_2174_1745017901309010196
crossref_primary_10_1016_j_bbr_2020_112805
crossref_primary_10_3389_fnhum_2014_00828
crossref_primary_10_1016_j_clinph_2020_11_009
crossref_primary_10_1016_j_jneumeth_2020_109061
crossref_primary_10_1152_physrev_00037_2021
crossref_primary_10_1016_j_clinph_2013_10_008
crossref_primary_10_1016_j_neuroimage_2013_04_070
crossref_primary_10_3389_fnhum_2017_00156
crossref_primary_10_1016_j_neuroscience_2015_08_063
crossref_primary_10_1016_j_ijpsycho_2014_03_005
crossref_primary_10_3390_brainsci10040236
crossref_primary_10_1016_j_ynirp_2022_100090
crossref_primary_10_1016_j_neuroimage_2024_120531
crossref_primary_10_1007_s10548_021_00825_5
crossref_primary_10_3389_fneur_2018_01181
crossref_primary_10_1002_jmri_27335
crossref_primary_10_1016_j_neuropsychologia_2015_06_039
crossref_primary_10_1001_jamaneurol_2019_0033
crossref_primary_10_1016_j_apmr_2019_12_004
crossref_primary_10_47795_HNFE8191
crossref_primary_10_1093_cercor_bhx155
crossref_primary_10_1177_15459683221124909
crossref_primary_10_1007_s40279_013_0025_1
crossref_primary_10_1117_1_NPh_4_4_041403
crossref_primary_10_3389_fnins_2021_607905
crossref_primary_10_1371_journal_pone_0223494
crossref_primary_10_1016_j_neubiorev_2022_104826
crossref_primary_10_52082_jssm_2021_789
crossref_primary_10_1038_s41598_020_79095_3
crossref_primary_10_1152_jn_00513_2017
crossref_primary_10_3389_fneur_2020_555733
crossref_primary_10_3390_brainsci11081065
crossref_primary_10_1016_j_neuroimage_2010_08_066
crossref_primary_10_1016_j_rehab_2013_05_002
crossref_primary_10_1038_s43856_024_00547_2
crossref_primary_10_1038_s41598_024_54966_1
crossref_primary_10_1177_0031512516640377
crossref_primary_10_1093_gerona_glu052
crossref_primary_10_3389_fphys_2018_01196
crossref_primary_10_1007_s40520_013_0119_5
crossref_primary_10_3389_fphys_2023_1153469
crossref_primary_10_1016_j_neulet_2016_05_061
crossref_primary_10_1002_mds_26229
crossref_primary_10_1371_journal_pone_0090634
crossref_primary_10_1002_mds_25139
crossref_primary_10_1080_00140139_2022_2075941
crossref_primary_10_1007_s00415_014_7304_0
crossref_primary_10_1093_cercor_bhaa301
crossref_primary_10_1002_mds_28883
crossref_primary_10_1016_j_nicl_2022_103051
crossref_primary_10_1038_s41598_023_46645_4
crossref_primary_10_1016_j_cccb_2022_100154
crossref_primary_10_3390_brainsci9090237
crossref_primary_10_1016_j_gaitpost_2019_01_026
crossref_primary_10_1016_j_psychres_2011_12_013
crossref_primary_10_1186_s13063_019_3694_8
crossref_primary_10_1016_j_nicl_2016_03_006
crossref_primary_10_1016_j_braindev_2014_01_003
crossref_primary_10_1038_s41598_022_07511_x
crossref_primary_10_1590_0004_282X20130080
crossref_primary_10_1134_S0362119712010124
crossref_primary_10_1016_j_neulet_2019_134526
crossref_primary_10_1016_j_gaitpost_2022_04_006
crossref_primary_10_1080_00222895_2021_1965527
crossref_primary_10_1016_j_neuroscience_2013_12_016
crossref_primary_10_1016_j_jneumeth_2016_02_010
crossref_primary_10_1016_j_nicl_2024_103637
crossref_primary_10_3389_fnhum_2020_00275
crossref_primary_10_1016_j_maturitas_2018_04_011
crossref_primary_10_1111_jon_12391
crossref_primary_10_1080_00222895_2018_1563762
crossref_primary_10_1016_j_brs_2020_09_006
crossref_primary_10_1002_hbm_21464
crossref_primary_10_1016_j_neubiorev_2013_03_017
crossref_primary_10_3389_fnhum_2024_1412307
crossref_primary_10_3389_fnins_2017_00526
crossref_primary_10_1002_hbm_22679
crossref_primary_10_1093_brain_awq324
crossref_primary_10_1007_s12603_021_1693_4
crossref_primary_10_1016_j_gaitpost_2012_11_008
crossref_primary_10_1134_S0362119713030055
crossref_primary_10_1016_j_neubiorev_2018_08_003
crossref_primary_10_1016_j_clinph_2015_10_043
crossref_primary_10_31857_S0044467724020069
crossref_primary_10_1002_brb3_2879
crossref_primary_10_1016_j_neurobiolaging_2021_05_015
crossref_primary_10_1186_s12883_015_0261_0
crossref_primary_10_1016_j_archger_2012_08_017
crossref_primary_10_3389_fpsyt_2021_705242
crossref_primary_10_1093_gerona_glac128
crossref_primary_10_3389_fnint_2014_00044
crossref_primary_10_1016_j_neuroimage_2019_01_045
crossref_primary_10_1007_s11682_018_9871_7
crossref_primary_10_1093_brain_awq343
crossref_primary_10_1016_j_nicl_2018_07_003
crossref_primary_10_1016_j_nicl_2020_102408
crossref_primary_10_1186_s12984_021_00859_7
crossref_primary_10_1016_j_neurobiolaging_2010_09_022
crossref_primary_10_1109_TMI_2014_2301493
crossref_primary_10_1016_j_neulet_2018_10_022
crossref_primary_10_1002_hbm_22461
crossref_primary_10_1016_j_neuroimage_2015_03_002
crossref_primary_10_1016_j_neuroimage_2013_04_006
crossref_primary_10_1186_s12984_024_01323_y
crossref_primary_10_1093_cercor_bhv213
crossref_primary_10_3390_brainsci10020090
crossref_primary_10_3389_fnhum_2021_732648
crossref_primary_10_3389_fnins_2019_00722
crossref_primary_10_3389_fnhum_2017_00170
crossref_primary_10_1016_j_neuroscience_2016_11_032
crossref_primary_10_1016_j_gaitpost_2022_05_032
crossref_primary_10_1152_jn_00613_2017
crossref_primary_10_1007_s00391_015_0866_3
crossref_primary_10_1177_1533317518770783
crossref_primary_10_1080_14737175_2019_1564042
crossref_primary_10_1186_s12984_020_00701_6
crossref_primary_10_1093_gerona_glaa091
crossref_primary_10_3389_fnagi_2015_00186
crossref_primary_10_1016_j_humov_2018_10_010
crossref_primary_10_1016_j_neuroimage_2019_116095
crossref_primary_10_3390_ijerph20237121
crossref_primary_10_1038_s41598_020_69448_3
crossref_primary_10_1093_cercor_bhac114
crossref_primary_10_1093_gerona_gly210
crossref_primary_10_1007_s10803_012_1653_2
crossref_primary_10_1007_s00221_015_4237_5
crossref_primary_10_1016_j_jneumeth_2011_07_022
crossref_primary_10_1016_j_neulet_2021_136350
crossref_primary_10_3389_fpsyg_2018_00947
crossref_primary_10_1111_cns_14710
crossref_primary_10_1152_jn_00209_2024
crossref_primary_10_1016_j_mric_2021_06_011
crossref_primary_10_1093_brain_awz141
crossref_primary_10_31857_S0044467723010069
crossref_primary_10_1016_j_neucli_2018_10_003
crossref_primary_10_1016_j_nicl_2024_103727
crossref_primary_10_1016_j_gaitpost_2024_01_023
crossref_primary_10_3389_fneur_2024_1466549
crossref_primary_10_1007_s11682_018_9922_0
crossref_primary_10_1016_j_expneurol_2011_08_019
crossref_primary_10_1016_j_humov_2022_102970
crossref_primary_10_1016_j_parkreldis_2021_03_014
crossref_primary_10_1007_s00415_018_8987_4
crossref_primary_10_1016_j_nbd_2012_03_019
crossref_primary_10_3390_app10248954
crossref_primary_10_1016_j_gaitpost_2019_02_017
crossref_primary_10_1007_s11055_023_01478_6
crossref_primary_10_1002_mds_23588
crossref_primary_10_1016_j_clinph_2012_09_004
crossref_primary_10_12786_bn_2015_8_1_39
crossref_primary_10_1007_s00221_014_4156_x
crossref_primary_10_1016_j_neuroimage_2011_08_084
crossref_primary_10_1007_s00115_010_3102_9
crossref_primary_10_3390_brainsci4010001
crossref_primary_10_1002_hbm_23725
crossref_primary_10_1177_13872877241303849
crossref_primary_10_1016_j_neubiorev_2015_04_002
crossref_primary_10_3390_brainsci10100757
crossref_primary_10_1016_S1474_4422_11_70143_0
crossref_primary_10_1371_journal_pone_0191513
crossref_primary_10_1097_JSM_0000000000000836
crossref_primary_10_1002_hbm_22192
crossref_primary_10_2967_jnumed_118_218248
crossref_primary_10_1155_2012_375148
crossref_primary_10_1016_j_neures_2019_11_001
crossref_primary_10_3389_fncir_2020_00006
crossref_primary_10_3389_fnagi_2023_1068943
crossref_primary_10_3389_fnins_2017_00733
crossref_primary_10_1016_j_neuroscience_2020_09_055
crossref_primary_10_1093_brain_aws373
crossref_primary_10_1177_1545968315624782
crossref_primary_10_1134_S0362119719010146
crossref_primary_10_3238_arztebl_2010_0306
crossref_primary_10_1007_s00415_018_8964_y
crossref_primary_10_1007_s00429_017_1586_9
crossref_primary_10_1186_s12984_020_00797_w
crossref_primary_10_1123_jsep_2021_0229
crossref_primary_10_3233_JPD_212793
crossref_primary_10_1016_j_neulet_2017_11_064
crossref_primary_10_1134_S036211971601014X
crossref_primary_10_3389_fnhum_2018_00536
crossref_primary_10_1111_jgs_16309
crossref_primary_10_1123_japa_2021_0410
crossref_primary_10_1159_000456541
crossref_primary_10_1093_gerona_glr068
crossref_primary_10_1212_WNL_0b013e318281cc43
crossref_primary_10_12786_bn_2020_13_e12
crossref_primary_10_1371_journal_pone_0084909
crossref_primary_10_1523_JNEUROSCI_4116_15_2016
crossref_primary_10_1016_j_neulet_2015_05_036
crossref_primary_10_1016_j_bbr_2011_09_042
crossref_primary_10_3389_fpsyg_2015_01502
crossref_primary_10_1016_j_jneumeth_2018_06_006
crossref_primary_10_1515_RNS_2011_047
crossref_primary_10_1007_s00415_013_7174_x
crossref_primary_10_1002_hbm_25123
crossref_primary_10_1016_j_brainres_2015_10_053
crossref_primary_10_1016_j_ejpn_2013_01_006
crossref_primary_10_1093_scan_nsab035
crossref_primary_10_1016_j_clinph_2019_03_030
crossref_primary_10_1016_j_neuroscience_2021_04_004
crossref_primary_10_3389_fnhum_2020_566735
crossref_primary_10_1002_mds_25534
crossref_primary_10_1016_j_neuroimage_2012_08_019
crossref_primary_10_1007_s11682_020_00275_w
crossref_primary_10_1016_j_parkreldis_2012_02_004
crossref_primary_10_3390_bioengineering10080990
crossref_primary_10_1016_j_neubiorev_2015_08_002
crossref_primary_10_1016_j_mehy_2019_03_010
crossref_primary_10_1016_j_humov_2022_102982
crossref_primary_10_3389_fnbeh_2018_00203
crossref_primary_10_1134_S0362119717050139
crossref_primary_10_1556_2060_106_2019_10
crossref_primary_10_1212_WNL_0000000000008758
Cites_doi 10.1093/brain/awn042
10.1152/jn.00132.2002
10.1111/j.1749-6632.2009.03770.x
10.1038/73980
10.1016/S0079-6123(08)00652-3
10.1152/jn.1999.82.1.290
10.1016/j.neuroimage.2007.09.047
10.1038/nature01964
10.1093/cercor/bhn036
10.1016/S0304-3940(97)00381-9
10.1002/mds.22189
10.1111/j.1471-4159.1977.tb10649.x
10.1007/s00702-008-0058-z
10.1016/j.neuroimage.2008.03.020
10.1093/brain/121.9.1749
10.1152/physrev.1976.56.3.465
10.1007/s00221-008-1520-8
10.1006/nimg.1996.0058
10.1093/brain/awf204
10.1016/S0140-6736(99)03179-7
10.1016/S0079-6123(08)62564-9
10.1016/j.neuroimage.2007.11.040
10.1002/hbm.10103
10.1016/j.clinph.2006.04.022
10.1016/j.neuroimage.2008.11.029
10.1152/physrev.00028.2005
10.1126/science.280.5365.921
10.1006/nimg.2001.0905
10.1113/jphysiol.1988.sp017128
10.1016/j.neuroimage.2005.04.025
10.1016/j.neuroimage.2007.05.050
10.1002/sim.4780111304
10.1006/nimg.2001.1037
10.1002/hbm.460030303
10.1016/S0304-3940(02)00826-1
10.1002/ana.410230208
10.1046/j.1460-9568.2000.00182.x
10.1002/ana.20244
10.1093/brain/104.4.647-a
10.1006/nimg.1997.0314
10.1016/j.neuroimage.2004.05.017
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2009 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 1, 2010
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2009 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 1, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
DOI 10.1016/j.neuroimage.2009.12.060
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database (ProQuest)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
DatabaseTitleList
Engineering Research Database
MEDLINE

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1598
ExternalDocumentID 3388746861
20034578
10_1016_j_neuroimage_2009_12_060
S1053811909013494
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
ID FETCH-LOGICAL-c524t-8d65d1a5d19a0bd25636ce06339e0d4ecf1432b44d42e59ec8e22dbe9ffa84c73
IEDL.DBID AIKHN
ISSN 1053-8119
IngestDate Thu Jul 10 19:14:11 EDT 2025
Wed Aug 13 06:57:33 EDT 2025
Thu Apr 03 06:55:34 EDT 2025
Tue Jul 01 02:14:35 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Aug 26 16:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Locomotion
fMRI
PET
Gait disorders
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
2009 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-8d65d1a5d19a0bd25636ce06339e0d4ecf1432b44d42e59ec8e22dbe9ffa84c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20034578
PQID 1549930808
PQPubID 2031077
PageCount 10
ParticipantIDs proquest_miscellaneous_745931657
proquest_journals_1549930808
pubmed_primary_20034578
crossref_primary_10_1016_j_neuroimage_2009_12_060
crossref_citationtrail_10_1016_j_neuroimage_2009_12_060
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_12_060
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_12_060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
2010-05-00
2010-May-01
20100501
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Rossignol, Dubuc, Gossard (bib39) 2006; 86
Krafczyk, Tietze, Swoboda, Valkovic, Brandt (bib30) 2006; 117
Aravamuthan, Muthusamy, Stein, Aziz, Johansen-Berg (bib1) 2007; 37
Kasess, Windischberger, Cunnington, Lanzenberger, Pezawas, Moser (bib29) 2008; 40
Gron, Wunderlich, Spitzer, Tomczak, Riepe (bib19) 2000; 3
Talairach, Tournoux (bib44) 1998
Fukuyama, Ouchi, Matsuzaki, Nagahama, Yamauchi, Ogawa, Kimura, Shibasaki (bib15) 1997; 228
Ginsberg, Chang, Kelley, Yoshii, Barker, Ingenito, Boothe (bib17) 1988; 23
Jenkinson, Nandi, Muthusamy, Ray, Gregory, Stein, Aziz (bib28) 2009; 24
Woods (bib48) 1996; 4
Jahn, Deutschlander, Stephan, Strupp, Wiesmann, Brandt (bib23) 2004; 22
Porro, Cettolo, Francescato, Baraldi (bib38) 2000; 12
Sokoloff, Reivich, Kennedy, Des Rosiers, Patlak, Pettigrew, Sakurada, Shinohara (bib42) 1977; 28
Wang, Wai, Kuo, Yeh, Wang (bib47) 2008; 115
Eidelberg, Walden, Nguyen (bib10) 1981; 104
Hanakawa, Dimyan, Hallett (bib21) 2008; 18
Brandt, Bartenstein, Janek, Dieterich (bib5) 1998; 121
Brandt, Strupp, Benson (bib6) 1999; 354
Dieterich, Brandt (bib9) 2008; 131
Friston, Ashburner, Frith, Poline, Heather, Frackowiak (bib13) 1995; 3
Jahn, Deutschlander, Stephan, Kalla, Hufner, Wagner, Strupp, Brandt (bib24) 2008; 171
Porro, Cavazzuti (bib37) 1996; 110
Mori, Matsuyama, Mori, Nakajima (bib36) 2001; 87
Stippich, Ochmann, Sartor (bib43) 2002; 331
Shik, Orlovsky (bib41) 1976; 56
Deiber, Ibanez, Honda, Sadato, Raman, Hallett (bib7) 1998; 7
Schmahmann, Doyon, Toga, Petrides, Evans (bib40) 2000
Miyai, Tanabe, Sase, Eda, Oda, Konishi, Tsunazawa, Suzuki, Yanagida, Kubota (bib34) 2001; 14
Lacourse, Orr, Cramer, Cohen (bib31) 2005; 27
Ishii, Senda, Toyoma, Oda, Ishii, Ishiwata, Sasaki (bib22) 1995; 3
Hanakawa, Immisch, Toma, Dimyan, Van Gelderen, Hallett (bib20) 2003; 89
Bense, Bartenstein, Lochmann, Schlindwein, Brandt, Dieterich (bib4) 2004; 56
Genovese, Lazar, Nichols (bib16) 2002; 15
Jahn, Wagner, Deutschlander, Kalla, Hufner, Stephan, Strupp, Brandt (bib27) 2009; 1164
Jahn, Strupp, Krafczyk, Schuler, Glasauer, Brandt (bib26) 2002; 125
Malouin, Richards, Jackson, Dumas, Doyon (bib33) 2003; 19
Jahn, Deutschlander, Stephan, Kalla, Wiesmann, Strupp, Brandt (bib25) 2008; 39
Greenstein, Gastineau, Siegel, Macsata, Conklin, Maurer (bib18) 1995
Armstrong, Edgley, Lidierth (bib2) 1988; 400
Bakker, De Lange, Helmich, Scheeringa, Bloem, Toni (bib3) 2008; 41
Ekstrom, Kahana, Caplan, Fields, Isham, Newman, Fried (bib11) 2003; 425
Maguire, Burgess, Donnett, Frackowiak, Frith, O'Keefe (bib32) 1998; 280
Wagner, Stephan, Kalla, Bruckmann, Strupp, Brandt, Jahn (bib46) 2008; 191
Mori, Matsui, Kuze, Asanome, Nakajima, Matsuyama (bib35) 1999; 82
Tashiro, Itoh, Fujimoto, Fujiwara, Ota, Kubota, Higuchi, Okamura, Ishii, Bereczki, Sasaki (bib45) 2001; 41
Frison, Pocock (bib12) 1992; 11
Friston, Holmes, Worsley, Poline, Frith, Ashburner, Frackowiak (bib14) 1995; 3
Deutschlander, Stephan, Hufner, Wagner, Wiesmann, Strupp, Brandt, Jahn (bib8) 2009; 45
Ginsberg (10.1016/j.neuroimage.2009.12.060_bib17) 1988; 23
Schmahmann (10.1016/j.neuroimage.2009.12.060_bib40) 2000
Gron (10.1016/j.neuroimage.2009.12.060_bib19) 2000; 3
Sokoloff (10.1016/j.neuroimage.2009.12.060_bib42) 1977; 28
Genovese (10.1016/j.neuroimage.2009.12.060_bib16) 2002; 15
Porro (10.1016/j.neuroimage.2009.12.060_bib38) 2000; 12
Talairach (10.1016/j.neuroimage.2009.12.060_bib44) 1998
Fukuyama (10.1016/j.neuroimage.2009.12.060_bib15) 1997; 228
Jahn (10.1016/j.neuroimage.2009.12.060_bib27) 2009; 1164
Maguire (10.1016/j.neuroimage.2009.12.060_bib32) 1998; 280
Ishii (10.1016/j.neuroimage.2009.12.060_bib22) 1995; 3
Hanakawa (10.1016/j.neuroimage.2009.12.060_bib20) 2003; 89
Krafczyk (10.1016/j.neuroimage.2009.12.060_bib30) 2006; 117
Armstrong (10.1016/j.neuroimage.2009.12.060_bib2) 1988; 400
Bense (10.1016/j.neuroimage.2009.12.060_bib4) 2004; 56
Dieterich (10.1016/j.neuroimage.2009.12.060_bib9) 2008; 131
Woods (10.1016/j.neuroimage.2009.12.060_bib48) 1996; 4
Greenstein (10.1016/j.neuroimage.2009.12.060_bib18) 1995
Deiber (10.1016/j.neuroimage.2009.12.060_bib7) 1998; 7
Mori (10.1016/j.neuroimage.2009.12.060_bib35) 1999; 82
Porro (10.1016/j.neuroimage.2009.12.060_bib37) 1996; 110
Aravamuthan (10.1016/j.neuroimage.2009.12.060_bib1) 2007; 37
Jahn (10.1016/j.neuroimage.2009.12.060_bib24) 2008; 171
Mori (10.1016/j.neuroimage.2009.12.060_bib36) 2001; 87
Jahn (10.1016/j.neuroimage.2009.12.060_bib23) 2004; 22
Bakker (10.1016/j.neuroimage.2009.12.060_bib3) 2008; 41
Friston (10.1016/j.neuroimage.2009.12.060_bib13) 1995; 3
Deutschlander (10.1016/j.neuroimage.2009.12.060_bib8) 2009; 45
Jenkinson (10.1016/j.neuroimage.2009.12.060_bib28) 2009; 24
Tashiro (10.1016/j.neuroimage.2009.12.060_bib45) 2001; 41
Brandt (10.1016/j.neuroimage.2009.12.060_bib6) 1999; 354
Kasess (10.1016/j.neuroimage.2009.12.060_bib29) 2008; 40
Eidelberg (10.1016/j.neuroimage.2009.12.060_bib10) 1981; 104
Wagner (10.1016/j.neuroimage.2009.12.060_bib46) 2008; 191
Jahn (10.1016/j.neuroimage.2009.12.060_bib26) 2002; 125
Lacourse (10.1016/j.neuroimage.2009.12.060_bib31) 2005; 27
Brandt (10.1016/j.neuroimage.2009.12.060_bib5) 1998; 121
Hanakawa (10.1016/j.neuroimage.2009.12.060_bib21) 2008; 18
Shik (10.1016/j.neuroimage.2009.12.060_bib41) 1976; 56
Friston (10.1016/j.neuroimage.2009.12.060_bib14) 1995; 3
Miyai (10.1016/j.neuroimage.2009.12.060_bib34) 2001; 14
Malouin (10.1016/j.neuroimage.2009.12.060_bib33) 2003; 19
Frison (10.1016/j.neuroimage.2009.12.060_bib12) 1992; 11
Jahn (10.1016/j.neuroimage.2009.12.060_bib25) 2008; 39
Rossignol (10.1016/j.neuroimage.2009.12.060_bib39) 2006; 86
Stippich (10.1016/j.neuroimage.2009.12.060_bib43) 2002; 331
Wang (10.1016/j.neuroimage.2009.12.060_bib47) 2008; 115
Ekstrom (10.1016/j.neuroimage.2009.12.060_bib11) 2003; 425
References_xml – volume: 354
  start-page: 746
  year: 1999
  ident: bib6
  article-title: You are better off running than walking with acute vestibulopathy
  publication-title: Lancet
– volume: 280
  start-page: 921
  year: 1998
  end-page: 924
  ident: bib32
  article-title: Knowing where and getting there: a human navigation network
  publication-title: Science
– volume: 40
  start-page: 828
  year: 2008
  end-page: 837
  ident: bib29
  article-title: The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling
  publication-title: NeuroImage
– volume: 89
  start-page: 989
  year: 2003
  end-page: 1002
  ident: bib20
  article-title: Functional properties of brain areas associated with motor execution and imagery
  publication-title: J. Neurophysiol.
– volume: 191
  start-page: 247
  year: 2008
  end-page: 255
  ident: bib46
  article-title: Mind the bend: cerebral activations associated with mental imagery of walking along a curved path
  publication-title: Exp. Brain Res.
– volume: 12
  start-page: 3059
  year: 2000
  end-page: 3063
  ident: bib38
  article-title: Ipsilateral involvement of primary motor cortex during motor imagery
  publication-title: Eur. J. Neurosci.
– volume: 11
  start-page: 1685
  year: 1992
  end-page: 1704
  ident: bib12
  article-title: Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design
  publication-title: Stat. Med.
– volume: 171
  start-page: 353
  year: 2008
  end-page: 362
  ident: bib24
  article-title: Supraspinal locomotor control in quadrupeds and humans
  publication-title: Prog. Brain Res.
– volume: 45
  start-page: 122
  year: 2009
  end-page: 128
  ident: bib8
  article-title: Imagined locomotion in the blind: an fMRI study
  publication-title: NeuroImage
– volume: 400
  start-page: 405
  year: 1988
  end-page: 414
  ident: bib2
  article-title: Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion
  publication-title: J. Physiol.
– volume: 41
  start-page: 11
  year: 2001
  end-page: 17
  ident: bib45
  article-title: 18F-FDG PET mapping of regional brain activity in runners
  publication-title: J. Sports Med. Phys. Fitness
– volume: 7
  start-page: 73
  year: 1998
  end-page: 85
  ident: bib7
  article-title: Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography
  publication-title: NeuroImage
– volume: 24
  start-page: 319
  year: 2009
  end-page: 328
  ident: bib28
  article-title: Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus
  publication-title: Mov. Disord.
– volume: 115
  start-page: 1149
  year: 2008
  end-page: 1158
  ident: bib47
  article-title: Cortical control of gait in healthy humans: an fMRI study
  publication-title: J. Neural Transm.
– volume: 19
  start-page: 47
  year: 2003
  end-page: 62
  ident: bib33
  article-title: Brain activations during motor imagery of locomotor-related tasks: a PET study
  publication-title: Hum. Brain Mapp.
– year: 1998
  ident: bib44
  article-title: Co-planar Stereotactic Atlas of the Human Brain
– start-page: 320
  year: 1995
  ident: bib18
  article-title: Cerebral hemisphere activation during human bipedal locomotion
  publication-title: Hum. Brain Mapp.
– volume: 3
  start-page: 404
  year: 2000
  end-page: 408
  ident: bib19
  article-title: Brain activation during human navigation: gender-different neural networks as substrate of performance
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 1186
  year: 2001
  end-page: 1192
  ident: bib34
  article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study
  publication-title: NeuroImage
– volume: 39
  start-page: 786
  year: 2008
  end-page: 792
  ident: bib25
  article-title: Imaging human supraspinal locomotor centers in brainstem and cerebellum
  publication-title: NeuroImage
– volume: 28
  start-page: 897
  year: 1977
  end-page: 916
  ident: bib42
  article-title: The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat
  publication-title: J. Neurochem.
– volume: 27
  start-page: 505
  year: 2005
  end-page: 519
  ident: bib31
  article-title: Brain activation during execution and motor imagery of novel and skilled sequential hand movements
  publication-title: NeuroImage
– volume: 228
  start-page: 183
  year: 1997
  end-page: 186
  ident: bib15
  article-title: Brain functional activity during gait in normal subjects: a SPECT study
  publication-title: Neurosci. Lett.
– volume: 4
  start-page: S84
  year: 1996
  end-page: 94
  ident: bib48
  article-title: Modeling for intergroup comparisons of imaging data
  publication-title: NeuroImage
– volume: 82
  start-page: 290
  year: 1999
  end-page: 300
  ident: bib35
  article-title: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat
  publication-title: J. Neurophysiol.
– volume: 110
  start-page: 47
  year: 1996
  end-page: 62
  ident: bib37
  article-title: Functional imaging studies of the pain system in man and animals
  publication-title: Prog. Brain Res.
– volume: 23
  start-page: 152
  year: 1988
  end-page: 160
  ident: bib17
  article-title: Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task
  publication-title: Ann. Neurol.
– year: 2000
  ident: bib40
  article-title: MRI Atlas of the Human Cerebellum
– volume: 117
  start-page: 1692
  year: 2006
  end-page: 1698
  ident: bib30
  article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance
  publication-title: Clin. Neurophysiol.
– volume: 3
  start-page: 165
  year: 1995
  end-page: 189
  ident: bib13
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapp.
– volume: 41
  start-page: 998
  year: 2008
  end-page: 1010
  ident: bib3
  article-title: Cerebral correlates of motor imagery of normal and precision gait
  publication-title: NeuroImage
– volume: 1164
  start-page: 229
  year: 2009
  end-page: 235
  ident: bib27
  article-title: Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 104
  start-page: 647
  year: 1981
  end-page: 663
  ident: bib10
  article-title: Locomotor control in macaque monkeys
  publication-title: Brain
– volume: 125
  start-page: 2005
  year: 2002
  end-page: 2011
  ident: bib26
  article-title: Suppression of eye movements improves balance
  publication-title: Brain
– volume: 87
  start-page: 25
  year: 2001
  end-page: 40
  ident: bib36
  article-title: Supraspinal sites that induce locomotion in the vertebrate central nervous system
  publication-title: Adv. Neurol.
– volume: 331
  start-page: 50
  year: 2002
  end-page: 54
  ident: bib43
  article-title: Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging
  publication-title: Neurosci. Lett.
– volume: 131
  start-page: 2538
  year: 2008
  end-page: 2552
  ident: bib9
  article-title: Functional brain imaging of peripheral and central vestibular disorders
  publication-title: Brain
– volume: 3
  start-page: s321
  year: 1995
  ident: bib22
  article-title: Brain function in bipedal gait: a PET study
  publication-title: Hum. Brain Mapp.
– volume: 37
  start-page: 694
  year: 2007
  end-page: 705
  ident: bib1
  article-title: Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei
  publication-title: NeuroImage
– volume: 18
  start-page: 2775
  year: 2008
  end-page: 2788
  ident: bib21
  article-title: Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI
  publication-title: Cereb. Cortex
– volume: 56
  start-page: 624
  year: 2004
  end-page: 630
  ident: bib4
  article-title: Metabolic changes in vestibular and visual cortices in acute vestibular neuritis
  publication-title: Ann. Neurol.
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  ident: bib16
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 3
  start-page: 189
  year: 1995
  end-page: 210
  ident: bib14
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 22
  start-page: 1722
  year: 2004
  end-page: 1731
  ident: bib23
  article-title: Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging
  publication-title: NeuroImage
– volume: 425
  start-page: 184
  year: 2003
  end-page: 188
  ident: bib11
  article-title: Cellular networks underlying human spatial navigation
  publication-title: Nature
– volume: 121
  start-page: 1749
  year: 1998
  end-page: 1758
  ident: bib5
  article-title: Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex
  publication-title: Brain
– volume: 86
  start-page: 89
  year: 2006
  end-page: 154
  ident: bib39
  article-title: Dynamic sensorimotor interactions in locomotion
  publication-title: Physiol. Rev.
– volume: 56
  start-page: 465
  year: 1976
  end-page: 501
  ident: bib41
  article-title: Neurophysiology of locomotor automatism
  publication-title: Physiol. Rev.
– volume: 131
  start-page: 2538
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib9
  article-title: Functional brain imaging of peripheral and central vestibular disorders
  publication-title: Brain
  doi: 10.1093/brain/awn042
– volume: 3
  start-page: 189
  year: 1995
  ident: 10.1016/j.neuroimage.2009.12.060_bib14
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 89
  start-page: 989
  year: 2003
  ident: 10.1016/j.neuroimage.2009.12.060_bib20
  article-title: Functional properties of brain areas associated with motor execution and imagery
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00132.2002
– volume: 1164
  start-page: 229
  year: 2009
  ident: 10.1016/j.neuroimage.2009.12.060_bib27
  article-title: Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.03770.x
– volume: 3
  start-page: 404
  year: 2000
  ident: 10.1016/j.neuroimage.2009.12.060_bib19
  article-title: Brain activation during human navigation: gender-different neural networks as substrate of performance
  publication-title: Nat. Neurosci.
  doi: 10.1038/73980
– volume: 171
  start-page: 353
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib24
  article-title: Supraspinal locomotor control in quadrupeds and humans
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(08)00652-3
– volume: 82
  start-page: 290
  year: 1999
  ident: 10.1016/j.neuroimage.2009.12.060_bib35
  article-title: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.1.290
– volume: 39
  start-page: 786
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib25
  article-title: Imaging human supraspinal locomotor centers in brainstem and cerebellum
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.047
– volume: 425
  start-page: 184
  year: 2003
  ident: 10.1016/j.neuroimage.2009.12.060_bib11
  article-title: Cellular networks underlying human spatial navigation
  publication-title: Nature
  doi: 10.1038/nature01964
– volume: 18
  start-page: 2775
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib21
  article-title: Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn036
– volume: 228
  start-page: 183
  year: 1997
  ident: 10.1016/j.neuroimage.2009.12.060_bib15
  article-title: Brain functional activity during gait in normal subjects: a SPECT study
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(97)00381-9
– volume: 41
  start-page: 11
  year: 2001
  ident: 10.1016/j.neuroimage.2009.12.060_bib45
  article-title: 18F-FDG PET mapping of regional brain activity in runners
  publication-title: J. Sports Med. Phys. Fitness
– volume: 24
  start-page: 319
  year: 2009
  ident: 10.1016/j.neuroimage.2009.12.060_bib28
  article-title: Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22189
– volume: 28
  start-page: 897
  year: 1977
  ident: 10.1016/j.neuroimage.2009.12.060_bib42
  article-title: The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1977.tb10649.x
– volume: 115
  start-page: 1149
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib47
  article-title: Cortical control of gait in healthy humans: an fMRI study
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-008-0058-z
– volume: 41
  start-page: 998
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib3
  article-title: Cerebral correlates of motor imagery of normal and precision gait
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.020
– volume: 121
  start-page: 1749
  issue: Pt. 9
  year: 1998
  ident: 10.1016/j.neuroimage.2009.12.060_bib5
  article-title: Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex
  publication-title: Brain
  doi: 10.1093/brain/121.9.1749
– volume: 87
  start-page: 25
  year: 2001
  ident: 10.1016/j.neuroimage.2009.12.060_bib36
  article-title: Supraspinal sites that induce locomotion in the vertebrate central nervous system
  publication-title: Adv. Neurol.
– volume: 56
  start-page: 465
  year: 1976
  ident: 10.1016/j.neuroimage.2009.12.060_bib41
  article-title: Neurophysiology of locomotor automatism
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1976.56.3.465
– volume: 191
  start-page: 247
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib46
  article-title: Mind the bend: cerebral activations associated with mental imagery of walking along a curved path
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-008-1520-8
– volume: 4
  start-page: S84
  year: 1996
  ident: 10.1016/j.neuroimage.2009.12.060_bib48
  article-title: Modeling for intergroup comparisons of imaging data
  publication-title: NeuroImage
  doi: 10.1006/nimg.1996.0058
– volume: 125
  start-page: 2005
  year: 2002
  ident: 10.1016/j.neuroimage.2009.12.060_bib26
  article-title: Suppression of eye movements improves balance
  publication-title: Brain
  doi: 10.1093/brain/awf204
– volume: 354
  start-page: 746
  year: 1999
  ident: 10.1016/j.neuroimage.2009.12.060_bib6
  article-title: You are better off running than walking with acute vestibulopathy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)03179-7
– volume: 110
  start-page: 47
  year: 1996
  ident: 10.1016/j.neuroimage.2009.12.060_bib37
  article-title: Functional imaging studies of the pain system in man and animals
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(08)62564-9
– volume: 40
  start-page: 828
  year: 2008
  ident: 10.1016/j.neuroimage.2009.12.060_bib29
  article-title: The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.040
– volume: 19
  start-page: 47
  year: 2003
  ident: 10.1016/j.neuroimage.2009.12.060_bib33
  article-title: Brain activations during motor imagery of locomotor-related tasks: a PET study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10103
– volume: 3
  start-page: s321
  year: 1995
  ident: 10.1016/j.neuroimage.2009.12.060_bib22
  article-title: Brain function in bipedal gait: a PET study
  publication-title: Hum. Brain Mapp.
– volume: 117
  start-page: 1692
  year: 2006
  ident: 10.1016/j.neuroimage.2009.12.060_bib30
  article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.04.022
– volume: 45
  start-page: 122
  year: 2009
  ident: 10.1016/j.neuroimage.2009.12.060_bib8
  article-title: Imagined locomotion in the blind: an fMRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.029
– volume: 86
  start-page: 89
  year: 2006
  ident: 10.1016/j.neuroimage.2009.12.060_bib39
  article-title: Dynamic sensorimotor interactions in locomotion
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00028.2005
– volume: 280
  start-page: 921
  year: 1998
  ident: 10.1016/j.neuroimage.2009.12.060_bib32
  article-title: Knowing where and getting there: a human navigation network
  publication-title: Science
  doi: 10.1126/science.280.5365.921
– volume: 14
  start-page: 1186
  year: 2001
  ident: 10.1016/j.neuroimage.2009.12.060_bib34
  article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0905
– volume: 400
  start-page: 405
  year: 1988
  ident: 10.1016/j.neuroimage.2009.12.060_bib2
  article-title: Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017128
– volume: 27
  start-page: 505
  year: 2005
  ident: 10.1016/j.neuroimage.2009.12.060_bib31
  article-title: Brain activation during execution and motor imagery of novel and skilled sequential hand movements
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.04.025
– volume: 37
  start-page: 694
  year: 2007
  ident: 10.1016/j.neuroimage.2009.12.060_bib1
  article-title: Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.05.050
– volume: 11
  start-page: 1685
  year: 1992
  ident: 10.1016/j.neuroimage.2009.12.060_bib12
  article-title: Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111304
– volume: 15
  start-page: 870
  year: 2002
  ident: 10.1016/j.neuroimage.2009.12.060_bib16
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1037
– volume: 3
  start-page: 165
  year: 1995
  ident: 10.1016/j.neuroimage.2009.12.060_bib13
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030303
– volume: 331
  start-page: 50
  year: 2002
  ident: 10.1016/j.neuroimage.2009.12.060_bib43
  article-title: Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(02)00826-1
– volume: 23
  start-page: 152
  year: 1988
  ident: 10.1016/j.neuroimage.2009.12.060_bib17
  article-title: Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410230208
– volume: 12
  start-page: 3059
  year: 2000
  ident: 10.1016/j.neuroimage.2009.12.060_bib38
  article-title: Ipsilateral involvement of primary motor cortex during motor imagery
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2000.00182.x
– volume: 56
  start-page: 624
  year: 2004
  ident: 10.1016/j.neuroimage.2009.12.060_bib4
  article-title: Metabolic changes in vestibular and visual cortices in acute vestibular neuritis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20244
– volume: 104
  start-page: 647
  year: 1981
  ident: 10.1016/j.neuroimage.2009.12.060_bib10
  article-title: Locomotor control in macaque monkeys
  publication-title: Brain
  doi: 10.1093/brain/104.4.647-a
– year: 1998
  ident: 10.1016/j.neuroimage.2009.12.060_bib44
– year: 2000
  ident: 10.1016/j.neuroimage.2009.12.060_bib40
– volume: 7
  start-page: 73
  year: 1998
  ident: 10.1016/j.neuroimage.2009.12.060_bib7
  article-title: Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0314
– volume: 22
  start-page: 1722
  year: 2004
  ident: 10.1016/j.neuroimage.2009.12.060_bib23
  article-title: Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.017
– start-page: 320
  year: 1995
  ident: 10.1016/j.neuroimage.2009.12.060_bib18
  article-title: Cerebral hemisphere activation during human bipedal locomotion
  publication-title: Hum. Brain Mapp.
SSID ssj0009148
Score 2.4877744
Snippet The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1589
SubjectTerms Aged
Brain
Brain - blood supply
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Female
Fluorodeoxyglucose F18
fMRI
Gait disorders
Glucose
Humans
Imagination - physiology
Locomotion
Locomotion - physiology
Magnetic Resonance Imaging - methods
Male
Medical imaging
Middle Aged
Neural Pathways - blood supply
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
NMR
Nuclear magnetic resonance
Oxygen - blood
Patients
PET
Positron-Emission Tomography - methods
Studies
Walking
Walking - physiology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QXwR784befA1uLZJm-iDijqnoIhsMBAJuRUU3abb_r8nbdq9qOyhhV5OS0-Tcz6SL99B6Fi5VGkjWoQ5CIGQ8TXRlsNOC7_sM06tK1i-j2mnR-_7rB8G3MaBVlnFxCJQ26HxY-QnXkpMJIBv-Pnoi_iqUX52NZTQWERLXrrMU7qyfjYT3Y1ouRSOJYTDDYHJU_K7Cr3It0_otaVqpR8ULIQqf01Pf8HPIg2119BqwI_4svzh62jBDTbQ8kOYId9EF8-A_LDnWkzH2L8XzloMGWtY1us5xZf4JeLtV9K-vsVPN12SPzzfYVOXI9xCvfZN96pDQpUEYlhMJ4TblNlIwSZUS1uAMElqHCCPRLiWpc7kAIliTamlsWPCGe7i2Gon8lxxarJkGzUGw4HbRdg6Hhse5ZA3FTXaqJTBcWZSyxTLE9ZEWeUcaYKEuK9k8SErrti7nLnVV7gUMooluLWJotpyVMpozGEjKv_LapkoBDYJsX4O27PaNkCJEiLMaX1Q_W4ZuvRYzhpgE-H6MnRGP8OiBm44HcuMMpFEKcuaaKdsJfXXehIghfC49_-z99FKxU9oRQeoMfmeukOAPRN9VLTtH4OqAOE
  priority: 102
  providerName: ProQuest
Title Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909013494
https://dx.doi.org/10.1016/j.neuroimage.2009.12.060
https://www.ncbi.nlm.nih.gov/pubmed/20034578
https://www.proquest.com/docview/1549930808
https://www.proquest.com/docview/745931657
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD70AmMvY_em64oe9uolkiXZ2l6WdcnSjYaStRAYQ-hmyNiS0iSv--07smWXwQaBPVjGMgfLx9L5PqxzAXhlgjTWqUEmAppARHybWV9iY1UM-2TSh9rLdyon1_zTXMz34KyNhYlulcn2Nza9ttapp5-02b9ZLPpfkBkg3CCgIaTFJCv7cMhyJXFqHw7PP0-md7l3KW8i4kSeRYHk0NO4edVpIxc_cfE2ySvjv8E6X-VfUepfLLRGo_FDeJBoJBk2I30Ee2H5GO5dpI3yJ_BuhgSQRJeL7ZrE52KvJwhcq6ZszxsyJF9pOf6WjT98JJejq6y6mJ0T11UlfArX49HV2SRLxRIyJxjfZKWXwlODhzID65HJ5NIFJCC5CgPPg6uQGTHLuecsCBVcGRjzNqiqMiV3Rf4MDparZTgC4kPJXEkrhE_DnXVGCrwunPTCiCoXPSha5WiXMonHghY_dOsy9l3fqTUWulSaMo1q7QHtJG-abBo7yKhW_7qNFkX7ptHk7yD7tpP9Y1btKH3Sfm6dVvZax5R2KkeeXfaAdLdxTcaNFrMMq-1aF1yonEpR9OB5M0u6t42-gByt5PF_jewF3G-9GAb0BA42t9vwEsnRxp7C_utfFNtiXpymhYDn96Pp5ew3E8oREQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8UBvgBHi1qx05iEILBWlq2VlPVSZMQMvFHpE3QDtoK8U_xN3KOk_QFUF_2kEhJdIlyPt_vZ_t8B_Cs8GlhrOpR6dEFIuIbalyOJ6PCtk-eOl9F-U7S4Yn4eCpPd-B3sxcmhFU2PrFy1G5hwxz5i5BKTCXIb_I3F99pqBoVVlebEhrRLA79r584ZFu-Hh1g-z7nfNCfvR_SuqoAtZKLFc1dKh0r8FBFzziE_CS1HpE6Ub7nhLclUghuhHCCe6m8zT3nznhVlkUubJbge6_ArkhwKNOB3Xf9yfF0k-aXibj5TiY0Z0zVsUMxoqzKUHn2Df1EzJMZpiGr1Jh_BcR_Ed4K-AY34UbNWMl-NLFbsOPnt-HquF6TvwNvp8g1SYjuWC9J-C7edQQxchErBL0k--QTywef6eDgAznuz2g5no6IbQsg3oWTS9HgPejMF3P_AIjzObc5KxGpC2GNLVKJ15lNnSxkmcguZI1ytK2TlofaGV91E512rjdqDTU1lWZco1q7wFrJi5i4YwsZ1ehfNxtT0ZVqRJctZF-1sjV5iaRkS-m9prl17USWemPyXSDtY-z-YU2nmPvFeqkzIVXCUpl14X60kvZvQ9ihQIf88P_vfgrXhrPxkT4aTQ4fwfUmOqLH9qCz-rH2j5F0rcyT2tIJfLnszvUHTx9ABg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU28IH5TGOAHeIxWO3ZigxBMdGFlbJqmTaqEkHFsR2Ia7aCtEP8afx3nOE5fAPVlD4mUROco5_N3F_vzHcBz4wtTWzXMhEcIRI9fZ7WTeKpV2PbJCudblu9RsX_GP0zEZAN-p70wgVaZMLEFajezYY58J6QSUznGN3Kn6WgRx6PqzeX3LFSQCiutqZxGNJED_-sn_r7NX49H2NcvGKv2Tt_tZ12FgcwKxheZdIVw1OChzLB26P7zwnr02rnyQ8e9bTCcYDXnjjMvlLfSM-Zqr5rGSG7LHNu9BtfLXNAwxspJuUr4S3nchifyTFKqOhZR5Ja1uSq_fkPEiBkzw4RkmyTzr67xX6Fv6wKrW3Czi13JbjS227Dhp3dg67Bbnb8Lb08w6iSB57Gck_BevOsIestZrBX0kuyST1RWn7Nq9J4c751mzeHJmNi-FOI9OLsS_d2Hzels6h8CcV4yK2mDPttwW1tTCLwubeGEEU0uBlAm5WjbpS8PVTQudOKpneuVWkN1TaUp06jWAdBe8jKm8FhDRiX967RFFUFVo59ZQ_ZVL9uFMTE8WVN6O3W37uBkrlfGPwDSP0YgCKs7Zupny7kuuVA5LUQ5gAfRSvqvDQREjtD86P9tP4MtHFL64_jo4DHcSDSJId2GzcWPpX-C0deiftqaOYEvVz2u_gCnMELW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+versus+imagined+locomotion%3A+A+%5B18F%5D-FDG+PET-fMRI+comparison&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=la+Foug%C3%A8re%2C+Christian&rft.au=Zwergal%2C+Andreas&rft.au=Rominger%2C+Axel&rft.au=F%C3%B6rster%2C+Stefan&rft.date=2010-05-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=50&rft.issue=4&rft.spage=1589&rft.epage=1598&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.12.060&rft.externalDocID=S1053811909013494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon