Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison
The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 50; no. 4; pp. 1589 - 1598 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2010
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [18F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [18F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [18F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop. |
---|---|
AbstractList | The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [18F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [18F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [18F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop. The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [ super(18)F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [ super(18)F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [ super(18)F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [ super(18)F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop. The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [(18)F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [(18)F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [(18)F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [(18)F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop. The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole brain activation and deactivation pattern during real locomotion was investigated by [18F]-FDG-PET and compared to BOLD-signal changes during imagined locomotion in the same subjects using fMRI. Sixteen healthy subjects were scanned at locomotion and rest with [18F]-FDG-PET. In the locomotion paradigm subjects walked at constant velocity for 10 min. Then [18F]-FDG was injected intravenously while subjects continued walking for another 10 min. For comparison fMRI was performed in the same subjects during imagined walking. During real and imagined locomotion a basic locomotion network including activations in the frontal cortex, cerebellum, pontomesencephalic tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule) was shown. As a difference, the primary motor and somatosensory cortices were activated during real locomotion as distinct to the supplementary motor cortex and basal ganglia during imagined locomotion. Activations of the brainstem locomotor centers were more prominent in imagined locomotion. In conclusion, basic activation and deactivation patterns of real locomotion correspond to that of imagined locomotion. The differences may be due to distinct patterns of locomotion tested. Contrary to constant velocity real locomotion (10 min) in [18F]-FDG-PET, mental imagery of locomotion over repeated 20-s periods includes gait initiation and velocity changes. Real steady-state locomotion seems to use a direct pathway via the primary motor cortex, whereas imagined modulatory locomotion an indirect pathway via a supplementary motor cortex and basal ganglia loop. |
Author | Jahn, Klaus Dieterich, Marianne Fesl, Gunther Zwergal, Andreas Rominger, Axel Brandt, Thomas Strupp, Michael Förster, Stefan la Fougère, Christian Bartenstein, Peter |
Author_xml | – sequence: 1 givenname: Christian surname: la Fougère fullname: la Fougère, Christian organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany – sequence: 2 givenname: Andreas surname: Zwergal fullname: Zwergal, Andreas email: andreas.zwergal@med.uni-muenchen.de organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany – sequence: 3 givenname: Axel surname: Rominger fullname: Rominger, Axel organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany – sequence: 4 givenname: Stefan surname: Förster fullname: Förster, Stefan organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany – sequence: 5 givenname: Gunther surname: Fesl fullname: Fesl, Gunther organization: Department of Neuroradiology, Ludwig-Maximilians-University of Munich, Germany – sequence: 6 givenname: Marianne surname: Dieterich fullname: Dieterich, Marianne organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany – sequence: 7 givenname: Thomas surname: Brandt fullname: Brandt, Thomas organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany – sequence: 8 givenname: Michael surname: Strupp fullname: Strupp, Michael organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany – sequence: 9 givenname: Peter surname: Bartenstein fullname: Bartenstein, Peter organization: Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Germany – sequence: 10 givenname: Klaus surname: Jahn fullname: Jahn, Klaus organization: Department of Neurology, Ludwig-Maximilians-University of Munich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20034578$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1LHDEUhkNR6kf7F8pAL3o103zOJr0oWuuqYKmIXpUSssmZku1ssiYzgv--GVYt7NVehATyvA_Je47QXogBEKoIbggm7edlE2BM0a_MH2goxqohtMEtfoMOCVaiVmJG96azYLUkRB2go5yXuICEy7fooEQYFzN5iE5uwfTVI6Q85mry-QCu6qONqzj4GL5Up9UvIue_6_n3i-rm_K7uftxeVeV6bZLPMbxD-53pM7x_3o_R_fz87uyyvv55cXV2el1bQflQS9cKR0xZyuCFo6JlrQXcMqYAOw62I5zRBeeOUxAKrARK3QJU1xnJ7Ywdo08b7zrFhxHyoFc-W-h7EyCOWc-4UIy0YiI_bpHLOKZQHqeJ4EoxLLEs1IdnalyswOl1Kr9PT_qlmgLIDWBTzDlB94oQrKcp6KX-P4UppzShukyhRL9uRa0fzFTnkIzvdxF82wigNProIelsPQQLziewg3bR7yI52ZLY3gdvTf8XnnZT_AOHVb2b |
CitedBy_id | crossref_primary_10_1002_hbm_23131 crossref_primary_10_1007_s00221_019_05706_9 crossref_primary_10_1007_s00415_017_8446_7 crossref_primary_10_1093_gerona_glaa118 crossref_primary_10_1371_journal_pone_0103211 crossref_primary_10_1016_j_neuroscience_2017_02_005 crossref_primary_10_1007_s00429_024_02808_1 crossref_primary_10_17116_jnevro201811821100_104 crossref_primary_10_3389_fnhum_2018_00312 crossref_primary_10_1002_hbm_22717 crossref_primary_10_1186_s12984_019_0636_3 crossref_primary_10_3389_fnagi_2021_657308 crossref_primary_10_1016_j_ejpn_2011_04_010 crossref_primary_10_1016_j_neulet_2013_06_050 crossref_primary_10_1016_j_isci_2019_04_008 crossref_primary_10_1093_brain_aww268 crossref_primary_10_3389_fnhum_2017_00106 crossref_primary_10_1002_mds_25682 crossref_primary_10_1016_j_neuroscience_2023_07_010 crossref_primary_10_1016_j_neuroimage_2013_02_010 crossref_primary_10_1177_1545968317693304 crossref_primary_10_1093_gerona_gly158 crossref_primary_10_1177_10738584211013723 crossref_primary_10_1007_s12311_022_01373_9 crossref_primary_10_3389_fneur_2020_00948 crossref_primary_10_1186_1743_0003_10_77 crossref_primary_10_1007_s15016_014_0004_2 crossref_primary_10_1186_s12984_017_0263_9 crossref_primary_10_1177_1545968320969940 crossref_primary_10_1002_ana_25086 crossref_primary_10_3389_fnagi_2024_1395553 crossref_primary_10_1097_MD_0000000000010453 crossref_primary_10_1016_j_neubiorev_2024_105718 crossref_primary_10_3233_JAD_201576 crossref_primary_10_1080_10255842_2020_1812583 crossref_primary_10_1109_TNSRE_2023_3325215 crossref_primary_10_3389_fneur_2021_746599 crossref_primary_10_1007_s00702_023_02608_7 crossref_primary_10_1016_j_neuroscience_2015_11_032 crossref_primary_10_3389_fnagi_2021_731332 crossref_primary_10_1016_j_humov_2016_11_002 crossref_primary_10_1016_j_neuroimage_2015_10_021 crossref_primary_10_1002_hbm_24326 crossref_primary_10_3389_fnagi_2019_00367 crossref_primary_10_1016_j_neurad_2012_10_001 crossref_primary_10_1093_brain_awv047 crossref_primary_10_1002_mds_25673 crossref_primary_10_3389_fnagi_2014_00104 crossref_primary_10_1002_mds_25675 crossref_primary_10_31083_j_jin2003074 crossref_primary_10_1177_0883073820909274 crossref_primary_10_1186_1743_0003_11_14 crossref_primary_10_1002_hbm_25691 crossref_primary_10_1016_j_neuroscience_2015_07_089 crossref_primary_10_1177_1877718X241305713 crossref_primary_10_1002_hbm_23829 crossref_primary_10_1089_neu_2016_4500 crossref_primary_10_3174_ajnr_A5036 crossref_primary_10_1002_mds_28977 crossref_primary_10_1038_s41598_021_82427_6 crossref_primary_10_1002_hbm_24919 crossref_primary_10_1038_s41598_021_03147_5 crossref_primary_10_1177_15459683211000736 crossref_primary_10_1007_s00115_010_3103_8 crossref_primary_10_1016_j_jneumeth_2021_109108 crossref_primary_10_2463_mrms_mp_2015_0015 crossref_primary_10_1080_0361073X_2018_1560108 crossref_primary_10_1186_1471_2377_13_102 crossref_primary_10_3109_09638288_2015_1103790 crossref_primary_10_1038_s41598_022_09936_w crossref_primary_10_1186_s12984_025_01543_w crossref_primary_10_1016_j_neuroscience_2021_08_019 crossref_primary_10_3389_fnagi_2020_610962 crossref_primary_10_1016_j_bbr_2020_112829 crossref_primary_10_1109_TNSRE_2014_2371391 crossref_primary_10_3389_fnhum_2022_806513 crossref_primary_10_1161_STROKEAHA_110_596122 crossref_primary_10_3389_fmed_2020_546344 crossref_primary_10_3389_fnagi_2016_00066 crossref_primary_10_1186_1743_0003_10_111 crossref_primary_10_1007_s11055_024_01727_2 crossref_primary_10_1212_WNL_0000000000006779 crossref_primary_10_1016_j_neulet_2016_11_015 crossref_primary_10_1016_j_jneumeth_2021_109339 crossref_primary_10_1016_j_gaitpost_2019_10_005 crossref_primary_10_3389_fnagi_2021_739998 crossref_primary_10_3389_fnhum_2015_00084 crossref_primary_10_1007_s00415_024_12504_z crossref_primary_10_1007_s11910_013_0350_7 crossref_primary_10_1016_j_neulet_2012_03_049 crossref_primary_10_1371_journal_pone_0091183 crossref_primary_10_1016_j_cortex_2014_09_022 crossref_primary_10_1016_j_nicl_2019_102059 crossref_primary_10_14326_abe_6_15 crossref_primary_10_18632_aging_104135 crossref_primary_10_3389_fphys_2014_00204 crossref_primary_10_1002_hbm_26284 crossref_primary_10_1007_s10548_021_00841_5 crossref_primary_10_1177_1545968320953824 crossref_primary_10_1016_j_jocn_2024_110920 crossref_primary_10_1016_j_neuroimage_2011_08_005 crossref_primary_10_1016_j_nicl_2023_103443 crossref_primary_10_1093_brain_aww223 crossref_primary_10_1016_j_neucli_2015_07_001 crossref_primary_10_1016_j_neubiorev_2017_10_002 crossref_primary_10_1038_s41598_021_82696_1 crossref_primary_10_1177_1545968320924430 crossref_primary_10_3389_fnsys_2014_00138 crossref_primary_10_2174_1745017901309010196 crossref_primary_10_1016_j_bbr_2020_112805 crossref_primary_10_3389_fnhum_2014_00828 crossref_primary_10_1016_j_clinph_2020_11_009 crossref_primary_10_1016_j_jneumeth_2020_109061 crossref_primary_10_1152_physrev_00037_2021 crossref_primary_10_1016_j_clinph_2013_10_008 crossref_primary_10_1016_j_neuroimage_2013_04_070 crossref_primary_10_3389_fnhum_2017_00156 crossref_primary_10_1016_j_neuroscience_2015_08_063 crossref_primary_10_1016_j_ijpsycho_2014_03_005 crossref_primary_10_3390_brainsci10040236 crossref_primary_10_1016_j_ynirp_2022_100090 crossref_primary_10_1016_j_neuroimage_2024_120531 crossref_primary_10_1007_s10548_021_00825_5 crossref_primary_10_3389_fneur_2018_01181 crossref_primary_10_1002_jmri_27335 crossref_primary_10_1016_j_neuropsychologia_2015_06_039 crossref_primary_10_1001_jamaneurol_2019_0033 crossref_primary_10_1016_j_apmr_2019_12_004 crossref_primary_10_47795_HNFE8191 crossref_primary_10_1093_cercor_bhx155 crossref_primary_10_1177_15459683221124909 crossref_primary_10_1007_s40279_013_0025_1 crossref_primary_10_1117_1_NPh_4_4_041403 crossref_primary_10_3389_fnins_2021_607905 crossref_primary_10_1371_journal_pone_0223494 crossref_primary_10_1016_j_neubiorev_2022_104826 crossref_primary_10_52082_jssm_2021_789 crossref_primary_10_1038_s41598_020_79095_3 crossref_primary_10_1152_jn_00513_2017 crossref_primary_10_3389_fneur_2020_555733 crossref_primary_10_3390_brainsci11081065 crossref_primary_10_1016_j_neuroimage_2010_08_066 crossref_primary_10_1016_j_rehab_2013_05_002 crossref_primary_10_1038_s43856_024_00547_2 crossref_primary_10_1038_s41598_024_54966_1 crossref_primary_10_1177_0031512516640377 crossref_primary_10_1093_gerona_glu052 crossref_primary_10_3389_fphys_2018_01196 crossref_primary_10_1007_s40520_013_0119_5 crossref_primary_10_3389_fphys_2023_1153469 crossref_primary_10_1016_j_neulet_2016_05_061 crossref_primary_10_1002_mds_26229 crossref_primary_10_1371_journal_pone_0090634 crossref_primary_10_1002_mds_25139 crossref_primary_10_1080_00140139_2022_2075941 crossref_primary_10_1007_s00415_014_7304_0 crossref_primary_10_1093_cercor_bhaa301 crossref_primary_10_1002_mds_28883 crossref_primary_10_1016_j_nicl_2022_103051 crossref_primary_10_1038_s41598_023_46645_4 crossref_primary_10_1016_j_cccb_2022_100154 crossref_primary_10_3390_brainsci9090237 crossref_primary_10_1016_j_gaitpost_2019_01_026 crossref_primary_10_1016_j_psychres_2011_12_013 crossref_primary_10_1186_s13063_019_3694_8 crossref_primary_10_1016_j_nicl_2016_03_006 crossref_primary_10_1016_j_braindev_2014_01_003 crossref_primary_10_1038_s41598_022_07511_x crossref_primary_10_1590_0004_282X20130080 crossref_primary_10_1134_S0362119712010124 crossref_primary_10_1016_j_neulet_2019_134526 crossref_primary_10_1016_j_gaitpost_2022_04_006 crossref_primary_10_1080_00222895_2021_1965527 crossref_primary_10_1016_j_neuroscience_2013_12_016 crossref_primary_10_1016_j_jneumeth_2016_02_010 crossref_primary_10_1016_j_nicl_2024_103637 crossref_primary_10_3389_fnhum_2020_00275 crossref_primary_10_1016_j_maturitas_2018_04_011 crossref_primary_10_1111_jon_12391 crossref_primary_10_1080_00222895_2018_1563762 crossref_primary_10_1016_j_brs_2020_09_006 crossref_primary_10_1002_hbm_21464 crossref_primary_10_1016_j_neubiorev_2013_03_017 crossref_primary_10_3389_fnhum_2024_1412307 crossref_primary_10_3389_fnins_2017_00526 crossref_primary_10_1002_hbm_22679 crossref_primary_10_1093_brain_awq324 crossref_primary_10_1007_s12603_021_1693_4 crossref_primary_10_1016_j_gaitpost_2012_11_008 crossref_primary_10_1134_S0362119713030055 crossref_primary_10_1016_j_neubiorev_2018_08_003 crossref_primary_10_1016_j_clinph_2015_10_043 crossref_primary_10_31857_S0044467724020069 crossref_primary_10_1002_brb3_2879 crossref_primary_10_1016_j_neurobiolaging_2021_05_015 crossref_primary_10_1186_s12883_015_0261_0 crossref_primary_10_1016_j_archger_2012_08_017 crossref_primary_10_3389_fpsyt_2021_705242 crossref_primary_10_1093_gerona_glac128 crossref_primary_10_3389_fnint_2014_00044 crossref_primary_10_1016_j_neuroimage_2019_01_045 crossref_primary_10_1007_s11682_018_9871_7 crossref_primary_10_1093_brain_awq343 crossref_primary_10_1016_j_nicl_2018_07_003 crossref_primary_10_1016_j_nicl_2020_102408 crossref_primary_10_1186_s12984_021_00859_7 crossref_primary_10_1016_j_neurobiolaging_2010_09_022 crossref_primary_10_1109_TMI_2014_2301493 crossref_primary_10_1016_j_neulet_2018_10_022 crossref_primary_10_1002_hbm_22461 crossref_primary_10_1016_j_neuroimage_2015_03_002 crossref_primary_10_1016_j_neuroimage_2013_04_006 crossref_primary_10_1186_s12984_024_01323_y crossref_primary_10_1093_cercor_bhv213 crossref_primary_10_3390_brainsci10020090 crossref_primary_10_3389_fnhum_2021_732648 crossref_primary_10_3389_fnins_2019_00722 crossref_primary_10_3389_fnhum_2017_00170 crossref_primary_10_1016_j_neuroscience_2016_11_032 crossref_primary_10_1016_j_gaitpost_2022_05_032 crossref_primary_10_1152_jn_00613_2017 crossref_primary_10_1007_s00391_015_0866_3 crossref_primary_10_1177_1533317518770783 crossref_primary_10_1080_14737175_2019_1564042 crossref_primary_10_1186_s12984_020_00701_6 crossref_primary_10_1093_gerona_glaa091 crossref_primary_10_3389_fnagi_2015_00186 crossref_primary_10_1016_j_humov_2018_10_010 crossref_primary_10_1016_j_neuroimage_2019_116095 crossref_primary_10_3390_ijerph20237121 crossref_primary_10_1038_s41598_020_69448_3 crossref_primary_10_1093_cercor_bhac114 crossref_primary_10_1093_gerona_gly210 crossref_primary_10_1007_s10803_012_1653_2 crossref_primary_10_1007_s00221_015_4237_5 crossref_primary_10_1016_j_jneumeth_2011_07_022 crossref_primary_10_1016_j_neulet_2021_136350 crossref_primary_10_3389_fpsyg_2018_00947 crossref_primary_10_1111_cns_14710 crossref_primary_10_1152_jn_00209_2024 crossref_primary_10_1016_j_mric_2021_06_011 crossref_primary_10_1093_brain_awz141 crossref_primary_10_31857_S0044467723010069 crossref_primary_10_1016_j_neucli_2018_10_003 crossref_primary_10_1016_j_nicl_2024_103727 crossref_primary_10_1016_j_gaitpost_2024_01_023 crossref_primary_10_3389_fneur_2024_1466549 crossref_primary_10_1007_s11682_018_9922_0 crossref_primary_10_1016_j_expneurol_2011_08_019 crossref_primary_10_1016_j_humov_2022_102970 crossref_primary_10_1016_j_parkreldis_2021_03_014 crossref_primary_10_1007_s00415_018_8987_4 crossref_primary_10_1016_j_nbd_2012_03_019 crossref_primary_10_3390_app10248954 crossref_primary_10_1016_j_gaitpost_2019_02_017 crossref_primary_10_1007_s11055_023_01478_6 crossref_primary_10_1002_mds_23588 crossref_primary_10_1016_j_clinph_2012_09_004 crossref_primary_10_12786_bn_2015_8_1_39 crossref_primary_10_1007_s00221_014_4156_x crossref_primary_10_1016_j_neuroimage_2011_08_084 crossref_primary_10_1007_s00115_010_3102_9 crossref_primary_10_3390_brainsci4010001 crossref_primary_10_1002_hbm_23725 crossref_primary_10_1177_13872877241303849 crossref_primary_10_1016_j_neubiorev_2015_04_002 crossref_primary_10_3390_brainsci10100757 crossref_primary_10_1016_S1474_4422_11_70143_0 crossref_primary_10_1371_journal_pone_0191513 crossref_primary_10_1097_JSM_0000000000000836 crossref_primary_10_1002_hbm_22192 crossref_primary_10_2967_jnumed_118_218248 crossref_primary_10_1155_2012_375148 crossref_primary_10_1016_j_neures_2019_11_001 crossref_primary_10_3389_fncir_2020_00006 crossref_primary_10_3389_fnagi_2023_1068943 crossref_primary_10_3389_fnins_2017_00733 crossref_primary_10_1016_j_neuroscience_2020_09_055 crossref_primary_10_1093_brain_aws373 crossref_primary_10_1177_1545968315624782 crossref_primary_10_1134_S0362119719010146 crossref_primary_10_3238_arztebl_2010_0306 crossref_primary_10_1007_s00415_018_8964_y crossref_primary_10_1007_s00429_017_1586_9 crossref_primary_10_1186_s12984_020_00797_w crossref_primary_10_1123_jsep_2021_0229 crossref_primary_10_3233_JPD_212793 crossref_primary_10_1016_j_neulet_2017_11_064 crossref_primary_10_1134_S036211971601014X crossref_primary_10_3389_fnhum_2018_00536 crossref_primary_10_1111_jgs_16309 crossref_primary_10_1123_japa_2021_0410 crossref_primary_10_1159_000456541 crossref_primary_10_1093_gerona_glr068 crossref_primary_10_1212_WNL_0b013e318281cc43 crossref_primary_10_12786_bn_2020_13_e12 crossref_primary_10_1371_journal_pone_0084909 crossref_primary_10_1523_JNEUROSCI_4116_15_2016 crossref_primary_10_1016_j_neulet_2015_05_036 crossref_primary_10_1016_j_bbr_2011_09_042 crossref_primary_10_3389_fpsyg_2015_01502 crossref_primary_10_1016_j_jneumeth_2018_06_006 crossref_primary_10_1515_RNS_2011_047 crossref_primary_10_1007_s00415_013_7174_x crossref_primary_10_1002_hbm_25123 crossref_primary_10_1016_j_brainres_2015_10_053 crossref_primary_10_1016_j_ejpn_2013_01_006 crossref_primary_10_1093_scan_nsab035 crossref_primary_10_1016_j_clinph_2019_03_030 crossref_primary_10_1016_j_neuroscience_2021_04_004 crossref_primary_10_3389_fnhum_2020_566735 crossref_primary_10_1002_mds_25534 crossref_primary_10_1016_j_neuroimage_2012_08_019 crossref_primary_10_1007_s11682_020_00275_w crossref_primary_10_1016_j_parkreldis_2012_02_004 crossref_primary_10_3390_bioengineering10080990 crossref_primary_10_1016_j_neubiorev_2015_08_002 crossref_primary_10_1016_j_mehy_2019_03_010 crossref_primary_10_1016_j_humov_2022_102982 crossref_primary_10_3389_fnbeh_2018_00203 crossref_primary_10_1134_S0362119717050139 crossref_primary_10_1556_2060_106_2019_10 crossref_primary_10_1212_WNL_0000000000008758 |
Cites_doi | 10.1093/brain/awn042 10.1152/jn.00132.2002 10.1111/j.1749-6632.2009.03770.x 10.1038/73980 10.1016/S0079-6123(08)00652-3 10.1152/jn.1999.82.1.290 10.1016/j.neuroimage.2007.09.047 10.1038/nature01964 10.1093/cercor/bhn036 10.1016/S0304-3940(97)00381-9 10.1002/mds.22189 10.1111/j.1471-4159.1977.tb10649.x 10.1007/s00702-008-0058-z 10.1016/j.neuroimage.2008.03.020 10.1093/brain/121.9.1749 10.1152/physrev.1976.56.3.465 10.1007/s00221-008-1520-8 10.1006/nimg.1996.0058 10.1093/brain/awf204 10.1016/S0140-6736(99)03179-7 10.1016/S0079-6123(08)62564-9 10.1016/j.neuroimage.2007.11.040 10.1002/hbm.10103 10.1016/j.clinph.2006.04.022 10.1016/j.neuroimage.2008.11.029 10.1152/physrev.00028.2005 10.1126/science.280.5365.921 10.1006/nimg.2001.0905 10.1113/jphysiol.1988.sp017128 10.1016/j.neuroimage.2005.04.025 10.1016/j.neuroimage.2007.05.050 10.1002/sim.4780111304 10.1006/nimg.2001.1037 10.1002/hbm.460030303 10.1016/S0304-3940(02)00826-1 10.1002/ana.410230208 10.1046/j.1460-9568.2000.00182.x 10.1002/ana.20244 10.1093/brain/104.4.647-a 10.1006/nimg.1997.0314 10.1016/j.neuroimage.2004.05.017 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. 2009 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 1, 2010 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: 2009 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO |
DOI | 10.1016/j.neuroimage.2009.12.060 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database (ProQuest) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1598 |
ExternalDocumentID | 3388746861 20034578 10_1016_j_neuroimage_2009_12_060 S1053811909013494 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO |
ID | FETCH-LOGICAL-c524t-8d65d1a5d19a0bd25636ce06339e0d4ecf1432b44d42e59ec8e22dbe9ffa84c73 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 |
IngestDate | Thu Jul 10 19:14:11 EDT 2025 Wed Aug 13 06:57:33 EDT 2025 Thu Apr 03 06:55:34 EDT 2025 Tue Jul 01 02:14:35 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Aug 26 16:33:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Locomotion fMRI PET Gait disorders |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 2009 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-8d65d1a5d19a0bd25636ce06339e0d4ecf1432b44d42e59ec8e22dbe9ffa84c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 20034578 |
PQID | 1549930808 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_745931657 proquest_journals_1549930808 pubmed_primary_20034578 crossref_primary_10_1016_j_neuroimage_2009_12_060 crossref_citationtrail_10_1016_j_neuroimage_2009_12_060 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_12_060 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_12_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 2010-05-00 2010-May-01 20100501 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Rossignol, Dubuc, Gossard (bib39) 2006; 86 Krafczyk, Tietze, Swoboda, Valkovic, Brandt (bib30) 2006; 117 Aravamuthan, Muthusamy, Stein, Aziz, Johansen-Berg (bib1) 2007; 37 Kasess, Windischberger, Cunnington, Lanzenberger, Pezawas, Moser (bib29) 2008; 40 Gron, Wunderlich, Spitzer, Tomczak, Riepe (bib19) 2000; 3 Talairach, Tournoux (bib44) 1998 Fukuyama, Ouchi, Matsuzaki, Nagahama, Yamauchi, Ogawa, Kimura, Shibasaki (bib15) 1997; 228 Ginsberg, Chang, Kelley, Yoshii, Barker, Ingenito, Boothe (bib17) 1988; 23 Jenkinson, Nandi, Muthusamy, Ray, Gregory, Stein, Aziz (bib28) 2009; 24 Woods (bib48) 1996; 4 Jahn, Deutschlander, Stephan, Strupp, Wiesmann, Brandt (bib23) 2004; 22 Porro, Cettolo, Francescato, Baraldi (bib38) 2000; 12 Sokoloff, Reivich, Kennedy, Des Rosiers, Patlak, Pettigrew, Sakurada, Shinohara (bib42) 1977; 28 Wang, Wai, Kuo, Yeh, Wang (bib47) 2008; 115 Eidelberg, Walden, Nguyen (bib10) 1981; 104 Hanakawa, Dimyan, Hallett (bib21) 2008; 18 Brandt, Bartenstein, Janek, Dieterich (bib5) 1998; 121 Brandt, Strupp, Benson (bib6) 1999; 354 Dieterich, Brandt (bib9) 2008; 131 Friston, Ashburner, Frith, Poline, Heather, Frackowiak (bib13) 1995; 3 Jahn, Deutschlander, Stephan, Kalla, Hufner, Wagner, Strupp, Brandt (bib24) 2008; 171 Porro, Cavazzuti (bib37) 1996; 110 Mori, Matsuyama, Mori, Nakajima (bib36) 2001; 87 Stippich, Ochmann, Sartor (bib43) 2002; 331 Shik, Orlovsky (bib41) 1976; 56 Deiber, Ibanez, Honda, Sadato, Raman, Hallett (bib7) 1998; 7 Schmahmann, Doyon, Toga, Petrides, Evans (bib40) 2000 Miyai, Tanabe, Sase, Eda, Oda, Konishi, Tsunazawa, Suzuki, Yanagida, Kubota (bib34) 2001; 14 Lacourse, Orr, Cramer, Cohen (bib31) 2005; 27 Ishii, Senda, Toyoma, Oda, Ishii, Ishiwata, Sasaki (bib22) 1995; 3 Hanakawa, Immisch, Toma, Dimyan, Van Gelderen, Hallett (bib20) 2003; 89 Bense, Bartenstein, Lochmann, Schlindwein, Brandt, Dieterich (bib4) 2004; 56 Genovese, Lazar, Nichols (bib16) 2002; 15 Jahn, Wagner, Deutschlander, Kalla, Hufner, Stephan, Strupp, Brandt (bib27) 2009; 1164 Jahn, Strupp, Krafczyk, Schuler, Glasauer, Brandt (bib26) 2002; 125 Malouin, Richards, Jackson, Dumas, Doyon (bib33) 2003; 19 Jahn, Deutschlander, Stephan, Kalla, Wiesmann, Strupp, Brandt (bib25) 2008; 39 Greenstein, Gastineau, Siegel, Macsata, Conklin, Maurer (bib18) 1995 Armstrong, Edgley, Lidierth (bib2) 1988; 400 Bakker, De Lange, Helmich, Scheeringa, Bloem, Toni (bib3) 2008; 41 Ekstrom, Kahana, Caplan, Fields, Isham, Newman, Fried (bib11) 2003; 425 Maguire, Burgess, Donnett, Frackowiak, Frith, O'Keefe (bib32) 1998; 280 Wagner, Stephan, Kalla, Bruckmann, Strupp, Brandt, Jahn (bib46) 2008; 191 Mori, Matsui, Kuze, Asanome, Nakajima, Matsuyama (bib35) 1999; 82 Tashiro, Itoh, Fujimoto, Fujiwara, Ota, Kubota, Higuchi, Okamura, Ishii, Bereczki, Sasaki (bib45) 2001; 41 Frison, Pocock (bib12) 1992; 11 Friston, Holmes, Worsley, Poline, Frith, Ashburner, Frackowiak (bib14) 1995; 3 Deutschlander, Stephan, Hufner, Wagner, Wiesmann, Strupp, Brandt, Jahn (bib8) 2009; 45 Ginsberg (10.1016/j.neuroimage.2009.12.060_bib17) 1988; 23 Schmahmann (10.1016/j.neuroimage.2009.12.060_bib40) 2000 Gron (10.1016/j.neuroimage.2009.12.060_bib19) 2000; 3 Sokoloff (10.1016/j.neuroimage.2009.12.060_bib42) 1977; 28 Genovese (10.1016/j.neuroimage.2009.12.060_bib16) 2002; 15 Porro (10.1016/j.neuroimage.2009.12.060_bib38) 2000; 12 Talairach (10.1016/j.neuroimage.2009.12.060_bib44) 1998 Fukuyama (10.1016/j.neuroimage.2009.12.060_bib15) 1997; 228 Jahn (10.1016/j.neuroimage.2009.12.060_bib27) 2009; 1164 Maguire (10.1016/j.neuroimage.2009.12.060_bib32) 1998; 280 Ishii (10.1016/j.neuroimage.2009.12.060_bib22) 1995; 3 Hanakawa (10.1016/j.neuroimage.2009.12.060_bib20) 2003; 89 Krafczyk (10.1016/j.neuroimage.2009.12.060_bib30) 2006; 117 Armstrong (10.1016/j.neuroimage.2009.12.060_bib2) 1988; 400 Bense (10.1016/j.neuroimage.2009.12.060_bib4) 2004; 56 Dieterich (10.1016/j.neuroimage.2009.12.060_bib9) 2008; 131 Woods (10.1016/j.neuroimage.2009.12.060_bib48) 1996; 4 Greenstein (10.1016/j.neuroimage.2009.12.060_bib18) 1995 Deiber (10.1016/j.neuroimage.2009.12.060_bib7) 1998; 7 Mori (10.1016/j.neuroimage.2009.12.060_bib35) 1999; 82 Porro (10.1016/j.neuroimage.2009.12.060_bib37) 1996; 110 Aravamuthan (10.1016/j.neuroimage.2009.12.060_bib1) 2007; 37 Jahn (10.1016/j.neuroimage.2009.12.060_bib24) 2008; 171 Mori (10.1016/j.neuroimage.2009.12.060_bib36) 2001; 87 Jahn (10.1016/j.neuroimage.2009.12.060_bib23) 2004; 22 Bakker (10.1016/j.neuroimage.2009.12.060_bib3) 2008; 41 Friston (10.1016/j.neuroimage.2009.12.060_bib13) 1995; 3 Deutschlander (10.1016/j.neuroimage.2009.12.060_bib8) 2009; 45 Jenkinson (10.1016/j.neuroimage.2009.12.060_bib28) 2009; 24 Tashiro (10.1016/j.neuroimage.2009.12.060_bib45) 2001; 41 Brandt (10.1016/j.neuroimage.2009.12.060_bib6) 1999; 354 Kasess (10.1016/j.neuroimage.2009.12.060_bib29) 2008; 40 Eidelberg (10.1016/j.neuroimage.2009.12.060_bib10) 1981; 104 Wagner (10.1016/j.neuroimage.2009.12.060_bib46) 2008; 191 Jahn (10.1016/j.neuroimage.2009.12.060_bib26) 2002; 125 Lacourse (10.1016/j.neuroimage.2009.12.060_bib31) 2005; 27 Brandt (10.1016/j.neuroimage.2009.12.060_bib5) 1998; 121 Hanakawa (10.1016/j.neuroimage.2009.12.060_bib21) 2008; 18 Shik (10.1016/j.neuroimage.2009.12.060_bib41) 1976; 56 Friston (10.1016/j.neuroimage.2009.12.060_bib14) 1995; 3 Miyai (10.1016/j.neuroimage.2009.12.060_bib34) 2001; 14 Malouin (10.1016/j.neuroimage.2009.12.060_bib33) 2003; 19 Frison (10.1016/j.neuroimage.2009.12.060_bib12) 1992; 11 Jahn (10.1016/j.neuroimage.2009.12.060_bib25) 2008; 39 Rossignol (10.1016/j.neuroimage.2009.12.060_bib39) 2006; 86 Stippich (10.1016/j.neuroimage.2009.12.060_bib43) 2002; 331 Wang (10.1016/j.neuroimage.2009.12.060_bib47) 2008; 115 Ekstrom (10.1016/j.neuroimage.2009.12.060_bib11) 2003; 425 |
References_xml | – volume: 354 start-page: 746 year: 1999 ident: bib6 article-title: You are better off running than walking with acute vestibulopathy publication-title: Lancet – volume: 280 start-page: 921 year: 1998 end-page: 924 ident: bib32 article-title: Knowing where and getting there: a human navigation network publication-title: Science – volume: 40 start-page: 828 year: 2008 end-page: 837 ident: bib29 article-title: The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling publication-title: NeuroImage – volume: 89 start-page: 989 year: 2003 end-page: 1002 ident: bib20 article-title: Functional properties of brain areas associated with motor execution and imagery publication-title: J. Neurophysiol. – volume: 191 start-page: 247 year: 2008 end-page: 255 ident: bib46 article-title: Mind the bend: cerebral activations associated with mental imagery of walking along a curved path publication-title: Exp. Brain Res. – volume: 12 start-page: 3059 year: 2000 end-page: 3063 ident: bib38 article-title: Ipsilateral involvement of primary motor cortex during motor imagery publication-title: Eur. J. Neurosci. – volume: 11 start-page: 1685 year: 1992 end-page: 1704 ident: bib12 article-title: Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design publication-title: Stat. Med. – volume: 171 start-page: 353 year: 2008 end-page: 362 ident: bib24 article-title: Supraspinal locomotor control in quadrupeds and humans publication-title: Prog. Brain Res. – volume: 45 start-page: 122 year: 2009 end-page: 128 ident: bib8 article-title: Imagined locomotion in the blind: an fMRI study publication-title: NeuroImage – volume: 400 start-page: 405 year: 1988 end-page: 414 ident: bib2 article-title: Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion publication-title: J. Physiol. – volume: 41 start-page: 11 year: 2001 end-page: 17 ident: bib45 article-title: 18F-FDG PET mapping of regional brain activity in runners publication-title: J. Sports Med. Phys. Fitness – volume: 7 start-page: 73 year: 1998 end-page: 85 ident: bib7 article-title: Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography publication-title: NeuroImage – volume: 24 start-page: 319 year: 2009 end-page: 328 ident: bib28 article-title: Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus publication-title: Mov. Disord. – volume: 115 start-page: 1149 year: 2008 end-page: 1158 ident: bib47 article-title: Cortical control of gait in healthy humans: an fMRI study publication-title: J. Neural Transm. – volume: 19 start-page: 47 year: 2003 end-page: 62 ident: bib33 article-title: Brain activations during motor imagery of locomotor-related tasks: a PET study publication-title: Hum. Brain Mapp. – year: 1998 ident: bib44 article-title: Co-planar Stereotactic Atlas of the Human Brain – start-page: 320 year: 1995 ident: bib18 article-title: Cerebral hemisphere activation during human bipedal locomotion publication-title: Hum. Brain Mapp. – volume: 3 start-page: 404 year: 2000 end-page: 408 ident: bib19 article-title: Brain activation during human navigation: gender-different neural networks as substrate of performance publication-title: Nat. Neurosci. – volume: 14 start-page: 1186 year: 2001 end-page: 1192 ident: bib34 article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study publication-title: NeuroImage – volume: 39 start-page: 786 year: 2008 end-page: 792 ident: bib25 article-title: Imaging human supraspinal locomotor centers in brainstem and cerebellum publication-title: NeuroImage – volume: 28 start-page: 897 year: 1977 end-page: 916 ident: bib42 article-title: The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat publication-title: J. Neurochem. – volume: 27 start-page: 505 year: 2005 end-page: 519 ident: bib31 article-title: Brain activation during execution and motor imagery of novel and skilled sequential hand movements publication-title: NeuroImage – volume: 228 start-page: 183 year: 1997 end-page: 186 ident: bib15 article-title: Brain functional activity during gait in normal subjects: a SPECT study publication-title: Neurosci. Lett. – volume: 4 start-page: S84 year: 1996 end-page: 94 ident: bib48 article-title: Modeling for intergroup comparisons of imaging data publication-title: NeuroImage – volume: 82 start-page: 290 year: 1999 end-page: 300 ident: bib35 article-title: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat publication-title: J. Neurophysiol. – volume: 110 start-page: 47 year: 1996 end-page: 62 ident: bib37 article-title: Functional imaging studies of the pain system in man and animals publication-title: Prog. Brain Res. – volume: 23 start-page: 152 year: 1988 end-page: 160 ident: bib17 article-title: Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task publication-title: Ann. Neurol. – year: 2000 ident: bib40 article-title: MRI Atlas of the Human Cerebellum – volume: 117 start-page: 1692 year: 2006 end-page: 1698 ident: bib30 article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance publication-title: Clin. Neurophysiol. – volume: 3 start-page: 165 year: 1995 end-page: 189 ident: bib13 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapp. – volume: 41 start-page: 998 year: 2008 end-page: 1010 ident: bib3 article-title: Cerebral correlates of motor imagery of normal and precision gait publication-title: NeuroImage – volume: 1164 start-page: 229 year: 2009 end-page: 235 ident: bib27 article-title: Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects publication-title: Ann. N.Y. Acad. Sci. – volume: 104 start-page: 647 year: 1981 end-page: 663 ident: bib10 article-title: Locomotor control in macaque monkeys publication-title: Brain – volume: 125 start-page: 2005 year: 2002 end-page: 2011 ident: bib26 article-title: Suppression of eye movements improves balance publication-title: Brain – volume: 87 start-page: 25 year: 2001 end-page: 40 ident: bib36 article-title: Supraspinal sites that induce locomotion in the vertebrate central nervous system publication-title: Adv. Neurol. – volume: 331 start-page: 50 year: 2002 end-page: 54 ident: bib43 article-title: Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging publication-title: Neurosci. Lett. – volume: 131 start-page: 2538 year: 2008 end-page: 2552 ident: bib9 article-title: Functional brain imaging of peripheral and central vestibular disorders publication-title: Brain – volume: 3 start-page: s321 year: 1995 ident: bib22 article-title: Brain function in bipedal gait: a PET study publication-title: Hum. Brain Mapp. – volume: 37 start-page: 694 year: 2007 end-page: 705 ident: bib1 article-title: Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei publication-title: NeuroImage – volume: 18 start-page: 2775 year: 2008 end-page: 2788 ident: bib21 article-title: Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI publication-title: Cereb. Cortex – volume: 56 start-page: 624 year: 2004 end-page: 630 ident: bib4 article-title: Metabolic changes in vestibular and visual cortices in acute vestibular neuritis publication-title: Ann. Neurol. – volume: 15 start-page: 870 year: 2002 end-page: 878 ident: bib16 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage – volume: 3 start-page: 189 year: 1995 end-page: 210 ident: bib14 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 22 start-page: 1722 year: 2004 end-page: 1731 ident: bib23 article-title: Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging publication-title: NeuroImage – volume: 425 start-page: 184 year: 2003 end-page: 188 ident: bib11 article-title: Cellular networks underlying human spatial navigation publication-title: Nature – volume: 121 start-page: 1749 year: 1998 end-page: 1758 ident: bib5 article-title: Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex publication-title: Brain – volume: 86 start-page: 89 year: 2006 end-page: 154 ident: bib39 article-title: Dynamic sensorimotor interactions in locomotion publication-title: Physiol. Rev. – volume: 56 start-page: 465 year: 1976 end-page: 501 ident: bib41 article-title: Neurophysiology of locomotor automatism publication-title: Physiol. Rev. – volume: 131 start-page: 2538 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib9 article-title: Functional brain imaging of peripheral and central vestibular disorders publication-title: Brain doi: 10.1093/brain/awn042 – volume: 3 start-page: 189 year: 1995 ident: 10.1016/j.neuroimage.2009.12.060_bib14 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 89 start-page: 989 year: 2003 ident: 10.1016/j.neuroimage.2009.12.060_bib20 article-title: Functional properties of brain areas associated with motor execution and imagery publication-title: J. Neurophysiol. doi: 10.1152/jn.00132.2002 – volume: 1164 start-page: 229 year: 2009 ident: 10.1016/j.neuroimage.2009.12.060_bib27 article-title: Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.03770.x – volume: 3 start-page: 404 year: 2000 ident: 10.1016/j.neuroimage.2009.12.060_bib19 article-title: Brain activation during human navigation: gender-different neural networks as substrate of performance publication-title: Nat. Neurosci. doi: 10.1038/73980 – volume: 171 start-page: 353 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib24 article-title: Supraspinal locomotor control in quadrupeds and humans publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(08)00652-3 – volume: 82 start-page: 290 year: 1999 ident: 10.1016/j.neuroimage.2009.12.060_bib35 article-title: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.1.290 – volume: 39 start-page: 786 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib25 article-title: Imaging human supraspinal locomotor centers in brainstem and cerebellum publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.047 – volume: 425 start-page: 184 year: 2003 ident: 10.1016/j.neuroimage.2009.12.060_bib11 article-title: Cellular networks underlying human spatial navigation publication-title: Nature doi: 10.1038/nature01964 – volume: 18 start-page: 2775 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib21 article-title: Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn036 – volume: 228 start-page: 183 year: 1997 ident: 10.1016/j.neuroimage.2009.12.060_bib15 article-title: Brain functional activity during gait in normal subjects: a SPECT study publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(97)00381-9 – volume: 41 start-page: 11 year: 2001 ident: 10.1016/j.neuroimage.2009.12.060_bib45 article-title: 18F-FDG PET mapping of regional brain activity in runners publication-title: J. Sports Med. Phys. Fitness – volume: 24 start-page: 319 year: 2009 ident: 10.1016/j.neuroimage.2009.12.060_bib28 article-title: Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus publication-title: Mov. Disord. doi: 10.1002/mds.22189 – volume: 28 start-page: 897 year: 1977 ident: 10.1016/j.neuroimage.2009.12.060_bib42 article-title: The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1977.tb10649.x – volume: 115 start-page: 1149 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib47 article-title: Cortical control of gait in healthy humans: an fMRI study publication-title: J. Neural Transm. doi: 10.1007/s00702-008-0058-z – volume: 41 start-page: 998 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib3 article-title: Cerebral correlates of motor imagery of normal and precision gait publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.020 – volume: 121 start-page: 1749 issue: Pt. 9 year: 1998 ident: 10.1016/j.neuroimage.2009.12.060_bib5 article-title: Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex publication-title: Brain doi: 10.1093/brain/121.9.1749 – volume: 87 start-page: 25 year: 2001 ident: 10.1016/j.neuroimage.2009.12.060_bib36 article-title: Supraspinal sites that induce locomotion in the vertebrate central nervous system publication-title: Adv. Neurol. – volume: 56 start-page: 465 year: 1976 ident: 10.1016/j.neuroimage.2009.12.060_bib41 article-title: Neurophysiology of locomotor automatism publication-title: Physiol. Rev. doi: 10.1152/physrev.1976.56.3.465 – volume: 191 start-page: 247 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib46 article-title: Mind the bend: cerebral activations associated with mental imagery of walking along a curved path publication-title: Exp. Brain Res. doi: 10.1007/s00221-008-1520-8 – volume: 4 start-page: S84 year: 1996 ident: 10.1016/j.neuroimage.2009.12.060_bib48 article-title: Modeling for intergroup comparisons of imaging data publication-title: NeuroImage doi: 10.1006/nimg.1996.0058 – volume: 125 start-page: 2005 year: 2002 ident: 10.1016/j.neuroimage.2009.12.060_bib26 article-title: Suppression of eye movements improves balance publication-title: Brain doi: 10.1093/brain/awf204 – volume: 354 start-page: 746 year: 1999 ident: 10.1016/j.neuroimage.2009.12.060_bib6 article-title: You are better off running than walking with acute vestibulopathy publication-title: Lancet doi: 10.1016/S0140-6736(99)03179-7 – volume: 110 start-page: 47 year: 1996 ident: 10.1016/j.neuroimage.2009.12.060_bib37 article-title: Functional imaging studies of the pain system in man and animals publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(08)62564-9 – volume: 40 start-page: 828 year: 2008 ident: 10.1016/j.neuroimage.2009.12.060_bib29 article-title: The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.040 – volume: 19 start-page: 47 year: 2003 ident: 10.1016/j.neuroimage.2009.12.060_bib33 article-title: Brain activations during motor imagery of locomotor-related tasks: a PET study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10103 – volume: 3 start-page: s321 year: 1995 ident: 10.1016/j.neuroimage.2009.12.060_bib22 article-title: Brain function in bipedal gait: a PET study publication-title: Hum. Brain Mapp. – volume: 117 start-page: 1692 year: 2006 ident: 10.1016/j.neuroimage.2009.12.060_bib30 article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.04.022 – volume: 45 start-page: 122 year: 2009 ident: 10.1016/j.neuroimage.2009.12.060_bib8 article-title: Imagined locomotion in the blind: an fMRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.029 – volume: 86 start-page: 89 year: 2006 ident: 10.1016/j.neuroimage.2009.12.060_bib39 article-title: Dynamic sensorimotor interactions in locomotion publication-title: Physiol. Rev. doi: 10.1152/physrev.00028.2005 – volume: 280 start-page: 921 year: 1998 ident: 10.1016/j.neuroimage.2009.12.060_bib32 article-title: Knowing where and getting there: a human navigation network publication-title: Science doi: 10.1126/science.280.5365.921 – volume: 14 start-page: 1186 year: 2001 ident: 10.1016/j.neuroimage.2009.12.060_bib34 article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study publication-title: NeuroImage doi: 10.1006/nimg.2001.0905 – volume: 400 start-page: 405 year: 1988 ident: 10.1016/j.neuroimage.2009.12.060_bib2 article-title: Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion publication-title: J. Physiol. doi: 10.1113/jphysiol.1988.sp017128 – volume: 27 start-page: 505 year: 2005 ident: 10.1016/j.neuroimage.2009.12.060_bib31 article-title: Brain activation during execution and motor imagery of novel and skilled sequential hand movements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.04.025 – volume: 37 start-page: 694 year: 2007 ident: 10.1016/j.neuroimage.2009.12.060_bib1 article-title: Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.05.050 – volume: 11 start-page: 1685 year: 1992 ident: 10.1016/j.neuroimage.2009.12.060_bib12 article-title: Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design publication-title: Stat. Med. doi: 10.1002/sim.4780111304 – volume: 15 start-page: 870 year: 2002 ident: 10.1016/j.neuroimage.2009.12.060_bib16 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage doi: 10.1006/nimg.2001.1037 – volume: 3 start-page: 165 year: 1995 ident: 10.1016/j.neuroimage.2009.12.060_bib13 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030303 – volume: 331 start-page: 50 year: 2002 ident: 10.1016/j.neuroimage.2009.12.060_bib43 article-title: Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)00826-1 – volume: 23 start-page: 152 year: 1988 ident: 10.1016/j.neuroimage.2009.12.060_bib17 article-title: Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task publication-title: Ann. Neurol. doi: 10.1002/ana.410230208 – volume: 12 start-page: 3059 year: 2000 ident: 10.1016/j.neuroimage.2009.12.060_bib38 article-title: Ipsilateral involvement of primary motor cortex during motor imagery publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2000.00182.x – volume: 56 start-page: 624 year: 2004 ident: 10.1016/j.neuroimage.2009.12.060_bib4 article-title: Metabolic changes in vestibular and visual cortices in acute vestibular neuritis publication-title: Ann. Neurol. doi: 10.1002/ana.20244 – volume: 104 start-page: 647 year: 1981 ident: 10.1016/j.neuroimage.2009.12.060_bib10 article-title: Locomotor control in macaque monkeys publication-title: Brain doi: 10.1093/brain/104.4.647-a – year: 1998 ident: 10.1016/j.neuroimage.2009.12.060_bib44 – year: 2000 ident: 10.1016/j.neuroimage.2009.12.060_bib40 – volume: 7 start-page: 73 year: 1998 ident: 10.1016/j.neuroimage.2009.12.060_bib7 article-title: Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography publication-title: NeuroImage doi: 10.1006/nimg.1997.0314 – volume: 22 start-page: 1722 year: 2004 ident: 10.1016/j.neuroimage.2009.12.060_bib23 article-title: Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.017 – start-page: 320 year: 1995 ident: 10.1016/j.neuroimage.2009.12.060_bib18 article-title: Cerebral hemisphere activation during human bipedal locomotion publication-title: Hum. Brain Mapp. |
SSID | ssj0009148 |
Score | 2.4877744 |
Snippet | The cortical, cerebellar and brainstem BOLD-signal changes have been identified with fMRI in humans during mental imagery of walking. In this study the whole... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1589 |
SubjectTerms | Aged Brain Brain - blood supply Brain - diagnostic imaging Brain - physiology Brain Mapping - methods Female Fluorodeoxyglucose F18 fMRI Gait disorders Glucose Humans Imagination - physiology Locomotion Locomotion - physiology Magnetic Resonance Imaging - methods Male Medical imaging Middle Aged Neural Pathways - blood supply Neural Pathways - diagnostic imaging Neural Pathways - physiology NMR Nuclear magnetic resonance Oxygen - blood Patients PET Positron-Emission Tomography - methods Studies Walking Walking - physiology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QXwR784befA1uLZJm-iDijqnoIhsMBAJuRUU3abb_r8nbdq9qOyhhV5OS0-Tcz6SL99B6Fi5VGkjWoQ5CIGQ8TXRlsNOC7_sM06tK1i-j2mnR-_7rB8G3MaBVlnFxCJQ26HxY-QnXkpMJIBv-Pnoi_iqUX52NZTQWERLXrrMU7qyfjYT3Y1ouRSOJYTDDYHJU_K7Cr3It0_otaVqpR8ULIQqf01Pf8HPIg2119BqwI_4svzh62jBDTbQ8kOYId9EF8-A_LDnWkzH2L8XzloMGWtY1us5xZf4JeLtV9K-vsVPN12SPzzfYVOXI9xCvfZN96pDQpUEYlhMJ4TblNlIwSZUS1uAMElqHCCPRLiWpc7kAIliTamlsWPCGe7i2Gon8lxxarJkGzUGw4HbRdg6Hhse5ZA3FTXaqJTBcWZSyxTLE9ZEWeUcaYKEuK9k8SErrti7nLnVV7gUMooluLWJotpyVMpozGEjKv_LapkoBDYJsX4O27PaNkCJEiLMaX1Q_W4ZuvRYzhpgE-H6MnRGP8OiBm44HcuMMpFEKcuaaKdsJfXXehIghfC49_-z99FKxU9oRQeoMfmeukOAPRN9VLTtH4OqAOE priority: 102 providerName: ProQuest |
Title | Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909013494 https://dx.doi.org/10.1016/j.neuroimage.2009.12.060 https://www.ncbi.nlm.nih.gov/pubmed/20034578 https://www.proquest.com/docview/1549930808 https://www.proquest.com/docview/745931657 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD70AmMvY_em64oe9uolkiXZ2l6WdcnSjYaStRAYQ-hmyNiS0iSv--07smWXwQaBPVjGMgfLx9L5PqxzAXhlgjTWqUEmAppARHybWV9iY1UM-2TSh9rLdyon1_zTXMz34KyNhYlulcn2Nza9ttapp5-02b9ZLPpfkBkg3CCgIaTFJCv7cMhyJXFqHw7PP0-md7l3KW8i4kSeRYHk0NO4edVpIxc_cfE2ySvjv8E6X-VfUepfLLRGo_FDeJBoJBk2I30Ee2H5GO5dpI3yJ_BuhgSQRJeL7ZrE52KvJwhcq6ZszxsyJF9pOf6WjT98JJejq6y6mJ0T11UlfArX49HV2SRLxRIyJxjfZKWXwlODhzID65HJ5NIFJCC5CgPPg6uQGTHLuecsCBVcGRjzNqiqMiV3Rf4MDparZTgC4kPJXEkrhE_DnXVGCrwunPTCiCoXPSha5WiXMonHghY_dOsy9l3fqTUWulSaMo1q7QHtJG-abBo7yKhW_7qNFkX7ptHk7yD7tpP9Y1btKH3Sfm6dVvZax5R2KkeeXfaAdLdxTcaNFrMMq-1aF1yonEpR9OB5M0u6t42-gByt5PF_jewF3G-9GAb0BA42t9vwEsnRxp7C_utfFNtiXpymhYDn96Pp5ew3E8oREQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8UBvgBHi1qx05iEILBWlq2VlPVSZMQMvFHpE3QDtoK8U_xN3KOk_QFUF_2kEhJdIlyPt_vZ_t8B_Cs8GlhrOpR6dEFIuIbalyOJ6PCtk-eOl9F-U7S4Yn4eCpPd-B3sxcmhFU2PrFy1G5hwxz5i5BKTCXIb_I3F99pqBoVVlebEhrRLA79r584ZFu-Hh1g-z7nfNCfvR_SuqoAtZKLFc1dKh0r8FBFzziE_CS1HpE6Ub7nhLclUghuhHCCe6m8zT3nznhVlkUubJbge6_ArkhwKNOB3Xf9yfF0k-aXibj5TiY0Z0zVsUMxoqzKUHn2Df1EzJMZpiGr1Jh_BcR_Ed4K-AY34UbNWMl-NLFbsOPnt-HquF6TvwNvp8g1SYjuWC9J-C7edQQxchErBL0k--QTywef6eDgAznuz2g5no6IbQsg3oWTS9HgPejMF3P_AIjzObc5KxGpC2GNLVKJ15lNnSxkmcguZI1ytK2TlofaGV91E512rjdqDTU1lWZco1q7wFrJi5i4YwsZ1ehfNxtT0ZVqRJctZF-1sjV5iaRkS-m9prl17USWemPyXSDtY-z-YU2nmPvFeqkzIVXCUpl14X60kvZvQ9ihQIf88P_vfgrXhrPxkT4aTQ4fwfUmOqLH9qCz-rH2j5F0rcyT2tIJfLnszvUHTx9ABg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU28IH5TGOAHeIxWO3ZigxBMdGFlbJqmTaqEkHFsR2Ia7aCtEP8afx3nOE5fAPVlD4mUROco5_N3F_vzHcBz4wtTWzXMhEcIRI9fZ7WTeKpV2PbJCudblu9RsX_GP0zEZAN-p70wgVaZMLEFajezYY58J6QSUznGN3Kn6WgRx6PqzeX3LFSQCiutqZxGNJED_-sn_r7NX49H2NcvGKv2Tt_tZ12FgcwKxheZdIVw1OChzLB26P7zwnr02rnyQ8e9bTCcYDXnjjMvlLfSM-Zqr5rGSG7LHNu9BtfLXNAwxspJuUr4S3nchifyTFKqOhZR5Ja1uSq_fkPEiBkzw4RkmyTzr67xX6Fv6wKrW3Czi13JbjS227Dhp3dg67Bbnb8Lb08w6iSB57Gck_BevOsIestZrBX0kuyST1RWn7Nq9J4c751mzeHJmNi-FOI9OLsS_d2Hzels6h8CcV4yK2mDPttwW1tTCLwubeGEEU0uBlAm5WjbpS8PVTQudOKpneuVWkN1TaUp06jWAdBe8jKm8FhDRiX967RFFUFVo59ZQ_ZVL9uFMTE8WVN6O3W37uBkrlfGPwDSP0YgCKs7Zupny7kuuVA5LUQ5gAfRSvqvDQREjtD86P9tP4MtHFL64_jo4DHcSDSJId2GzcWPpX-C0deiftqaOYEvVz2u_gCnMELW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+versus+imagined+locomotion%3A+A+%5B18F%5D-FDG+PET-fMRI+comparison&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=la+Foug%C3%A8re%2C+Christian&rft.au=Zwergal%2C+Andreas&rft.au=Rominger%2C+Axel&rft.au=F%C3%B6rster%2C+Stefan&rft.date=2010-05-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=50&rft.issue=4&rft.spage=1589&rft.epage=1598&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.12.060&rft.externalDocID=S1053811909013494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |