ErgoReport: a holistic posture assessment framework based on inertial data and deep learning

Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various posture assessment tools assess WRMSD risk but fall short in providing an elucidating risk breakdown to expedite the typical time-consuming er...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 7; pp. 1 - 26
Main Authors Martins, Diogo Renato Dias, Cerqueira, Sara Maria Brito Araújo, Pombeiro, Ana, Ferreira da Silva, Alexandre, Rocha, Ana Maria A. C., Santos, Cristina
Format Journal Article
LanguageEnglish
Published Switzerland Multidisciplinary Digital Publishing Institute (MDPI) 03.04.2025
MDPI AG
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various posture assessment tools assess WRMSD risk but fall short in providing an elucidating risk breakdown to expedite the typical time-consuming ergonomic assessments. Quantifying, automating, but also complementing posture risk assessment become crucial. Thus, we developed a framework for a holistic posture assessment, able to, through inertial data, quantify the ergonomic risk and also qualitatively identify the posture leading to it, using Deep Learning. This innovatively enabled the generation of a report in a graphical user interface (GUI), where the ergonomic score is intuitively associated with the postures adopted, empowering workers to learn which are the riskiest postures, and helping ergonomists and managers to redesign critical work tasks. The continuous posture assessment also considered the previous postures' impact on joint stress through a kinematic wear model. As use case, thirteen subjects replicated harvesting and bricklaying, work tasks of the two activity sectors most affected by WRMSDs, agriculture and construction, and a posture assessment was conducted. Three ergonomists evaluated this report, considering it very useful in improving ergonomic assessments' effectiveness, expeditiousness, and ease of use, with the information easily understandable and reachable. This work was supported, in part, by the Fundação para a Ciência e a Tecnologia (FCT), under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020, and the INTEGRATOR project under Grant 2022.15668.MIT. Sara Cerqueira was supported by the doctoral Grant SFRH/BD/151382/2021, financed by the FCT, under the MIT Portugal Program. Diogo Martins was supported by the doctoral Grant 2024.00513.BD, financed by the FCT.
AbstractList Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various posture assessment tools assess WRMSD risk but fall short in providing an elucidating risk breakdown to expedite the typical time-consuming ergonomic assessments. Quantifying, automating, but also complementing posture risk assessment become crucial. Thus, we developed a framework for a holistic posture assessment, able to, through inertial data, quantify the ergonomic risk and also qualitatively identify the posture leading to it, using Deep Learning. This innovatively enabled the generation of a report in a graphical user interface (GUI), where the ergonomic score is intuitively associated with the postures adopted, empowering workers to learn which are the riskiest postures, and helping ergonomists and managers to redesign critical work tasks. The continuous posture assessment also considered the previous postures' impact on joint stress through a kinematic wear model. As use case, thirteen subjects replicated harvesting and bricklaying, work tasks of the two activity sectors most affected by WRMSDs, agriculture and construction, and a posture assessment was conducted. Three ergonomists evaluated this report, considering it very useful in improving ergonomic assessments' effectiveness, expeditiousness, and ease of use, with the information easily understandable and reachable. This work was supported, in part, by the Fundação para a Ciência e a Tecnologia (FCT), under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020, and the INTEGRATOR project under Grant 2022.15668.MIT. Sara Cerqueira was supported by the doctoral Grant SFRH/BD/151382/2021, financed by the FCT, under the MIT Portugal Program. Diogo Martins was supported by the doctoral Grant 2024.00513.BD, financed by the FCT.
Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various posture assessment tools assess WRMSD risk but fall short in providing an elucidating risk breakdown to expedite the typical time-consuming ergonomic assessments. Quantifying, automating, but also complementing posture risk assessment become crucial. Thus, we developed a framework for a holistic posture assessment, able to, through inertial data, quantify the ergonomic risk and also qualitatively identify the posture leading to it, using Deep Learning. This innovatively enabled the generation of a report in a graphical user interface (GUI), where the ergonomic score is intuitively associated with the postures adopted, empowering workers to learn which are the riskiest postures, and helping ergonomists and managers to redesign critical work tasks. The continuous posture assessment also considered the previous postures’ impact on joint stress through a kinematic wear model. As use case, thirteen subjects replicated harvesting and bricklaying, work tasks of the two activity sectors most affected by WRMSDs, agriculture and construction, and a posture assessment was conducted. Three ergonomists evaluated this report, considering it very useful in improving ergonomic assessments’ effectiveness, expeditiousness, and ease of use, with the information easily understandable and reachable.
Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various posture assessment tools assess WRMSD risk but fall short in providing an elucidating risk breakdown to expedite the typical time-consuming ergonomic assessments. Quantifying, automating, but also complementing posture risk assessment become crucial. Thus, we developed a framework for a holistic posture assessment, able to, through inertial data, quantify the ergonomic risk and also qualitatively identify the posture leading to it, using Deep Learning. This innovatively enabled the generation of a report in a graphical user interface (GUI), where the ergonomic score is intuitively associated with the postures adopted, empowering workers to learn which are the riskiest postures, and helping ergonomists and managers to redesign critical work tasks. The continuous posture assessment also considered the previous postures' impact on joint stress through a kinematic wear model. As use case, thirteen subjects replicated harvesting and bricklaying, work tasks of the two activity sectors most affected by WRMSDs, agriculture and construction, and a posture assessment was conducted. Three ergonomists evaluated this report, considering it very useful in improving ergonomic assessments' effectiveness, expeditiousness, and ease of use, with the information easily understandable and reachable.Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various posture assessment tools assess WRMSD risk but fall short in providing an elucidating risk breakdown to expedite the typical time-consuming ergonomic assessments. Quantifying, automating, but also complementing posture risk assessment become crucial. Thus, we developed a framework for a holistic posture assessment, able to, through inertial data, quantify the ergonomic risk and also qualitatively identify the posture leading to it, using Deep Learning. This innovatively enabled the generation of a report in a graphical user interface (GUI), where the ergonomic score is intuitively associated with the postures adopted, empowering workers to learn which are the riskiest postures, and helping ergonomists and managers to redesign critical work tasks. The continuous posture assessment also considered the previous postures' impact on joint stress through a kinematic wear model. As use case, thirteen subjects replicated harvesting and bricklaying, work tasks of the two activity sectors most affected by WRMSDs, agriculture and construction, and a posture assessment was conducted. Three ergonomists evaluated this report, considering it very useful in improving ergonomic assessments' effectiveness, expeditiousness, and ease of use, with the information easily understandable and reachable.
Audience Academic
Author Martins, Diogo Renato Dias
Cerqueira, Sara Maria Brito Araújo
Santos, Cristina
Ferreira da Silva, Alexandre
Pombeiro, Ana
Rocha, Ana Maria A. C.
AuthorAffiliation 2 Robert Bosch GmbH, 70469 Stuttgart, Germany; ana.pombeiro@pt.bosch.com
4 ALGORITMI Research Centre, Universidade do Minho, 4710-057 Braga, Portugal; arocha@dps.uminho.pt
1 Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; id9484@alunos.uminho.pt (S.M.C.); asilva@dei.uminho.pt (A.F.d.S.)
3 LABBELS–Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
AuthorAffiliation_xml – name: 2 Robert Bosch GmbH, 70469 Stuttgart, Germany; ana.pombeiro@pt.bosch.com
– name: 4 ALGORITMI Research Centre, Universidade do Minho, 4710-057 Braga, Portugal; arocha@dps.uminho.pt
– name: 3 LABBELS–Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
– name: 1 Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; id9484@alunos.uminho.pt (S.M.C.); asilva@dei.uminho.pt (A.F.d.S.)
Author_xml – sequence: 1
  fullname: Martins, Diogo Renato Dias
– sequence: 2
  fullname: Cerqueira, Sara Maria Brito Araújo
– sequence: 3
  fullname: Pombeiro, Ana
– sequence: 4
  fullname: Ferreira da Silva, Alexandre
– sequence: 5
  fullname: Rocha, Ana Maria A. C.
– sequence: 6
  fullname: Santos, Cristina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40218793$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rFDEUhgep2A-98A9IwBt7sTUfk5nEm1JKq4WCIHonhDPJmW3WmWRMZiv-e7NuXbsiuUg4efIm78l7XB2EGLCqXjJ6JoSmbzOXtOVc8SfVEat5vVCc04NH68PqOOcVpVwIoZ5VhzXlTLVaHFVfr9IyfsIppvkdAXIXB59nb8kU87xOSCBnzHnEMJM-wYg_YvpGOsjoSAzEB0yzh4E4mIFAcMQhTmRASMGH5fPqaQ9DxhcP80n15frq8-WHxe3H9zeXF7cLK3k9L5S1vdRa8q5ryrMAGEhsqezqpq-ROsex065tnMNeoKU1cs0brfumd461TpxUN1tdF2FlpuRHSD9NBG9-F2JaGijvtAMaBxIQZK2dtLWSTHFHwTrXKmCaa1u0zrda07ob0dniPMGwJ7q_E_ydWcZ7w5jWrDS2KLx5UEjx-xrzbEafLQ4DBIzrbARTum4Ea0RBX_-DruI6hdKrDaWUVqKRf6klFAc-9LFcbDei5kIJVb6e0aZQZ_-hynA4elsC0_tS3zvw6rHTncU_4SjA6RawKeacsN8hjJpN8MwueIUlWzZZgMkkvC85gmxKg7nRpd9M_AK5bNPh
Cites_doi 10.1109/LRA.2019.2894389
10.1016/j.sna.2022.114150
10.1109/ICARSC52212.2021.9429796
10.3390/ijerph17186479
10.2307/249008
10.1016/j.autcon.2016.11.007
10.1016/j.apergo.2012.11.008
10.3390/s21041324
10.1007/s12525-021-00475-2
10.1016/0003-6870(77)90164-8
10.1080/00140130118050
10.1080/00140139308967940
10.1093/occmed/kqi082
10.1007/978-3-319-20886-2_25
10.3390/ijerph18073734
10.1109/ACCESS.2020.3000673
10.3390/s20205750
10.1016/j.apergo.2007.03.002
10.1016/S0003-6870(01)00006-0
10.1007/978-3-030-89617-1_36
10.5143/JESK.2010.29.6.933
10.3390/s21196377
10.1016/j.berh.2015.08.002
10.5143/JESK.2011.30.4.481
10.1016/j.autcon.2017.08.001
10.1016/j.jmsy.2022.12.011
10.13031/jash.21.10647
10.1080/1463922X.2012.678283
10.1016/0003-6870(93)90080-S
10.1016/j.knosys.2024.112700
10.1109/ICARSC58346.2023.10129578
10.3390/s131012852
10.1080/10803548.2017.1306960
10.3390/s16071033
10.5604/12321966.1152101
10.1016/0021-9290(93)90361-H
10.3390/s20216010
10.1016/j.cie.2024.110037
10.3390/s22155644
10.1016/j.aei.2020.101177
10.1016/S0003-6870(99)00039-3
10.1016/j.rcim.2019.01.013
10.1016/j.apergo.2011.09.011
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID RCLKO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25072282
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DissertationSchool Universidade do Minho
EISSN 1424-8220
EndPage 26
ExternalDocumentID oai_doaj_org_article_da5aea549d5c485182d0acdd78a1929c
PMC11991402
A838072106
40218793
10_3390_s25072282
1822_95491
Genre Journal Article
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia
  grantid: 2022.15668.MIT
– fundername: Fundação para a Ciência e Tecnologia
  grantid: 2024.00513.BD
– fundername: Fundação para a Ciência e Tecnologia
  grantid: UIDB/04436/2020
– fundername: Fundação para a Ciência e Tecnologia
  grantid: SFRH/BD/151382/2021
– fundername: Fundação para a Ciência e Tecnologia
  grantid: UIDP/04436/2020
– fundername: Fundação para a Ciência e a Tecnologia (FCT)
  grantid: UIDB/04436/2020; UIDP/04436/2020; 2022.15668.MIT; SFRH/BD/151382/2021; 2024.00513.BD
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RCLKO
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c524t-8ccf59952bb6187aa1a5e705b46f4e0dd2eb9d76ddef3ec04e292699f6fdd17d3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:07:20 EDT 2025
Thu Aug 21 18:33:00 EDT 2025
Fri Jul 11 19:03:23 EDT 2025
Fri Jul 25 20:57:20 EDT 2025
Wed Aug 06 19:50:14 EDT 2025
Tue Aug 05 03:50:26 EDT 2025
Tue Apr 15 01:23:26 EDT 2025
Tue Jul 01 04:54:06 EDT 2025
Fri Aug 01 16:33:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords inertial-based posture recognition
work-related musculoskeletal disorders
deep learning
ergonomic risk assessment
posture monitoring
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-8ccf59952bb6187aa1a5e705b46f4e0dd2eb9d76ddef3ec04e292699f6fdd17d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0672-2894
0000-0002-8097-5507
0000-0002-2720-4682
0000-0001-8679-2886
0000-0003-0023-7203
0009-0006-3067-3881
OpenAccessLink https://www.proquest.com/docview/3188898365?pq-origsite=%requestingapplication%
PMID 40218793
PQID 3188898365
PQPubID 2032333
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_da5aea549d5c485182d0acdd78a1929c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991402
proquest_miscellaneous_3189463163
proquest_journals_3188898365
gale_infotracmisc_A838072106
gale_infotracacademiconefile_A838072106
pubmed_primary_40218793
crossref_primary_10_3390_s25072282
rcaap_revistas_1822_95491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher Multidisciplinary Digital Publishing Institute (MDPI)
MDPI AG
MDPI
Publisher_xml – name: Multidisciplinary Digital Publishing Institute (MDPI)
– name: MDPI AG
– name: MDPI
References ref_50
Dutta (ref_25) 2012; 43
McAtamney (ref_19) 1993; 24
Nayak (ref_47) 2014; 6
ref_10
Zhao (ref_14) 2020; 46
ref_51
Kong (ref_39) 2015; 21
Sun (ref_45) 1993; 26
Kee (ref_18) 2001; 32
Zhang (ref_12) 2023; 350
Peternel (ref_44) 2019; 58
Janiesch (ref_13) 2021; 31
Vignais (ref_30) 2013; 44
ref_24
Ng (ref_5) 2015; 22
ref_29
David (ref_23) 2008; 39
ref_28
Maurice (ref_32) 2019; 4
Cerqueira (ref_26) 2020; 8
Valero (ref_31) 2017; 83
Kong (ref_40) 2011; 30
Kong (ref_41) 2010; 29
Merlo (ref_35) 2023; 67
Hignett (ref_20) 2000; 31
cr-split#-ref_49.2
Karhu (ref_17) 1977; 8
cr-split#-ref_49.1
Martins (ref_37) 2024; 306
ref_36
Martins (ref_34) 2024; 190
ref_33
ref_38
Yan (ref_27) 2017; 74
Schaub (ref_21) 2013; 14
Davis (ref_48) 1989; 13
Abedi (ref_11) 2020; 29
ref_42
ref_1
ref_3
Waters (ref_22) 1993; 36
ref_2
Bevan (ref_4) 2015; 29
Spielholz (ref_16) 2001; 44
ref_9
Kong (ref_43) 2018; 24
ref_8
David (ref_15) 2005; 55
Khusainov (ref_46) 2013; 13
ref_7
ref_6
References_xml – volume: 4
  start-page: 1132
  year: 2019
  ident: ref_32
  article-title: Activity recognition for ergonomics assessment of industrial tasks with automatic feature selection
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2894389
– ident: ref_9
– volume: 350
  start-page: 114150
  year: 2023
  ident: ref_12
  article-title: Multimodal data-based deep learning model for sitting posture recognition toward office workers’ health promotion
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/j.sna.2022.114150
– ident: ref_51
  doi: 10.1109/ICARSC52212.2021.9429796
– ident: ref_42
  doi: 10.3390/ijerph17186479
– volume: 13
  start-page: 319
  year: 1989
  ident: ref_48
  article-title: Perceived usefulness, perceived ease of use, and user acceptance of information technology
  publication-title: MIS Q.
  doi: 10.2307/249008
– volume: 74
  start-page: 2
  year: 2017
  ident: ref_27
  article-title: Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.11.007
– volume: 44
  start-page: 566
  year: 2013
  ident: ref_30
  article-title: Innovative system for real-time ergonomic feedback in industrial manufacturing
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2012.11.008
– ident: ref_1
– ident: ref_33
  doi: 10.3390/s21041324
– volume: 31
  start-page: 685
  year: 2021
  ident: ref_13
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 8
  start-page: 199
  year: 1977
  ident: ref_17
  article-title: Correcting working postures in industry: A practical method for analysis
  publication-title: Appl. Ergon.
  doi: 10.1016/0003-6870(77)90164-8
– volume: 44
  start-page: 588
  year: 2001
  ident: ref_16
  article-title: Comparison of self-report, video observation and direct measurement methods for upper extremity musculoskeletal disorder physical risk factors
  publication-title: Ergonomics
  doi: 10.1080/00140130118050
– volume: 36
  start-page: 749
  year: 1993
  ident: ref_22
  article-title: Revised NIOSH equation for the design and evaluation of manual lifting tasks
  publication-title: Ergonomics
  doi: 10.1080/00140139308967940
– volume: 55
  start-page: 190
  year: 2005
  ident: ref_15
  article-title: Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders
  publication-title: Occup. Med.
  doi: 10.1093/occmed/kqi082
– ident: #cr-split#-ref_49.1
  doi: 10.1007/978-3-319-20886-2_25
– volume: 29
  start-page: 3830
  year: 2020
  ident: ref_11
  article-title: Modified Deep Learning Method for Body Postures Recognition
  publication-title: Int. J. Adv. Sci. Technol.
– ident: ref_29
  doi: 10.3390/ijerph18073734
– volume: 8
  start-page: 107583
  year: 2020
  ident: ref_26
  article-title: Smart vest for real-time postural biofeedback and ergonomic risk assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000673
– ident: ref_8
  doi: 10.3390/s20205750
– volume: 39
  start-page: 57
  year: 2008
  ident: ref_23
  article-title: The development of the Quick Exposure Check (QEC) for assessing exposure to risk factors for work-related musculoskeletal disorders
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2007.03.002
– ident: ref_38
– volume: 32
  start-page: 357
  year: 2001
  ident: ref_18
  article-title: LUBA: An assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time
  publication-title: Appl. Ergon.
  doi: 10.1016/S0003-6870(01)00006-0
– ident: ref_7
  doi: 10.1007/978-3-030-89617-1_36
– volume: 29
  start-page: 933
  year: 2010
  ident: ref_41
  article-title: Development of an ergonomic checklist for the investigation of work-related lower limb disorders in farming-ALLA: Agricultural lower-limb assessment
  publication-title: J. Ergon. Soc. Korea
  doi: 10.5143/JESK.2010.29.6.933
– ident: ref_3
  doi: 10.3390/s21196377
– volume: 29
  start-page: 356
  year: 2015
  ident: ref_4
  article-title: Economic impact of musculoskeletal disorders (MSDs) on work in Europe
  publication-title: Best Pract. Res. Clin. Rheumatol.
  doi: 10.1016/j.berh.2015.08.002
– volume: 30
  start-page: 481
  year: 2011
  ident: ref_40
  article-title: Development of an ergonomic checklist for the investigation of work-related upper limb disorders in farming-AULA: Agricultural Upper-Limb Assessment
  publication-title: J. Ergon. Soc. Korea
  doi: 10.5143/JESK.2011.30.4.481
– ident: ref_24
– volume: 83
  start-page: 48
  year: 2017
  ident: ref_31
  article-title: Analysis of construction trade worker body motions using a wearable and wireless motion sensor network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.08.001
– volume: 67
  start-page: 111
  year: 2023
  ident: ref_35
  article-title: An ergonomic role allocation framework for dynamic human–robot collaborative tasks
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.12.011
– volume: 21
  start-page: 207
  year: 2015
  ident: ref_39
  article-title: Development of an ergonomics checklist for investigation of work-related whole-body disorders in farming–AWBA: Agricultural whole-body assessment
  publication-title: J. Agric. Saf. Health
  doi: 10.13031/jash.21.10647
– volume: 14
  start-page: 616
  year: 2013
  ident: ref_21
  article-title: The European assembly worksheet
  publication-title: Theor. Issues Ergon. Sci.
  doi: 10.1080/1463922X.2012.678283
– volume: 24
  start-page: 91
  year: 1993
  ident: ref_19
  article-title: RULA: A survey method for the investigation of work-related upper limb disorders
  publication-title: Appl. Ergon.
  doi: 10.1016/0003-6870(93)90080-S
– volume: 306
  start-page: 112700
  year: 2024
  ident: ref_37
  article-title: Seeking optimal and explainable deep learning models for inertial-based posture recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112700
– ident: ref_36
  doi: 10.1109/ICARSC58346.2023.10129578
– volume: 13
  start-page: 12852
  year: 2013
  ident: ref_46
  article-title: Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations
  publication-title: Sensors
  doi: 10.3390/s131012852
– volume: 24
  start-page: 218
  year: 2018
  ident: ref_43
  article-title: Comparisons of ergonomic evaluation tools (ALLA, RULA, REBA and OWAS) for farm work
  publication-title: Int. J. Occup. Saf. Ergon.
  doi: 10.1080/10803548.2017.1306960
– ident: ref_28
  doi: 10.3390/s16071033
– volume: 22
  start-page: 286
  year: 2015
  ident: ref_5
  article-title: Risk factors of musculoskeletal disorders among oil palm fruit harvesters during early harvesting stage
  publication-title: Ann. Agric. Environ. Med.
  doi: 10.5604/12321966.1152101
– ident: #cr-split#-ref_49.2
– ident: ref_6
– volume: 26
  start-page: 229
  year: 1993
  ident: ref_45
  article-title: A method for measuring mechanical work and work efficiency during human activities
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90361-H
– ident: ref_2
  doi: 10.3390/s20216010
– volume: 190
  start-page: 110037
  year: 2024
  ident: ref_34
  article-title: Combining inertial-based ergonomic assessment with biofeedback for posture correction: A narrative review
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110037
– ident: ref_50
– ident: ref_10
  doi: 10.3390/s22155644
– volume: 46
  start-page: 101177
  year: 2020
  ident: ref_14
  article-title: Convolutional long short-term memory model for recognizing construction workers’ postures from wearable inertial measurement units
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101177
– volume: 31
  start-page: 201
  year: 2000
  ident: ref_20
  article-title: Rapid entire body assessment (REBA)
  publication-title: Appl. Ergon.
  doi: 10.1016/S0003-6870(99)00039-3
– volume: 58
  start-page: 69
  year: 2019
  ident: ref_44
  article-title: A selective muscle fatigue management approach to ergonomic human-robot co-manipulation
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.01.013
– volume: 43
  start-page: 645
  year: 2012
  ident: ref_25
  article-title: Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2011.09.011
– volume: 6
  start-page: 257
  year: 2014
  ident: ref_47
  article-title: Impact of data normalization on stock index forecasting
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl.
SSID ssj0023338
Score 2.443981
Snippet Awkward postures are a significant contributor to work-related musculoskeletal disorders (WRMSDs), which represent great social and economic burdens. Various...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
rcaap
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adult
Algorithms
Analysis
Artificial intelligence
Automation
Biomechanical Phenomena
Comparative analysis
Deep Learning
Eletrónica e Informática
Empowerment
Engenharia e Tecnologia
Engenharia Eletrotécnica
Engenharia Médica
Ergonomic risk assessment
Ergonomics
Ergonomics - methods
Female
Humans
Identification and classification
Indústria
inertial-based posture recognition
inovação e infraestruturas
Male
Musculoskeletal diseases
Musculoskeletal Diseases - physiopathology
Neural networks
Posture
Posture - physiology
Posture monitoring
Risk assessment
Saúde de qualidade
Sensors
work-related musculoskeletal disorders
Workers
Title ErgoReport: a holistic posture assessment framework based on inertial data and deep learning
URI http://hdl.handle.net/1822/95491
https://www.ncbi.nlm.nih.gov/pubmed/40218793
https://www.proquest.com/docview/3188898365
https://www.proquest.com/docview/3189463163
https://pubmed.ncbi.nlm.nih.gov/PMC11991402
https://doaj.org/article/da5aea549d5c485182d0acdd78a1929c
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7B9gIHxJvAUhmExKnaxE4chwtq2ZaCtCuEWGkPSJZjTwoSSkof_5-ZNO02IHHJIXYSZ97jTL4BeONNIYMm4UXPoNra46hExdthGepKqiKp-Ofki0s9v0o_X2fX3Ybbuiur3NvE1lCHxvMe-RnJnjGFUTp7v_w94q5R_HW1a6FxGwYMXcYlXfn1TcKlKP_aoQkpSu3P1uTucymN7PmgFqr_X4N85JH-rpYcrLxzyyM3NLsP97r4UYx3DH8At7B-CHePUAUfwffpatHsAut3Yizmza8WjFlwX97tCsX4AMYpZvvSLDEhbxZEU4tPNVda0yPO3cYJVwdxjrgUHQ7r4jFczabfPsxHXROFkc9kuhkZ7ysGFZNlqROTO5e4DPM4K1NdpRiHILEsQq7JzFUKfZyiLKQuikpXISR5UE_gpG5qfAYiI27HeY5JyDANJjZBYWkqdJlDFfIkgtd7strlDivDUo7BtLcH2kcwYYIfJjC8dXuiWS1spy028C0dpa4h8ynFhEaG2PkQcuMoIi18BG-ZXZaVkHjiXfcvAa2T4azs2DCOPmWzOoLT3kxSHt8f3jPcdsq7tjeiFsGrwzBfyQVpNTbbdk6RakXRbARPd_JxeKWU4yayexGYnuT03rk_Uv_80UJ7J1yJRtdHELVCZrnWm9KEtSUaSMvfZJPn_1_zC7gjuUcxVxepUzjZrLb4kgKnTTlstYOOZvZxCIPJ9PLL12G7CUHHi9T8AWhPHVY
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tuwfggHgTWMAgEKdqEztxHCSEunSrln2cdqUekLyO7RQklJQ-hPhT_EZmkrTbgMRtr7Gdx_gbz0w8_gbgjVUZdxLB6y2Rakvre7kX9Dss8bLgIosKOpx8eiZHF_HnSTLZgd_rszCUVrleE-uF2lWW_pEfIPaUypSQycfZjx5VjaLd1XUJjQYWx_7XTwzZFh_GA5zft5wPj84_jXptVYGeTXi87ClrC2LZ4nkuI5UaE5nEp2GSx7KIfegc93nmUol6Xwhvw9jzjMssK2ThXJQ6gfe9AXtoeEPSqHRyFeAJjPca9iIhsvBgge5FyrniHZtXlwb41wBsWcC_szP35taY2ZbZG96FO62_yvoNwO7Bji_vw-0tFsMH8OVoPq0aR_4967NR9b0mf2ZUB3g196y_If9kw3UqGDtE6-lYVbJxSZnd-IiBWRpmSscG3s9Yy_s6fQgX1yLeR7BbVqV_AixBdIVp6iOX-NipUDnhc1V4kxgvXBoF8HotVj1ruDk0xjQke72RfQCHJPBNB6LTri9U86lutVM7uqXBUNklNkYfVHEXGutcqgx6wJkN4B1Nlyalxzmxpj27gO9J9Fm6r4i3H6NnGcB-pycqq-02rydct4vFQl9BO4BXm2YaSQlwpa9WdZ8slgK95wAeN_jYfFJMfhquswGoDnI639xtKb99ranEI8p8w_EBBDXINOWWY1iy0CgDrmkPOHr6_3d-CTdH56cn-mR8dvwMbnGqj0yZTWIfdpfzlX-OTtsyf1FrCoPL61bNP6ejV7Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tuxKCA-JNYAGDQJyqJnbiOEgIdelWLQsrDqzUA5LXsZ2ChJLShxB_jV_HTJJ2G5C47TV2XuNvXsn4G4AXVmXcSQSvt0SqLa3v5V7Q57DEy4KLLCpoc_LHUzk-i99Pk-ke_N7shaGyyo1NrA21qyx9I-8j9pTKlJBJv2jLIj4NR2_nP3rUQYr-tG7aaTQQOfG_fmL6tnwzGeJav-R8dPz53bjXdhjo2YTHq56ytiDGLZ7nMlKpMZFJfBomeSyL2IfOcZ9nLpVoAwrhbRh7nnGZZYUsnItSJ_C6V-AgFUlEOpZOL5I9gblfw2QkRBb2lxhqpJwr3vF_dZuAf53Bjjf8u1LzYGGNme-4wNFNuNHGrmzQgO0W7PnyNlzfYTS8A1-OF7OqCepfswEbV99rImhGPYHXC88GWyJQNtqUhbEj9KSOVSWblFTljbcYmpVhpnRs6P2ctRyws7twdinivQf7ZVX6B8ASRFqYpj5yiY-dCpUTPleFN4nxwqVRAM83YtXzhqdDY35Dstdb2QdwRALfTiBq7fpAtZjpVlO1o0saTJtdYmOMRxV3obHOpcpgNJzZAF7RcmkyALgm1rT7GPA5iUpLDxRx-GMmLQM47MxExbXd4c2C69ZwLPUFzAN4th2mM6kYrvTVup6TxVJgJB3A_QYf21eKKWZDmxuA6iCn887dkfLb15pWPKIqODw_gKAGmaY6c0xRlhplwDX9D44e_v-Zn8JVVEr9YXJ68giucWqVTEVO4hD2V4u1f4zx2yp_UisKg_PL1sw_fKRb7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ErgoReport%3A+A+Holistic+Posture+Assessment+Framework+Based+on+Inertial+Data+and+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Martins%2C+Diogo+R&rft.au=Cerqueira%2C+Sara+M&rft.au=Pombeiro%2C+Ana&rft.au=Alexandre+Ferreira+da+Silva&rft.date=2025-04-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft.spage=2282&rft_id=info:doi/10.3390%2Fs25072282&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon