Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network

To prospectively investigate the factors--including subject, brain hemisphere, study site, field strength, imaging unit vendor, imaging run, and examination visit--affecting the reproducibility of functional magnetic resonance (MR) imaging activations based on a repeated sensory-motor (SM) task. The...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 237; no. 3; p. 781
Main Authors Zou, Kelly H, Greve, Douglas N, Wang, Meng, Pieper, Steven D, Warfield, Simon K, White, Nathan S, Manandhar, Sanjay, Brown, Gregory G, Vangel, Mark G, Kikinis, Ron, Wells, 3rd, William M
Format Journal Article
LanguageEnglish
Published United States 01.12.2005
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:To prospectively investigate the factors--including subject, brain hemisphere, study site, field strength, imaging unit vendor, imaging run, and examination visit--affecting the reproducibility of functional magnetic resonance (MR) imaging activations based on a repeated sensory-motor (SM) task. The institutional review boards of all participating sites approved this HIPAA-compliant study. All subjects gave informed consent. Functional MR imaging data were repeatedly acquired from five healthy men aged 20-29 years who performed the same SM task at 10 sites. Five 1.5-T MR imaging units, four 3.0-T units, and one 4.0-T unit were used. The subjects performed bilateral finger tapping on button boxes with a 3-Hz audio cue and a reversing checkerboard. In a block design, 15-second epochs of alternating baseline and tasks yielded 85 acquisitions per run. Functional MR images were acquired with block-design echo-planar or spiral gradient-echo sequences. Brain activation maps standardized in a unit-sphere for the left and right hemispheres of each subject were constructed. Areas under the receiver operating characteristic curve, intraclass correlation coefficients, multiple regression analysis, and paired Student t tests were used for statistical analyses. Significant factors were subject (P < .005), k-space (P < .005), and field strength (P = .02) for sensitivity and subject (P = .03) and k-space (P = .05) for specificity. At 1.5-T MR imaging, mean sensitivities ranged from 7% to 32% and mean specificities were higher than 99%. At 3.0 T, mean sensitivities and specificities ranged from 42% to 85% and from 96% to 99%, respectively. At 4.0 T, mean sensitivities and specificities ranged from 41% to 73% and from 95% to 99%, respectively. Mean areas under the receiver operating characteristic curve (+/- their standard errors) were 0.77 +/- 0.05 at 1.5 T, 0.90 +/- 0.09 at 3.0 T, and 0.95 +/- 0.02 at 4.0 T, with significant differences between the 1.5- and 3.0-T examinations and between the 1.5- and 4.0-T examinations (P < .01 for both comparisons). Intraclass correlation coefficients ranged from 0.49 to 0.71. MR imaging at 3.0- and 4.0-T yielded higher reproducibility across sites and significantly better results than 1.5-T imaging. The effects of subject, k-space, and field strength on examination reproducibility were significant.
ISSN:0033-8419
DOI:10.1148/radiol.2373041630