Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community
Nitrous oxide (N 2 O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N 2 O emissions. Most agricultural N 2 O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N 2 O by...
Saved in:
Published in | The ISME Journal Vol. 8; no. 3; pp. 660 - 674 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2014
Oxford University Press Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrous oxide (N
2
O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N
2
O emissions. Most agricultural N
2
O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N
2
O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N
2
O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N
2
O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (
nifH
), nitrification (
amoA
) and denitrification (
nirK
,
nirS
and
nosZ
) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N
2
-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the
nosZ
-encoded bacterial N
2
O reductase, suggesting a mechanistic link to the observed reduction in N
2
O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N
2
O emissions from soil. |
---|---|
AbstractList | Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. Nitrous oxide (N 2 O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N 2 O emissions. Most agricultural N 2 O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N 2 O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N 2 O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N 2 O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation ( nifH ), nitrification ( amoA ) and denitrification ( nirK , nirS and nosZ ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N 2 -fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ -encoded bacterial N 2 O reductase, suggesting a mechanistic link to the observed reduction in N 2 O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N 2 O emissions from soil. Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil.Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. |
Author | Kappler, Andreas Scholten, Thomas Schuettler, Stefanie Ruser, Reiner Fromme, Markus Behrens, Sebastian Krause, Hans-Martin Harter, Johannes |
Author_xml | – sequence: 1 givenname: Johannes surname: Harter fullname: Harter, Johannes organization: Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen – sequence: 2 givenname: Hans-Martin surname: Krause fullname: Krause, Hans-Martin organization: Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen – sequence: 3 givenname: Stefanie surname: Schuettler fullname: Schuettler, Stefanie organization: Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen – sequence: 4 givenname: Reiner surname: Ruser fullname: Ruser, Reiner organization: Fertilisation and Soil Matter Dynamics, Institute of Crop Science, University of Hohenheim, Stuttgart – sequence: 5 givenname: Markus surname: Fromme fullname: Fromme, Markus organization: Department of Geography, Soil Science and Geomorphology, University of Tuebingen – sequence: 6 givenname: Thomas surname: Scholten fullname: Scholten, Thomas organization: Department of Geography, Soil Science and Geomorphology, University of Tuebingen – sequence: 7 givenname: Andreas surname: Kappler fullname: Kappler, Andreas organization: Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen – sequence: 8 givenname: Sebastian surname: Behrens fullname: Behrens, Sebastian email: sebastian.behrens@ifg.uni-tuebingen.de organization: Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24067258$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rGzEQxUVJab567bEIeullndFK-3UplNCkBZNckrPQamdtuSsplbQF__eV48SkoT1JML_3eDPvlBw575CQDwwWDHh7YaLFzaIExheshjfkhDUVKxrewNHhX5fH5DTGDUDV1HXzjhyXAuqmrNoTEpbG_TRuRW_KW4rWxGi8i3QM3tLeeL1WoVAW3YADjd5MNHma1khjCrNOc0Cq3EDH2emUhdSPj9ObQm_1tLO1RgffGzVR7a2dnUnbc_J2VFPE90_vGbm_-nZ3-b1Y3l7_uPy6LHRVilS0DHnViw65Ugz7kbNhVKwfe8Gg6tq2U5opwXutAVlX1qAF7zRvcRxaXsHAz8iXve_D3FscNLoU1CQfgrEqbKVXRv49cWYtV_635B0HDnU2-PxkEPyvGWOS-T4ap0k59HOUrAJoALhgGf30Ct34Obi8nmSia7uai0Zk6uPLRIcoz3VkYLEH8tFiDDgeEAZy17d87Fvu-pa57ywQrwTaJLWrIm9kpv_LLvaymP3dCsOLuP9W_AFBDMGk |
CitedBy_id | crossref_primary_10_3390_microorganisms10020247 crossref_primary_10_3389_fenvs_2024_1485043 crossref_primary_10_1016_j_geoderma_2020_114178 crossref_primary_10_1021_acs_jafc_3c00454 crossref_primary_10_1016_j_scitotenv_2020_140266 crossref_primary_10_1016_j_apsoil_2022_104719 crossref_primary_10_1016_j_biortech_2017_10_070 crossref_primary_10_3389_fenvs_2019_00011 crossref_primary_10_1016_j_envint_2019_105085 crossref_primary_10_1016_S1002_0160_21_60084_X crossref_primary_10_3390_agronomy14112620 crossref_primary_10_1007_s42729_021_00651_5 crossref_primary_10_1016_j_jenvman_2023_118115 crossref_primary_10_1016_j_watres_2025_123169 crossref_primary_10_3389_fmicb_2022_980241 crossref_primary_10_1016_j_scitotenv_2016_08_190 crossref_primary_10_1016_j_geoderma_2018_04_022 crossref_primary_10_1007_s00374_022_01644_x crossref_primary_10_1016_j_soilbio_2016_08_001 crossref_primary_10_1021_acs_est_8b06051 crossref_primary_10_1002_ldr_5347 crossref_primary_10_1016_j_scitotenv_2020_142430 crossref_primary_10_1016_j_scitotenv_2021_150588 crossref_primary_10_1007_s11356_021_12744_w crossref_primary_10_3389_fenrg_2023_1092637 crossref_primary_10_1007_s11356_024_33427_2 crossref_primary_10_1080_00103624_2020_1869758 crossref_primary_10_1016_j_scitotenv_2019_06_277 crossref_primary_10_3390_plants14050641 crossref_primary_10_1016_j_ecoleng_2017_04_026 crossref_primary_10_1016_j_fcr_2025_109748 crossref_primary_10_1016_j_envpol_2021_116573 crossref_primary_10_1016_j_scitotenv_2022_157287 crossref_primary_10_1016_j_apsoil_2017_01_003 crossref_primary_10_1016_j_apsoil_2021_104320 crossref_primary_10_1016_j_chemosphere_2017_09_070 crossref_primary_10_1088_1748_9326_11_8_084013 crossref_primary_10_1111_ejss_13428 crossref_primary_10_3389_fpls_2022_927229 crossref_primary_10_3846_16486897_2017_1319375 crossref_primary_10_1038_s41597_023_02867_9 crossref_primary_10_1007_s11356_020_10928_4 crossref_primary_10_3389_fmicb_2023_1174805 crossref_primary_10_1016_j_scitotenv_2022_161306 crossref_primary_10_1007_s42773_024_00386_3 crossref_primary_10_1007_s10705_018_9936_4 crossref_primary_10_1016_j_agee_2014_03_027 crossref_primary_10_1016_j_ecoenv_2023_115438 crossref_primary_10_4315_0362_028X_JFP_19_331 crossref_primary_10_1007_s11356_015_5929_x crossref_primary_10_1016_j_apsoil_2018_11_002 crossref_primary_10_1016_j_jes_2022_04_035 crossref_primary_10_1007_s00374_024_01823_y crossref_primary_10_1016_j_scitotenv_2020_141367 crossref_primary_10_1016_j_agrformet_2024_110370 crossref_primary_10_1016_j_scitotenv_2018_04_278 crossref_primary_10_1007_s11368_021_02967_2 crossref_primary_10_1016_j_soilbio_2018_04_008 crossref_primary_10_1016_j_jfp_2023_100210 crossref_primary_10_1016_j_apsoil_2018_11_006 crossref_primary_10_1016_j_soilbio_2017_11_017 crossref_primary_10_1111_ejss_13494 crossref_primary_10_1016_j_scitotenv_2015_04_005 crossref_primary_10_1038_s41598_017_14225_y crossref_primary_10_1007_s00253_016_7614_5 crossref_primary_10_1007_s11356_018_3636_0 crossref_primary_10_3390_ijms19123772 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_1007_s42729_020_00326_7 crossref_primary_10_1007_s00374_022_01688_z crossref_primary_10_1016_j_biombioe_2018_06_007 crossref_primary_10_1016_j_soilbio_2023_108970 crossref_primary_10_2134_jeq2017_06_0246 crossref_primary_10_1021_acs_est_1c02429 crossref_primary_10_4236_as_2023_143026 crossref_primary_10_1111_gcb_13871 crossref_primary_10_1016_j_jclepro_2023_136650 crossref_primary_10_1016_j_chemosphere_2023_137881 crossref_primary_10_1016_j_scitotenv_2018_08_432 crossref_primary_10_1016_j_scitotenv_2017_08_258 crossref_primary_10_2134_age2019_03_0012 crossref_primary_10_1016_j_jes_2020_09_029 crossref_primary_10_1016_j_envpol_2019_05_144 crossref_primary_10_1016_j_scitotenv_2018_10_001 crossref_primary_10_3390_app11198914 crossref_primary_10_1016_j_jhazmat_2016_02_069 crossref_primary_10_1002_ldr_4337 crossref_primary_10_1016_j_envres_2020_110266 crossref_primary_10_1016_j_agee_2014_12_015 crossref_primary_10_1016_j_envpol_2020_116040 crossref_primary_10_1007_s00374_023_01772_y crossref_primary_10_3390_agronomy10070979 crossref_primary_10_1007_s11676_014_0522_6 crossref_primary_10_1016_j_biortech_2019_03_135 crossref_primary_10_1007_s11104_022_05365_w crossref_primary_10_1016_j_scitotenv_2020_138161 crossref_primary_10_1016_j_agee_2016_05_004 crossref_primary_10_1038_s41598_020_67528_y crossref_primary_10_1002_ldr_3230 crossref_primary_10_1016_j_envint_2020_105757 crossref_primary_10_1016_j_still_2022_105337 crossref_primary_10_1111_sum_12760 crossref_primary_10_1016_j_marpolbul_2022_114351 crossref_primary_10_1016_j_biortech_2019_122140 crossref_primary_10_1016_j_jes_2024_01_019 crossref_primary_10_17660_ActaHortic_2017_1164_32 crossref_primary_10_1016_j_scitotenv_2019_07_151 crossref_primary_10_1155_2021_9964562 crossref_primary_10_1111_gcb_14613 crossref_primary_10_1016_j_jclepro_2020_122003 crossref_primary_10_1007_s11368_019_02400_9 crossref_primary_10_1016_j_scitotenv_2019_06_128 crossref_primary_10_1016_j_scitotenv_2021_148374 crossref_primary_10_1021_es403438n crossref_primary_10_3390_atmos13071145 crossref_primary_10_1016_j_biortech_2022_127721 crossref_primary_10_1016_j_apsoil_2018_12_005 crossref_primary_10_1016_j_scitotenv_2023_165176 crossref_primary_10_3390_agronomy10010109 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_1021_acs_est_8b04935 crossref_primary_10_2478_boku_2018_0013 crossref_primary_10_3389_fmicb_2016_00372 crossref_primary_10_3390_molecules27196659 crossref_primary_10_1016_j_sciaf_2019_e00107 crossref_primary_10_1007_s11368_020_02753_6 crossref_primary_10_1029_2021JG006539 crossref_primary_10_1038_s41598_021_96309_4 crossref_primary_10_1016_j_jfp_2024_100438 crossref_primary_10_3389_fsufs_2022_977121 crossref_primary_10_1016_j_geoderma_2019_04_007 crossref_primary_10_3390_agronomy14020369 crossref_primary_10_1007_s00374_019_01421_3 crossref_primary_10_1016_j_scitotenv_2020_141870 crossref_primary_10_1111_gcb_15211 crossref_primary_10_1016_j_geodrs_2023_e00697 crossref_primary_10_1016_j_spc_2024_08_013 crossref_primary_10_1016_j_watres_2023_119857 crossref_primary_10_1080_09064710_2018_1548644 crossref_primary_10_1007_s10661_016_5342_z crossref_primary_10_3389_fchem_2022_1078170 crossref_primary_10_1021_es5021058 crossref_primary_10_1016_j_soilbio_2019_01_019 crossref_primary_10_1007_s41742_021_00358_6 crossref_primary_10_1016_j_envpol_2022_120731 crossref_primary_10_1016_j_geoderma_2020_114223 crossref_primary_10_1007_s42729_019_00083_2 crossref_primary_10_1007_s00374_020_01479_4 crossref_primary_10_1007_s10533_018_0478_2 crossref_primary_10_1016_j_geoderma_2021_114969 crossref_primary_10_1093_femsec_fiaa180 crossref_primary_10_1016_j_envpol_2020_114869 crossref_primary_10_1093_femsec_fiz066 crossref_primary_10_1007_s11356_017_1116_6 crossref_primary_10_1016_j_jenvman_2023_117456 crossref_primary_10_1007_s11104_018_3619_4 crossref_primary_10_1007_s11368_016_1483_5 crossref_primary_10_1016_j_fcr_2023_108972 crossref_primary_10_3390_microorganisms9071385 crossref_primary_10_1016_j_apsoil_2021_103996 crossref_primary_10_1111_gcbb_12414 crossref_primary_10_1111_gcbb_12898 crossref_primary_10_1016_j_agee_2020_107029 crossref_primary_10_1080_01490451_2017_1303554 crossref_primary_10_1007_s42773_022_00160_3 crossref_primary_10_1111_gcb_14025 crossref_primary_10_1007_s00374_025_01899_0 crossref_primary_10_1016_j_apsoil_2024_105512 crossref_primary_10_1016_j_scitotenv_2024_173454 crossref_primary_10_1111_1462_2920_14470 crossref_primary_10_1021_acs_est_4c03677 crossref_primary_10_1016_j_geoderma_2017_04_022 crossref_primary_10_1016_j_geoderma_2023_116680 crossref_primary_10_3390_w16050632 crossref_primary_10_3390_agronomy12071661 crossref_primary_10_1016_j_agee_2021_107318 crossref_primary_10_1016_j_jhazmat_2021_128060 crossref_primary_10_1016_j_scitotenv_2018_02_046 crossref_primary_10_1016_j_scitotenv_2020_141885 crossref_primary_10_1016_j_scitotenv_2018_10_152 crossref_primary_10_1002_bbb_2334 crossref_primary_10_1007_s00253_016_8018_2 crossref_primary_10_5194_soil_1_707_2015 crossref_primary_10_1007_s44246_025_00198_5 crossref_primary_10_1016_j_soilbio_2017_05_025 crossref_primary_10_1016_j_agee_2016_04_010 crossref_primary_10_1016_j_agrformet_2019_03_001 crossref_primary_10_3390_app10020533 crossref_primary_10_2134_agronj2016_02_0074 crossref_primary_10_1016_j_btre_2020_e00474 crossref_primary_10_1016_j_soilbio_2017_06_025 crossref_primary_10_3390_agriculture14122254 crossref_primary_10_3390_nitrogen6010017 crossref_primary_10_1016_j_soilbio_2016_10_012 crossref_primary_10_1111_gcbb_12878 crossref_primary_10_1016_j_scitotenv_2023_166332 crossref_primary_10_1007_s11157_024_09712_4 crossref_primary_10_1016_j_biortech_2024_130970 crossref_primary_10_1016_j_watres_2024_123075 crossref_primary_10_1371_journal_pone_0284092 crossref_primary_10_3389_fmicb_2018_02529 crossref_primary_10_1016_j_hazl_2023_100091 crossref_primary_10_1071_SR20179 crossref_primary_10_1002_jeq2_20141 crossref_primary_10_1016_j_atmosenv_2014_10_034 crossref_primary_10_7717_peerj_7576 crossref_primary_10_1007_s00374_018_01338_3 crossref_primary_10_1016_j_scitotenv_2020_139987 crossref_primary_10_18307_2018_0415 crossref_primary_10_3390_agronomy10050746 crossref_primary_10_1007_s42729_020_00311_0 crossref_primary_10_1016_j_jenvman_2023_118584 crossref_primary_10_1016_j_scitotenv_2019_05_394 crossref_primary_10_1071_CP20444 crossref_primary_10_1016_j_scitotenv_2020_141607 crossref_primary_10_1016_j_soilbio_2022_108832 crossref_primary_10_1016_j_agee_2021_107473 crossref_primary_10_1016_j_jscs_2020_08_008 crossref_primary_10_1016_j_crsust_2023_100239 crossref_primary_10_1007_s12649_024_02520_5 crossref_primary_10_1007_s11368_021_03035_5 crossref_primary_10_1016_j_scitotenv_2018_10_060 crossref_primary_10_3390_agronomy13092420 crossref_primary_10_1016_j_scitotenv_2017_09_125 crossref_primary_10_1111_1462_2920_16441 crossref_primary_10_1016_j_pedsph_2024_05_008 crossref_primary_10_1016_j_biortech_2023_130214 crossref_primary_10_1016_j_chemosphere_2024_143552 crossref_primary_10_3389_fmicb_2016_01691 crossref_primary_10_1016_j_apsoil_2023_105251 crossref_primary_10_1016_j_jenvman_2018_11_043 crossref_primary_10_1016_j_watres_2022_119226 crossref_primary_10_1093_femsec_fiac134 crossref_primary_10_1016_j_apsoil_2015_08_019 crossref_primary_10_1111_1758_2229_12866 crossref_primary_10_1007_s00248_022_01971_4 crossref_primary_10_1016_j_watres_2018_04_007 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_3389_fpls_2022_1034219 crossref_primary_10_1111_gcbb_12842 crossref_primary_10_1007_s00374_021_01541_9 crossref_primary_10_3389_fmicb_2018_00697 crossref_primary_10_1016_j_soilbio_2015_03_030 crossref_primary_10_1007_s11368_025_03970_7 crossref_primary_10_1007_s42729_022_00824_w crossref_primary_10_1007_s10705_019_09983_2 crossref_primary_10_1111_1462_2920_13795 crossref_primary_10_1111_gcbb_12390 crossref_primary_10_3389_fpls_2022_853449 crossref_primary_10_1111_gcbb_13121 crossref_primary_10_1016_j_cej_2020_124842 crossref_primary_10_1007_s00374_014_0968_x crossref_primary_10_1007_s00374_023_01756_y crossref_primary_10_1021_acs_est_6b02077 crossref_primary_10_1016_j_envres_2022_112891 crossref_primary_10_3107_jesss_7_9 crossref_primary_10_1038_srep39574 crossref_primary_10_1007_s11356_020_08335_w crossref_primary_10_3390_soilsystems4040060 crossref_primary_10_1016_S1002_0160_18_60050_5 crossref_primary_10_1038_s41598_019_38697_2 crossref_primary_10_1111_gcb_17233 crossref_primary_10_1016_S1002_0160_21_60057_7 crossref_primary_10_1007_s42773_023_00252_8 crossref_primary_10_1007_s11368_020_02868_w crossref_primary_10_3390_land13111869 crossref_primary_10_1016_j_soilbio_2019_03_002 crossref_primary_10_1139_cjss_2021_0017 crossref_primary_10_1016_j_jenvman_2024_120399 crossref_primary_10_1111_gcbb_13116 crossref_primary_10_12677_AEP_2018_84035 crossref_primary_10_1007_s00374_019_01403_5 crossref_primary_10_1016_j_apsoil_2024_105814 crossref_primary_10_2139_ssrn_4167923 crossref_primary_10_7717_peerj_7894 crossref_primary_10_1007_s00374_021_01542_8 crossref_primary_10_1016_j_geoderma_2023_116628 crossref_primary_10_1093_femsec_fiae008 crossref_primary_10_1007_s11368_020_02811_z crossref_primary_10_1038_s41598_019_53044_1 crossref_primary_10_1093_femsre_fuv021 crossref_primary_10_1016_j_envpol_2022_120790 crossref_primary_10_3390_app11062605 crossref_primary_10_1128_AEM_02957_18 crossref_primary_10_1016_j_soilbio_2023_109166 crossref_primary_10_1038_s41598_017_03282_y crossref_primary_10_3389_fsoil_2023_1136327 crossref_primary_10_1016_j_apsoil_2019_103395 crossref_primary_10_1016_j_watres_2018_01_014 crossref_primary_10_1016_j_jenvman_2023_117602 crossref_primary_10_3389_fmicb_2018_02566 crossref_primary_10_1111_gcbb_12371 crossref_primary_10_17482_uumfd_983858 crossref_primary_10_1016_j_ijhydene_2020_01_247 crossref_primary_10_1016_j_watres_2024_121387 crossref_primary_10_1016_j_ecolind_2024_112087 crossref_primary_10_1016_j_soilbio_2021_108446 crossref_primary_10_1016_j_jclepro_2020_125031 crossref_primary_10_1016_j_watres_2018_02_067 crossref_primary_10_1186_s12866_021_02313_z crossref_primary_10_1007_s00374_020_01534_0 crossref_primary_10_1016_j_biortech_2020_124567 crossref_primary_10_1016_j_psep_2022_11_014 crossref_primary_10_1016_j_scitotenv_2023_164845 crossref_primary_10_1038_srep16773 crossref_primary_10_1002_sae2_12013 crossref_primary_10_1016_j_scitotenv_2016_12_181 crossref_primary_10_3390_agriculture14020211 crossref_primary_10_3389_fmicb_2023_1292959 crossref_primary_10_1007_s00374_023_01753_1 crossref_primary_10_1021_acs_jafc_8b04351 crossref_primary_10_1007_s11104_025_07278_w crossref_primary_10_1016_j_scitotenv_2021_145630 crossref_primary_10_3390_su13105612 crossref_primary_10_1038_srep11080 crossref_primary_10_3390_agronomy14123052 crossref_primary_10_1016_j_apsoil_2019_08_010 crossref_primary_10_1016_j_fecs_2022_100054 crossref_primary_10_3389_fpls_2022_878424 crossref_primary_10_1016_j_catena_2024_108546 crossref_primary_10_1016_j_soilbio_2021_108212 crossref_primary_10_3390_su15010790 crossref_primary_10_1016_j_soilbio_2024_109423 crossref_primary_10_1016_j_jhazmat_2024_133532 crossref_primary_10_1016_j_gca_2023_01_027 crossref_primary_10_1016_j_watres_2023_119934 crossref_primary_10_1038_s41467_021_24350_y crossref_primary_10_1016_j_envint_2019_105211 crossref_primary_10_1016_j_pedsph_2023_12_008 crossref_primary_10_1016_j_geoderma_2021_115178 crossref_primary_10_1021_acs_langmuir_4c03515 crossref_primary_10_1016_j_jenvman_2017_06_054 crossref_primary_10_1007_s10661_024_12477_6 crossref_primary_10_1080_03650340_2019_1578959 crossref_primary_10_1016_j_apsoil_2019_08_001 crossref_primary_10_1016_j_agee_2016_12_019 crossref_primary_10_1007_s00374_020_01470_z crossref_primary_10_1016_j_ecoleng_2019_105656 crossref_primary_10_1016_j_chemosphere_2018_08_047 crossref_primary_10_1016_j_scitotenv_2024_175728 crossref_primary_10_1016_j_soilbio_2018_09_001 crossref_primary_10_3390_su15086592 crossref_primary_10_1016_j_geoderma_2021_115082 crossref_primary_10_1007_s42773_021_00099_x crossref_primary_10_1016_j_soilbio_2017_08_016 crossref_primary_10_3390_life14121631 crossref_primary_10_1071_SR21097 crossref_primary_10_1016_j_chemosphere_2023_141002 crossref_primary_10_1016_j_scitotenv_2021_146746 crossref_primary_10_1016_j_oneear_2020_07_019 crossref_primary_10_1016_j_biortech_2021_125901 crossref_primary_10_1016_j_fcr_2017_02_006 crossref_primary_10_1016_j_indcrop_2025_120838 crossref_primary_10_1016_j_soilbio_2024_109685 crossref_primary_10_1111_gcbb_12457 crossref_primary_10_1016_j_biortech_2021_125907 crossref_primary_10_1016_j_envpol_2020_115403 crossref_primary_10_3389_fmicb_2017_00630 crossref_primary_10_1016_j_geoderma_2023_116523 crossref_primary_10_1016_j_agee_2023_108535 crossref_primary_10_1016_j_jhazmat_2020_124329 crossref_primary_10_1016_j_soilbio_2018_01_018 crossref_primary_10_1007_s44246_023_00035_7 crossref_primary_10_1016_j_apsoil_2020_103705 crossref_primary_10_1016_j_geoderma_2019_04_025 crossref_primary_10_1007_s00374_019_01404_4 crossref_primary_10_3390_agronomy13041144 crossref_primary_10_1007_s10668_023_04065_4 crossref_primary_10_1007_s11270_016_3228_x crossref_primary_10_1016_j_soilbio_2015_05_021 crossref_primary_10_1128_mSphere_00085_17 crossref_primary_10_3846_16486897_2016_1239582 crossref_primary_10_1186_s40793_023_00496_8 crossref_primary_10_1016_j_jclepro_2021_126259 crossref_primary_10_1016_j_jenvman_2019_109638 crossref_primary_10_2139_ssrn_4142235 crossref_primary_10_1111_1462_2920_13954 crossref_primary_10_1007_s42729_022_00877_x crossref_primary_10_1016_j_agee_2024_109223 crossref_primary_10_1186_s13568_021_01211_x crossref_primary_10_1016_j_geoderma_2015_12_016 crossref_primary_10_1038_srep26425 crossref_primary_10_1016_j_scitotenv_2018_06_166 crossref_primary_10_1007_s11356_023_29819_5 crossref_primary_10_1007_s00374_018_1289_2 crossref_primary_10_1016_j_fcr_2023_109238 crossref_primary_10_1016_j_soilbio_2016_07_016 crossref_primary_10_1021_envhealth_4c00138 crossref_primary_10_2134_jeq2015_04_0179 crossref_primary_10_1038_ismej_2016_187 crossref_primary_10_1016_j_geoderma_2021_115160 crossref_primary_10_1016_j_agee_2023_108688 crossref_primary_10_1016_j_agee_2023_108445 crossref_primary_10_1016_j_catena_2021_105805 crossref_primary_10_1021_acs_est_7b06704 crossref_primary_10_1016_j_cie_2021_107524 crossref_primary_10_1371_journal_pone_0248100 crossref_primary_10_3390_agronomy4040478 crossref_primary_10_1007_s11356_021_13562_w crossref_primary_10_3107_jesss_8_22 crossref_primary_10_1016_j_still_2019_104347 crossref_primary_10_3389_fpls_2024_1501400 crossref_primary_10_1016_j_rser_2022_112529 crossref_primary_10_1016_j_scitotenv_2019_133658 crossref_primary_10_1016_j_scitotenv_2019_07_116 crossref_primary_10_1016_j_scitotenv_2019_134748 crossref_primary_10_1016_j_atmosenv_2017_11_054 crossref_primary_10_3389_fmicb_2024_1290248 crossref_primary_10_3390_agriculture12101706 crossref_primary_10_1016_j_scitotenv_2019_135712 crossref_primary_10_1016_j_chemosphere_2023_139642 crossref_primary_10_1016_j_biortech_2017_07_135 crossref_primary_10_1016_j_jece_2024_111897 crossref_primary_10_1007_s11356_019_06704_8 crossref_primary_10_1016_j_soilbio_2015_08_007 crossref_primary_10_1016_j_scitotenv_2018_08_372 crossref_primary_10_1007_s42729_021_00568_z crossref_primary_10_1061__ASCE_EE_1943_7870_0001232 crossref_primary_10_1080_10643389_2016_1239975 crossref_primary_10_1007_s42832_023_0174_6 crossref_primary_10_1016_j_cej_2019_03_195 crossref_primary_10_1016_j_chemosphere_2021_130460 crossref_primary_10_1016_j_jwpe_2025_107106 crossref_primary_10_1007_s11356_021_12722_2 crossref_primary_10_3389_fsufs_2021_763020 crossref_primary_10_1016_j_geoderma_2016_11_004 crossref_primary_10_1016_j_watres_2022_118962 crossref_primary_10_1016_j_ejsobi_2022_103391 crossref_primary_10_1016_j_scitotenv_2022_161314 crossref_primary_10_1016_j_scitotenv_2016_10_230 crossref_primary_10_1016_j_jwpe_2023_103662 crossref_primary_10_1007_s42729_023_01503_0 crossref_primary_10_1021_acs_est_8b02340 crossref_primary_10_1021_acs_est_1c01976 crossref_primary_10_1007_s11104_023_05913_y crossref_primary_10_1016_j_jhazmat_2020_122086 crossref_primary_10_1016_j_scitotenv_2018_06_009 crossref_primary_10_1016_j_jclepro_2020_124969 crossref_primary_10_1007_s42773_023_00278_y crossref_primary_10_1016_j_biortech_2017_06_154 crossref_primary_10_1007_s11356_020_10151_1 crossref_primary_10_1016_j_eti_2023_103487 crossref_primary_10_1016_j_soilbio_2020_107911 crossref_primary_10_32604_phyton_2022_023225 crossref_primary_10_1016_j_scitotenv_2020_141380 crossref_primary_10_1016_j_agwat_2024_108791 crossref_primary_10_1111_gcbb_70014 crossref_primary_10_1007_s00374_019_01375_6 crossref_primary_10_3389_fpls_2022_998178 crossref_primary_10_1007_s11368_023_03597_6 crossref_primary_10_1016_j_scitotenv_2021_151256 crossref_primary_10_1111_gcbb_13022 crossref_primary_10_1016_j_scitotenv_2016_03_220 crossref_primary_10_5194_soil_11_1_2025 crossref_primary_10_1016_j_scitotenv_2022_158291 crossref_primary_10_1016_j_soilbio_2020_107946 crossref_primary_10_1016_j_scitotenv_2019_135515 crossref_primary_10_1016_j_scitotenv_2025_178541 crossref_primary_10_1016_j_foreco_2020_118447 crossref_primary_10_1007_s00374_020_01462_z crossref_primary_10_2139_ssrn_4094012 crossref_primary_10_1007_s42773_023_00255_5 crossref_primary_10_1016_j_jhazmat_2021_126886 crossref_primary_10_1038_s41598_022_07753_9 crossref_primary_10_1080_03650340_2020_1764943 crossref_primary_10_1016_j_apsoil_2019_01_012 crossref_primary_10_1021_ez5002209 crossref_primary_10_1016_j_still_2020_104868 crossref_primary_10_3389_fenvs_2014_00025 crossref_primary_10_3390_soilsystems3040077 crossref_primary_10_3390_agronomy13030893 crossref_primary_10_1016_j_scitotenv_2022_161231 crossref_primary_10_1016_j_apsoil_2021_104139 crossref_primary_10_1016_j_jclepro_2023_137316 crossref_primary_10_1016_j_ecoleng_2020_106084 crossref_primary_10_3389_fmicb_2022_918134 crossref_primary_10_1016_j_chemosphere_2021_131594 crossref_primary_10_1038_ncomms14873 crossref_primary_10_4028_www_scientific_net_AMR_1001_3 crossref_primary_10_1007_s13762_019_02314_6 crossref_primary_10_1016_j_scitotenv_2023_168041 |
Cites_doi | 10.1080/10409230390267446 10.1038/srep01732 10.1016/j.soilbio.2010.11.005 10.1073/pnas.1211238109 10.1016/S0065-2113(10)05002-9 10.1146/annurev-marine-120709-142814 10.1007/s003740050311 10.1093/molbev/msn146 10.1128/aem.39.1.105-108.1980 10.1126/science.1136674 10.2134/jeq2009.0138 10.1007/s00253-011-3090-0 10.1021/jf102152q 10.1128/aem.44.6.1342-1348.1982 10.1016/j.tibtech.2009.03.009 10.1007/s00374-011-0595-8 10.1128/aem.42.6.1074-1084.1981 10.1098/rstb.2011.0415 10.1071/SR10058 10.1126/science.1150369 10.1016/j.pedobi.2011.07.005 10.1016/B978-0-12-387046-9.00002-5 10.1016/j.soilbio.2005.05.005 10.1126/science.1186120 10.1128/AEM.00608-10 10.1111/j.1744-7429.2007.00310.x 10.1016/j.apsoil.2013.01.006 10.1128/JB.184.11.2963-2968.2002 10.1023/A:1015798428743 10.1002/jpln.200521954 10.1128/AEM.00926-08 10.1007/s11104-010-0464-5 10.1093/nar/29.1.181 10.1111/j.1365-2486.2005.01056.x 10.1016/B978-0-08-047514-1.50017-2 10.1038/ngeo1530 10.1046/j.1365-2389.1998.00156.x 10.1071/SR08036 10.1016/j.ecss.2005.11.021 10.2134/jeq2010.0419 10.1128/aem.55.8.2068-2072.1989 10.1007/s00374-006-0152-z 10.1128/AEM.02484-09 10.1007/s11104-012-1250-3 10.1111/j.1574-6968.1992.tb05086.x 10.1080/01490450600599221 10.1038/ismej.2012.125 10.1111/j.1747-0765.2007.00123.x 10.1373/clinchem.2008.112797 10.1071/SR10009 10.1128/aem.43.4.854-860.1982 10.1007/s00374-010-0484-6 10.2134/jeq2012.0019 10.1071/SR10004 10.1007/s10021-009-9290-0 10.1016/0038-0717(78)90095-0 10.1021/es9031419 10.1128/aem.45.5.1545-1547.1983 10.1016/j.fcr.2011.11.020 10.1089/cmb.2005.12.1047 10.1038/ismej.2008.82 10.2136/sssaj1998.03615995006200060016x 10.2134/jeq2011.0119 10.1038/ismej.2013.34 10.1007/s11104-011-0957-x 10.1111/j.1462-2920.2008.01786.x 10.1029/95JD02270 10.1111/j.1462-2920.2005.00906.x 10.2134/jeq1997.00472425002600020030x 10.1002/rcm.2191 10.1111/j.1365-2486.2010.02334.x 10.1126/science.1176985 10.2136/sssaj1981.03615995004500050008x 10.1016/j.soilbio.2009.03.016 10.1007/s11104-010-0327-0 10.1016/S0038-0717(97)00192-2 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 |
ContentType | Journal Article |
Copyright | International Society for Microbial Ecology 2014 Copyright Nature Publishing Group Mar 2014 Copyright © 2014 International Society for Microbial Ecology 2014 International Society for Microbial Ecology |
Copyright_xml | – notice: International Society for Microbial Ecology 2014 – notice: Copyright Nature Publishing Group Mar 2014 – notice: Copyright © 2014 International Society for Microbial Ecology 2014 International Society for Microbial Ecology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7ST 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY SOI 7X8 5PM |
DOI | 10.1038/ismej.2013.160 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
DocumentTitleAlternate | Microbial nitrogen-cycling in biochar-amended soil |
EISSN | 1751-7370 |
EndPage | 674 |
ExternalDocumentID | PMC3930306 3221360781 24067258 10_1038_ismej_2013_160 |
Genre | Journal Article |
GroupedDBID | --- -Q- 0R~ 123 29J 39C 3V. 4.4 406 53G 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAHBH AANZL AAZLF ABAKF ABAWZ ABDBF ABEJV ABGNP ABJNI ABLJU ABUWG ABXVV ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AENEX AEUYN AEVLU AEXYK AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYLF AOIJS ASPBG ATCPS AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DNIVK DPUIP DU5 EBS EDH EE. EIOEI EJD EMOBN ESX F5P FDQFY FEDTE FERAY FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HYE HZ~ I-F IWAJR JSO KQ8 LK8 M1P M7P MM. NAO NQJWS O9- OK1 PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT ROX RPM SNX SNYQT SOHCF SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TOX TR2 TSG TUS UKHRP ~02 ~8M AAYXX ACSTC AYFIA CITATION JZLTJ PHGZM PHGZT CGR CUY CVF ECGQY ECM EIF GROUPED_DOAJ NPM PJZUB PPXIY PQGLB 7QL 7SN 7ST 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H13 K9. M7N P64 PKEHL PQEST PQUKI PRINS SOI 7X8 5PM |
ID | FETCH-LOGICAL-c524t-81e35b49e3aa1ebf31dfa1bfb41059889ac1a43bcc0e19260c439c38efd8350d3 |
IEDL.DBID | 7X7 |
ISSN | 1751-7362 1751-7370 |
IngestDate | Thu Aug 21 18:16:27 EDT 2025 Fri Jul 11 03:12:45 EDT 2025 Wed Aug 13 04:12:44 EDT 2025 Mon Jul 21 05:48:57 EDT 2025 Tue Jul 01 01:04:18 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Fri Feb 21 02:39:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | soil microbial community biochar O emission nitrous oxide nitrification nitrogen cycle denitrification N greenhouse gas |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-81e35b49e3aa1ebf31dfa1bfb41059889ac1a43bcc0e19260c439c38efd8350d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/ismej2013160.pdf |
PMID | 24067258 |
PQID | 1498963474 |
PQPubID | 536304 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3930306 proquest_miscellaneous_1500700341 proquest_journals_1498963474 pubmed_primary_24067258 crossref_primary_10_1038_ismej_2013_160 crossref_citationtrail_10_1038_ismej_2013_160 springer_journals_10_1038_ismej_2013_160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | Multidisciplinary Journal of Microbial Ecology |
PublicationTitle | The ISME Journal |
PublicationTitleAbbrev | ISME J |
PublicationTitleAlternate | ISME J |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Oxford University Press Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press – name: Nature Publishing Group |
References | Cayuela, Sanchez-Monedero, Roig, Hanley, Enders, Lehmann (CR15) 2013; 3 Hsu, Buckley (CR29) 2008; 3 Cusack, Silver, McDowell (CR19) 2009; 12 Braker, Conrad (CR12) 2011; 75 Wrage, van Groenigen, Oenema, Baggs (CR78) 2005; 19 Richardson, Felgate, Watmough, Thomson, Baggs (CR49) 2009; 27 Zheng, Stewart, Cotrufo (CR84) 2012; 41 Cuhel, Simek, Laughlin, Bru, Cheneby, Watson (CR18) 2010; 76 Ruser, Flessa, Russow, Schmidt, Buegger, Munch (CR53) 2006; 38 Keiluweit, Nico, Johnson, Kleber (CR35) 2010; 44 Augustenborg, Hepp, Kammann, Hagan, Schmidt, Muller (CR4) 2012; 41 Felber, Hüppi, Leifeld, Neftel (CR23) 2012; 9 Ruser, Flessa, Schilling, Steindl, Beese (CR52) 1998; 62 Flessa, Dorsch, Beese (CR25) 1995; 100 Smith (CR58) 1982; 43 Chan, Van Zwieten, Meszaros, Downie, Joseph (CR16) 2008; 46 Reed, Cleveland, Townsend (CR48) 2011 Yanai, Toyota, Okazaki (CR79) 2007; 53 Zhao, Fernald (CR83) 2005; 12 Wang, Zhang, Xiong, Liu, Pan (CR75) 2011; 47 Lehmann, Joseph (CR40) 2009 Philippot, Andert, Jones, Bru, Hallin (CR44) 2011; 17 Ducey, Ippolito, Cantrell, Novak, Lentz (CR22) 2013; 65 Jones, Graf, Bru, Philippot, Hallin (CR31) 2013; 7 Stevens, Laughlin, Malone (CR65) 1998; 30 Wang, Wang, Feng, Zhai, Zhu (CR77) 2011; 90 Papen, Vonberg, Hinkel, Thoene, Rennenberg (CR43) 1989; 55 Bustin, Benes, Garson, Hellemans, Huggett, Kubista (CR13) 2009; 55 Zhang, Liu, Pan, Hussain, Li, Zheng (CR82) 2012; 351 Denman, Brasseur, Chidthaisong, Ciais, Cox, Dickinson (CR20) 2007 Galloway, Townsend, Erisman, Bekunda, Cai, Freney (CR28) 2008; 320 Atkinson, Fitzgerald, Hipps (CR3) 2010; 337 Yang, Weber, Silver (CR80) 2012; 5 Bleakley, Tiedje (CR11) 1982; 44 Reed, Cleveland, Townsend (CR47) 2007; 39 Jones, Stres, Rosenquist, Hallin (CR32) 2008; 25 Blackmer, Bremner (CR9) 1978; 10 Flessa, Wild, Klemisch, Pfadenhauer (CR26) 1998; 49 Van Zwieten, Singh, Joseph, Kimber, Cowie, Chan (CR72) 2009 Baggs, Smales, Bateman (CR5) 2010; 46 Clayton, McTaggart, Parker, Swan, Smith (CR17) 1997; 25 Robertson (CR50) 2007 Philippot, Spor, Henault, Bru, Bizouard, Jones (CR45) 2013; 7 Sohi, Krull, Lopez-Capel, Bol (CR62) 2010; 105 Taghizadeh-Toosi, Clough, Condron, Sherlock, Anderson, Craigie (CR66) 2011; 40 Ravishankara, Daniel, Portmann (CR46) 2009; 326 Kumon, Sasaki, Kato, Takaya, Shoun, Beppu (CR38) 2002; 184 Rondon, Lehmann, Ramirez, Hurtado (CR51) 2007; 43 Zhang, Bian, Pan, Cui, Hussain, Li (CR81) 2012; 127 Forster, Ramaswamy, Artaxo, Berntsen, Betts, Fahey (CR27) 2007 Vitousek, Cassman, Cleveland, Crews, Field, Grimm (CR73) 2002; 57 Singh, Singh, Cowie (CR56) 2010; 48 Duce, LaRoche, Altieri, Arrigo, Baker, Capone (CR21) 2008; 320 Smith, Martino, Cai, Gwary, Janzen, Kumar (CR61) 2007 Khodadad, Zimmerman, Green, Uthandi, Foster (CR36) 2011; 43 Sanford, Wagner, Wu, Chee-Sanford, Thomas, Cruz-Garcia (CR54) 2012; 109 Loftfield, Flessa, Augustin, Beese (CR41) 1997; 26 van Zwieten, Kimber, Morris, Downie, Berger, Rust (CR71) 2010; 48 Sorensen, Tiedje, Firestone (CR63) 1980; 39 Steinbeiss, Gleixner, Antonietti (CR64) 2009; 41 Treusch, Leininger, Kletzin, Schuster, Klenk, Schleper (CR69) 2005; 7 Arp, Stein (CR2) 2003; 38 Thomson, Giannopoulos, Pretty, Baggs, Richardson (CR68) 2012; 367 Smith, Zimmerman (CR60) 1981; 45 Bergaust, Mao, Bakken, Frostegard (CR7) 2010; 76 Anderson, Condron, Clough, Fiers, Stewart, Hill (CR1) 2011; 54 Singh, Hatton, Singh, Cowie, Kathuria (CR57) 2010; 39 Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook (CR33) 2010; 48 Wallenstein, Myrold, Firestone, Voytek (CR74) 2006; 16 Canfield, Glazer, Falkowski (CR14) 2010; 330 Smith (CR59) 1983; 45 Klappenbach, Saxman, Cole, Schmidt (CR37) 2001; 29 Blagodatsky, Kesik, Papen, Butterbach-Bahl (CR10) 2006; 23 Lam, Kuypers (CR39) 2011; 3 Tanimoto, Hatano, Kim, Uchiyama, Shoun (CR67) 1992; 93 Uchimiya, Wartelle, Lima, Klasson (CR70) 2010; 58 Jungkunst, Freibauer, Neufeldt, Bareth (CR34) 2006; 169 Jetten (CR30) 2008; 10 Behrens, Azizian, McMurdie, Sabalowsky, Dolan, Semprini (CR6) 2008; 74 Senga, Mochida, Fukumori, Okamoto, Seike (CR55) 2006; 67 Betlach, Tiedje (CR8) 1981; 42 Flechard, Neftel, Jocher, Ammann, Fuhrer (CR24) 2005; 11 Major, Rondon, Molina, Riha, Lehmann (CR42) 2010; 333 Wang, Pan, Liu, Zhang, Xiong (CR76) 2012; 360 Duce (2024012421255637200_CR21) 2008; 320 Ducey (2024012421255637200_CR22) 2013; 65 Yanai (2024012421255637200_CR79) 2007; 53 Arp (2024012421255637200_CR2) 2003; 38 Singh (2024012421255637200_CR56) 2010; 48 Wallenstein (2024012421255637200_CR74) 2006; 16 Canfield (2024012421255637200_CR14) 2010; 330 Flechard (2024012421255637200_CR24) 2005; 11 Hsu (2024012421255637200_CR29) 2008; 3 Wrage (2024012421255637200_CR78) 2005; 19 Sohi (2024012421255637200_CR62) 2010; 105 Wang (2024012421255637200_CR75) 2011; 47 Jetten (2024012421255637200_CR30) 2008; 10 Jones (2024012421255637200_CR31) 2013; 7 Richardson (2024012421255637200_CR49) 2009; 27 Robertson (2024012421255637200_CR50) 2007 Zheng (2024012421255637200_CR84) 2012; 41 Jones (2024012421255637200_CR32) 2008; 25 Cayuela (2024012421255637200_CR15) 2013; 3 Reed (2024012421255637200_CR48) 2011 Cuhel (2024012421255637200_CR18) 2010; 76 Clayton (2024012421255637200_CR17) 1997; 25 Felber (2024012421255637200_CR23) 2012; 9 Klappenbach (2024012421255637200_CR37) 2001; 29 Smith (2024012421255637200_CR59) 1983; 45 Steinbeiss (2024012421255637200_CR64) 2009; 41 Bustin (2024012421255637200_CR13) 2009; 55 Baggs (2024012421255637200_CR5) 2010; 46 Behrens (2024012421255637200_CR6) 2008; 74 Atkinson (2024012421255637200_CR3) 2010; 337 Yang (2024012421255637200_CR80) 2012; 5 Flessa (2024012421255637200_CR26) 1998; 49 Bergaust (2024012421255637200_CR7) 2010; 76 Galloway (2024012421255637200_CR28) 2008; 320 Stevens (2024012421255637200_CR65) 1998; 30 van Zwieten (2024012421255637200_CR71) 2010; 48 Treusch (2024012421255637200_CR69) 2005; 7 Uchimiya (2024012421255637200_CR70) 2010; 58 Augustenborg (2024012421255637200_CR4) 2012; 41 Sorensen (2024012421255637200_CR63) 1980; 39 Lam (2024012421255637200_CR39) 2011; 3 Loftfield (2024012421255637200_CR41) 1997; 26 Wang (2024012421255637200_CR77) 2011; 90 Betlach (2024012421255637200_CR8) 1981; 42 Papen (2024012421255637200_CR43) 1989; 55 Thomson (2024012421255637200_CR68) 2012; 367 Reed (2024012421255637200_CR47) 2007; 39 Smith (2024012421255637200_CR61) 2007 Bleakley (2024012421255637200_CR11) 1982; 44 Van Zwieten (2024012421255637200_CR72) 2009 Cusack (2024012421255637200_CR19) 2009; 12 Forster (2024012421255637200_CR27) 2007 Khodadad (2024012421255637200_CR36) 2011; 43 Philippot (2024012421255637200_CR45) 2013; 7 Taghizadeh-Toosi (2024012421255637200_CR66) 2011; 40 Joseph (2024012421255637200_CR33) 2010; 48 Smith (2024012421255637200_CR58) 1982; 43 Blackmer (2024012421255637200_CR9) 1978; 10 Chan (2024012421255637200_CR16) 2008; 46 Keiluweit (2024012421255637200_CR35) 2010; 44 Ravishankara (2024012421255637200_CR46) 2009; 326 Smith (2024012421255637200_CR60) 1981; 45 Tanimoto (2024012421255637200_CR67) 1992; 93 Anderson (2024012421255637200_CR1) 2011; 54 Denman (2024012421255637200_CR20) 2007 Major (2024012421255637200_CR42) 2010; 333 Sanford (2024012421255637200_CR54) 2012; 109 Singh (2024012421255637200_CR57) 2010; 39 Ruser (2024012421255637200_CR52) 1998; 62 Wang (2024012421255637200_CR76) 2012; 360 Philippot (2024012421255637200_CR44) 2011; 17 Senga (2024012421255637200_CR55) 2006; 67 Lehmann (2024012421255637200_CR40) 2009 Kumon (2024012421255637200_CR38) 2002; 184 Flessa (2024012421255637200_CR25) 1995; 100 Zhang (2024012421255637200_CR82) 2012; 351 Blagodatsky (2024012421255637200_CR10) 2006; 23 Jungkunst (2024012421255637200_CR34) 2006; 169 Vitousek (2024012421255637200_CR73) 2002; 57 Zhang (2024012421255637200_CR81) 2012; 127 Zhao (2024012421255637200_CR83) 2005; 12 Braker (2024012421255637200_CR12) 2011; 75 Ruser (2024012421255637200_CR53) 2006; 38 Rondon (2024012421255637200_CR51) 2007; 43 |
References_xml | – volume: 57 start-page: 1 year: 2002 end-page: 45 ident: CR73 article-title: Towards an ecological understanding of biological nitrogen fixation publication-title: Biogeochemistry – volume: 16 start-page: 2143 year: 2006 end-page: 2152 ident: CR74 article-title: Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods publication-title: Ecol Appl – volume: 46 start-page: 793 year: 2010 end-page: 805 ident: CR5 article-title: Changing pH shifts the microbial source as well as the magnitude of N O emission from soil publication-title: Biol Fert Soils – volume: 3 start-page: 317 year: 2011 end-page: 345 ident: CR39 article-title: Microbial nitrogen cycling processes in oxygen minimum zones publication-title: Annu Rev Mar Sci – start-page: 499 year: 2007 end-page: 587 ident: CR20 article-title: Coupling between changes in the climate system and biogeochemistry publication-title: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: CR35 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ Sci Technol – volume: 54 start-page: 309 year: 2011 end-page: 320 ident: CR1 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia – volume: 74 start-page: 5695 year: 2008 end-page: 5703 ident: CR6 article-title: Monitoring abundance and expression of " " species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column publication-title: Appl Environ Microbiol – volume: 100 start-page: 23115 year: 1995 end-page: 23124 ident: CR25 article-title: Seasonal variation of N O and CH fluxes in differently managed arable soils in Southern Germany publication-title: J Geophys Res-Atmos – volume: 127 start-page: 153 year: 2012 end-page: 160 ident: CR81 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles publication-title: Field Crop Res – volume: 43 start-page: 385 year: 2011 end-page: 392 ident: CR36 article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biol Biochem – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: CR33 article-title: An investigation into the reactions of biochar in soil publication-title: Aust J Soil Res – volume: 43 start-page: 854 year: 1982 end-page: 860 ident: CR58 article-title: Dissimilatory reduction of NO to NH and N O by a soil sp publication-title: Appl Environ Microbiol – volume: 47 start-page: 887 year: 2011 end-page: 896 ident: CR75 article-title: Effects of biochar addition on N O and CO emissions from two paddy soils publication-title: Biol Fert Soils – volume: 326 start-page: 123 year: 2009 end-page: 125 ident: CR46 article-title: Nitrous oxide (N O): The dominant ozone-depleting substance emitted in the 21st century publication-title: Science – volume: 75 start-page: 33 year: 2011 end-page: 70 ident: CR12 article-title: Diversity, structure, and size of N O-producing microbial communities in soils-What matters for their functioning? publication-title: Adv Appl Microbiol – volume: 11 start-page: 2114 year: 2005 end-page: 2127 ident: CR24 article-title: Bi-directional soil/atmosphere N O exchange over two mown grassland systems with contrasting management practices publication-title: Glob Change Biol – volume: 5 start-page: 538 year: 2012 end-page: 541 ident: CR80 article-title: Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction publication-title: Nature Geosci – volume: 43 start-page: 699 year: 2007 end-page: 708 ident: CR51 article-title: Biological nitrogen fixation by common beans ( L.) increases with bio-char additions publication-title: Biol Fert Soils – volume: 25 start-page: 1955 year: 2008 end-page: 1966 ident: CR32 article-title: Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification publication-title: Mol Biol Evol – volume: 39 start-page: 105 year: 1980 end-page: 108 ident: CR63 article-title: Inhibition by sulfide of nitric and nitrous-oxide reduction by denitrifying publication-title: Appl Environ Microbiol – volume: 40 start-page: 468 year: 2011 end-page: 476 ident: CR66 article-title: Biochar incorporation into pasture soil suppresses nitrous oxide emissions from ruminant urine patches publication-title: J Environ Qual – volume: 67 start-page: 231 year: 2006 end-page: 238 ident: CR55 article-title: N O accumulation in estuarine and coastal sediments: The influence of H S on dissimilatory nitrate reduction publication-title: Estuar Coast Shelf S – volume: 44 start-page: 1342 year: 1982 end-page: 1348 ident: CR11 article-title: Nitrous oxide production by organisms other than nitrifiers and denitrifiers publication-title: Appl Environ Microbiol – start-page: 341 year: 2007 end-page: 364 ident: CR50 article-title: Nitrogen transformation publication-title: Soil Microbiology, Biochemistry and Ecology – volume: 42 start-page: 1074 year: 1981 end-page: 1084 ident: CR8 article-title: Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification publication-title: Appl Environ Microbiol – volume: 9 start-page: 151 year: 2012 end-page: 189 ident: CR23 article-title: Nitrous oxide emission reduction in temperate biochar-amended soils publication-title: Biogeosciences Discuss – volume: 29 start-page: 181 year: 2001 end-page: 184 ident: CR37 article-title: rrndb: the ribosomal RNA operon copy number database publication-title: Nucleic Acids Res – volume: 7 start-page: 1985 year: 2005 end-page: 1995 ident: CR69 article-title: Novel genes for nitrite reductase and -related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling publication-title: Environ Microbiol – volume: 3 start-page: 1732 year: 2013 ident: CR15 article-title: Biochar and denitrification in soils: when, how much and why does biochar reduce N O emissions? publication-title: Sci Rep – volume: 39 start-page: 1224 year: 2010 end-page: 1235 ident: CR57 article-title: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils publication-title: J Environ Qual – volume: 76 start-page: 1870 year: 2010 end-page: 1878 ident: CR18 article-title: Insights into the effect of soil pH on N O and N emissions and denitrifier community size and activity publication-title: Appl Environ Microbiol – volume: 12 start-page: 1299 year: 2009 end-page: 1315 ident: CR19 article-title: Biological nitrogen fixation in two tropical forests: Ecosystem-level patterns and effects of nitrogen fertilization publication-title: Ecosystems – volume: 26 start-page: 560 year: 1997 ident: CR41 article-title: Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide publication-title: J Environ Qual – volume: 53 start-page: 181 year: 2007 end-page: 188 ident: CR79 article-title: Effects of charcoal addition on N O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments publication-title: Soil Sci Plant Nutr – volume: 27 start-page: 388 year: 2009 end-page: 397 ident: CR49 article-title: Mitigating release of the potent greenhouse gas N O from the nitrogen cycle—could enzymic regulation hold the key? publication-title: Trends Biotechnol – year: 2007 ident: CR61 article-title: Agriculture publication-title: In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: CR64 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol Biochem – volume: 333 start-page: 117 year: 2010 end-page: 128 ident: CR42 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil – volume: 320 start-page: 893 year: 2008 end-page: 897 ident: CR21 article-title: Impacts of atmospheric anthropogenic nitrogen on the open ocean publication-title: Science – volume: 169 start-page: 341 year: 2006 end-page: 351 ident: CR34 article-title: Nitrous oxide emissions from agricultural land use in Germany - a synthesis of available annual field data publication-title: J Plant Nutr Soil Sc – volume: 58 start-page: 12350 year: 2010 end-page: 12356 ident: CR70 article-title: Sorption of deisopropylatrazine on broiler litter biochars publication-title: J Agr Food Chem – volume: 65 start-page: 65 year: 2013 end-page: 72 ident: CR22 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Appl Soil Ecol – volume: 76 start-page: 6387 year: 2010 end-page: 6396 ident: CR7 article-title: Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in publication-title: Appl Environ Microbiol – volume: 48 start-page: 516 year: 2010 end-page: 525 ident: CR56 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Aust J Soil Res – volume: 38 start-page: 471 year: 2003 end-page: 495 ident: CR2 article-title: Metabolism of inorganic N compounds by ammonia-oxidizing bacteria publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230390267446 – volume: 30 start-page: 541 year: 1998 end-page: 543 ident: CR65 article-title: Measuring the mole fraction and source of nitrous oxide in the field publication-title: Soil Biol Biochem – volume: 10 start-page: 187 year: 1978 end-page: 191 ident: CR9 article-title: Inhibitory effect of nitrate on reduction of N O to N by soil microorganisms publication-title: Soil Biol Biochem – volume: 109 start-page: 19709 year: 2012 end-page: 19714 ident: CR54 article-title: Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils publication-title: P Natl Acad Sci USA – volume: 90 start-page: 779 year: 2011 end-page: 787 ident: CR77 article-title: Quantitative analyses of ammonia-oxidizing Archaea and Bacteria in the sediments of four nitrogen-rich wetlands in China publication-title: Appl Microbiol Biotechnol – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: CR3 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 45 start-page: 865 year: 1981 end-page: 871 ident: CR60 article-title: Nitrous oxide production by non-denitrifying soil nitrate reducers publication-title: Soil Sci Soc Am J – volume: 367 start-page: 1157 year: 2012 end-page: 1168 ident: CR68 article-title: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions publication-title: Philos T R Soc B – volume: 10 start-page: 2903 year: 2008 end-page: 2909 ident: CR30 article-title: The microbial nitrogen cycle publication-title: Environ Microbiol – volume: 48 start-page: 555 year: 2010 end-page: 568 ident: CR71 article-title: Influence of biochars on flux of N O and CO from Ferrosol publication-title: Aust J Soil Res – year: 2009 ident: CR40 publication-title: Biochar for Environmental Management: Science and Technology – volume: 17 start-page: 1497 year: 2011 end-page: 1504 ident: CR44 article-title: Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N O emissions from soil publication-title: Glob Change Biol – volume: 41 start-page: 1361 year: 2012 end-page: 1370 ident: CR84 article-title: Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils publication-title: J Environ Qual – volume: 55 start-page: 611 year: 2009 end-page: 622 ident: CR13 article-title: The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments publication-title: Clin Chem – volume: 105 start-page: 47 year: 2010 end-page: 82 ident: CR62 article-title: A review of biochar and its use and function in soil publication-title: Adv Agron – volume: 23 start-page: 165 year: 2006 end-page: 176 ident: CR10 article-title: Production of NO and N O by the heterotrophic nitrifier parafaecalis under varying conditions of oxygen saturation publication-title: Geomicrobiol J – start-page: 227 year: 2009 end-page: 249 ident: CR72 article-title: Biochar and emissions of Non-CO greenhouse gases from soil publication-title: Biochar for Environmental Management Science and Technology – volume: 7 start-page: 1609 year: 2013 end-page: 1619 ident: CR45 article-title: Loss in microbial diversity affects nitrogen cycling in soil publication-title: ISME J – volume: 184 start-page: 2963 year: 2002 end-page: 2968 ident: CR38 article-title: Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in publication-title: J Bacteriol – volume: 25 start-page: 252 year: 1997 end-page: 260 ident: CR17 article-title: Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions publication-title: Biol Fert Soils – start-page: 489 year: 2011 end-page: 512 ident: CR48 article-title: Functional ecology of free-living nitrogen fixation: A contemporary perspective publication-title: Annual Review of Ecology, Evolution and Systematics – volume: 360 start-page: 287 year: 2012 end-page: 298 ident: CR76 article-title: Effects of biochar amendment in two soils on greenhouse gas emissions and crop production publication-title: Plant Soil – volume: 351 start-page: 263 year: 2012 end-page: 275 ident: CR82 article-title: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain publication-title: Plant Soil – volume: 12 start-page: 1047 year: 2005 end-page: 1064 ident: CR83 article-title: Comprehensive algorithm for quantitative real-time polymerase chain reaction publication-title: J Comput Biol – volume: 49 start-page: 327 year: 1998 end-page: 335 ident: CR26 article-title: Nitrous oxide and methane fluxes from organic soils under agriculture publication-title: Eur J Soil Sci – volume: 19 start-page: 3298 year: 2005 end-page: 3306 ident: CR78 article-title: A novel dual-isotope labelling method for distinguishing between soil sources of N O publication-title: Rapid Commun Mass Sp – volume: 45 start-page: 1545 year: 1983 end-page: 1547 ident: CR59 article-title: Nitrous oxide production by is correltaed with nitrate reductase activity publication-title: Appl Environ Microbiol – volume: 46 start-page: 437 year: 2008 end-page: 444 ident: CR16 article-title: Using poultry litter biochars as soil amendments publication-title: Aust J Soil Res – volume: 62 start-page: 1587 year: 1998 end-page: 1595 ident: CR52 article-title: Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields publication-title: Soil Sci Soc Am J – volume: 330 start-page: 192 year: 2010 end-page: 196 ident: CR14 article-title: The evolution and future of Earth's nitrogen cycle publication-title: Science – volume: 55 start-page: 2068 year: 1989 end-page: 2072 ident: CR43 article-title: Heterotrophic nitrification by —NO , NO , N O, and NO production in exponentially growing cultures publication-title: Appl Environ Microbiol – volume: 41 start-page: 1203 year: 2012 end-page: 1209 ident: CR4 article-title: Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions publication-title: J Environ Qual – volume: 3 start-page: 124 year: 2008 end-page: 136 ident: CR29 article-title: Evidence for the functional significance of diazotroph community structure in soil publication-title: ISME J – volume: 93 start-page: 177 year: 1992 end-page: 180 ident: CR67 article-title: Co-denitrification by the denitrifying system of the fungus publication-title: FEMS Microbiol Lett – start-page: 105 year: 2007 ident: CR27 article-title: Changes in atmospheric constituents and in radiative forcing publication-title: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 39 start-page: 585 year: 2007 end-page: 592 ident: CR47 article-title: Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests publication-title: Biotropica – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: CR28 article-title: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions publication-title: Science – volume: 38 start-page: 263 year: 2006 end-page: 274 ident: CR53 article-title: Emission of N O, N and CO from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting publication-title: Soil Biol Biochem – volume: 7 start-page: 417 year: 2013 end-page: 426 ident: CR31 article-title: The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink publication-title: ISME J – volume: 3 start-page: 1732 year: 2013 ident: 2024012421255637200_CR15 article-title: Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? publication-title: Sci Rep doi: 10.1038/srep01732 – volume: 43 start-page: 385 year: 2011 ident: 2024012421255637200_CR36 article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.11.005 – volume: 109 start-page: 19709 year: 2012 ident: 2024012421255637200_CR54 article-title: Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1211238109 – volume: 105 start-page: 47 year: 2010 ident: 2024012421255637200_CR62 article-title: A review of biochar and its use and function in soil publication-title: Adv Agron doi: 10.1016/S0065-2113(10)05002-9 – volume-title: Biochar for Environmental Management: Science and Technology year: 2009 ident: 2024012421255637200_CR40 – volume: 3 start-page: 317 year: 2011 ident: 2024012421255637200_CR39 article-title: Microbial nitrogen cycling processes in oxygen minimum zones publication-title: Annu Rev Mar Sci doi: 10.1146/annurev-marine-120709-142814 – volume: 25 start-page: 252 year: 1997 ident: 2024012421255637200_CR17 article-title: Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions publication-title: Biol Fert Soils doi: 10.1007/s003740050311 – volume: 25 start-page: 1955 year: 2008 ident: 2024012421255637200_CR32 article-title: Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification publication-title: Mol Biol Evol doi: 10.1093/molbev/msn146 – volume: 39 start-page: 105 year: 1980 ident: 2024012421255637200_CR63 article-title: Inhibition by sulfide of nitric and nitrous-oxide reduction by denitrifying Pseudomonas fluorescens publication-title: Appl Environ Microbiol doi: 10.1128/aem.39.1.105-108.1980 – volume: 320 start-page: 889 year: 2008 ident: 2024012421255637200_CR28 article-title: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 39 start-page: 1224 year: 2010 ident: 2024012421255637200_CR57 article-title: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils publication-title: J Environ Qual doi: 10.2134/jeq2009.0138 – volume: 90 start-page: 779 year: 2011 ident: 2024012421255637200_CR77 article-title: Quantitative analyses of ammonia-oxidizing Archaea and Bacteria in the sediments of four nitrogen-rich wetlands in China publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3090-0 – volume: 58 start-page: 12350 year: 2010 ident: 2024012421255637200_CR70 article-title: Sorption of deisopropylatrazine on broiler litter biochars publication-title: J Agr Food Chem doi: 10.1021/jf102152q – volume: 44 start-page: 1342 year: 1982 ident: 2024012421255637200_CR11 article-title: Nitrous oxide production by organisms other than nitrifiers and denitrifiers publication-title: Appl Environ Microbiol doi: 10.1128/aem.44.6.1342-1348.1982 – volume: 27 start-page: 388 year: 2009 ident: 2024012421255637200_CR49 article-title: Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymic regulation hold the key? publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2009.03.009 – volume: 47 start-page: 887 year: 2011 ident: 2024012421255637200_CR75 article-title: Effects of biochar addition on N2O and CO2 emissions from two paddy soils publication-title: Biol Fert Soils doi: 10.1007/s00374-011-0595-8 – volume: 42 start-page: 1074 year: 1981 ident: 2024012421255637200_CR8 article-title: Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification publication-title: Appl Environ Microbiol doi: 10.1128/aem.42.6.1074-1084.1981 – volume: 367 start-page: 1157 year: 2012 ident: 2024012421255637200_CR68 article-title: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions publication-title: Philos T R Soc B doi: 10.1098/rstb.2011.0415 – volume: 48 start-page: 516 year: 2010 ident: 2024012421255637200_CR56 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Aust J Soil Res doi: 10.1071/SR10058 – volume: 320 start-page: 893 year: 2008 ident: 2024012421255637200_CR21 article-title: Impacts of atmospheric anthropogenic nitrogen on the open ocean publication-title: Science doi: 10.1126/science.1150369 – volume: 54 start-page: 309 year: 2011 ident: 2024012421255637200_CR1 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 75 start-page: 33 year: 2011 ident: 2024012421255637200_CR12 article-title: Diversity, structure, and size of N2O-producing microbial communities in soils-What matters for their functioning? publication-title: Adv Appl Microbiol doi: 10.1016/B978-0-12-387046-9.00002-5 – volume: 38 start-page: 263 year: 2006 ident: 2024012421255637200_CR53 article-title: Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.05.005 – volume: 330 start-page: 192 year: 2010 ident: 2024012421255637200_CR14 article-title: The evolution and future of Earth’s nitrogen cycle publication-title: Science doi: 10.1126/science.1186120 – start-page: 227 volume-title: Biochar for Environmental Management Science and Technology year: 2009 ident: 2024012421255637200_CR72 – volume: 76 start-page: 6387 year: 2010 ident: 2024012421255637200_CR7 article-title: Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00608-10 – volume: 39 start-page: 585 year: 2007 ident: 2024012421255637200_CR47 article-title: Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests publication-title: Biotropica doi: 10.1111/j.1744-7429.2007.00310.x – start-page: 499 volume-title: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 2024012421255637200_CR20 – volume: 65 start-page: 65 year: 2013 ident: 2024012421255637200_CR22 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2013.01.006 – volume: 184 start-page: 2963 year: 2002 ident: 2024012421255637200_CR38 article-title: Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in Streptomyces antibioticus publication-title: J Bacteriol doi: 10.1128/JB.184.11.2963-2968.2002 – volume: 57 start-page: 1 year: 2002 ident: 2024012421255637200_CR73 article-title: Towards an ecological understanding of biological nitrogen fixation publication-title: Biogeochemistry doi: 10.1023/A:1015798428743 – volume: 169 start-page: 341 year: 2006 ident: 2024012421255637200_CR34 article-title: Nitrous oxide emissions from agricultural land use in Germany - a synthesis of available annual field data publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.200521954 – start-page: 105 volume-title: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 2024012421255637200_CR27 – volume: 74 start-page: 5695 year: 2008 ident: 2024012421255637200_CR6 article-title: Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00926-08 – volume: 337 start-page: 1 year: 2010 ident: 2024012421255637200_CR3 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 29 start-page: 181 year: 2001 ident: 2024012421255637200_CR37 article-title: rrndb: the ribosomal RNA operon copy number database publication-title: Nucleic Acids Res doi: 10.1093/nar/29.1.181 – volume: 11 start-page: 2114 year: 2005 ident: 2024012421255637200_CR24 article-title: Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2005.01056.x – start-page: 341 volume-title: Soil Microbiology, Biochemistry and Ecology year: 2007 ident: 2024012421255637200_CR50 doi: 10.1016/B978-0-08-047514-1.50017-2 – volume: 5 start-page: 538 year: 2012 ident: 2024012421255637200_CR80 article-title: Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction publication-title: Nature Geosci doi: 10.1038/ngeo1530 – volume: 49 start-page: 327 year: 1998 ident: 2024012421255637200_CR26 article-title: Nitrous oxide and methane fluxes from organic soils under agriculture publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.1998.00156.x – volume: 38 start-page: 471 year: 2003 ident: 2024012421255637200_CR2 article-title: Metabolism of inorganic N compounds by ammonia-oxidizing bacteria publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230390267446 – volume: 46 start-page: 437 year: 2008 ident: 2024012421255637200_CR16 article-title: Using poultry litter biochars as soil amendments publication-title: Aust J Soil Res doi: 10.1071/SR08036 – volume-title: In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 2024012421255637200_CR61 – volume: 9 start-page: 151 year: 2012 ident: 2024012421255637200_CR23 article-title: Nitrous oxide emission reduction in temperate biochar-amended soils publication-title: Biogeosciences Discuss – volume: 67 start-page: 231 year: 2006 ident: 2024012421255637200_CR55 article-title: N2O accumulation in estuarine and coastal sediments: The influence of H2S on dissimilatory nitrate reduction publication-title: Estuar Coast Shelf S doi: 10.1016/j.ecss.2005.11.021 – volume: 40 start-page: 468 year: 2011 ident: 2024012421255637200_CR66 article-title: Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches publication-title: J Environ Qual doi: 10.2134/jeq2010.0419 – volume: 55 start-page: 2068 year: 1989 ident: 2024012421255637200_CR43 article-title: Heterotrophic nitrification by Alcaligenes faecalis—NO2−, NO3−, N2O, and NO production in exponentially growing cultures publication-title: Appl Environ Microbiol doi: 10.1128/aem.55.8.2068-2072.1989 – volume: 43 start-page: 699 year: 2007 ident: 2024012421255637200_CR51 article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions publication-title: Biol Fert Soils doi: 10.1007/s00374-006-0152-z – volume: 76 start-page: 1870 year: 2010 ident: 2024012421255637200_CR18 article-title: Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02484-09 – start-page: 489 volume-title: Annual Review of Ecology, Evolution and Systematics year: 2011 ident: 2024012421255637200_CR48 – volume: 360 start-page: 287 year: 2012 ident: 2024012421255637200_CR76 article-title: Effects of biochar amendment in two soils on greenhouse gas emissions and crop production publication-title: Plant Soil doi: 10.1007/s11104-012-1250-3 – volume: 93 start-page: 177 year: 1992 ident: 2024012421255637200_CR67 article-title: Co-denitrification by the denitrifying system of the fungus Fusarium oxysporum publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1992.tb05086.x – volume: 23 start-page: 165 year: 2006 ident: 2024012421255637200_CR10 article-title: Production of NO and N2O by the heterotrophic nitrifier Alcaligenes faecalis parafaecalis under varying conditions of oxygen saturation publication-title: Geomicrobiol J doi: 10.1080/01490450600599221 – volume: 7 start-page: 417 year: 2013 ident: 2024012421255637200_CR31 article-title: The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink publication-title: ISME J doi: 10.1038/ismej.2012.125 – volume: 53 start-page: 181 year: 2007 ident: 2024012421255637200_CR79 article-title: Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2007.00123.x – volume: 55 start-page: 611 year: 2009 ident: 2024012421255637200_CR13 article-title: The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments publication-title: Clin Chem doi: 10.1373/clinchem.2008.112797 – volume: 48 start-page: 501 year: 2010 ident: 2024012421255637200_CR33 article-title: An investigation into the reactions of biochar in soil publication-title: Aust J Soil Res doi: 10.1071/SR10009 – volume: 43 start-page: 854 year: 1982 ident: 2024012421255637200_CR58 article-title: Dissimilatory reduction of NO2− to NH4+ and N2O by a soil Citrobacter sp publication-title: Appl Environ Microbiol doi: 10.1128/aem.43.4.854-860.1982 – volume: 46 start-page: 793 year: 2010 ident: 2024012421255637200_CR5 article-title: Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil publication-title: Biol Fert Soils doi: 10.1007/s00374-010-0484-6 – volume: 41 start-page: 1361 year: 2012 ident: 2024012421255637200_CR84 article-title: Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils publication-title: J Environ Qual doi: 10.2134/jeq2012.0019 – volume: 48 start-page: 555 year: 2010 ident: 2024012421255637200_CR71 article-title: Influence of biochars on flux of N2O and CO2 from Ferrosol publication-title: Aust J Soil Res doi: 10.1071/SR10004 – volume: 12 start-page: 1299 year: 2009 ident: 2024012421255637200_CR19 article-title: Biological nitrogen fixation in two tropical forests: Ecosystem-level patterns and effects of nitrogen fertilization publication-title: Ecosystems doi: 10.1007/s10021-009-9290-0 – volume: 10 start-page: 187 year: 1978 ident: 2024012421255637200_CR9 article-title: Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(78)90095-0 – volume: 44 start-page: 1247 year: 2010 ident: 2024012421255637200_CR35 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ Sci Technol doi: 10.1021/es9031419 – volume: 45 start-page: 1545 year: 1983 ident: 2024012421255637200_CR59 article-title: Nitrous oxide production by Escherichia coli is correltaed with nitrate reductase activity publication-title: Appl Environ Microbiol doi: 10.1128/aem.45.5.1545-1547.1983 – volume: 127 start-page: 153 year: 2012 ident: 2024012421255637200_CR81 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles publication-title: Field Crop Res doi: 10.1016/j.fcr.2011.11.020 – volume: 12 start-page: 1047 year: 2005 ident: 2024012421255637200_CR83 article-title: Comprehensive algorithm for quantitative real-time polymerase chain reaction publication-title: J Comput Biol doi: 10.1089/cmb.2005.12.1047 – volume: 3 start-page: 124 year: 2008 ident: 2024012421255637200_CR29 article-title: Evidence for the functional significance of diazotroph community structure in soil publication-title: ISME J doi: 10.1038/ismej.2008.82 – volume: 62 start-page: 1587 year: 1998 ident: 2024012421255637200_CR52 article-title: Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1998.03615995006200060016x – volume: 41 start-page: 1203 year: 2012 ident: 2024012421255637200_CR4 article-title: Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions publication-title: J Environ Qual doi: 10.2134/jeq2011.0119 – volume: 7 start-page: 1609 year: 2013 ident: 2024012421255637200_CR45 article-title: Loss in microbial diversity affects nitrogen cycling in soil publication-title: ISME J doi: 10.1038/ismej.2013.34 – volume: 351 start-page: 263 year: 2012 ident: 2024012421255637200_CR82 article-title: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain publication-title: Plant Soil doi: 10.1007/s11104-011-0957-x – volume: 10 start-page: 2903 year: 2008 ident: 2024012421255637200_CR30 article-title: The microbial nitrogen cycle publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01786.x – volume: 100 start-page: 23115 year: 1995 ident: 2024012421255637200_CR25 article-title: Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in Southern Germany publication-title: J Geophys Res-Atmos doi: 10.1029/95JD02270 – volume: 7 start-page: 1985 year: 2005 ident: 2024012421255637200_CR69 article-title: Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00906.x – volume: 26 start-page: 560 year: 1997 ident: 2024012421255637200_CR41 article-title: Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide publication-title: J Environ Qual doi: 10.2134/jeq1997.00472425002600020030x – volume: 19 start-page: 3298 year: 2005 ident: 2024012421255637200_CR78 article-title: A novel dual-isotope labelling method for distinguishing between soil sources of N2O publication-title: Rapid Commun Mass Sp doi: 10.1002/rcm.2191 – volume: 17 start-page: 1497 year: 2011 ident: 2024012421255637200_CR44 article-title: Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2010.02334.x – volume: 326 start-page: 123 year: 2009 ident: 2024012421255637200_CR46 article-title: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century publication-title: Science doi: 10.1126/science.1176985 – volume: 45 start-page: 865 year: 1981 ident: 2024012421255637200_CR60 article-title: Nitrous oxide production by non-denitrifying soil nitrate reducers publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1981.03615995004500050008x – volume: 41 start-page: 1301 year: 2009 ident: 2024012421255637200_CR64 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.03.016 – volume: 333 start-page: 117 year: 2010 ident: 2024012421255637200_CR42 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil doi: 10.1007/s11104-010-0327-0 – volume: 30 start-page: 541 year: 1998 ident: 2024012421255637200_CR65 article-title: Measuring the mole fraction and source of nitrous oxide in the field publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(97)00192-2 – volume: 16 start-page: 2143 year: 2006 ident: 2024012421255637200_CR74 article-title: Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods publication-title: Ecol Appl doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 |
SSID | ssj0057667 |
Score | 2.5870154 |
Snippet | Nitrous oxide (N
2
O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N
2
O emissions. Most... Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 660 |
SubjectTerms | 631/326/171/1818 631/326/2565/855 631/326/47 Anthropogenic factors Biomedical and Life Sciences Charcoal Charcoal - chemistry Charcoal - metabolism Community structure Crop yield Denitrification Ecology Emissions Evolutionary Biology Farm buildings Fertilizer application Fertilizers Greenhouse gases High temperature Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Microorganisms Nitrification Nitrogen - chemistry Nitrogen cycle Nitrogen fixation Nitrous oxide Nitrous Oxide - metabolism Original original-article Pyrolysis Saturated soils Soil - chemistry Soil amendment Soil Microbiology Soil quality |
Title | Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community |
URI | https://link.springer.com/article/10.1038/ismej.2013.160 https://www.ncbi.nlm.nih.gov/pubmed/24067258 https://www.proquest.com/docview/1498963474 https://www.proquest.com/docview/1500700341 https://pubmed.ncbi.nlm.nih.gov/PMC3930306 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQuiDeBUhkJCS5Wk7Wzdk4IUKsKoS1CrbS3yK_QoG5Smu1h_z0zzgOWAseVR7uJv1nP5_H4G4DX6ASpCsJx8iYuvZ9xM8ddihEa472tlKxitcVifnwmPy3z5ZBw64ayynFNjAu1bx3lyA-QyWt0Fqnku8sfnLpG0enq0ELjNuySdBmVdKnltOFCKh07yGKEzLjClXoUbRT6oO5W4TtVdgnKr2wHpRtM82bB5B-npjEYHd2HewOLZO972B_ArdA8hDt9X8nNI7j63HdEYIvZCaOGbpQS6xhdJWG2bummFTermPxmXVtfsHXLkAiyXkz2-iow03hGIY9gY20VRxfcbegi5Te2qqN8Ez6B6--XrDeP4ezo8PTjMR-aK3CXz-Sa6ywgFrIIwpgs2EpkvjKZrSzVfRZaF8ZlRgrrXBqQBc5Th9TFCR0qjyCmXjyBnaZtwjNgMrUZzbWVXuAXpsbluU9NoXymrBI-AT7ObukG5XFqgHFRxhNwocuIRklolIhGAm8m-8tec-OflnsjWOXw3-vKX56SwKtpGOeajkJME9prtMlJ5yjFEJ7A0x7b6aeI46hZrhNQW6hPBqTIvT3S1OdRmVsUgvZgCbwd_eO3x_rrGzz__xu8gLtoKfuitz3YQTcIL5EFre1-dPV92P1wuPjyFT-dnix_Au4yCtk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEgovVJHY2yQEhHq22dAkItVJvwbGdNqiblGYrtH-K38iMkywsBW4923Fsz2fPZ3seAE8RBH5sheaEJi6NCbka4ylFiQT1fVHGsnTWFtl4si_fH0QHa_Bj8IUhs8phT3QbtWk03ZFvIpNPECwylq9OvnHKGkWvq0MKjQ4Wu3bxHY9s7cuddyjfZ2G4vbX3dsL7rAJcR6Gc8ySw2AmZWqFUYItSBKZUQVEWZPCYJkmqdKCkKLT2LdKfsa9RZ2uR2NJg730jsN1LsC4FHmVGsP5mK_v0edj7kby7nLWokwMeo24YwkSKZLNqZ_Yr2ZIJutFZVYPnuO15E80_3mmd-tu-Dtd63sped0C7AWu2vgmXu0yWi1twOu1yMLAs_MgohRxdwrWMnFdYUTXk28XVzF23s7apjtm8YUg9WRe-9uzUMlUbRkqWgMKa0pVmXC_IdfOQzSoXMAp7oDuPlvniNuxfyMTfgVHd1PYeMOkXAc11IY3ABn2lo8j4Ko1NEBexMB7wYXZz3cc6p5Qbx7l7cxdJ7qSRkzRylIYHz5f1T7ooH_-suTEIK-9Xe5v_wqYHT5bFONf0-KJq25xhnYgiK_lIGjy428l2-StiVXEYJR7EK1JfVqAY4KsldXXkYoGLVNCpz4MXAz5-69ZfR3D__yN4DFcmex-m-XQn230AV_Er2ZncbcAIIWEfIgebF4964DP4ctFr7SfYXkci |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEWjASCC7WJrGzTg4IoZZVS6uFA5X2FhzbgUXdpDRbof1r_DpmnAcsBW4923Fsz2fPZ3seAM8QBKFywnBCE5fWxlyP8ZSiRYr6viiVLL21xXS8fyzfzZLZBvzofWHIrLLfE_1GbWtDd-QjZPIpgkUqOSo7s4gPe5PXp984ZZCil9Y-nUYLkUO3-o7Ht-bVwR7K-nkcT95-3N3nXYYBbpJYLnkaOeyQzJzQOnJFKSJb6qgoCzJ-zNI00ybSUhTGhA6p0Dg0qL-NSF1pcSShFdjuFbiqRBLRGlOz4bCHNN5nr0XtHHGFWqIPGCnS0bxZuK9kVSbobmddIV5guReNNf94sfWKcHILbnYMlr1pIXcbNlx1B661OS1Xd-HsqM3GwKbxe0bJ5Og6rmHkxsKKeU1eXlwv_MU7a-r5CVvWDEkoawPZnp85pivLSN0SZFhd-tIpNyty4vzMFnMfOgp7YFrfluXqHhxfyrTfh82qrtwDYDIsIprrQlqBDYbaJIkNdaZspAolbAC8n93cdFHPKfnGSe5f30Wae2nkJI0cpRHAi6H-aRvv4581t3th5d26b_JfKA3g6VCMc03PMLpy9TnWSSjGUoj0IYCtVrbDr4hfqThJA1BrUh8qUDTw9ZJq_sVHBReZoPNfAC97fPzWrb-O4OH_R_AEruMKy48OpoeP4AZ-JFvbu23YRES4HSRjy-KxRz2DT5e9zH4CTBBJ8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+N2O+emissions+from+biochar-amended+soil+to+the+structure+and+function+of+the+N-cycling+microbial+community&rft.jtitle=The+ISME+Journal&rft.au=Harter%2C+Johannes&rft.au=Krause%2C+Hans-martin&rft.au=Schuettler%2C+Stefanie&rft.au=Ruser%2C+Reiner&rft.date=2014-03-01&rft.pub=Oxford+University+Press&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=8&rft.issue=3&rft.spage=660&rft_id=info:doi/10.1038%2Fismej.2013.160&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3221360781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon |