Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions

The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 39; no. 1; pp. 347 - 358
Main Authors Tang, Beverly T, Fonte, Tim A, Chan, Frandics P, Tsao, Philip S, Feinstein, Jeffrey A, Taylor, Charles A
Format Journal Article
LanguageEnglish
Published Boston Boston : Springer US 01.01.2011
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm², and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.
AbstractList The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8±4.0 to 51.8±6.7 dynes/cm2, and OSI was found to decrease from 0.094±0.016 to 0.081±0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.
The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 plus or minus 4.0 to 51.8 plus or minus 6.7dynes/cm super(2), and OSI was found to decrease from 0.094 plus or minus 0.016 to 0.081 plus or minus 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.
The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm^sup 2^, and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.[PUBLICATION ABSTRACT]
The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8±4.0 to 51.8±6.7 dynes/cm2, and OSI was found to decrease from 0.094±0.016 to 0.081±0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8±4.0 to 51.8±6.7 dynes/cm2, and OSI was found to decrease from 0.094±0.016 to 0.081±0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.
The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm², and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.
The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm 2 , and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions ( p  < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.
Author Tsao, Philip S
Chan, Frandics P
Taylor, Charles A
Fonte, Tim A
Feinstein, Jeffrey A
Tang, Beverly T
Author_xml – sequence: 1
  fullname: Tang, Beverly T
– sequence: 2
  fullname: Fonte, Tim A
– sequence: 3
  fullname: Chan, Frandics P
– sequence: 4
  fullname: Tsao, Philip S
– sequence: 5
  fullname: Feinstein, Jeffrey A
– sequence: 6
  fullname: Taylor, Charles A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20640512$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URD_gD-ACFhdOgRnHH_GxWgqLVAkE3bPlTSZbV4lT7ESi_z1ebSukHgqH0Rzm955G752yozhFYuw1wgcEMB8zgqxtBQhlhKzwGTtBZerK6kYfsRMAC5W2Wh6z05xvABCbWr1gxwK0BIXihHVX14mo-hRGijlM0Q98TePU3UU_hjbzEPl8TXy9jD7y78swFiTd8fM0UwqU-SZ2lPgPynOIO-5jxy9-U2pDJr6aYhfm4plfsue9HzK9ut9nbPP54mq1ri6_ffm6Or-sWiXkXBnZmb5G3AqldSuo24LU4AlMI7z3nfaeyrVMo2ujmro3_VYpb6yS2MhtfcbeH3xv0_RrKT-5MeSWhsFHmpbsGoXS1KYx_yaFkNZaI_6DRLRGGSjku0fkzbSkkugeAquMEFigN_fQsh2pc7cpjCVQ99BIAcwBaNOUc6LetWH2-xjn5MPgENy-e3fo3pXu3b57t7fGR8oH86c04qDJhY07Sn9_fkr09iDq_eT8LoXsNj8FYA1oBWpt6z8azMes
CitedBy_id crossref_primary_10_1016_j_ppedcard_2020_101256
crossref_primary_10_5301_ijao_5000443
crossref_primary_10_1007_s10237_021_01538_1
crossref_primary_10_1016_j_medengphy_2014_12_011
crossref_primary_10_1016_j_medengphy_2020_09_014
crossref_primary_10_1002_wsbm_1392
crossref_primary_10_1016_j_ppedcard_2021_101452
crossref_primary_10_1007_s10439_011_0326_1
crossref_primary_10_1086_679703
crossref_primary_10_1115_1_4024141
crossref_primary_10_1016_j_ddmod_2014_02_009
crossref_primary_10_1007_s10237_021_01444_6
crossref_primary_10_1115_1_4005377
crossref_primary_10_1186_s13104_020_05057_7
crossref_primary_10_4103_2045_8932_105035
crossref_primary_10_1007_s10237_016_0766_5
crossref_primary_10_1007_s11771_023_5395_4
crossref_primary_10_1155_2021_2618625
crossref_primary_10_3390_fluids10010006
crossref_primary_10_1165_rcmb_2023_0048ED
crossref_primary_10_1152_ajplung_00342_2012
crossref_primary_10_3389_fped_2022_772142
crossref_primary_10_1007_s00011_018_1191_2
crossref_primary_10_1007_s10439_012_0585_5
crossref_primary_10_1177_09544119221126270
crossref_primary_10_1007_s10237_015_0757_y
crossref_primary_10_1007_s10237_024_01850_6
crossref_primary_10_1007_s13239_015_0240_z
crossref_primary_10_1016_j_cma_2023_116414
crossref_primary_10_4103_2045_8932_83452
crossref_primary_10_1098_rsta_2011_0129
crossref_primary_10_3389_fnetp_2022_867551
crossref_primary_10_1080_10255842_2012_758254
crossref_primary_10_1152_ajplung_00069_2011
crossref_primary_10_1007_s10013_022_00595_y
crossref_primary_10_1115_1_4043034
crossref_primary_10_1016_j_medengphy_2020_01_006
crossref_primary_10_1007_s13239_012_0115_5
crossref_primary_10_3389_fcvm_2021_703717
crossref_primary_10_1007_s11340_020_00678_2
crossref_primary_10_1177_2045894018780534
crossref_primary_10_1007_s10439_021_02884_y
crossref_primary_10_1136_amiajnl_2011_000488
crossref_primary_10_1016_j_mbs_2018_01_008
crossref_primary_10_1155_2012_198108
crossref_primary_10_3389_fphys_2018_00223
crossref_primary_10_3390_fluids9040085
crossref_primary_10_1007_s10439_020_02545_6
crossref_primary_10_1002_cnm_2952
crossref_primary_10_1177_0954411916683221
crossref_primary_10_1007_s10439_021_02771_6
crossref_primary_10_1016_j_medengphy_2011_12_002
crossref_primary_10_1002_cnm_3208
crossref_primary_10_1002_cnm_3846
crossref_primary_10_1186_1479_5876_12_S2_S5
crossref_primary_10_3390_fluids4040190
crossref_primary_10_1007_s12410_015_9366_5
crossref_primary_10_1016_j_media_2014_09_001
crossref_primary_10_1111_chd_12556
crossref_primary_10_1161_JAHA_121_023532
crossref_primary_10_1063_5_0109400
crossref_primary_10_1161_JAHA_122_028121
crossref_primary_10_2139_ssrn_4102680
crossref_primary_10_1016_j_cmpb_2015_04_005
crossref_primary_10_1152_ajplung_00412_2011
Cites_doi 10.1016/j.jvs.2008.11.056
10.1152/ajpheart.00022.2004
10.1115/1.1632523
10.1115/1.1487880
10.1080/10255840500264742
10.1016/S0022-5223(96)70302-1
10.1002/jmri.20333
10.1114/1.1496086
10.1136/hrt.50.1.59
10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
10.1114/1.1476016
10.1016/0141-5425(91)90100-L
10.1016/0021-9290(95)95273-8
10.1114/1.140
10.1172/JCI786
10.1114/1.125
10.1097/00004728-199803000-00006
10.1016/0045-7825(82)90071-8
10.1016/S0045-7825(00)00203-6
10.1007/3-540-45468-3_54
10.1063/1.1383260
10.1007/s10439-006-9224-3
10.1016/j.cma.2005.04.014
10.1016/j.yexcr.2004.11.001
10.1114/1.1584684
10.1115/1.2795948
10.1109/51.805142
10.1378/chest.07-1246
10.1016/S0045-7825(98)80008-X
10.1016/j.cma.2005.11.011
10.1016/j.cmpb.2005.11.010
10.1016/j.cma.2005.10.018
10.1152/ajpheart.01301.2005
10.1161/01.RES.29.6.591
10.1164/ajrccm.159.2.9805075
10.1152/jappl.2001.90.3.1102
10.1113/jphysiol.1955.sp005276
ContentType Journal Article
Copyright Biomedical Engineering Society 2010
Biomedical Engineering Society 2011
Copyright_xml – notice: Biomedical Engineering Society 2010
– notice: Biomedical Engineering Society 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
DOI 10.1007/s10439-010-0124-1
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Engineering Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 358
ExternalDocumentID 2220971771
20640512
10_1007_s10439_010_0124_1
US201301921669
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41 RR09784
– fundername: NIGMS NIH HHS
  grantid: U54 GM072970
– fundername: NIGMS NIH HHS
  grantid: U54 GM0 72970
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
ABRTQ
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
ID FETCH-LOGICAL-c524t-74d7f311b2566c2edb0460ae0782aaad6aae11be118637583f7fb55a7954184b3
IEDL.DBID 7X7
ISSN 0090-6964
1573-9686
IngestDate Fri Jul 11 07:53:37 EDT 2025
Tue Aug 05 11:09:13 EDT 2025
Tue Aug 05 10:07:40 EDT 2025
Fri Jul 25 10:43:47 EDT 2025
Thu Apr 03 07:09:22 EDT 2025
Tue Jul 01 00:38:01 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Fri Feb 21 02:37:44 EST 2025
Wed Dec 27 19:19:12 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shear stress
Pulmonary vasculature
Magnetic resonance imaging
Finite-element analysis
Blood flow
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-74d7f311b2566c2edb0460ae0782aaad6aae11be118637583f7fb55a7954184b3
Notes http://dx.doi.org/10.1007/s10439-010-0124-1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20640512
PQID 820957221
PQPubID 54090
PageCount 12
ParticipantIDs proquest_miscellaneous_851473787
proquest_miscellaneous_822499972
proquest_miscellaneous_821197570
proquest_journals_820957221
pubmed_primary_20640512
crossref_citationtrail_10_1007_s10439_010_0124_1
crossref_primary_10_1007_s10439_010_0124_1
springer_journals_10_1007_s10439_010_0124_1
fao_agris_US201301921669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2011
Publisher Boston : Springer US
Springer US
Springer Nature B.V
Publisher_xml – name: Boston : Springer US
– name: Springer US
– name: Springer Nature B.V
References Orlando, Shandas, DeGroff (CR24) 2006; 81
Womersley (CR38) 1955; 127
Brooks, Hughes (CR2) 1982; 32
Niezen, Doornbos, van der Wall, de Roos (CR23) 1998; 22
de Leval, Dubini, Migliavacca, Jalali, Camporini, Redington, Pietrabissa (CR5) 1996; 111
Gan, Lankhaar, Westerhof, Marcus, Becker, Twisk, Boonstra, Postmus, Vonk-Noordegraaf (CR9) 2007; 132
Cheng, Herfkens, Lightner, Taylor, Feinstein (CR3) 2004; 287
Ku, Draney, Arko, Lee, Chan, Pelc, Zarins, Taylor (CR15) 2002; 30
Muller, Sahni, Li, Jansen, Shephard, Taylor (CR22) 2005; 8
Taylor, Hughes, Zarins (CR32) 1998; 26
Khunatorn, Shandas, DeGroff, Mahalingam (CR14) 2003; 31
Marsden, Vignon-Clementel, Chan, Feinstein, Taylor (CR18) 2007; 35
Morrison, Choi, Zarins, Taylor (CR21) 2009; 49
Figueroa, Vignon-Clementel, Jansen, Hughes, Taylor (CR8) 2006; 195
Elkins, Milnor (CR7) 1971; 29
Perktold, Peter, Resch, Langs (CR25) 1991; 13
Whiting, Jansen (CR35) 2001; 35
Perktold, Rappitsch (CR26) 1995; 28
Morgan, Roselli, Lorenz (CR20) 1998; 26
Taylor, Cheng, Espinosa, Tang, Parker, Herfkens (CR30) 2002; 30
CR6
Khunatorn, Mahalingam, DeGroff, Shandas (CR13) 2002; 124
Le Cras, Tyler, Horan, Morris, Tuder, McMurtry, Johns, Abman (CR17) 1998; 101
Vignon-Clementel, Alberto Figueroa, Jansen, Taylor (CR33) 2006; 195
Kulik, Bass, Fuhrman, Moller, Lock (CR16) 1983; 50
Wang, Dutton, Taylor (CR34) 1999; 18
Wilson (CR36) 2002
Botney (CR1) 1999; 159
Shikata, Rios, Kawkitinarong, DePaola, Garcia, Birukov (CR28) 2005; 304
Cheng, Herfkens, Taylor, Feinstein (CR4) 2005; 21
Tang, Cheng, Draney, Wilson, Tsao, Herfkens, Taylor (CR29) 2006; 291
He, Ku (CR10) 1996; 118
Johnson, Rush, Turk, Price, Laughlin (CR12) 2001; 90
Jansen, Whiting, Hulbert (CR11) 2000; 190
Sahni, Muller, Jansen, Shephard, Taylor (CR27) 2006; 195
Taylor, Hughes, Zarins (CR31) 1998; 158
Wilson, Wang, Dutton, Taylor (CR37) 2001; 2208
Migliavacca, Dubini, Bove, de Leval (CR19) 2003; 125
CH Whiting (124_CR35) 2001; 35
MR Leval de (124_CR5) 1996; 111
MD Botney (124_CR1) 1999; 159
TD Le Cras (124_CR17) 1998; 101
K Perktold (124_CR26) 1995; 28
RC Elkins (124_CR7) 1971; 29
RA Niezen (124_CR23) 1998; 22
LR Johnson (124_CR12) 2001; 90
Y Khunatorn (124_CR14) 2003; 31
KC Wang (124_CR34) 1999; 18
JP Ku (124_CR15) 2002; 30
NM Wilson (124_CR36) 2002
O Sahni (124_CR27) 2006; 195
IE Vignon-Clementel (124_CR33) 2006; 195
J Muller (124_CR22) 2005; 8
CA Taylor (124_CR31) 1998; 158
Y Shikata (124_CR28) 2005; 304
CP Cheng (124_CR3) 2004; 287
JR Womersley (124_CR38) 1955; 127
CA Taylor (124_CR30) 2002; 30
F Migliavacca (124_CR19) 2003; 125
W Orlando (124_CR24) 2006; 81
CT Gan (124_CR9) 2007; 132
AN Brooks (124_CR2) 1982; 32
TM Morrison (124_CR21) 2009; 49
VL Morgan (124_CR20) 1998; 26
BT Tang (124_CR29) 2006; 291
K Perktold (124_CR25) 1991; 13
X He (124_CR10) 1996; 118
Y Khunatorn (124_CR13) 2002; 124
124_CR6
TJ Kulik (124_CR16) 1983; 50
AL Marsden (124_CR18) 2007; 35
CA Figueroa (124_CR8) 2006; 195
KE Jansen (124_CR11) 2000; 190
CA Taylor (124_CR32) 1998; 26
NM Wilson (124_CR37) 2001; 2208
CP Cheng (124_CR4) 2005; 21
References_xml – volume: 159
  start-page: 361
  year: 1999
  end-page: 364
  ident: CR1
  article-title: Role of hemodynamics in pulmonary vascular remodeling: implications for primary pulmonary hypertension
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 49
  start-page: 1029
  year: 2009
  end-page: 1036
  ident: CR21
  article-title: Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2008.11.056
– volume: 127
  start-page: 553
  year: 1955
  end-page: 563
  ident: CR38
  article-title: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
  publication-title: J. Physiol.
– volume: 287
  start-page: H921
  year: 2004
  end-page: H926
  ident: CR3
  article-title: Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00022.2004
– volume: 125
  start-page: 805
  year: 2003
  end-page: 813
  ident: CR19
  article-title: Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1632523
– volume: 124
  start-page: 364
  year: 2002
  end-page: 377
  ident: CR13
  article-title: Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1487880
– volume: 8
  start-page: 295
  year: 2005
  end-page: 305
  ident: CR22
  article-title: Anisotropic adaptive finite element method for modelling blood flow
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840500264742
– volume: 111
  start-page: 502
  year: 1996
  end-page: 513
  ident: CR5
  article-title: Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/S0022-5223(96)70302-1
– volume: 21
  start-page: 752
  year: 2005
  end-page: 758
  ident: CR4
  article-title: Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: the effects of exercise and age
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20333
– volume: 30
  start-page: 743
  year: 2002
  end-page: 752
  ident: CR15
  article-title: In vivo validation of numerical prediction of blood flow in arterial bypass grafts
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1496086
– volume: 50
  start-page: 59
  year: 1983
  end-page: 64
  ident: CR16
  article-title: Exercise induced pulmonary vasoconstriction
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.50.1.59
– volume: 35
  start-page: 93
  year: 2001
  end-page: 116
  ident: CR35
  article-title: A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
– volume: 30
  start-page: 402
  year: 2002
  end-page: 408
  ident: CR30
  article-title: In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1476016
– year: 2002
  ident: CR36
  publication-title: Geometric algorithms and software architecture for computational prototyping: applications in vascular surgery and MEMS
– ident: CR6
– volume: 13
  start-page: 507
  year: 1991
  end-page: 515
  ident: CR25
  article-title: Pulsatile non-Newtonian flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles
  publication-title: J. Biomed. Eng.
  doi: 10.1016/0141-5425(91)90100-L
– volume: 28
  start-page: 845
  year: 1995
  end-page: 856
  ident: CR26
  article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)95273-8
– volume: 26
  start-page: 1
  year: 1998
  end-page: 14
  ident: CR32
  article-title: Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.140
– volume: 101
  start-page: 795
  year: 1998
  end-page: 801
  ident: CR17
  article-title: Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI786
– volume: 26
  start-page: 557
  year: 1998
  end-page: 566
  ident: CR20
  article-title: Normal three-dimensional pulmonary artery flow determined by phase contrast magnetic resonance imaging
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.125
– volume: 22
  start-page: 194
  year: 1998
  end-page: 201
  ident: CR23
  article-title: Measurement of aortic and pulmonary flow with MRI at rest and during physical exercise
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00006
– volume: 32
  start-page: 199
  year: 1982
  end-page: 259
  ident: CR2
  article-title: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90071-8
– volume: 190
  start-page: 305
  year: 2000
  end-page: 319
  ident: CR11
  article-title: A generalized-[alpha] method for integrating the filtered Navier–Stokes equations with a stabilized finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00203-6
– volume: 2208
  start-page: 449
  year: 2001
  end-page: 456
  ident: CR37
  article-title: A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-45468-3_54
– volume: 90
  start-page: 1102
  year: 2001
  end-page: 1110
  ident: CR12
  article-title: Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries
  publication-title: J. Appl. Physiol.
  doi: 10.1063/1.1383260
– volume: 35
  start-page: 250
  year: 2007
  end-page: 263
  ident: CR18
  article-title: Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9224-3
– volume: 195
  start-page: 3776
  year: 2006
  end-page: 3796
  ident: CR33
  article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.04.014
– volume: 29
  start-page: 591
  year: 1971
  end-page: 599
  ident: CR7
  article-title: Pulmonary vascular response to exercise in the dog
  publication-title: Circ. Res.
– volume: 304
  start-page: 40
  year: 2005
  end-page: 49
  ident: CR28
  article-title: Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.11.001
– volume: 31
  start-page: 810
  year: 2003
  end-page: 822
  ident: CR14
  article-title: Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1584684
– volume: 118
  start-page: 74
  year: 1996
  end-page: 82
  ident: CR10
  article-title: Pulsatile flow in the human left coronary artery bifurcation: average conditions
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2795948
– volume: 18
  start-page: 33
  year: 1999
  end-page: 39
  ident: CR34
  article-title: Level sets for vascular model construction in computational hemodynamics
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/51.805142
– volume: 132
  start-page: 1906
  year: 2007
  end-page: 1912
  ident: CR9
  article-title: Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension
  publication-title: Chest
  doi: 10.1378/chest.07-1246
– volume: 158
  start-page: 155
  year: 1998
  end-page: 196
  ident: CR31
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)80008-X
– volume: 195
  start-page: 5685
  year: 2006
  end-page: 5706
  ident: CR8
  article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.11.011
– volume: 81
  start-page: 220
  year: 2006
  end-page: 227
  ident: CR24
  article-title: Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.11.010
– volume: 195
  start-page: 5634
  year: 2006
  end-page: 5655
  ident: CR27
  article-title: Efficient anisotropic adaptive discretization of the cardiovascular system
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.10.018
– volume: 291
  start-page: H668
  year: 2006
  end-page: H676
  ident: CR29
  article-title: Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01301.2005
– volume: 101
  start-page: 795
  year: 1998
  ident: 124_CR17
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI786
– volume: 32
  start-page: 199
  year: 1982
  ident: 124_CR2
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90071-8
– volume: 29
  start-page: 591
  year: 1971
  ident: 124_CR7
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.29.6.591
– volume: 158
  start-page: 155
  year: 1998
  ident: 124_CR31
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)80008-X
– volume: 159
  start-page: 361
  year: 1999
  ident: 124_CR1
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.159.2.9805075
– ident: 124_CR6
– volume: 18
  start-page: 33
  year: 1999
  ident: 124_CR34
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/51.805142
– volume: 287
  start-page: H921
  year: 2004
  ident: 124_CR3
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00022.2004
– volume: 8
  start-page: 295
  year: 2005
  ident: 124_CR22
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840500264742
– volume: 81
  start-page: 220
  year: 2006
  ident: 124_CR24
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.11.010
– volume: 90
  start-page: 1102
  year: 2001
  ident: 124_CR12
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2001.90.3.1102
– volume: 195
  start-page: 5685
  year: 2006
  ident: 124_CR8
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.11.011
– volume: 195
  start-page: 5634
  year: 2006
  ident: 124_CR27
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.10.018
– volume: 31
  start-page: 810
  year: 2003
  ident: 124_CR14
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1584684
– volume: 291
  start-page: H668
  year: 2006
  ident: 124_CR29
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01301.2005
– volume: 124
  start-page: 364
  year: 2002
  ident: 124_CR13
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1487880
– volume: 111
  start-page: 502
  year: 1996
  ident: 124_CR5
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/S0022-5223(96)70302-1
– volume: 35
  start-page: 250
  year: 2007
  ident: 124_CR18
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9224-3
– volume-title: Geometric algorithms and software architecture for computational prototyping: applications in vascular surgery and MEMS
  year: 2002
  ident: 124_CR36
– volume: 30
  start-page: 402
  year: 2002
  ident: 124_CR30
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1476016
– volume: 35
  start-page: 93
  year: 2001
  ident: 124_CR35
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
– volume: 22
  start-page: 194
  year: 1998
  ident: 124_CR23
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00006
– volume: 195
  start-page: 3776
  year: 2006
  ident: 124_CR33
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.04.014
– volume: 49
  start-page: 1029
  year: 2009
  ident: 124_CR21
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2008.11.056
– volume: 21
  start-page: 752
  year: 2005
  ident: 124_CR4
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20333
– volume: 304
  start-page: 40
  year: 2005
  ident: 124_CR28
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.11.001
– volume: 132
  start-page: 1906
  year: 2007
  ident: 124_CR9
  publication-title: Chest
  doi: 10.1378/chest.07-1246
– volume: 30
  start-page: 743
  year: 2002
  ident: 124_CR15
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1496086
– volume: 118
  start-page: 74
  year: 1996
  ident: 124_CR10
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2795948
– volume: 50
  start-page: 59
  year: 1983
  ident: 124_CR16
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.50.1.59
– volume: 28
  start-page: 845
  year: 1995
  ident: 124_CR26
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)95273-8
– volume: 26
  start-page: 1
  year: 1998
  ident: 124_CR32
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.140
– volume: 26
  start-page: 557
  year: 1998
  ident: 124_CR20
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.125
– volume: 127
  start-page: 553
  year: 1955
  ident: 124_CR38
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1955.sp005276
– volume: 125
  start-page: 805
  year: 2003
  ident: 124_CR19
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1632523
– volume: 2208
  start-page: 449
  year: 2001
  ident: 124_CR37
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-45468-3_54
– volume: 190
  start-page: 305
  year: 2000
  ident: 124_CR11
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00203-6
– volume: 13
  start-page: 507
  year: 1991
  ident: 124_CR25
  publication-title: J. Biomed. Eng.
  doi: 10.1016/0141-5425(91)90100-L
SSID ssj0011835
Score 2.263073
Snippet The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification...
SourceID proquest
pubmed
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 347
SubjectTerms Adult
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
blood flow
Blood Flow Velocity - physiology
Blood Pressure - physiology
Classical Mechanics
Computer Simulation
Energy dissipation
Energy efficiency
Finite-element analysis
Fluid dynamics
Humans
Hydrodynamics
Imaging, Three-Dimensional
magnetic resonance imaging
Middle Aged
Models, Anatomic
Models, Cardiovascular
Physical Exertion - physiology
Pulmonary Artery - anatomy & histology
Pulmonary Artery - physiology
Pulmonary vasculature
Rest - physiology
Shear stress
Young Adult
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfG99kYMnJWDTpmmPi64sgiLqgreQtKkI2so-Dv57Z_pYV9QFoT11WtrOJPNNv-YbgBNrYyeiPODWtxkPU2N4LNOUY8WMAN8lfu7T2uGb26g_CK-f5FOzjnvU_u3eUpLVTD2z2A2TJ6_IW0xKHEueZYmlO_3HNRDdKXWAMVq3LUiwLkqisKUyf7vEt2S0mJvyN5z5gyOtUs_VBqw3mJF1aydvwoIrtmBtRklwC1ZuGo58G7JHdI_jlyTbX0tusL57K7O69fyIvRQMQR-rvt6zu8krxqEZftDVSfN4xKpOSOye1DeKZ2aKjPWatkzsoiSCmwJ1BwZXvceLPm96KfBUinDMVZipPPB9ixAnSoXLLDGixhFCMMZkkTEOj-IeRwHWEEGuciulUYkMsQi0wS4sFWXhOsCsDXNfCCVckJK0j8WML6RNcKqweRDHHpy3L1WnjdA49bt41V8SyeQHjX7Q5Afte3A6PeW9VtmYZ9xBT2nzjLOgHjwI4l5J1S2KEg8OWvfpZiyONGKcRCoh8EQ2PYqDiJgRU7hyQibEpkp1Ps9EUHGoxBwTBJ8qwDfiwV4dOtOHEUSYIrby4KyNpa8b_PNJ9_9lfQCr9Qdv2g5haTycuCNETGN7XI2QT9_iCEI
  priority: 102
  providerName: Springer Nature
Title Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions
URI https://link.springer.com/article/10.1007/s10439-010-0124-1
https://www.ncbi.nlm.nih.gov/pubmed/20640512
https://www.proquest.com/docview/820957221
https://www.proquest.com/docview/821197570
https://www.proquest.com/docview/822499972
https://www.proquest.com/docview/851473787
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xTULsAcGALQwmP_AEsqidOE6eUBntKtCmaaxSebLsxJmQRrKt7QP_nrvEyUBApTSVGieqc2ffd_6S7wDeOJd5mVYxd8KVPCms5ZkqCo4ZMwJ8n4tK0LvDp2fpbJ58XqhFeDZnGR6r7OfEdqIum4LWyN9jpMqVllJ8uLnlVDSKyNVQQWMLdki5jJxaL4Z8C6FzV19zlGOGlKdJT2p2b85hJOYtE4wRjos_wtJWZZt_Ic6_2NI2CE2fwOOAHtm4M_dTeODrPdj9TVNwDx6eBrb8GZSXaCjPP5GAfye-wWb-R1N2ReiX7HvNEP6xdh2fna-vsY_27iddndSPl6yticQuSIejvmK2LtkkFGhixw1R3eSyz2E-nVwez3ioqsALJZMV10mpq1gIh2AnLaQvHXGj1hNWsNaWqbUej-InS2PMJuJKV04pq3OVYDro4hewXTe1PwDmXFIJKbX0cUEiPw5jv1Qux0nDVXGWRTDqb6opguQ4Vb64NvdiyWQHg3YwZAcjIng7nHLT6W1sanyAljL2CudDM_8qiYUlfbc0zSM47M1nwqhcmsGHImDDURxOxJHY2jdrakK8qtKjTU0kpYlabmiCMFTHeEci2O9cZ-iMJOoUUVYE73pfuv-D_-3py43dOYRH3VI3ba9ge3W39q8RK63cUTsicJ9NT45gZ3zy7csEvz9Ozs4v8Ne5HP8CTDwQcg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4BTFQejKJAwcs86ItmIp3p9PJgjAHWRVhidDfhbZxpp8QEWmB3Y_hR_kfP6bRFo-4bSfvUadOZc-_X-Q7AS2tTJ-JSchvagke5MTxVec6xYsYE32VhGdLe4dFxPJxEn07UyRL87PbC0G-VnU9sHHVR5_SN_C1GqkwlQoTvLy45NY0icLXroOG14tBd_8CKbfruYA_F-0qIwf54d8jbpgI8VyKa8SQqklKGocVYH-fCFZagQeMoVBpjitgYh1fxTGOJybQsk9IqZZJMRVgNWYnPXYY7kcRAThvTBx970AKtwzdMyLAiy-KoA1H9Tj2M_LxBnjGi8vCPMLhcmvpfGe5f6GwT9AYP4UGbrbIPXr0ewZKr1mD1Nw7DNbg7atH5x1CMUTEc36OGAZ7sgw3deV34pvdT9r1imG6yBjdgn-dnuKbm6pqeTmzLU9b0YGJfiPejOmWmKth-2xCK7dYErZOJPIHJrSz4OqxUdeU2gVkblaEQiXAyJ1Ihi7mGUDZDJ2VLmaYB7HSLqvOW4pw6bZzpG3JmkoNGOWiSgw4DeN3fcuH5PRYN3kRJaXOK_ldPvgpCfYlPLo6zALY78enWC0x1r7MBsP4qmi9hMqZy9ZyGEI6rkp1FQwSVpYlYMATT3kTiigSw4VWnn4wgqBazugDedLp084L_nenWwum8gHvD8ehIHx0cH27Dff-ZnY6nsDK7mrtnmKfN7PPGOhh8u21z_AW7Q0ed
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W6mCA4LyaCgPH-ACslo7DycHhKC7qy2lq1XpSr25duJUldqkdHeF9qfx75jJqyBgb5WSU5wo9ry-yRfPALyxNnYyyn1uhc14kBrD4zBNOWbMCPBdInJBe4ePxtFoGnw5DU_X4Ge7F4Z-q2x9YuWoszKlb-S7GKmSUEkpdvPmr4hJf_jx-junBlJEtLbdNGoNOXTLH5i9zT4c9FHUb6UcDk72R7xpMMDTUAZzroJM5b4QFuN-lEqXWaIJjaOwaYzJImMcXsUzjnwE1n6uchuGRiVhgJmR9fG567ChKCnqwcbnwXhy3FEYaCt1-4QE87MkClpKtd63hziAVzw0xlcu_giK67kp_4V3_-JqqxA4fAgPGuzKPtXK9gjWXLEF93-raLgFm0cNV_8YshNUE8f71D6gLv3BRu6qzJaFubpIZ-yiYAg-WcUisMniElfV3Czp6VR7ecaqjkzsmKqAFOfMFBkbNO2h2H5JRDsZzBOY3smSP4VeURZuG5i1QS6kVNL5KZUYsog8ZGgTdFk29-PYg712UXXaFDynvhuX-rZUM8lBoxw0yUELD951t1zX1T5WDd5GSWlzjt5YT79J4oCpulwUJR7stOLTjU-Y6U6DPWDdVTRmYmhM4coFDSFWN1R7q4ZISlKVXDEEQbDycUU8eFarTjcZScQtYjwP3re6dPuC_53p85XTeQ2baIr668H4cAfu1d_c6XgBvfnNwr1E0Da3rxrzYHB21xb5C_ZbTS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Hemodynamics+in+the+Human+Pulmonary+Arteries+Under+Resting+and+Exercise+Conditions&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Tang%2C+Beverly+T&rft.au=Fonte%2C+Tim+A&rft.au=Chan%2C+Frandics+P&rft.au=Tsao%2C+Philip+S&rft.date=2011-01-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=39&rft.issue=1&rft.spage=347&rft.epage=358&rft_id=info:doi/10.1007%2Fs10439-010-0124-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon