Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions
The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease...
Saved in:
Published in | Annals of biomedical engineering Vol. 39; no. 1; pp. 347 - 358 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Boston : Springer US
01.01.2011
Springer US Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm², and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications. |
---|---|
AbstractList | The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8±4.0 to 51.8±6.7 dynes/cm2, and OSI was found to decrease from 0.094±0.016 to 0.081±0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications. The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 plus or minus 4.0 to 51.8 plus or minus 6.7dynes/cm super(2), and OSI was found to decrease from 0.094 plus or minus 0.016 to 0.081 plus or minus 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications. The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm^sup 2^, and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.[PUBLICATION ABSTRACT] The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8±4.0 to 51.8±6.7 dynes/cm2, and OSI was found to decrease from 0.094±0.016 to 0.081±0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8±4.0 to 51.8±6.7 dynes/cm2, and OSI was found to decrease from 0.094±0.016 to 0.081±0.015 in the proximal pulmonary arteries between rest and exercise conditions (p<0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications. The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm², and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications. The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm 2 , and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions ( p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications. |
Author | Tsao, Philip S Chan, Frandics P Taylor, Charles A Fonte, Tim A Feinstein, Jeffrey A Tang, Beverly T |
Author_xml | – sequence: 1 fullname: Tang, Beverly T – sequence: 2 fullname: Fonte, Tim A – sequence: 3 fullname: Chan, Frandics P – sequence: 4 fullname: Tsao, Philip S – sequence: 5 fullname: Feinstein, Jeffrey A – sequence: 6 fullname: Taylor, Charles A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20640512$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v1DAQxS1URD_gD-ACFhdOgRnHH_GxWgqLVAkE3bPlTSZbV4lT7ESi_z1ebSukHgqH0Rzm955G752yozhFYuw1wgcEMB8zgqxtBQhlhKzwGTtBZerK6kYfsRMAC5W2Wh6z05xvABCbWr1gxwK0BIXihHVX14mo-hRGijlM0Q98TePU3UU_hjbzEPl8TXy9jD7y78swFiTd8fM0UwqU-SZ2lPgPynOIO-5jxy9-U2pDJr6aYhfm4plfsue9HzK9ut9nbPP54mq1ri6_ffm6Or-sWiXkXBnZmb5G3AqldSuo24LU4AlMI7z3nfaeyrVMo2ujmro3_VYpb6yS2MhtfcbeH3xv0_RrKT-5MeSWhsFHmpbsGoXS1KYx_yaFkNZaI_6DRLRGGSjku0fkzbSkkugeAquMEFigN_fQsh2pc7cpjCVQ99BIAcwBaNOUc6LetWH2-xjn5MPgENy-e3fo3pXu3b57t7fGR8oH86c04qDJhY07Sn9_fkr09iDq_eT8LoXsNj8FYA1oBWpt6z8azMes |
CitedBy_id | crossref_primary_10_1016_j_ppedcard_2020_101256 crossref_primary_10_5301_ijao_5000443 crossref_primary_10_1007_s10237_021_01538_1 crossref_primary_10_1016_j_medengphy_2014_12_011 crossref_primary_10_1016_j_medengphy_2020_09_014 crossref_primary_10_1002_wsbm_1392 crossref_primary_10_1016_j_ppedcard_2021_101452 crossref_primary_10_1007_s10439_011_0326_1 crossref_primary_10_1086_679703 crossref_primary_10_1115_1_4024141 crossref_primary_10_1016_j_ddmod_2014_02_009 crossref_primary_10_1007_s10237_021_01444_6 crossref_primary_10_1115_1_4005377 crossref_primary_10_1186_s13104_020_05057_7 crossref_primary_10_4103_2045_8932_105035 crossref_primary_10_1007_s10237_016_0766_5 crossref_primary_10_1007_s11771_023_5395_4 crossref_primary_10_1155_2021_2618625 crossref_primary_10_3390_fluids10010006 crossref_primary_10_1165_rcmb_2023_0048ED crossref_primary_10_1152_ajplung_00342_2012 crossref_primary_10_3389_fped_2022_772142 crossref_primary_10_1007_s00011_018_1191_2 crossref_primary_10_1007_s10439_012_0585_5 crossref_primary_10_1177_09544119221126270 crossref_primary_10_1007_s10237_015_0757_y crossref_primary_10_1007_s10237_024_01850_6 crossref_primary_10_1007_s13239_015_0240_z crossref_primary_10_1016_j_cma_2023_116414 crossref_primary_10_4103_2045_8932_83452 crossref_primary_10_1098_rsta_2011_0129 crossref_primary_10_3389_fnetp_2022_867551 crossref_primary_10_1080_10255842_2012_758254 crossref_primary_10_1152_ajplung_00069_2011 crossref_primary_10_1007_s10013_022_00595_y crossref_primary_10_1115_1_4043034 crossref_primary_10_1016_j_medengphy_2020_01_006 crossref_primary_10_1007_s13239_012_0115_5 crossref_primary_10_3389_fcvm_2021_703717 crossref_primary_10_1007_s11340_020_00678_2 crossref_primary_10_1177_2045894018780534 crossref_primary_10_1007_s10439_021_02884_y crossref_primary_10_1136_amiajnl_2011_000488 crossref_primary_10_1016_j_mbs_2018_01_008 crossref_primary_10_1155_2012_198108 crossref_primary_10_3389_fphys_2018_00223 crossref_primary_10_3390_fluids9040085 crossref_primary_10_1007_s10439_020_02545_6 crossref_primary_10_1002_cnm_2952 crossref_primary_10_1177_0954411916683221 crossref_primary_10_1007_s10439_021_02771_6 crossref_primary_10_1016_j_medengphy_2011_12_002 crossref_primary_10_1002_cnm_3208 crossref_primary_10_1002_cnm_3846 crossref_primary_10_1186_1479_5876_12_S2_S5 crossref_primary_10_3390_fluids4040190 crossref_primary_10_1007_s12410_015_9366_5 crossref_primary_10_1016_j_media_2014_09_001 crossref_primary_10_1111_chd_12556 crossref_primary_10_1161_JAHA_121_023532 crossref_primary_10_1063_5_0109400 crossref_primary_10_1161_JAHA_122_028121 crossref_primary_10_2139_ssrn_4102680 crossref_primary_10_1016_j_cmpb_2015_04_005 crossref_primary_10_1152_ajplung_00412_2011 |
Cites_doi | 10.1016/j.jvs.2008.11.056 10.1152/ajpheart.00022.2004 10.1115/1.1632523 10.1115/1.1487880 10.1080/10255840500264742 10.1016/S0022-5223(96)70302-1 10.1002/jmri.20333 10.1114/1.1496086 10.1136/hrt.50.1.59 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G 10.1114/1.1476016 10.1016/0141-5425(91)90100-L 10.1016/0021-9290(95)95273-8 10.1114/1.140 10.1172/JCI786 10.1114/1.125 10.1097/00004728-199803000-00006 10.1016/0045-7825(82)90071-8 10.1016/S0045-7825(00)00203-6 10.1007/3-540-45468-3_54 10.1063/1.1383260 10.1007/s10439-006-9224-3 10.1016/j.cma.2005.04.014 10.1016/j.yexcr.2004.11.001 10.1114/1.1584684 10.1115/1.2795948 10.1109/51.805142 10.1378/chest.07-1246 10.1016/S0045-7825(98)80008-X 10.1016/j.cma.2005.11.011 10.1016/j.cmpb.2005.11.010 10.1016/j.cma.2005.10.018 10.1152/ajpheart.01301.2005 10.1161/01.RES.29.6.591 10.1164/ajrccm.159.2.9805075 10.1152/jappl.2001.90.3.1102 10.1113/jphysiol.1955.sp005276 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2010 Biomedical Engineering Society 2011 |
Copyright_xml | – notice: Biomedical Engineering Society 2010 – notice: Biomedical Engineering Society 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 |
DOI | 10.1007/s10439-010-0124-1 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database Materials Research Database MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 358 |
ExternalDocumentID | 2220971771 20640512 10_1007_s10439_010_0124_1 US201301921669 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41 RR09784 – fundername: NIGMS NIH HHS grantid: U54 GM072970 – fundername: NIGMS NIH HHS grantid: U54 GM0 72970 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AOSHJ ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AACDK AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS H13 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK ABRTQ AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c524t-74d7f311b2566c2edb0460ae0782aaad6aae11be118637583f7fb55a7954184b3 |
IEDL.DBID | 7X7 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Fri Jul 11 07:53:37 EDT 2025 Tue Aug 05 11:09:13 EDT 2025 Tue Aug 05 10:07:40 EDT 2025 Fri Jul 25 10:43:47 EDT 2025 Thu Apr 03 07:09:22 EDT 2025 Tue Jul 01 00:38:01 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Fri Feb 21 02:37:44 EST 2025 Wed Dec 27 19:19:12 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Shear stress Pulmonary vasculature Magnetic resonance imaging Finite-element analysis Blood flow |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-74d7f311b2566c2edb0460ae0782aaad6aae11be118637583f7fb55a7954184b3 |
Notes | http://dx.doi.org/10.1007/s10439-010-0124-1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 20640512 |
PQID | 820957221 |
PQPubID | 54090 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_851473787 proquest_miscellaneous_822499972 proquest_miscellaneous_821197570 proquest_journals_820957221 pubmed_primary_20640512 crossref_citationtrail_10_1007_s10439_010_0124_1 crossref_primary_10_1007_s10439_010_0124_1 springer_journals_10_1007_s10439_010_0124_1 fao_agris_US201301921669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2011 |
Publisher | Boston : Springer US Springer US Springer Nature B.V |
Publisher_xml | – name: Boston : Springer US – name: Springer US – name: Springer Nature B.V |
References | Orlando, Shandas, DeGroff (CR24) 2006; 81 Womersley (CR38) 1955; 127 Brooks, Hughes (CR2) 1982; 32 Niezen, Doornbos, van der Wall, de Roos (CR23) 1998; 22 de Leval, Dubini, Migliavacca, Jalali, Camporini, Redington, Pietrabissa (CR5) 1996; 111 Gan, Lankhaar, Westerhof, Marcus, Becker, Twisk, Boonstra, Postmus, Vonk-Noordegraaf (CR9) 2007; 132 Cheng, Herfkens, Lightner, Taylor, Feinstein (CR3) 2004; 287 Ku, Draney, Arko, Lee, Chan, Pelc, Zarins, Taylor (CR15) 2002; 30 Muller, Sahni, Li, Jansen, Shephard, Taylor (CR22) 2005; 8 Taylor, Hughes, Zarins (CR32) 1998; 26 Khunatorn, Shandas, DeGroff, Mahalingam (CR14) 2003; 31 Marsden, Vignon-Clementel, Chan, Feinstein, Taylor (CR18) 2007; 35 Morrison, Choi, Zarins, Taylor (CR21) 2009; 49 Figueroa, Vignon-Clementel, Jansen, Hughes, Taylor (CR8) 2006; 195 Elkins, Milnor (CR7) 1971; 29 Perktold, Peter, Resch, Langs (CR25) 1991; 13 Whiting, Jansen (CR35) 2001; 35 Perktold, Rappitsch (CR26) 1995; 28 Morgan, Roselli, Lorenz (CR20) 1998; 26 Taylor, Cheng, Espinosa, Tang, Parker, Herfkens (CR30) 2002; 30 CR6 Khunatorn, Mahalingam, DeGroff, Shandas (CR13) 2002; 124 Le Cras, Tyler, Horan, Morris, Tuder, McMurtry, Johns, Abman (CR17) 1998; 101 Vignon-Clementel, Alberto Figueroa, Jansen, Taylor (CR33) 2006; 195 Kulik, Bass, Fuhrman, Moller, Lock (CR16) 1983; 50 Wang, Dutton, Taylor (CR34) 1999; 18 Wilson (CR36) 2002 Botney (CR1) 1999; 159 Shikata, Rios, Kawkitinarong, DePaola, Garcia, Birukov (CR28) 2005; 304 Cheng, Herfkens, Taylor, Feinstein (CR4) 2005; 21 Tang, Cheng, Draney, Wilson, Tsao, Herfkens, Taylor (CR29) 2006; 291 He, Ku (CR10) 1996; 118 Johnson, Rush, Turk, Price, Laughlin (CR12) 2001; 90 Jansen, Whiting, Hulbert (CR11) 2000; 190 Sahni, Muller, Jansen, Shephard, Taylor (CR27) 2006; 195 Taylor, Hughes, Zarins (CR31) 1998; 158 Wilson, Wang, Dutton, Taylor (CR37) 2001; 2208 Migliavacca, Dubini, Bove, de Leval (CR19) 2003; 125 CH Whiting (124_CR35) 2001; 35 MR Leval de (124_CR5) 1996; 111 MD Botney (124_CR1) 1999; 159 TD Le Cras (124_CR17) 1998; 101 K Perktold (124_CR26) 1995; 28 RC Elkins (124_CR7) 1971; 29 RA Niezen (124_CR23) 1998; 22 LR Johnson (124_CR12) 2001; 90 Y Khunatorn (124_CR14) 2003; 31 KC Wang (124_CR34) 1999; 18 JP Ku (124_CR15) 2002; 30 NM Wilson (124_CR36) 2002 O Sahni (124_CR27) 2006; 195 IE Vignon-Clementel (124_CR33) 2006; 195 J Muller (124_CR22) 2005; 8 CA Taylor (124_CR31) 1998; 158 Y Shikata (124_CR28) 2005; 304 CP Cheng (124_CR3) 2004; 287 JR Womersley (124_CR38) 1955; 127 CA Taylor (124_CR30) 2002; 30 F Migliavacca (124_CR19) 2003; 125 W Orlando (124_CR24) 2006; 81 CT Gan (124_CR9) 2007; 132 AN Brooks (124_CR2) 1982; 32 TM Morrison (124_CR21) 2009; 49 VL Morgan (124_CR20) 1998; 26 BT Tang (124_CR29) 2006; 291 K Perktold (124_CR25) 1991; 13 X He (124_CR10) 1996; 118 Y Khunatorn (124_CR13) 2002; 124 124_CR6 TJ Kulik (124_CR16) 1983; 50 AL Marsden (124_CR18) 2007; 35 CA Figueroa (124_CR8) 2006; 195 KE Jansen (124_CR11) 2000; 190 CA Taylor (124_CR32) 1998; 26 NM Wilson (124_CR37) 2001; 2208 CP Cheng (124_CR4) 2005; 21 |
References_xml | – volume: 159 start-page: 361 year: 1999 end-page: 364 ident: CR1 article-title: Role of hemodynamics in pulmonary vascular remodeling: implications for primary pulmonary hypertension publication-title: Am. J. Respir. Crit. Care Med. – volume: 49 start-page: 1029 year: 2009 end-page: 1036 ident: CR21 article-title: Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2008.11.056 – volume: 127 start-page: 553 year: 1955 end-page: 563 ident: CR38 article-title: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known publication-title: J. Physiol. – volume: 287 start-page: H921 year: 2004 end-page: H926 ident: CR3 article-title: Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00022.2004 – volume: 125 start-page: 805 year: 2003 end-page: 813 ident: CR19 article-title: Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis publication-title: J. Biomech. Eng. doi: 10.1115/1.1632523 – volume: 124 start-page: 364 year: 2002 end-page: 377 ident: CR13 article-title: Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study publication-title: J. Biomech. Eng. doi: 10.1115/1.1487880 – volume: 8 start-page: 295 year: 2005 end-page: 305 ident: CR22 article-title: Anisotropic adaptive finite element method for modelling blood flow publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840500264742 – volume: 111 start-page: 502 year: 1996 end-page: 513 ident: CR5 article-title: Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/S0022-5223(96)70302-1 – volume: 21 start-page: 752 year: 2005 end-page: 758 ident: CR4 article-title: Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: the effects of exercise and age publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20333 – volume: 30 start-page: 743 year: 2002 end-page: 752 ident: CR15 article-title: In vivo validation of numerical prediction of blood flow in arterial bypass grafts publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1496086 – volume: 50 start-page: 59 year: 1983 end-page: 64 ident: CR16 article-title: Exercise induced pulmonary vasoconstriction publication-title: Br. Heart J. doi: 10.1136/hrt.50.1.59 – volume: 35 start-page: 93 year: 2001 end-page: 116 ident: CR35 article-title: A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G – volume: 30 start-page: 402 year: 2002 end-page: 408 ident: CR30 article-title: In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1476016 – year: 2002 ident: CR36 publication-title: Geometric algorithms and software architecture for computational prototyping: applications in vascular surgery and MEMS – ident: CR6 – volume: 13 start-page: 507 year: 1991 end-page: 515 ident: CR25 article-title: Pulsatile non-Newtonian flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles publication-title: J. Biomed. Eng. doi: 10.1016/0141-5425(91)90100-L – volume: 28 start-page: 845 year: 1995 end-page: 856 ident: CR26 article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model publication-title: J. Biomech. doi: 10.1016/0021-9290(95)95273-8 – volume: 26 start-page: 1 year: 1998 end-page: 14 ident: CR32 article-title: Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis publication-title: Ann. Biomed. Eng. doi: 10.1114/1.140 – volume: 101 start-page: 795 year: 1998 end-page: 801 ident: CR17 article-title: Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung publication-title: J. Clin. Invest. doi: 10.1172/JCI786 – volume: 26 start-page: 557 year: 1998 end-page: 566 ident: CR20 article-title: Normal three-dimensional pulmonary artery flow determined by phase contrast magnetic resonance imaging publication-title: Ann. Biomed. Eng. doi: 10.1114/1.125 – volume: 22 start-page: 194 year: 1998 end-page: 201 ident: CR23 article-title: Measurement of aortic and pulmonary flow with MRI at rest and during physical exercise publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00006 – volume: 32 start-page: 199 year: 1982 end-page: 259 ident: CR2 article-title: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(82)90071-8 – volume: 190 start-page: 305 year: 2000 end-page: 319 ident: CR11 article-title: A generalized-[alpha] method for integrating the filtered Navier–Stokes equations with a stabilized finite element method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(00)00203-6 – volume: 2208 start-page: 449 year: 2001 end-page: 456 ident: CR37 article-title: A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-45468-3_54 – volume: 90 start-page: 1102 year: 2001 end-page: 1110 ident: CR12 article-title: Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries publication-title: J. Appl. Physiol. doi: 10.1063/1.1383260 – volume: 35 start-page: 250 year: 2007 end-page: 263 ident: CR18 article-title: Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9224-3 – volume: 195 start-page: 3776 year: 2006 end-page: 3796 ident: CR33 article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.04.014 – volume: 29 start-page: 591 year: 1971 end-page: 599 ident: CR7 article-title: Pulmonary vascular response to exercise in the dog publication-title: Circ. Res. – volume: 304 start-page: 40 year: 2005 end-page: 49 ident: CR28 article-title: Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2004.11.001 – volume: 31 start-page: 810 year: 2003 end-page: 822 ident: CR14 article-title: Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1584684 – volume: 118 start-page: 74 year: 1996 end-page: 82 ident: CR10 article-title: Pulsatile flow in the human left coronary artery bifurcation: average conditions publication-title: J. Biomech. Eng. doi: 10.1115/1.2795948 – volume: 18 start-page: 33 year: 1999 end-page: 39 ident: CR34 article-title: Level sets for vascular model construction in computational hemodynamics publication-title: IEEE Eng. Med. Biol. doi: 10.1109/51.805142 – volume: 132 start-page: 1906 year: 2007 end-page: 1912 ident: CR9 article-title: Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension publication-title: Chest doi: 10.1378/chest.07-1246 – volume: 158 start-page: 155 year: 1998 end-page: 196 ident: CR31 article-title: Finite element modeling of blood flow in arteries publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)80008-X – volume: 195 start-page: 5685 year: 2006 end-page: 5706 ident: CR8 article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.11.011 – volume: 81 start-page: 220 year: 2006 end-page: 227 ident: CR24 article-title: Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2005.11.010 – volume: 195 start-page: 5634 year: 2006 end-page: 5655 ident: CR27 article-title: Efficient anisotropic adaptive discretization of the cardiovascular system publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.10.018 – volume: 291 start-page: H668 year: 2006 end-page: H676 ident: CR29 article-title: Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01301.2005 – volume: 101 start-page: 795 year: 1998 ident: 124_CR17 publication-title: J. Clin. Invest. doi: 10.1172/JCI786 – volume: 32 start-page: 199 year: 1982 ident: 124_CR2 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(82)90071-8 – volume: 29 start-page: 591 year: 1971 ident: 124_CR7 publication-title: Circ. Res. doi: 10.1161/01.RES.29.6.591 – volume: 158 start-page: 155 year: 1998 ident: 124_CR31 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)80008-X – volume: 159 start-page: 361 year: 1999 ident: 124_CR1 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.159.2.9805075 – ident: 124_CR6 – volume: 18 start-page: 33 year: 1999 ident: 124_CR34 publication-title: IEEE Eng. Med. Biol. doi: 10.1109/51.805142 – volume: 287 start-page: H921 year: 2004 ident: 124_CR3 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00022.2004 – volume: 8 start-page: 295 year: 2005 ident: 124_CR22 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840500264742 – volume: 81 start-page: 220 year: 2006 ident: 124_CR24 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2005.11.010 – volume: 90 start-page: 1102 year: 2001 ident: 124_CR12 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2001.90.3.1102 – volume: 195 start-page: 5685 year: 2006 ident: 124_CR8 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.11.011 – volume: 195 start-page: 5634 year: 2006 ident: 124_CR27 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.10.018 – volume: 31 start-page: 810 year: 2003 ident: 124_CR14 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1584684 – volume: 291 start-page: H668 year: 2006 ident: 124_CR29 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01301.2005 – volume: 124 start-page: 364 year: 2002 ident: 124_CR13 publication-title: J. Biomech. Eng. doi: 10.1115/1.1487880 – volume: 111 start-page: 502 year: 1996 ident: 124_CR5 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/S0022-5223(96)70302-1 – volume: 35 start-page: 250 year: 2007 ident: 124_CR18 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9224-3 – volume-title: Geometric algorithms and software architecture for computational prototyping: applications in vascular surgery and MEMS year: 2002 ident: 124_CR36 – volume: 30 start-page: 402 year: 2002 ident: 124_CR30 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1476016 – volume: 35 start-page: 93 year: 2001 ident: 124_CR35 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G – volume: 22 start-page: 194 year: 1998 ident: 124_CR23 publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00006 – volume: 195 start-page: 3776 year: 2006 ident: 124_CR33 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.04.014 – volume: 49 start-page: 1029 year: 2009 ident: 124_CR21 publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2008.11.056 – volume: 21 start-page: 752 year: 2005 ident: 124_CR4 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20333 – volume: 304 start-page: 40 year: 2005 ident: 124_CR28 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2004.11.001 – volume: 132 start-page: 1906 year: 2007 ident: 124_CR9 publication-title: Chest doi: 10.1378/chest.07-1246 – volume: 30 start-page: 743 year: 2002 ident: 124_CR15 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1496086 – volume: 118 start-page: 74 year: 1996 ident: 124_CR10 publication-title: J. Biomech. Eng. doi: 10.1115/1.2795948 – volume: 50 start-page: 59 year: 1983 ident: 124_CR16 publication-title: Br. Heart J. doi: 10.1136/hrt.50.1.59 – volume: 28 start-page: 845 year: 1995 ident: 124_CR26 publication-title: J. Biomech. doi: 10.1016/0021-9290(95)95273-8 – volume: 26 start-page: 1 year: 1998 ident: 124_CR32 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.140 – volume: 26 start-page: 557 year: 1998 ident: 124_CR20 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.125 – volume: 127 start-page: 553 year: 1955 ident: 124_CR38 publication-title: J. Physiol. doi: 10.1113/jphysiol.1955.sp005276 – volume: 125 start-page: 805 year: 2003 ident: 124_CR19 publication-title: J. Biomech. Eng. doi: 10.1115/1.1632523 – volume: 2208 start-page: 449 year: 2001 ident: 124_CR37 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-45468-3_54 – volume: 190 start-page: 305 year: 2000 ident: 124_CR11 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(00)00203-6 – volume: 13 start-page: 507 year: 1991 ident: 124_CR25 publication-title: J. Biomed. Eng. doi: 10.1016/0141-5425(91)90100-L |
SSID | ssj0011835 |
Score | 2.263073 |
Snippet | The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification... |
SourceID | proquest pubmed crossref springer fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 347 |
SubjectTerms | Adult Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics blood flow Blood Flow Velocity - physiology Blood Pressure - physiology Classical Mechanics Computer Simulation Energy dissipation Energy efficiency Finite-element analysis Fluid dynamics Humans Hydrodynamics Imaging, Three-Dimensional magnetic resonance imaging Middle Aged Models, Anatomic Models, Cardiovascular Physical Exertion - physiology Pulmonary Artery - anatomy & histology Pulmonary Artery - physiology Pulmonary vasculature Rest - physiology Shear stress Young Adult |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfG99kYMnJWDTpmmPi64sgiLqgreQtKkI2so-Dv57Z_pYV9QFoT11WtrOJPNNv-YbgBNrYyeiPODWtxkPU2N4LNOUY8WMAN8lfu7T2uGb26g_CK-f5FOzjnvU_u3eUpLVTD2z2A2TJ6_IW0xKHEueZYmlO_3HNRDdKXWAMVq3LUiwLkqisKUyf7vEt2S0mJvyN5z5gyOtUs_VBqw3mJF1aydvwoIrtmBtRklwC1ZuGo58G7JHdI_jlyTbX0tusL57K7O69fyIvRQMQR-rvt6zu8krxqEZftDVSfN4xKpOSOye1DeKZ2aKjPWatkzsoiSCmwJ1BwZXvceLPm96KfBUinDMVZipPPB9ixAnSoXLLDGixhFCMMZkkTEOj-IeRwHWEEGuciulUYkMsQi0wS4sFWXhOsCsDXNfCCVckJK0j8WML6RNcKqweRDHHpy3L1WnjdA49bt41V8SyeQHjX7Q5Afte3A6PeW9VtmYZ9xBT2nzjLOgHjwI4l5J1S2KEg8OWvfpZiyONGKcRCoh8EQ2PYqDiJgRU7hyQibEpkp1Ps9EUHGoxBwTBJ8qwDfiwV4dOtOHEUSYIrby4KyNpa8b_PNJ9_9lfQCr9Qdv2g5haTycuCNETGN7XI2QT9_iCEI priority: 102 providerName: Springer Nature |
Title | Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions |
URI | https://link.springer.com/article/10.1007/s10439-010-0124-1 https://www.ncbi.nlm.nih.gov/pubmed/20640512 https://www.proquest.com/docview/820957221 https://www.proquest.com/docview/821197570 https://www.proquest.com/docview/822499972 https://www.proquest.com/docview/851473787 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xTULsAcGALQwmP_AEsqidOE6eUBntKtCmaaxSebLsxJmQRrKt7QP_nrvEyUBApTSVGieqc2ffd_6S7wDeOJd5mVYxd8KVPCms5ZkqCo4ZMwJ8n4tK0LvDp2fpbJ58XqhFeDZnGR6r7OfEdqIum4LWyN9jpMqVllJ8uLnlVDSKyNVQQWMLdki5jJxaL4Z8C6FzV19zlGOGlKdJT2p2b85hJOYtE4wRjos_wtJWZZt_Ic6_2NI2CE2fwOOAHtm4M_dTeODrPdj9TVNwDx6eBrb8GZSXaCjPP5GAfye-wWb-R1N2ReiX7HvNEP6xdh2fna-vsY_27iddndSPl6yticQuSIejvmK2LtkkFGhixw1R3eSyz2E-nVwez3ioqsALJZMV10mpq1gIh2AnLaQvHXGj1hNWsNaWqbUej-InS2PMJuJKV04pq3OVYDro4hewXTe1PwDmXFIJKbX0cUEiPw5jv1Qux0nDVXGWRTDqb6opguQ4Vb64NvdiyWQHg3YwZAcjIng7nHLT6W1sanyAljL2CudDM_8qiYUlfbc0zSM47M1nwqhcmsGHImDDURxOxJHY2jdrakK8qtKjTU0kpYlabmiCMFTHeEci2O9cZ-iMJOoUUVYE73pfuv-D_-3py43dOYRH3VI3ba9ge3W39q8RK63cUTsicJ9NT45gZ3zy7csEvz9Ozs4v8Ne5HP8CTDwQcg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4BTFQejKJAwcs86ItmIp3p9PJgjAHWRVhidDfhbZxpp8QEWmB3Y_hR_kfP6bRFo-4bSfvUadOZc-_X-Q7AS2tTJ-JSchvagke5MTxVec6xYsYE32VhGdLe4dFxPJxEn07UyRL87PbC0G-VnU9sHHVR5_SN_C1GqkwlQoTvLy45NY0icLXroOG14tBd_8CKbfruYA_F-0qIwf54d8jbpgI8VyKa8SQqklKGocVYH-fCFZagQeMoVBpjitgYh1fxTGOJybQsk9IqZZJMRVgNWYnPXYY7kcRAThvTBx970AKtwzdMyLAiy-KoA1H9Tj2M_LxBnjGi8vCPMLhcmvpfGe5f6GwT9AYP4UGbrbIPXr0ewZKr1mD1Nw7DNbg7atH5x1CMUTEc36OGAZ7sgw3deV34pvdT9r1imG6yBjdgn-dnuKbm6pqeTmzLU9b0YGJfiPejOmWmKth-2xCK7dYErZOJPIHJrSz4OqxUdeU2gVkblaEQiXAyJ1Ihi7mGUDZDJ2VLmaYB7HSLqvOW4pw6bZzpG3JmkoNGOWiSgw4DeN3fcuH5PRYN3kRJaXOK_ldPvgpCfYlPLo6zALY78enWC0x1r7MBsP4qmi9hMqZy9ZyGEI6rkp1FQwSVpYlYMATT3kTiigSw4VWnn4wgqBazugDedLp084L_nenWwum8gHvD8ehIHx0cH27Dff-ZnY6nsDK7mrtnmKfN7PPGOhh8u21z_AW7Q0ed |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W6mCA4LyaCgPH-ACslo7DycHhKC7qy2lq1XpSr25duJUldqkdHeF9qfx75jJqyBgb5WSU5wo9ry-yRfPALyxNnYyyn1uhc14kBrD4zBNOWbMCPBdInJBe4ePxtFoGnw5DU_X4Ge7F4Z-q2x9YuWoszKlb-S7GKmSUEkpdvPmr4hJf_jx-junBlJEtLbdNGoNOXTLH5i9zT4c9FHUb6UcDk72R7xpMMDTUAZzroJM5b4QFuN-lEqXWaIJjaOwaYzJImMcXsUzjnwE1n6uchuGRiVhgJmR9fG567ChKCnqwcbnwXhy3FEYaCt1-4QE87MkClpKtd63hziAVzw0xlcu_giK67kp_4V3_-JqqxA4fAgPGuzKPtXK9gjWXLEF93-raLgFm0cNV_8YshNUE8f71D6gLv3BRu6qzJaFubpIZ-yiYAg-WcUisMniElfV3Czp6VR7ecaqjkzsmKqAFOfMFBkbNO2h2H5JRDsZzBOY3smSP4VeURZuG5i1QS6kVNL5KZUYsog8ZGgTdFk29-PYg712UXXaFDynvhuX-rZUM8lBoxw0yUELD951t1zX1T5WDd5GSWlzjt5YT79J4oCpulwUJR7stOLTjU-Y6U6DPWDdVTRmYmhM4coFDSFWN1R7q4ZISlKVXDEEQbDycUU8eFarTjcZScQtYjwP3re6dPuC_53p85XTeQ2baIr668H4cAfu1d_c6XgBvfnNwr1E0Da3rxrzYHB21xb5C_ZbTS8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Hemodynamics+in+the+Human+Pulmonary+Arteries+Under+Resting+and+Exercise+Conditions&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Tang%2C+Beverly+T&rft.au=Fonte%2C+Tim+A&rft.au=Chan%2C+Frandics+P&rft.au=Tsao%2C+Philip+S&rft.date=2011-01-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=39&rft.issue=1&rft.spage=347&rft.epage=358&rft_id=info:doi/10.1007%2Fs10439-010-0124-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |