Smart Contract Timestamp Vulnerability Detection Based on Code Homogeneity

Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulner...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E107.D; no. 10; pp. 1362 - 1366
Main Authors WANG, Weizhi, ZHANG, Zhuo, XIA, Lei, MENG, Xiankai
Format Journal Article
LanguageEnglish
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.10.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2024EDL8004

Cover

Abstract Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulnerabilities susceptible to hacking attacks, leading to significant losses. In this paper, we introduce a smart contract timestamp vulnerability detection technique HomoDec based on code homogeneity. The core idea of this technique involves comparing the homogeneity between the code of the test smart contract and the existing smart contract vulnerability codes in the database to determine whether the tested code has a timestamp vulnerability. Specifically, HomoDec first explores how to vectorize smart contracts reasonably and efficiently, representing smart contract code as a high-dimensional vector containing features of code vulnerabilities. Subsequently, it investigates methods to determine the homogeneity between the test codes and the ones in vulnerability code base, enabling the detection of potential timestamp vulnerabilities in smart contract code.
AbstractList Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulnerabilities susceptible to hacking attacks, leading to significant losses. In this paper, we introduce a smart contract timestamp vulnerability detection technique HomoDec based on code homogeneity. The core idea of this technique involves comparing the homogeneity between the code of the test smart contract and the existing smart contract vulnerability codes in the database to determine whether the tested code has a timestamp vulnerability. Specifically, HomoDec first explores how to vectorize smart contracts reasonably and efficiently, representing smart contract code as a high-dimensional vector containing features of code vulnerabilities. Subsequently, it investigates methods to determine the homogeneity between the test codes and the ones in vulnerability code base, enabling the detection of potential timestamp vulnerabilities in smart contract code.
ArticleNumber 2024EDL8004
Author XIA, Lei
WANG, Weizhi
MENG, Xiankai
ZHANG, Zhuo
Author_xml – sequence: 1
  fullname: WANG, Weizhi
  organization: The University of Queensland
– sequence: 1
  fullname: ZHANG, Zhuo
  organization: School of Computer Science and Engineering, Xian University of Technology
– sequence: 1
  fullname: XIA, Lei
  organization: No.83 Army Joint and Truma Disease Treatment Centre of PLA
– sequence: 1
  fullname: MENG, Xiankai
  organization: College of Computer and Information Engineering, Shanghai Polytechnic University
BookMark eNqFkMtOAyEUhompiW31DVxM4noqB4a5uNNptZomLrxsCQNMpZlCZeiiby9NvcWNGziL__vhfCM0sM5qhM4BT4CVxWXwwvbGthOCSTabLkqMsyM0hCJjKdAcBmiIK8jTklFygkZ9v8IYSgJsiB6e1sKHpHY2lsiQPJu17oNYb5LXbWe1F43pTNglUx20DMbZ5Eb0WiVxqJ3Sydyt3VJbHTOn6LgVXa_PPu8xermdPdfzdPF4d19fL1LJSBbSPJ4tbpTSFVE4I20DmRK5KiUp84oBU01GKyoLKFQBOWVVWzHNGqlIKSsAOkYXh96Nd-_b-Fu-cltv45OcAikZJgRoTF0dUtK7vve65dIEsd8gLmo6Dpjv3fEvd_yXuwhnf-CNN1HU7j_s6YCtosKl_oaiYSM7_QPNABd8ui_7nH61fKflm_BcW_oBzGaU1w
CitedBy_id crossref_primary_10_2478_amns_2025_0613
Cites_doi 10.1109/IWBOSE.2018.8327565
10.1145/3324884.3415298
10.1109/ICSME46990.2020.00023
10.1109/TKDE.2021.3095196
10.1109/TNSE.2020.2968505
10.1109/ACCESS.2019.2918202
10.18653/v1/2020.findings-emnlp.139
10.1145/2976749.2978309
10.1145/2133601.2133640
10.1145/3194113.3194115
10.1002/9781119711063.ch4
10.1109/ACCESS.2021.3140091
10.1109/ASE.2019.00133
10.23919/MIPRO.2018.8400278
10.1145/3274694.3274737
ContentType Journal Article
Copyright 2024 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: 2024 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1587/transinf.2024EDL8004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 1366
ExternalDocumentID 10_1587_transinf_2024EDL8004
article_transinf_E107_D_10_E107_D_2024EDL8004_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c524t-6524f0bdde92d042fb14da6d8c2869515db4393c717d716359f95e5bcd28c9113
ISSN 0916-8532
IngestDate Mon Jun 30 14:36:00 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Tue Jul 01 02:54:11 EDT 2025
Wed Sep 03 06:30:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-6524f0bdde92d042fb14da6d8c2869515db4393c717d716359f95e5bcd28c9113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E107.D/10/E107.D_2024EDL8004/_article/-char/en
PQID 3128502213
PQPubID 2048497
PageCount 5
ParticipantIDs proquest_journals_3128502213
crossref_citationtrail_10_1587_transinf_2024EDL8004
crossref_primary_10_1587_transinf_2024EDL8004
jstage_primary_article_transinf_E107_D_10_E107_D_2024EDL8004_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationYear 2024
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References [16] C.F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart contracts,” Proc. 34th annual computer security applications conference, pp.664-676, 2018. 10.1145/3274694.3274737
[1] J. Brito and A. Castillo, Bitcoin: A primer for policymakers, Mercatus Center at George Mason University, 2013.
[17] B. Mueller, “Mythril-reversing and bug hunting framework for the ethereum blockchain,” 2017.
[11] L.M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain consensus algorithms,” 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO), pp.1545-1550, Ieee, 2018. 10.23919/mipro.2018.8400278
[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol.30, 2017.
[6] J.F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A framework to analyze solidity smart contracts,” Proc. 35th IEEE/ACM International Conference on Automated Software Engineering, pp.1349-1352, 2020. 10.1145/3324884.3415298
[7] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Automated vulnerability detection models for ethereum smart contracts,” IEEE Transactions on Network Science and Engineering, vol.8, no.2, pp.1133-1144, 2020. 10.1109/tnse.2020.2968505
[19] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” Proc. 1st international workshop on emerging trends in software engineering for blockchain, pp.9-16, 2018. 10.1145/3194113.3194115
[9] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum smart contracts,” 2020 IEEE international conference on software maintenance and evolution (ICSME), pp.139-150, IEEE, 2020. 10.1109/icsme46990.2020.00023
[3] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem and solidity,” 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp.2-8, IEEE, 2018. 10.1109/iwbose.2018.8327565
[10] Y. Ni, C. Zhang, and T. Yin, “A survey of smart contract vulnerability research,” Journal of Cyber Security, vol.5, no.3, pp.78-99, 2020.
[15] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart contracts,” 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.1186-1189, IEEE, 2019. 10.1109/ase.2019.00133
[8] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol.151, no.2014, pp.1-32, 2014.
[12] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al., “Codebert: A pre-trained model for programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020.
[14] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in third-party android marketplaces,” Proc. second ACM conference on Data and Application Security and Privacy, pp.317-326, 2012. 10.1145/2133601.2133640
[18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,” Proc. 2016 ACM SIGSAC conference on computer and communications security, pp.254-269, 2016. 10.1145/2976749.2978309
[2] S. Bhatia and S. Tyagi, “Ethereum,” Blockchain for Business: How It Works and Creates Value, pp.77-96, 2021. 10.1002/9781119711063.ch4
[4] S.S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic review of security vulnerabilities in ethereum blockchain smart contract,” IEEE Access, vol.10, pp.6605-6621, 2022. 10.1109/access.2021.3140091
[20] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining graph neural networks with expert knowledge for smart contract vulnerability detection,” IEEE Trans. Knowl. Data Eng., vol.35, no.2, pp.1296-1310, 2021. 10.1109/tkde.2021.3095196
[5] Q.U. Ain, W.H. Butt, M.W. Anwar, F. Azam, and B. Maqbool, “A systematic review on code clone detection,” IEEE access, vol.7, pp.86121-86144, 2019. 10.1109/access.2019.2918202
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
References_xml – reference: [18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,” Proc. 2016 ACM SIGSAC conference on computer and communications security, pp.254-269, 2016. 10.1145/2976749.2978309
– reference: [8] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol.151, no.2014, pp.1-32, 2014.
– reference: [15] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart contracts,” 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.1186-1189, IEEE, 2019. 10.1109/ase.2019.00133
– reference: [10] Y. Ni, C. Zhang, and T. Yin, “A survey of smart contract vulnerability research,” Journal of Cyber Security, vol.5, no.3, pp.78-99, 2020.
– reference: [6] J.F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A framework to analyze solidity smart contracts,” Proc. 35th IEEE/ACM International Conference on Automated Software Engineering, pp.1349-1352, 2020. 10.1145/3324884.3415298
– reference: [2] S. Bhatia and S. Tyagi, “Ethereum,” Blockchain for Business: How It Works and Creates Value, pp.77-96, 2021. 10.1002/9781119711063.ch4
– reference: [13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol.30, 2017.
– reference: [11] L.M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain consensus algorithms,” 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO), pp.1545-1550, Ieee, 2018. 10.23919/mipro.2018.8400278
– reference: [5] Q.U. Ain, W.H. Butt, M.W. Anwar, F. Azam, and B. Maqbool, “A systematic review on code clone detection,” IEEE access, vol.7, pp.86121-86144, 2019. 10.1109/access.2019.2918202
– reference: [17] B. Mueller, “Mythril-reversing and bug hunting framework for the ethereum blockchain,” 2017.
– reference: [9] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum smart contracts,” 2020 IEEE international conference on software maintenance and evolution (ICSME), pp.139-150, IEEE, 2020. 10.1109/icsme46990.2020.00023
– reference: [1] J. Brito and A. Castillo, Bitcoin: A primer for policymakers, Mercatus Center at George Mason University, 2013.
– reference: [12] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al., “Codebert: A pre-trained model for programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020.
– reference: [19] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” Proc. 1st international workshop on emerging trends in software engineering for blockchain, pp.9-16, 2018. 10.1145/3194113.3194115
– reference: [3] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem and solidity,” 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp.2-8, IEEE, 2018. 10.1109/iwbose.2018.8327565
– reference: [7] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Automated vulnerability detection models for ethereum smart contracts,” IEEE Transactions on Network Science and Engineering, vol.8, no.2, pp.1133-1144, 2020. 10.1109/tnse.2020.2968505
– reference: [20] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining graph neural networks with expert knowledge for smart contract vulnerability detection,” IEEE Trans. Knowl. Data Eng., vol.35, no.2, pp.1296-1310, 2021. 10.1109/tkde.2021.3095196
– reference: [4] S.S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic review of security vulnerabilities in ethereum blockchain smart contract,” IEEE Access, vol.10, pp.6605-6621, 2022. 10.1109/access.2021.3140091
– reference: [16] C.F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart contracts,” Proc. 34th annual computer security applications conference, pp.664-676, 2018. 10.1145/3274694.3274737
– reference: [14] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in third-party android marketplaces,” Proc. second ACM conference on Data and Application Security and Privacy, pp.317-326, 2012. 10.1145/2133601.2133640
– ident: 3
  doi: 10.1109/IWBOSE.2018.8327565
– ident: 17
– ident: 6
  doi: 10.1145/3324884.3415298
– ident: 9
  doi: 10.1109/ICSME46990.2020.00023
– ident: 20
  doi: 10.1109/TKDE.2021.3095196
– ident: 1
– ident: 7
  doi: 10.1109/TNSE.2020.2968505
– ident: 5
  doi: 10.1109/ACCESS.2019.2918202
– ident: 10
– ident: 13
– ident: 12
  doi: 10.18653/v1/2020.findings-emnlp.139
– ident: 18
  doi: 10.1145/2976749.2978309
– ident: 14
  doi: 10.1145/2133601.2133640
– ident: 19
  doi: 10.1145/3194113.3194115
– ident: 2
  doi: 10.1002/9781119711063.ch4
– ident: 4
  doi: 10.1109/ACCESS.2021.3140091
– ident: 8
– ident: 15
  doi: 10.1109/ASE.2019.00133
– ident: 11
  doi: 10.23919/MIPRO.2018.8400278
– ident: 16
  doi: 10.1145/3274694.3274737
SSID ssj0018215
Score 2.3716946
Snippet Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1362
SubjectTerms code homogeneity
Contracts
Digital computers
Homogeneity
smart contract
Software
vulnerability detection
Title Smart Contract Timestamp Vulnerability Detection Based on Code Homogeneity
URI https://www.jstage.jst.go.jp/article/transinf/E107.D/10/E107.D_2024EDL8004/_article/-char/en
https://www.proquest.com/docview/3128502213
Volume E107.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2024/10/01, Vol.E107.D(10), pp.1362-1366
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfK4AAHPgYThYFy4DalJLGdj2NpM7VjQ0J0UHGJ4thhZWszDffA_mf-B55jJ3WgEp-XyLVeEsfv1_ee7feB0AuwkH3BaeniWJQuIdBi2BMuLzkHhYaFyFXs8MmbcHJKjuZ03ut9s7yW1pINiuutcSV_w1XoA76qKNk_4Gz7UOiANvAXrsBhuP4Wj98toVMF7UkV66TDOWS-vDx4v75Q2aRrx9evIFOk0BXBX4HO4up8YFRxcTCplhU8Wyxk52x3mk5Hqc56rqMe6hMFE7ckG_dlO9W5EupDHfz0QSyuzxbtdvTEdH88W1dN53w6rHcDREt2kmqqOWD1PF_YOxEBaX3aNHZmtben5eGQtoV8jMDrjrMTAdOmX-xsUfqhC-aEltZCC-iIUNfHOoF7I8FTWMMOxjZaPUsmA3Vg6Xf4GW7VHVTtvhxKNbvQP1BfmI6PY0-XR_4hK7fhedaQZ2oM2TiDNZVpWfdnDbWKpAPg3kA3gyiqvQpev90cesWBLrjRfLaJ9IRxvdw2qo4ldesz4OvTzxZFbSbN7qO7Zn3jDPVQHqCeWO2ie03tEMeokl10x0qE-RAd1Uh2GiQ7LZKdDpKdFslOjWQHGgrJjoXkR-j0MJ2NJq6p8uEWNCDSDeFaegzUbBJwUCEl8wnPQx4XQRyC_U85A6MZF5EfgfQA-zgpEyooK3gQF6Cq8R7aWVUr8Rg5Qe4JSvyAkwSTMKcMRywvSEGTgkaYxX2EmxnLCpMCX1ViuVBsU_O8Yac1z33ktndd6hQwv6A_1sxoqf8JLH2037A0M7LnS4bBrKRgfvv4yf9921N0e_PX3kc78motnoHZLdnzGqzfAfZG3dI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Contract+Timestamp+Vulnerability+Detection+Based+on+Code+Homogeneity&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=WANG%2C+Weizhi&rft.au=ZHANG%2C+Zhuo&rft.au=XIA%2C+Lei&rft.au=MENG%2C+Xiankai&rft.date=2024-10-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E107.D&rft.issue=10&rft.spage=1362&rft.epage=1366&rft_id=info:doi/10.1587%2Ftransinf.2024EDL8004&rft.externalDocID=article_transinf_E107_D_10_E107_D_2024EDL8004_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon