Smart Contract Timestamp Vulnerability Detection Based on Code Homogeneity
Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulner...
Saved in:
Published in | IEICE Transactions on Information and Systems Vol. E107.D; no. 10; pp. 1362 - 1366 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Institute of Electronics, Information and Communication Engineers
01.10.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0916-8532 1745-1361 |
DOI | 10.1587/transinf.2024EDL8004 |
Cover
Abstract | Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulnerabilities susceptible to hacking attacks, leading to significant losses. In this paper, we introduce a smart contract timestamp vulnerability detection technique HomoDec based on code homogeneity. The core idea of this technique involves comparing the homogeneity between the code of the test smart contract and the existing smart contract vulnerability codes in the database to determine whether the tested code has a timestamp vulnerability. Specifically, HomoDec first explores how to vectorize smart contracts reasonably and efficiently, representing smart contract code as a high-dimensional vector containing features of code vulnerabilities. Subsequently, it investigates methods to determine the homogeneity between the test codes and the ones in vulnerability code base, enabling the detection of potential timestamp vulnerabilities in smart contract code. |
---|---|
AbstractList | Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulnerabilities susceptible to hacking attacks, leading to significant losses. In this paper, we introduce a smart contract timestamp vulnerability detection technique HomoDec based on code homogeneity. The core idea of this technique involves comparing the homogeneity between the code of the test smart contract and the existing smart contract vulnerability codes in the database to determine whether the tested code has a timestamp vulnerability. Specifically, HomoDec first explores how to vectorize smart contracts reasonably and efficiently, representing smart contract code as a high-dimensional vector containing features of code vulnerabilities. Subsequently, it investigates methods to determine the homogeneity between the test codes and the ones in vulnerability code base, enabling the detection of potential timestamp vulnerabilities in smart contract code. |
ArticleNumber | 2024EDL8004 |
Author | XIA, Lei WANG, Weizhi MENG, Xiankai ZHANG, Zhuo |
Author_xml | – sequence: 1 fullname: WANG, Weizhi organization: The University of Queensland – sequence: 1 fullname: ZHANG, Zhuo organization: School of Computer Science and Engineering, Xian University of Technology – sequence: 1 fullname: XIA, Lei organization: No.83 Army Joint and Truma Disease Treatment Centre of PLA – sequence: 1 fullname: MENG, Xiankai organization: College of Computer and Information Engineering, Shanghai Polytechnic University |
BookMark | eNqFkMtOAyEUhompiW31DVxM4noqB4a5uNNptZomLrxsCQNMpZlCZeiiby9NvcWNGziL__vhfCM0sM5qhM4BT4CVxWXwwvbGthOCSTabLkqMsyM0hCJjKdAcBmiIK8jTklFygkZ9v8IYSgJsiB6e1sKHpHY2lsiQPJu17oNYb5LXbWe1F43pTNglUx20DMbZ5Eb0WiVxqJ3Sydyt3VJbHTOn6LgVXa_PPu8xermdPdfzdPF4d19fL1LJSBbSPJ4tbpTSFVE4I20DmRK5KiUp84oBU01GKyoLKFQBOWVVWzHNGqlIKSsAOkYXh96Nd-_b-Fu-cltv45OcAikZJgRoTF0dUtK7vve65dIEsd8gLmo6Dpjv3fEvd_yXuwhnf-CNN1HU7j_s6YCtosKl_oaiYSM7_QPNABd8ui_7nH61fKflm_BcW_oBzGaU1w |
CitedBy_id | crossref_primary_10_2478_amns_2025_0613 |
Cites_doi | 10.1109/IWBOSE.2018.8327565 10.1145/3324884.3415298 10.1109/ICSME46990.2020.00023 10.1109/TKDE.2021.3095196 10.1109/TNSE.2020.2968505 10.1109/ACCESS.2019.2918202 10.18653/v1/2020.findings-emnlp.139 10.1145/2976749.2978309 10.1145/2133601.2133640 10.1145/3194113.3194115 10.1002/9781119711063.ch4 10.1109/ACCESS.2021.3140091 10.1109/ASE.2019.00133 10.23919/MIPRO.2018.8400278 10.1145/3274694.3274737 |
ContentType | Journal Article |
Copyright | 2024 The Institute of Electronics, Information and Communication Engineers Copyright Japan Science and Technology Agency 2024 |
Copyright_xml | – notice: 2024 The Institute of Electronics, Information and Communication Engineers – notice: Copyright Japan Science and Technology Agency 2024 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1587/transinf.2024EDL8004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1745-1361 |
EndPage | 1366 |
ExternalDocumentID | 10_1587_transinf_2024EDL8004 article_transinf_E107_D_10_E107_D_2024EDL8004_article_char_en |
GroupedDBID | -~X 5GY ABJNI ABZEH ACGFS ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P ICE JSF JSH KQ8 OK1 P2P RJT RZJ TN5 ZKX AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c524t-6524f0bdde92d042fb14da6d8c2869515db4393c717d716359f95e5bcd28c9113 |
ISSN | 0916-8532 |
IngestDate | Mon Jun 30 14:36:00 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Tue Jul 01 02:54:11 EDT 2025 Wed Sep 03 06:30:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c524t-6524f0bdde92d042fb14da6d8c2869515db4393c717d716359f95e5bcd28c9113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/transinf/E107.D/10/E107.D_2024EDL8004/_article/-char/en |
PQID | 3128502213 |
PQPubID | 2048497 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3128502213 crossref_citationtrail_10_1587_transinf_2024EDL8004 crossref_primary_10_1587_transinf_2024EDL8004 jstage_primary_article_transinf_E107_D_10_E107_D_2024EDL8004_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | IEICE Transactions on Information and Systems |
PublicationTitleAlternate | IEICE Trans. Inf. & Syst. |
PublicationYear | 2024 |
Publisher | The Institute of Electronics, Information and Communication Engineers Japan Science and Technology Agency |
Publisher_xml | – name: The Institute of Electronics, Information and Communication Engineers – name: Japan Science and Technology Agency |
References | [16] C.F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart contracts,” Proc. 34th annual computer security applications conference, pp.664-676, 2018. 10.1145/3274694.3274737 [1] J. Brito and A. Castillo, Bitcoin: A primer for policymakers, Mercatus Center at George Mason University, 2013. [17] B. Mueller, “Mythril-reversing and bug hunting framework for the ethereum blockchain,” 2017. [11] L.M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain consensus algorithms,” 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO), pp.1545-1550, Ieee, 2018. 10.23919/mipro.2018.8400278 [13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol.30, 2017. [6] J.F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A framework to analyze solidity smart contracts,” Proc. 35th IEEE/ACM International Conference on Automated Software Engineering, pp.1349-1352, 2020. 10.1145/3324884.3415298 [7] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Automated vulnerability detection models for ethereum smart contracts,” IEEE Transactions on Network Science and Engineering, vol.8, no.2, pp.1133-1144, 2020. 10.1109/tnse.2020.2968505 [19] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” Proc. 1st international workshop on emerging trends in software engineering for blockchain, pp.9-16, 2018. 10.1145/3194113.3194115 [9] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum smart contracts,” 2020 IEEE international conference on software maintenance and evolution (ICSME), pp.139-150, IEEE, 2020. 10.1109/icsme46990.2020.00023 [3] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem and solidity,” 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp.2-8, IEEE, 2018. 10.1109/iwbose.2018.8327565 [10] Y. Ni, C. Zhang, and T. Yin, “A survey of smart contract vulnerability research,” Journal of Cyber Security, vol.5, no.3, pp.78-99, 2020. [15] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart contracts,” 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.1186-1189, IEEE, 2019. 10.1109/ase.2019.00133 [8] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol.151, no.2014, pp.1-32, 2014. [12] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al., “Codebert: A pre-trained model for programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020. [14] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in third-party android marketplaces,” Proc. second ACM conference on Data and Application Security and Privacy, pp.317-326, 2012. 10.1145/2133601.2133640 [18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,” Proc. 2016 ACM SIGSAC conference on computer and communications security, pp.254-269, 2016. 10.1145/2976749.2978309 [2] S. Bhatia and S. Tyagi, “Ethereum,” Blockchain for Business: How It Works and Creates Value, pp.77-96, 2021. 10.1002/9781119711063.ch4 [4] S.S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic review of security vulnerabilities in ethereum blockchain smart contract,” IEEE Access, vol.10, pp.6605-6621, 2022. 10.1109/access.2021.3140091 [20] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining graph neural networks with expert knowledge for smart contract vulnerability detection,” IEEE Trans. Knowl. Data Eng., vol.35, no.2, pp.1296-1310, 2021. 10.1109/tkde.2021.3095196 [5] Q.U. Ain, W.H. Butt, M.W. Anwar, F. Azam, and B. Maqbool, “A systematic review on code clone detection,” IEEE access, vol.7, pp.86121-86144, 2019. 10.1109/access.2019.2918202 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 |
References_xml | – reference: [18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,” Proc. 2016 ACM SIGSAC conference on computer and communications security, pp.254-269, 2016. 10.1145/2976749.2978309 – reference: [8] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol.151, no.2014, pp.1-32, 2014. – reference: [15] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries and smart contracts,” 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.1186-1189, IEEE, 2019. 10.1109/ase.2019.00133 – reference: [10] Y. Ni, C. Zhang, and T. Yin, “A survey of smart contract vulnerability research,” Journal of Cyber Security, vol.5, no.3, pp.78-99, 2020. – reference: [6] J.F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A framework to analyze solidity smart contracts,” Proc. 35th IEEE/ACM International Conference on Automated Software Engineering, pp.1349-1352, 2020. 10.1145/3324884.3415298 – reference: [2] S. Bhatia and S. Tyagi, “Ethereum,” Blockchain for Business: How It Works and Creates Value, pp.77-96, 2021. 10.1002/9781119711063.ch4 – reference: [13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol.30, 2017. – reference: [11] L.M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain consensus algorithms,” 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO), pp.1545-1550, Ieee, 2018. 10.23919/mipro.2018.8400278 – reference: [5] Q.U. Ain, W.H. Butt, M.W. Anwar, F. Azam, and B. Maqbool, “A systematic review on code clone detection,” IEEE access, vol.7, pp.86121-86144, 2019. 10.1109/access.2019.2918202 – reference: [17] B. Mueller, “Mythril-reversing and bug hunting framework for the ethereum blockchain,” 2017. – reference: [9] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum smart contracts,” 2020 IEEE international conference on software maintenance and evolution (ICSME), pp.139-150, IEEE, 2020. 10.1109/icsme46990.2020.00023 – reference: [1] J. Brito and A. Castillo, Bitcoin: A primer for policymakers, Mercatus Center at George Mason University, 2013. – reference: [12] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al., “Codebert: A pre-trained model for programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020. – reference: [19] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” Proc. 1st international workshop on emerging trends in software engineering for blockchain, pp.9-16, 2018. 10.1145/3194113.3194115 – reference: [3] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem and solidity,” 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp.2-8, IEEE, 2018. 10.1109/iwbose.2018.8327565 – reference: [7] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Automated vulnerability detection models for ethereum smart contracts,” IEEE Transactions on Network Science and Engineering, vol.8, no.2, pp.1133-1144, 2020. 10.1109/tnse.2020.2968505 – reference: [20] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining graph neural networks with expert knowledge for smart contract vulnerability detection,” IEEE Trans. Knowl. Data Eng., vol.35, no.2, pp.1296-1310, 2021. 10.1109/tkde.2021.3095196 – reference: [4] S.S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic review of security vulnerabilities in ethereum blockchain smart contract,” IEEE Access, vol.10, pp.6605-6621, 2022. 10.1109/access.2021.3140091 – reference: [16] C.F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart contracts,” Proc. 34th annual computer security applications conference, pp.664-676, 2018. 10.1145/3274694.3274737 – reference: [14] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in third-party android marketplaces,” Proc. second ACM conference on Data and Application Security and Privacy, pp.317-326, 2012. 10.1145/2133601.2133640 – ident: 3 doi: 10.1109/IWBOSE.2018.8327565 – ident: 17 – ident: 6 doi: 10.1145/3324884.3415298 – ident: 9 doi: 10.1109/ICSME46990.2020.00023 – ident: 20 doi: 10.1109/TKDE.2021.3095196 – ident: 1 – ident: 7 doi: 10.1109/TNSE.2020.2968505 – ident: 5 doi: 10.1109/ACCESS.2019.2918202 – ident: 10 – ident: 13 – ident: 12 doi: 10.18653/v1/2020.findings-emnlp.139 – ident: 18 doi: 10.1145/2976749.2978309 – ident: 14 doi: 10.1145/2133601.2133640 – ident: 19 doi: 10.1145/3194113.3194115 – ident: 2 doi: 10.1002/9781119711063.ch4 – ident: 4 doi: 10.1109/ACCESS.2021.3140091 – ident: 8 – ident: 15 doi: 10.1109/ASE.2019.00133 – ident: 11 doi: 10.23919/MIPRO.2018.8400278 – ident: 16 doi: 10.1145/3274694.3274737 |
SSID | ssj0018215 |
Score | 2.3716946 |
Snippet | Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1362 |
SubjectTerms | code homogeneity Contracts Digital computers Homogeneity smart contract Software vulnerability detection |
Title | Smart Contract Timestamp Vulnerability Detection Based on Code Homogeneity |
URI | https://www.jstage.jst.go.jp/article/transinf/E107.D/10/E107.D_2024EDL8004/_article/-char/en https://www.proquest.com/docview/3128502213 |
Volume | E107.D |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | IEICE Transactions on Information and Systems, 2024/10/01, Vol.E107.D(10), pp.1362-1366 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfK4AAHPgYThYFy4DalJLGdj2NpM7VjQ0J0UHGJ4thhZWszDffA_mf-B55jJ3WgEp-XyLVeEsfv1_ee7feB0AuwkH3BaeniWJQuIdBi2BMuLzkHhYaFyFXs8MmbcHJKjuZ03ut9s7yW1pINiuutcSV_w1XoA76qKNk_4Gz7UOiANvAXrsBhuP4Wj98toVMF7UkV66TDOWS-vDx4v75Q2aRrx9evIFOk0BXBX4HO4up8YFRxcTCplhU8Wyxk52x3mk5Hqc56rqMe6hMFE7ckG_dlO9W5EupDHfz0QSyuzxbtdvTEdH88W1dN53w6rHcDREt2kmqqOWD1PF_YOxEBaX3aNHZmtben5eGQtoV8jMDrjrMTAdOmX-xsUfqhC-aEltZCC-iIUNfHOoF7I8FTWMMOxjZaPUsmA3Vg6Xf4GW7VHVTtvhxKNbvQP1BfmI6PY0-XR_4hK7fhedaQZ2oM2TiDNZVpWfdnDbWKpAPg3kA3gyiqvQpev90cesWBLrjRfLaJ9IRxvdw2qo4ldesz4OvTzxZFbSbN7qO7Zn3jDPVQHqCeWO2ie03tEMeokl10x0qE-RAd1Uh2GiQ7LZKdDpKdFslOjWQHGgrJjoXkR-j0MJ2NJq6p8uEWNCDSDeFaegzUbBJwUCEl8wnPQx4XQRyC_U85A6MZF5EfgfQA-zgpEyooK3gQF6Cq8R7aWVUr8Rg5Qe4JSvyAkwSTMKcMRywvSEGTgkaYxX2EmxnLCpMCX1ViuVBsU_O8Yac1z33ktndd6hQwv6A_1sxoqf8JLH2037A0M7LnS4bBrKRgfvv4yf9921N0e_PX3kc78motnoHZLdnzGqzfAfZG3dI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Contract+Timestamp+Vulnerability+Detection+Based+on+Code+Homogeneity&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=WANG%2C+Weizhi&rft.au=ZHANG%2C+Zhuo&rft.au=XIA%2C+Lei&rft.au=MENG%2C+Xiankai&rft.date=2024-10-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E107.D&rft.issue=10&rft.spage=1362&rft.epage=1366&rft_id=info:doi/10.1587%2Ftransinf.2024EDL8004&rft.externalDocID=article_transinf_E107_D_10_E107_D_2024EDL8004_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon |