In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity

According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herp...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 44; no. 2; pp. 233 - 245
Main Authors Halle, Stephan, Keyser, Kirsten Anja, Stahl, Felix Rolf, Busche, Andreas, Marquardt, Anja, Zheng, Xiang, Galla, Melanie, Heissmeyer, Vigo, Heller, Katrin, Boelter, Jasmin, Wagner, Karen, Bischoff, Yvonne, Martens, Rieke, Braun, Asolina, Werth, Kathrin, Uvarovskii, Alexey, Kempf, Harald, Meyer-Hermann, Michael, Arens, Ramon, Kremer, Melanie, Sutter, Gerd, Messerle, Martin, Förster, Reinhold
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.02.2016
Elsevier Limited
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. [Display omitted] •Two-photon imaging indicates that CTLs kill 2–16 virus-infected cells per day•CTLs form kinapses rather than stable synapses when killing virus-infected cells•Some CTL contacts trigger long-lasting calcium fluxes in virus-infected cells•CTLs can cooperate during killing of virus-infected cells According to in vitro assays, T cells are thought to kill rapidly and efficiently. Using two-photon microscopy, Forster and colleagues have found that killing capacities of single cytotoxic T lymphocytes (CTLs) in vivo are heterogeneous and limited. Quantification of target-cell-death probabilities identified efficient cooperative killing when multiple CTLs attacked a virus-infected cell.
AbstractList According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+T cell immunity.
According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity.
According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. [Display omitted] •Two-photon imaging indicates that CTLs kill 2–16 virus-infected cells per day•CTLs form kinapses rather than stable synapses when killing virus-infected cells•Some CTL contacts trigger long-lasting calcium fluxes in virus-infected cells•CTLs can cooperate during killing of virus-infected cells According to in vitro assays, T cells are thought to kill rapidly and efficiently. Using two-photon microscopy, Forster and colleagues have found that killing capacities of single cytotoxic T lymphocytes (CTLs) in vivo are heterogeneous and limited. Quantification of target-cell-death probabilities identified efficient cooperative killing when multiple CTLs attacked a virus-infected cell.
According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8 + T cell immunity. • Two-photon imaging indicates that CTLs kill 2–16 virus-infected cells per day • CTLs form kinapses rather than stable synapses when killing virus-infected cells • Some CTL contacts trigger long-lasting calcium fluxes in virus-infected cells • CTLs can cooperate during killing of virus-infected cells According to in vitro assays, T cells are thought to kill rapidly and efficiently. Using two-photon microscopy, Forster and colleagues have found that killing capacities of single cytotoxic T lymphocytes (CTLs) in vivo are heterogeneous and limited. Quantification of target-cell-death probabilities identified efficient cooperative killing when multiple CTLs attacked a virus-infected cell.
Author Busche, Andreas
Heller, Katrin
Martens, Rieke
Marquardt, Anja
Zheng, Xiang
Galla, Melanie
Arens, Ramon
Messerle, Martin
Förster, Reinhold
Stahl, Felix Rolf
Sutter, Gerd
Bischoff, Yvonne
Uvarovskii, Alexey
Meyer-Hermann, Michael
Boelter, Jasmin
Wagner, Karen
Werth, Kathrin
Halle, Stephan
Heissmeyer, Vigo
Braun, Asolina
Kremer, Melanie
Keyser, Kirsten Anja
Kempf, Harald
AuthorAffiliation 2 Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
3 Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
1 Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
8 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
5 Institute of Molecular Immunology, Helmholtz Zentrum München, 81377 München, Germany
9 Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
4 Institute for Immunology, Ludwig-Maximilians-Universität München, 80336 München, Germany
6 Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
7 Institute for Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, 38124 Braunschweig, Germany
AuthorAffiliation_xml – name: 5 Institute of Molecular Immunology, Helmholtz Zentrum München, 81377 München, Germany
– name: 3 Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
– name: 2 Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
– name: 1 Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– name: 6 Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
– name: 7 Institute for Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, 38124 Braunschweig, Germany
– name: 8 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
– name: 9 Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
– name: 4 Institute for Immunology, Ludwig-Maximilians-Universität München, 80336 München, Germany
Author_xml – sequence: 1
  givenname: Stephan
  surname: Halle
  fullname: Halle, Stephan
  email: halle.stephan@mh-hannover.de
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 2
  givenname: Kirsten Anja
  surname: Keyser
  fullname: Keyser, Kirsten Anja
  organization: Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 3
  givenname: Felix Rolf
  surname: Stahl
  fullname: Stahl, Felix Rolf
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 4
  givenname: Andreas
  surname: Busche
  fullname: Busche, Andreas
  organization: Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 5
  givenname: Anja
  surname: Marquardt
  fullname: Marquardt, Anja
  organization: Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 6
  givenname: Xiang
  surname: Zheng
  fullname: Zheng, Xiang
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 7
  givenname: Melanie
  surname: Galla
  fullname: Galla, Melanie
  organization: Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 8
  givenname: Vigo
  surname: Heissmeyer
  fullname: Heissmeyer, Vigo
  organization: Institute for Immunology, Ludwig-Maximilians-Universität München, 80336 München, Germany
– sequence: 9
  givenname: Katrin
  surname: Heller
  fullname: Heller, Katrin
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 10
  givenname: Jasmin
  surname: Boelter
  fullname: Boelter, Jasmin
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 11
  givenname: Karen
  surname: Wagner
  fullname: Wagner, Karen
  organization: Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 12
  givenname: Yvonne
  surname: Bischoff
  fullname: Bischoff, Yvonne
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 13
  givenname: Rieke
  surname: Martens
  fullname: Martens, Rieke
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 14
  givenname: Asolina
  surname: Braun
  fullname: Braun, Asolina
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 15
  givenname: Kathrin
  surname: Werth
  fullname: Werth, Kathrin
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 16
  givenname: Alexey
  surname: Uvarovskii
  fullname: Uvarovskii, Alexey
  organization: Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
– sequence: 17
  givenname: Harald
  surname: Kempf
  fullname: Kempf, Harald
  organization: Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
– sequence: 18
  givenname: Michael
  surname: Meyer-Hermann
  fullname: Meyer-Hermann, Michael
  organization: Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
– sequence: 19
  givenname: Ramon
  surname: Arens
  fullname: Arens, Ramon
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
– sequence: 20
  givenname: Melanie
  surname: Kremer
  fullname: Kremer, Melanie
  organization: Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
– sequence: 21
  givenname: Gerd
  surname: Sutter
  fullname: Sutter, Gerd
  organization: Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
– sequence: 22
  givenname: Martin
  surname: Messerle
  fullname: Messerle, Martin
  organization: Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
– sequence: 23
  givenname: Reinhold
  surname: Förster
  fullname: Förster, Reinhold
  email: foerster.reinhold@mh-hannover.de
  organization: Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26872694$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URNuBN0DIEhs2mfoWO9kgoXCLOlI3ha3lcZziUWIPthN13oZn4clwmFIuiwrJ0rF1vvOfi885OHHeGQCeY7TGCPOL3dqO4-TsmuTXGuF80CNwhlEtCoYrdLLcBSsEx_QUnMe4QwizskZPwCnhlSC8Zmcgte77t8929vDSDoN1N7BRe6VtOkDfw-aQfPK3VsNr2JhhiLCNcGNHm0wHletg62Y_zCbCtwenxsy1LpmgdLLexZ_EMRA23u-zI9k5Sz8Fj3s1RPPszq7Ap_fvrpuPxebqQ9u82RS6JCwVJaNM96KvqkoJzbAmte57pSmqKcseTjnZUi0oFtuSdvVW9zWqiRKEiMXQFXh91N1P29F02rgU1CD3wY4qHKRXVv7tcfaLvPGzZBXjtaiywKs7geC_TiYmOdqocz_KGT9FiQWvypyLkv9BBeIVz7WvwMt_0J2fgsuTWCheipLjMlPsSOngYwymv68bI7lsgNzJ4wbIZQMkwvmgHPbiz57vg359-e-hmDz52Zogo7bGadPZYHSSnbcPZ_gBIYDGqQ
CitedBy_id crossref_primary_10_1083_jcb_201712085
crossref_primary_10_1158_2326_6066_CIR_18_0750
crossref_primary_10_7554_eLife_84916
crossref_primary_10_1038_s41586_022_04825_8
crossref_primary_10_1158_0008_5472_CAN_18_3712
crossref_primary_10_1007_s11538_018_0412_8
crossref_primary_10_1073_pnas_1710751114
crossref_primary_10_1371_journal_ppat_1008426
crossref_primary_10_1093_imammb_dqx009
crossref_primary_10_1016_j_eururo_2024_01_023
crossref_primary_10_3389_fimmu_2020_00400
crossref_primary_10_7554_eLife_58065
crossref_primary_10_1080_10428194_2016_1222381
crossref_primary_10_1016_j_it_2017_04_002
crossref_primary_10_1016_j_it_2016_04_001
crossref_primary_10_1038_s41467_022_30575_2
crossref_primary_10_1158_2326_6066_CIR_20_0741
crossref_primary_10_1111_imr_13037
crossref_primary_10_1186_s40425_019_0500_9
crossref_primary_10_1111_imr_13032
crossref_primary_10_1016_j_cobme_2017_03_002
crossref_primary_10_1002_wsbm_1510
crossref_primary_10_1016_j_trecan_2022_07_007
crossref_primary_10_1016_j_cell_2022_03_030
crossref_primary_10_1039_C9ME00036D
crossref_primary_10_3389_fimmu_2024_1338218
crossref_primary_10_1007_s00430_019_00616_7
crossref_primary_10_1038_nrd_2016_233
crossref_primary_10_1172_jci_insight_167482
crossref_primary_10_3389_fphar_2016_00515
crossref_primary_10_15252_embj_2020106658
crossref_primary_10_1113_JP283667
crossref_primary_10_1016_j_it_2019_06_002
crossref_primary_10_1038_s41467_018_03662_6
crossref_primary_10_1038_s41467_021_25282_3
crossref_primary_10_1080_14760584_2018_1541407
crossref_primary_10_3389_fimmu_2022_849701
crossref_primary_10_1007_s00281_018_0714_9
crossref_primary_10_1007_s11538_022_01095_3
crossref_primary_10_1172_JCI132583
crossref_primary_10_1002_eji_202249921
crossref_primary_10_1016_j_nbd_2023_106308
crossref_primary_10_15252_embr_202357653
crossref_primary_10_1016_j_tcb_2023_02_008
crossref_primary_10_1021_acschembio_8b00155
crossref_primary_10_1038_s41598_019_53642_z
crossref_primary_10_3389_fphar_2022_1056365
crossref_primary_10_3389_fimmu_2019_02153
crossref_primary_10_3389_fimmu_2018_00952
crossref_primary_10_1007_s00109_018_1628_7
crossref_primary_10_3389_fimmu_2022_894306
crossref_primary_10_1038_s41598_019_48711_2
crossref_primary_10_1073_pnas_2316500121
crossref_primary_10_1016_j_semcdb_2019_01_004
crossref_primary_10_1016_j_coi_2023_102307
crossref_primary_10_1128_jvi_00509_22
crossref_primary_10_1371_journal_ppat_1005895
crossref_primary_10_3389_fphys_2020_590479
crossref_primary_10_1242_dmm_034462
crossref_primary_10_1098_rspb_2023_2280
crossref_primary_10_1002_acn3_783
crossref_primary_10_1007_s13402_021_00601_4
crossref_primary_10_1038_s41586_018_0812_9
crossref_primary_10_1016_j_ccell_2017_04_003
crossref_primary_10_3390_v15071454
crossref_primary_10_1016_j_copbio_2020_12_024
crossref_primary_10_1126_sciimmunol_aaz4371
crossref_primary_10_3389_fimmu_2019_00360
crossref_primary_10_1096_fj_202200033R
crossref_primary_10_1128_JVI_00095_17
crossref_primary_10_18632_aging_203113
crossref_primary_10_1007_s00285_024_02065_0
crossref_primary_10_1016_j_coviro_2021_02_001
crossref_primary_10_1111_imr_12433
crossref_primary_10_1371_journal_pntd_0007547
crossref_primary_10_1093_brain_awaa269
crossref_primary_10_1016_j_celrep_2018_03_072
crossref_primary_10_1111_imr_12672
crossref_primary_10_3389_fimmu_2022_931820
crossref_primary_10_1016_j_it_2021_06_004
crossref_primary_10_1016_j_celrep_2023_112597
crossref_primary_10_1038_s41598_020_64408_3
crossref_primary_10_3390_v13081563
crossref_primary_10_1371_journal_ppat_1007252
crossref_primary_10_1002_psp4_12925
crossref_primary_10_1002_psp4_12800
crossref_primary_10_3389_fimmu_2022_896228
crossref_primary_10_3389_fimmu_2018_01949
crossref_primary_10_1084_jem_20210314
crossref_primary_10_1016_j_ymthe_2017_06_003
crossref_primary_10_1172_jci_insight_93684
crossref_primary_10_1172_jci_insight_168110
crossref_primary_10_1371_journal_pcbi_1007972
crossref_primary_10_7554_eLife_68864
crossref_primary_10_1016_j_bpj_2017_02_008
crossref_primary_10_1093_brain_aww225
crossref_primary_10_1126_sciadv_aay6298
crossref_primary_10_1002_1878_0261_13582
crossref_primary_10_1016_j_ceca_2016_12_007
crossref_primary_10_1016_j_celrep_2017_12_052
crossref_primary_10_4049_jimmunol_1900232
crossref_primary_10_15252_embj_2018100928
crossref_primary_10_1007_s11904_020_00481_7
crossref_primary_10_1371_journal_pcbi_1009735
crossref_primary_10_3389_fonc_2021_653625
crossref_primary_10_3390_ijms20163865
crossref_primary_10_1016_j_immuni_2020_04_022
crossref_primary_10_3390_v10120693
crossref_primary_10_1128_mSphere_00381_18
crossref_primary_10_1172_JCI131696
crossref_primary_10_1021_acs_chemrev_1c00666
crossref_primary_10_1002_cyto_a_23938
crossref_primary_10_3389_fimmu_2016_00428
crossref_primary_10_3389_fimmu_2016_00668
crossref_primary_10_1084_jem_20182375
crossref_primary_10_1126_science_aay9207
crossref_primary_10_1038_cddis_2017_67
crossref_primary_10_1128_JVI_00306_16
crossref_primary_10_1371_journal_ppat_1009255
crossref_primary_10_1126_science_abl3855
crossref_primary_10_3389_fimmu_2021_704862
crossref_primary_10_1016_j_cellsig_2020_109772
crossref_primary_10_1083_jcb_202104093
crossref_primary_10_1016_j_celrep_2016_07_037
crossref_primary_10_1038_cti_2016_74
crossref_primary_10_1371_journal_pcbi_1007626
crossref_primary_10_1080_2162402X_2017_1306619
crossref_primary_10_1136_jitc_2020_001877
crossref_primary_10_1038_s41598_018_36055_2
crossref_primary_10_1371_journal_ppat_1009818
crossref_primary_10_1109_JBHI_2020_3003475
crossref_primary_10_1126_sciimmunol_add5724
crossref_primary_10_1038_s41467_017_01032_2
crossref_primary_10_1089_vim_2019_0173
crossref_primary_10_1016_j_immuni_2016_01_026
crossref_primary_10_1088_1361_6560_ac176b
crossref_primary_10_3390_ijms23073578
crossref_primary_10_4049_jimmunol_1800471
crossref_primary_10_1016_j_coviro_2016_11_010
crossref_primary_10_1117_1_JBO_24_5_051413
crossref_primary_10_3390_ijms232214122
crossref_primary_10_3389_fimmu_2021_626019
crossref_primary_10_1158_0008_5472_CAN_18_3147
crossref_primary_10_1038_s41586_019_1054_1
crossref_primary_10_1038_s41587_022_01397_w
crossref_primary_10_1007_s00262_019_02361_5
crossref_primary_10_1371_journal_pcbi_1008428
crossref_primary_10_1126_sciimmunol_aaq0491
crossref_primary_10_1016_j_xcrm_2021_100317
crossref_primary_10_7554_eLife_62691
crossref_primary_10_1155_2020_4106518
crossref_primary_10_1016_j_molimm_2019_03_010
crossref_primary_10_1016_j_isci_2022_104395
crossref_primary_10_1016_j_yexcr_2020_112014
crossref_primary_10_1016_j_biopha_2019_109626
crossref_primary_10_1002_wsbm_1446
Cites_doi 10.1016/j.it.2012.04.001
10.1126/science.1221063
10.1016/j.immuni.2006.04.015
10.1038/sj.icb.7100053
10.1172/JCI58653
10.1172/JCI34388
10.1073/pnas.0600651103
10.4049/jimmunol.181.6.3818
10.1128/JVI.01128-08
10.1126/science.1260044
10.1016/S1074-7613(00)80242-3
10.1084/jem.190.9.1285
10.1038/ni.2050
10.1016/j.immuni.2012.11.012
10.1007/978-1-61779-876-4_4
10.1016/j.coi.2010.04.002
10.1126/science.274.5284.94
10.1093/cid/cit048
10.1038/nri2638
10.1038/ni.2085
10.1016/j.immuni.2009.05.009
10.1016/S1097-2765(00)80063-5
10.1016/j.immuni.2011.07.010
10.1016/j.chom.2013.01.004
10.1126/science.1185350
10.1099/vir.0.029827-0
10.1111/j.1600-065X.2008.00589.x
10.1038/nature12354
10.1371/journal.pcbi.1004178
10.1016/j.immuni.2012.09.012
10.1016/j.immuni.2012.01.002
10.1111/imr.12015
10.1073/pnas.1303858110
10.1016/j.immuni.2015.02.009
10.1016/j.immuni.2011.05.017
10.1016/j.immuni.2015.04.013
10.1038/nature02238
10.4049/jimmunol.172.11.6944
10.1016/j.immuni.2005.08.001
10.1371/journal.pcbi.1002381
10.1371/journal.pcbi.1003534
10.1084/jem.20091472
10.1371/journal.pcbi.1003805
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 16, 2016
2016 The Authors. Published by Elsevier Inc. 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 16, 2016
– notice: 2016 The Authors. Published by Elsevier Inc. 2016 Elsevier Inc.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2016.01.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic


MEDLINE
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 245
ExternalDocumentID 3957550371
10_1016_j_immuni_2016_01_010
26872694
S1074761316000352
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
3V.
4.4
457
4G.
53G
5GY
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
0SF
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.55
.GJ
29I
5VS
AAIKJ
AALRI
AAQFI
AAQXK
AAYXX
ADMUD
ADVLN
AGHFR
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
AAMRU
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c524t-5434cf7f888a7c41c29cffac309344cf6362b3c7317b53d9bcf9092a722792a73
IEDL.DBID IXB
ISSN 1074-7613
IngestDate Tue Sep 17 21:17:56 EDT 2024
Fri Aug 16 06:14:50 EDT 2024
Fri Aug 16 04:46:21 EDT 2024
Wed Sep 25 02:34:06 EDT 2024
Fri Aug 23 01:56:07 EDT 2024
Thu May 23 23:21:42 EDT 2024
Fri Feb 23 02:28:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2016 Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-5434cf7f888a7c41c29cffac309344cf6362b3c7317b53d9bcf9092a722792a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Institute of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
Present address: Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
Present address: Octapharma Produktionsgesellschaft Deutschland mbH, 31832 Springe, Germany
Present address: Merck Animal Health, Burgwedel Biotech GmbH, 30938 Burgwedel, Germany
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761316000352
PMID 26872694
PQID 1766575615
PQPubID 2031079
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846978
proquest_miscellaneous_1768579232
proquest_miscellaneous_1767068609
proquest_journals_1766575615
crossref_primary_10_1016_j_immuni_2016_01_010
pubmed_primary_26872694
elsevier_sciencedirect_doi_10_1016_j_immuni_2016_01_010
PublicationCentury 2000
PublicationDate 2016-02-16
PublicationDateYYYYMMDD 2016-02-16
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Cell Press
References Krmpotic, Messerle, Crnkovic-Mertens, Polic, Jonjic, Koszinowski (bib25) 1999; 190
Plotkin (bib34) 2013; 56
Hogan, Kadolsky, Tung, Seddon, Yates (bib20) 2014; 10
Jenkins, Mintern, La Gruta, Kedzierska, Doherty, Turner (bib21) 2008; 181
Lopez, Brennan, Whisstock, Voskoboinik, Trapani (bib27) 2012; 33
Keefe, Shi, Feske, Massol, Navarro, Kirchhausen, Lieberman (bib23) 2005; 23
Cockburn, Amino, Kelemen, Kuo, Tse, Radtke, Mac-Daniel, Ganusov, Zavala, Ménard (bib7) 2013; 110
Liu, Bryceson, Meckel, Vasiliver-Shamis, Dustin, Long (bib26) 2009; 31
Breart, Lemaître, Celli, Bousso (bib5) 2008; 118
Hickman, Reynoso, Ngudiankama, Cush, Gibbs, Bennink, Yewdell (bib19) 2015; 42
Altman, Moss, Goulder, Barouch, McHeyzer-Williams, Bell, McMichael, Davis (bib1) 1996; 274
Newell, Sigal, Bendall, Nolan, Davis (bib33) 2012; 36
Thiery, Keefe, Boulant, Boucrot, Walch, Martinvalet, Goping, Bleackley, Kirchhausen, Lieberman (bib37) 2011; 12
Varadarajan, Julg, Yamanaka, Chen, Ogunniyi, McAndrew, Porter, Piechocka-Trocha, Hill, Douek (bib38) 2011; 121
Halle, Dujardin, Bakocevic, Fleige, Danzer, Willenzon, Suezer, Hämmerling, Garbi, Sutter (bib16) 2009; 206
Marangoni, Murooka, Manzo, Kim, Carrizosa, Elpek, Mempel (bib28) 2013; 38
Regoes, Yates, Antia (bib35) 2007; 85
Mempel, Pittet, Khazaie, Weninger, Weissleder, von Boehmer, von Andrian (bib32) 2006; 25
Dustin (bib9) 2008; 221
Ziegler, Thale, Lucin, Muranyi, Flohr, Hengel, Farrell, Rawlinson, Koszinowski (bib43) 1997; 6
Garcia, Richter, Graw, Oxenius, Regoes (bib13) 2015; 11
Elemans, Seich Al Basatena, Asquith (bib10) 2012; 8
Zhang, Bevan (bib42) 2011; 35
Hickman, Reynoso, Ngudiankama, Rubin, Magadán, Cush, Gibbs, Molon, Bronte, Bennink, Yewdell (bib18) 2013; 13
Aramburu, Garcia-Cózar, Raghavan, Okamura, Rao, Hogan (bib2) 1998; 1
Marquardt, Halle, Seckert, Lemmermann, Veres, Braun, Maus, Förster, Reddehase, Messerle, Busche (bib30) 2011; 92
Elemans, Florins, Willems, Asquith (bib11) 2014; 10
Beltman, Marée, de Boer (bib3) 2009; 9
Ritter, Asano, Stinchcombe, Dieckmann, Chen, Gawden-Bone, van Engelenburg, Legant, Gao, Davidson (bib36) 2015; 42
Wiedemann, Depoil, Faroudi, Valitutti (bib40) 2006; 103
Deguine, Bousso (bib8) 2013; 251
Braun, Worbs, Moschovakis, Halle, Hoffmann, Bölter, Münk, Förster (bib4) 2011; 12
Germain, Robey, Cahalan (bib14) 2012; 336
Kastenmüller, Brandes, Wang, Herz, Egen, Germain (bib22) 2013; 38
Hansen, Powers, Richards, Ventura, Ford, Siess, Axthelm, Nelson, Jarvis, Picker, Früh (bib17) 2010; 328
Marchingo, Kan, Sutherland, Duffy, Wellard, Belz, Lew, Dowling, Heinzel, Hodgkin (bib29) 2014; 346
Mempel, Henrickson, Von Andrian (bib31) 2004; 427
West, Youngblood, Tan, Jin, Araki, Alexe, Konieczny, Calpe, Freeman, Terhorst (bib39) 2011; 35
Ganusov, De Boer (bib12) 2008; 82
Chen, Wardill, Sun, Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman (bib6) 2013; 499
Kremer, Volz, Kreijtz, Fux, Lehmann, Sutter (bib24) 2012; 890
Yewdell (bib41) 2010; 22
Gold, Munks, Wagner, McMahon, Kelly, Kavanagh, Slifka, Koszinowski, Raulet, Hill (bib15) 2004; 172
22688761 - Methods Mol Biol. 2012;890:59-92
22745423 - Science. 2012 Jun 29;336(6089):1676-81
20360110 - Science. 2010 Apr 2;328(5974):102-6
21965332 - J Clin Invest. 2011 Nov;121(11):4322-31
19592272 - Immunity. 2009 Jul 17;31(1):99-109
8810254 - Science. 1996 Oct 4;274(5284):94-6
25430770 - Science. 2014 Nov 28;346(6213):1123-7
25933039 - PLoS Comput Biol. 2015 May;11(5):e1004178
18768835 - J Immunol. 2008 Sep 15;181(6):3818-22
19834485 - Nat Rev Immunol. 2009 Nov;9(11):789-98
14712275 - Nature. 2004 Jan 8;427(6970):154-9
23352234 - Immunity. 2013 Mar 21;38(3):502-13
23414756 - Cell Host Microbe. 2013 Feb 13;13(2):155-68
16860762 - Immunity. 2006 Jul;25(1):129-41
25992860 - Immunity. 2015 May 19;42(5):864-76
16832064 - Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10985-90
23386629 - Clin Infect Dis. 2013 May;56(10):1458-65
23278747 - Immunol Rev. 2013 Jan;251(1):154-9
20447814 - Curr Opin Immunol. 2010 Jun;22(3):402-10
26885849 - Immunity. 2016 Feb 16;44(2):207-8
22608996 - Trends Immunol. 2012 Aug;33(8):406-12
25233372 - PLoS Comput Biol. 2014 Sep;10(9):e1003805
21325477 - J Gen Virol. 2011 Jun;92(Pt 6):1279-91
15153514 - J Immunol. 2004 Jun 1;172(11):6944-53
23868258 - Nature. 2013 Jul 18;499(7458):295-300
22383867 - PLoS Comput Biol. 2012;8(2):e1002381
23313588 - Immunity. 2013 Feb 21;38(2):237-49
16169498 - Immunity. 2005 Sep;23(3):249-62
9052837 - Immunity. 1997 Jan;6(1):57-66
10544200 - J Exp Med. 1999 Nov 1;190(9):1285-96
21841786 - Nat Immunol. 2011 Sep;12(9):879-87
18275476 - Immunol Rev. 2008 Feb;221:77-89
9660947 - Mol Cell. 1998 Apr;1(5):627-37
17420769 - Immunol Cell Biol. 2007 Jun;85(4):274-9
18357341 - J Clin Invest. 2008 Apr;118(4):1390-7
21867926 - Immunity. 2011 Aug 26;35(2):161-8
21856186 - Immunity. 2011 Aug 26;35(2):285-98
19917776 - J Exp Med. 2009 Nov 23;206(12):2593-601
25769612 - Immunity. 2015 Mar 17;42(3):524-37
21685908 - Nat Immunol. 2011 Aug;12(8):770-7
18815293 - J Virol. 2008 Dec;82(23):11749-57
23674673 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9090-5
24699260 - PLoS Comput Biol. 2014 Apr;10(4):e1003534
22265676 - Immunity. 2012 Jan 27;36(1):142-52
Beltman (10.1016/j.immuni.2016.01.010_bib3) 2009; 9
Elemans (10.1016/j.immuni.2016.01.010_bib11) 2014; 10
Varadarajan (10.1016/j.immuni.2016.01.010_bib38) 2011; 121
Kremer (10.1016/j.immuni.2016.01.010_bib24) 2012; 890
Ganusov (10.1016/j.immuni.2016.01.010_bib12) 2008; 82
Zhang (10.1016/j.immuni.2016.01.010_bib42) 2011; 35
Marangoni (10.1016/j.immuni.2016.01.010_bib28) 2013; 38
Hickman (10.1016/j.immuni.2016.01.010_bib19) 2015; 42
Ritter (10.1016/j.immuni.2016.01.010_bib36) 2015; 42
Garcia (10.1016/j.immuni.2016.01.010_bib13) 2015; 11
Gold (10.1016/j.immuni.2016.01.010_bib15) 2004; 172
Dustin (10.1016/j.immuni.2016.01.010_bib9) 2008; 221
Hansen (10.1016/j.immuni.2016.01.010_bib17) 2010; 328
Hickman (10.1016/j.immuni.2016.01.010_bib18) 2013; 13
Mempel (10.1016/j.immuni.2016.01.010_bib32) 2006; 25
Regoes (10.1016/j.immuni.2016.01.010_bib35) 2007; 85
Halle (10.1016/j.immuni.2016.01.010_bib16) 2009; 206
Ziegler (10.1016/j.immuni.2016.01.010_bib43) 1997; 6
Kastenmüller (10.1016/j.immuni.2016.01.010_bib22) 2013; 38
Deguine (10.1016/j.immuni.2016.01.010_bib8) 2013; 251
Aramburu (10.1016/j.immuni.2016.01.010_bib2) 1998; 1
Krmpotic (10.1016/j.immuni.2016.01.010_bib25) 1999; 190
Jenkins (10.1016/j.immuni.2016.01.010_bib21) 2008; 181
Keefe (10.1016/j.immuni.2016.01.010_bib23) 2005; 23
Germain (10.1016/j.immuni.2016.01.010_bib14) 2012; 336
Yewdell (10.1016/j.immuni.2016.01.010_bib41) 2010; 22
Braun (10.1016/j.immuni.2016.01.010_bib4) 2011; 12
Hogan (10.1016/j.immuni.2016.01.010_bib20) 2014; 10
Marquardt (10.1016/j.immuni.2016.01.010_bib30) 2011; 92
Wiedemann (10.1016/j.immuni.2016.01.010_bib40) 2006; 103
Altman (10.1016/j.immuni.2016.01.010_bib1) 1996; 274
Lopez (10.1016/j.immuni.2016.01.010_bib27) 2012; 33
Elemans (10.1016/j.immuni.2016.01.010_bib10) 2012; 8
West (10.1016/j.immuni.2016.01.010_bib39) 2011; 35
Breart (10.1016/j.immuni.2016.01.010_bib5) 2008; 118
Plotkin (10.1016/j.immuni.2016.01.010_bib34) 2013; 56
Newell (10.1016/j.immuni.2016.01.010_bib33) 2012; 36
Marchingo (10.1016/j.immuni.2016.01.010_bib29) 2014; 346
Liu (10.1016/j.immuni.2016.01.010_bib26) 2009; 31
Thiery (10.1016/j.immuni.2016.01.010_bib37) 2011; 12
Cockburn (10.1016/j.immuni.2016.01.010_bib7) 2013; 110
Mempel (10.1016/j.immuni.2016.01.010_bib31) 2004; 427
Chen (10.1016/j.immuni.2016.01.010_bib6) 2013; 499
References_xml – volume: 427
  start-page: 154
  year: 2004
  end-page: 159
  ident: bib31
  article-title: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases
  publication-title: Nature
  contributor:
    fullname: Von Andrian
– volume: 499
  start-page: 295
  year: 2013
  end-page: 300
  ident: bib6
  article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity
  publication-title: Nature
  contributor:
    fullname: Jayaraman
– volume: 103
  start-page: 10985
  year: 2006
  end-page: 10990
  ident: bib40
  article-title: Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Valitutti
– volume: 8
  start-page: e1002381
  year: 2012
  ident: bib10
  article-title: The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter?
  publication-title: PLoS Comput. Biol.
  contributor:
    fullname: Asquith
– volume: 42
  start-page: 864
  year: 2015
  end-page: 876
  ident: bib36
  article-title: Actin depletion initiates events leading to granule secretion at the immunological synapse
  publication-title: Immunity
  contributor:
    fullname: Davidson
– volume: 10
  start-page: e1003805
  year: 2014
  ident: bib20
  article-title: Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
  publication-title: PLoS Comput. Biol.
  contributor:
    fullname: Yates
– volume: 12
  start-page: 879
  year: 2011
  end-page: 887
  ident: bib4
  article-title: Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration
  publication-title: Nat. Immunol.
  contributor:
    fullname: Förster
– volume: 85
  start-page: 274
  year: 2007
  end-page: 279
  ident: bib35
  article-title: Mathematical models of cytotoxic T-lymphocyte killing
  publication-title: Immunol. Cell Biol.
  contributor:
    fullname: Antia
– volume: 1
  start-page: 627
  year: 1998
  end-page: 637
  ident: bib2
  article-title: Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT
  publication-title: Mol. Cell
  contributor:
    fullname: Hogan
– volume: 31
  start-page: 99
  year: 2009
  end-page: 109
  ident: bib26
  article-title: Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses
  publication-title: Immunity
  contributor:
    fullname: Long
– volume: 36
  start-page: 142
  year: 2012
  end-page: 152
  ident: bib33
  article-title: Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes
  publication-title: Immunity
  contributor:
    fullname: Davis
– volume: 13
  start-page: 155
  year: 2013
  end-page: 168
  ident: bib18
  article-title: Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin
  publication-title: Cell Host Microbe
  contributor:
    fullname: Yewdell
– volume: 22
  start-page: 402
  year: 2010
  end-page: 410
  ident: bib41
  article-title: Designing CD8+ T cell vaccines: it’s not rocket science (yet)
  publication-title: Curr. Opin. Immunol.
  contributor:
    fullname: Yewdell
– volume: 6
  start-page: 57
  year: 1997
  end-page: 66
  ident: bib43
  article-title: A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments
  publication-title: Immunity
  contributor:
    fullname: Koszinowski
– volume: 23
  start-page: 249
  year: 2005
  end-page: 262
  ident: bib23
  article-title: Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis
  publication-title: Immunity
  contributor:
    fullname: Lieberman
– volume: 25
  start-page: 129
  year: 2006
  end-page: 141
  ident: bib32
  article-title: Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation
  publication-title: Immunity
  contributor:
    fullname: von Andrian
– volume: 172
  start-page: 6944
  year: 2004
  end-page: 6953
  ident: bib15
  article-title: Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response
  publication-title: J. Immunol.
  contributor:
    fullname: Hill
– volume: 251
  start-page: 154
  year: 2013
  end-page: 159
  ident: bib8
  article-title: Dynamics of NK cell interactions in vivo
  publication-title: Immunol. Rev.
  contributor:
    fullname: Bousso
– volume: 12
  start-page: 770
  year: 2011
  end-page: 777
  ident: bib37
  article-title: Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells
  publication-title: Nat. Immunol.
  contributor:
    fullname: Lieberman
– volume: 33
  start-page: 406
  year: 2012
  end-page: 412
  ident: bib27
  article-title: Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death
  publication-title: Trends Immunol.
  contributor:
    fullname: Trapani
– volume: 92
  start-page: 1279
  year: 2011
  end-page: 1291
  ident: bib30
  article-title: Single cell detection of latent cytomegalovirus reactivation in host tissue
  publication-title: J. Gen. Virol.
  contributor:
    fullname: Busche
– volume: 121
  start-page: 4322
  year: 2011
  end-page: 4331
  ident: bib38
  article-title: A high-throughput single-cell analysis of human CD8
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Douek
– volume: 38
  start-page: 237
  year: 2013
  end-page: 249
  ident: bib28
  article-title: The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells
  publication-title: Immunity
  contributor:
    fullname: Mempel
– volume: 11
  start-page: e1004178
  year: 2015
  ident: bib13
  article-title: Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities
  publication-title: PLoS Comput. Biol.
  contributor:
    fullname: Regoes
– volume: 190
  start-page: 1285
  year: 1999
  end-page: 1296
  ident: bib25
  article-title: The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo
  publication-title: J. Exp. Med.
  contributor:
    fullname: Koszinowski
– volume: 35
  start-page: 285
  year: 2011
  end-page: 298
  ident: bib39
  article-title: Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load
  publication-title: Immunity
  contributor:
    fullname: Terhorst
– volume: 206
  start-page: 2593
  year: 2009
  end-page: 2601
  ident: bib16
  article-title: Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells
  publication-title: J. Exp. Med.
  contributor:
    fullname: Sutter
– volume: 274
  start-page: 94
  year: 1996
  end-page: 96
  ident: bib1
  article-title: Phenotypic analysis of antigen-specific T lymphocytes
  publication-title: Science
  contributor:
    fullname: Davis
– volume: 110
  start-page: 9090
  year: 2013
  end-page: 9095
  ident: bib7
  article-title: In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Ménard
– volume: 56
  start-page: 1458
  year: 2013
  end-page: 1465
  ident: bib34
  article-title: Complex correlates of protection after vaccination
  publication-title: Clin. Infect. Dis.
  contributor:
    fullname: Plotkin
– volume: 10
  start-page: e1003534
  year: 2014
  ident: bib11
  article-title: Rates of CTL killing in persistent viral infection in vivo
  publication-title: PLoS Comput. Biol.
  contributor:
    fullname: Asquith
– volume: 328
  start-page: 102
  year: 2010
  end-page: 106
  ident: bib17
  article-title: Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus
  publication-title: Science
  contributor:
    fullname: Früh
– volume: 221
  start-page: 77
  year: 2008
  end-page: 89
  ident: bib9
  article-title: T-cell activation through immunological synapses and kinapses
  publication-title: Immunol. Rev.
  contributor:
    fullname: Dustin
– volume: 9
  start-page: 789
  year: 2009
  end-page: 798
  ident: bib3
  article-title: Analysing immune cell migration
  publication-title: Nat. Rev. Immunol.
  contributor:
    fullname: de Boer
– volume: 181
  start-page: 3818
  year: 2008
  end-page: 3822
  ident: bib21
  article-title: Cell cycle-related acquisition of cytotoxic mediators defines the progressive differentiation to effector status for virus-specific CD8+ T cells
  publication-title: J. Immunol.
  contributor:
    fullname: Turner
– volume: 38
  start-page: 502
  year: 2013
  end-page: 513
  ident: bib22
  article-title: Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node
  publication-title: Immunity
  contributor:
    fullname: Germain
– volume: 35
  start-page: 161
  year: 2011
  end-page: 168
  ident: bib42
  article-title: CD8(+) T cells: foot soldiers of the immune system
  publication-title: Immunity
  contributor:
    fullname: Bevan
– volume: 82
  start-page: 11749
  year: 2008
  end-page: 11757
  ident: bib12
  article-title: Estimating in vivo death rates of targets due to CD8 T-cell-mediated killing
  publication-title: J. Virol.
  contributor:
    fullname: De Boer
– volume: 42
  start-page: 524
  year: 2015
  end-page: 537
  ident: bib19
  article-title: CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells
  publication-title: Immunity
  contributor:
    fullname: Yewdell
– volume: 346
  start-page: 1123
  year: 2014
  end-page: 1127
  ident: bib29
  article-title: T cell signaling. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion
  publication-title: Science
  contributor:
    fullname: Hodgkin
– volume: 118
  start-page: 1390
  year: 2008
  end-page: 1397
  ident: bib5
  article-title: Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Bousso
– volume: 890
  start-page: 59
  year: 2012
  end-page: 92
  ident: bib24
  article-title: Easy and efficient protocols for working with recombinant vaccinia virus MVA
  publication-title: Methods Mol. Biol.
  contributor:
    fullname: Sutter
– volume: 336
  start-page: 1676
  year: 2012
  end-page: 1681
  ident: bib14
  article-title: A decade of imaging cellular motility and interaction dynamics in the immune system
  publication-title: Science
  contributor:
    fullname: Cahalan
– volume: 33
  start-page: 406
  year: 2012
  ident: 10.1016/j.immuni.2016.01.010_bib27
  article-title: Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2012.04.001
  contributor:
    fullname: Lopez
– volume: 336
  start-page: 1676
  year: 2012
  ident: 10.1016/j.immuni.2016.01.010_bib14
  article-title: A decade of imaging cellular motility and interaction dynamics in the immune system
  publication-title: Science
  doi: 10.1126/science.1221063
  contributor:
    fullname: Germain
– volume: 25
  start-page: 129
  year: 2006
  ident: 10.1016/j.immuni.2016.01.010_bib32
  article-title: Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.04.015
  contributor:
    fullname: Mempel
– volume: 85
  start-page: 274
  year: 2007
  ident: 10.1016/j.immuni.2016.01.010_bib35
  article-title: Mathematical models of cytotoxic T-lymphocyte killing
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/sj.icb.7100053
  contributor:
    fullname: Regoes
– volume: 121
  start-page: 4322
  year: 2011
  ident: 10.1016/j.immuni.2016.01.010_bib38
  article-title: A high-throughput single-cell analysis of human CD8+ T cell functions reveals discordance for cytokine secretion and cytolysis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI58653
  contributor:
    fullname: Varadarajan
– volume: 118
  start-page: 1390
  year: 2008
  ident: 10.1016/j.immuni.2016.01.010_bib5
  article-title: Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI34388
  contributor:
    fullname: Breart
– volume: 103
  start-page: 10985
  year: 2006
  ident: 10.1016/j.immuni.2016.01.010_bib40
  article-title: Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0600651103
  contributor:
    fullname: Wiedemann
– volume: 181
  start-page: 3818
  year: 2008
  ident: 10.1016/j.immuni.2016.01.010_bib21
  article-title: Cell cycle-related acquisition of cytotoxic mediators defines the progressive differentiation to effector status for virus-specific CD8+ T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.6.3818
  contributor:
    fullname: Jenkins
– volume: 82
  start-page: 11749
  year: 2008
  ident: 10.1016/j.immuni.2016.01.010_bib12
  article-title: Estimating in vivo death rates of targets due to CD8 T-cell-mediated killing
  publication-title: J. Virol.
  doi: 10.1128/JVI.01128-08
  contributor:
    fullname: Ganusov
– volume: 346
  start-page: 1123
  year: 2014
  ident: 10.1016/j.immuni.2016.01.010_bib29
  article-title: T cell signaling. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion
  publication-title: Science
  doi: 10.1126/science.1260044
  contributor:
    fullname: Marchingo
– volume: 6
  start-page: 57
  year: 1997
  ident: 10.1016/j.immuni.2016.01.010_bib43
  article-title: A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80242-3
  contributor:
    fullname: Ziegler
– volume: 190
  start-page: 1285
  year: 1999
  ident: 10.1016/j.immuni.2016.01.010_bib25
  article-title: The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.190.9.1285
  contributor:
    fullname: Krmpotic
– volume: 12
  start-page: 770
  year: 2011
  ident: 10.1016/j.immuni.2016.01.010_bib37
  article-title: Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2050
  contributor:
    fullname: Thiery
– volume: 38
  start-page: 502
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib22
  article-title: Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.11.012
  contributor:
    fullname: Kastenmüller
– volume: 890
  start-page: 59
  year: 2012
  ident: 10.1016/j.immuni.2016.01.010_bib24
  article-title: Easy and efficient protocols for working with recombinant vaccinia virus MVA
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-876-4_4
  contributor:
    fullname: Kremer
– volume: 22
  start-page: 402
  year: 2010
  ident: 10.1016/j.immuni.2016.01.010_bib41
  article-title: Designing CD8+ T cell vaccines: it’s not rocket science (yet)
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.04.002
  contributor:
    fullname: Yewdell
– volume: 274
  start-page: 94
  year: 1996
  ident: 10.1016/j.immuni.2016.01.010_bib1
  article-title: Phenotypic analysis of antigen-specific T lymphocytes
  publication-title: Science
  doi: 10.1126/science.274.5284.94
  contributor:
    fullname: Altman
– volume: 56
  start-page: 1458
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib34
  article-title: Complex correlates of protection after vaccination
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/cit048
  contributor:
    fullname: Plotkin
– volume: 9
  start-page: 789
  year: 2009
  ident: 10.1016/j.immuni.2016.01.010_bib3
  article-title: Analysing immune cell migration
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2638
  contributor:
    fullname: Beltman
– volume: 12
  start-page: 879
  year: 2011
  ident: 10.1016/j.immuni.2016.01.010_bib4
  article-title: Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2085
  contributor:
    fullname: Braun
– volume: 31
  start-page: 99
  year: 2009
  ident: 10.1016/j.immuni.2016.01.010_bib26
  article-title: Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.05.009
  contributor:
    fullname: Liu
– volume: 1
  start-page: 627
  year: 1998
  ident: 10.1016/j.immuni.2016.01.010_bib2
  article-title: Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80063-5
  contributor:
    fullname: Aramburu
– volume: 35
  start-page: 161
  year: 2011
  ident: 10.1016/j.immuni.2016.01.010_bib42
  article-title: CD8(+) T cells: foot soldiers of the immune system
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.07.010
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 155
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib18
  article-title: Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.01.004
  contributor:
    fullname: Hickman
– volume: 328
  start-page: 102
  year: 2010
  ident: 10.1016/j.immuni.2016.01.010_bib17
  article-title: Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus
  publication-title: Science
  doi: 10.1126/science.1185350
  contributor:
    fullname: Hansen
– volume: 92
  start-page: 1279
  year: 2011
  ident: 10.1016/j.immuni.2016.01.010_bib30
  article-title: Single cell detection of latent cytomegalovirus reactivation in host tissue
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.029827-0
  contributor:
    fullname: Marquardt
– volume: 221
  start-page: 77
  year: 2008
  ident: 10.1016/j.immuni.2016.01.010_bib9
  article-title: T-cell activation through immunological synapses and kinapses
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00589.x
  contributor:
    fullname: Dustin
– volume: 499
  start-page: 295
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib6
  article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity
  publication-title: Nature
  doi: 10.1038/nature12354
  contributor:
    fullname: Chen
– volume: 11
  start-page: e1004178
  year: 2015
  ident: 10.1016/j.immuni.2016.01.010_bib13
  article-title: Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004178
  contributor:
    fullname: Garcia
– volume: 38
  start-page: 237
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib28
  article-title: The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.09.012
  contributor:
    fullname: Marangoni
– volume: 36
  start-page: 142
  year: 2012
  ident: 10.1016/j.immuni.2016.01.010_bib33
  article-title: Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.002
  contributor:
    fullname: Newell
– volume: 251
  start-page: 154
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib8
  article-title: Dynamics of NK cell interactions in vivo
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12015
  contributor:
    fullname: Deguine
– volume: 110
  start-page: 9090
  year: 2013
  ident: 10.1016/j.immuni.2016.01.010_bib7
  article-title: In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1303858110
  contributor:
    fullname: Cockburn
– volume: 42
  start-page: 524
  year: 2015
  ident: 10.1016/j.immuni.2016.01.010_bib19
  article-title: CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.009
  contributor:
    fullname: Hickman
– volume: 35
  start-page: 285
  year: 2011
  ident: 10.1016/j.immuni.2016.01.010_bib39
  article-title: Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.05.017
  contributor:
    fullname: West
– volume: 42
  start-page: 864
  year: 2015
  ident: 10.1016/j.immuni.2016.01.010_bib36
  article-title: Actin depletion initiates events leading to granule secretion at the immunological synapse
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.04.013
  contributor:
    fullname: Ritter
– volume: 427
  start-page: 154
  year: 2004
  ident: 10.1016/j.immuni.2016.01.010_bib31
  article-title: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases
  publication-title: Nature
  doi: 10.1038/nature02238
  contributor:
    fullname: Mempel
– volume: 172
  start-page: 6944
  year: 2004
  ident: 10.1016/j.immuni.2016.01.010_bib15
  article-title: Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.11.6944
  contributor:
    fullname: Gold
– volume: 23
  start-page: 249
  year: 2005
  ident: 10.1016/j.immuni.2016.01.010_bib23
  article-title: Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.08.001
  contributor:
    fullname: Keefe
– volume: 8
  start-page: e1002381
  year: 2012
  ident: 10.1016/j.immuni.2016.01.010_bib10
  article-title: The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter?
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002381
  contributor:
    fullname: Elemans
– volume: 10
  start-page: e1003534
  year: 2014
  ident: 10.1016/j.immuni.2016.01.010_bib11
  article-title: Rates of CTL killing in persistent viral infection in vivo
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003534
  contributor:
    fullname: Elemans
– volume: 206
  start-page: 2593
  year: 2009
  ident: 10.1016/j.immuni.2016.01.010_bib16
  article-title: Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091472
  contributor:
    fullname: Halle
– volume: 10
  start-page: e1003805
  year: 2014
  ident: 10.1016/j.immuni.2016.01.010_bib20
  article-title: Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003805
  contributor:
    fullname: Hogan
SSID ssj0014590
Score 2.5932937
Snippet According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated...
According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 233
SubjectTerms Animals
Antigens
Apoptosis
Calcium Signaling
Cell Communication
Cells, Cultured
Confidence intervals
Cytokines
Cytotoxicity
Cytotoxicity, Immunologic
Experiments
Fibroblasts
Herpesviridae Infections - immunology
Humans
Immune Evasion
Infections
Lymphatic system
Lymphocytes
Mathematical models
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy
Microscopy, Fluorescence, Multiphoton
Muromegalovirus - immunology
Perforin - genetics
Perforin - metabolism
Rodents
Statistical analysis
T cell receptors
T-Lymphocyte Subsets - immunology
T-Lymphocyte Subsets - virology
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - virology
Vaccinia - immunology
Vaccinia virus - immunology
Viral infections
Viruses
Title In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity
URI https://dx.doi.org/10.1016/j.immuni.2016.01.010
https://www.ncbi.nlm.nih.gov/pubmed/26872694
https://www.proquest.com/docview/1766575615/abstract/
https://search.proquest.com/docview/1767068609
https://search.proquest.com/docview/1768579232
https://pubmed.ncbi.nlm.nih.gov/PMC4846978
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqIhAviJbb0ouMxGu0uXvz2AaqLkt5gLbsm2U7tgiqklWTVvRv-i18GTO2E3ULAglppdWuJ1ES2zPHmTnHhLw1sERgMxkHELpNkAJkDgS4wCARESqQSZh_-Grg5FN-fJZ-WGbLDVIOXBgsq_S-3_l06639P1P_NKerup5-wVJCWIQnUW7zYeiHUdsTSXzLwzGTkGZFONYdgvVAn7M1XrXlYGCBV27FO5FH--fw9Dv8vF9FeScsHT0lTzyepAfukrfIhm62yUO3w-TNNnl04nPnz0g_b37entfXLV3UVoiblhAoFaBw2hpa3vRt3_6oFT2lpb646Oi8o579REVT0XkDjuxad_Sd28Oe2neJjhbRWQt3IC3bdqUv_a4Uz8nZ0fvT8jjwey4EKovTPkCmqTLMwMJYMJVGKi6UMUJhwjSFlhwCnkwUA9ghs6QqpDJFWMSCWSVCwZIXZLNpG_2K0Co2lQBIII0WKZxSGkAXUhdSVkUsZTYhwfCo-cpJa_Ch5uw7d13DsWt4GMEnnBA29AdfGyIcvP8_jtwduo_7KdpxVMYErAqIbkLejM0wuTBjIhrdXlkbhhyasPirzSxDFcZ4Ql66ETHeTpzPGFKF4dLXxspogOLe6y1N_c2KfKcADGGF__q_b3qHPMZfWGEe5btks7-80nsAoHq5Tx4cHJ4vPuL34vPXxb6dMb8Aq58eEA
link.rule.ids 230,315,786,790,891,3525,27602,27957,27958,45698,45909
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqIi4vqJTbQgtG4jXazdWbRwitNrTbF7Zo3yzbsUVQlayatKJ_w7fwZczYTsQWBBLSPsWTVeLLzHFmzjEhbw1sEdhcRgGEbhMkAJkDAS4wiEWICmQS1h9-GlieZYvz5OM6Xe-QYuDCYFml9_3Op1tv7a9MfW9ON3U9_YSlhLAJj8PM5sPAD99J0nyGU7tcvx9TCXhtLDwE84E_Z4u8akvCwAqvzKp3IpH2z_Hpd_x5u4zyl7h0vEceekBJ37lnfkR2dLNP7rojJm_2yb2lT54_Jn3Z_Pj-ub5u6UltlbhpAZFSAQynraHFTd_27bda0RUt9MVFR8uOevoTFU1FywY82bXu6Ad3iD21HxMdL6KzFu5GWrTtRl_6YymekPPjo1WxCPyhC4FKo6QPkGqqDDOwMxZMJaGKcmWMUJgxTaAlg4gnY8UAd8g0rnKpDPR5JJiVIhQsfkp2m7bRzwmtIlMJwATSaJHAX0oD8ELqXMoqj6RMJyQYuppvnLYGH4rOvnI3NByHhs9C-M0mhA3jwbfmCAf3_487D4bh436NdhylMQGsAqSbkDdjM6wuTJmIRrdX1oYhiWaW_9VmnqIMYzQhz9yMGF8nyuYMucLw6FtzZTRAde_tlqb-YlW-E0CGsMV_8d8v_ZrcX6yWp_y0PDt5SR5gC5abh9kB2e0vr_QhoKlevrKr5Scs5B4B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%C2%A0Vivo+Killing+Capacity+of+Cytotoxic+T+Cells+Is+Limited+and+Involves+Dynamic+Interactions+and+T+Cell+Cooperativity&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Halle%2C+Stephan&rft.au=Keyser%2C+Kirsten+Anja&rft.au=Stahl%2C+Felix+Rolf&rft.au=Busche%2C+Andreas&rft.date=2016-02-16&rft.issn=1074-7613&rft.volume=44&rft.issue=2&rft.spage=233&rft.epage=245&rft_id=info:doi/10.1016%2Fj.immuni.2016.01.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_immuni_2016_01_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon