Rapid prototyping of an EEG-based brain-computer interface (BCI)

The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 9; no. 1; pp. 49 - 58
Main Authors Guger, C., Schlogl, A., Neuper, C., Walterspacher, D., Strein, T., Pfurtscheller, G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
DOI10.1109/7333.918276

Cover

Loading…
Abstract The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis.
AbstractList The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).
The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis.
The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).
The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis
A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis.
Author Pfurtscheller, G.
Strein, T.
Schlogl, A.
Walterspacher, D.
Neuper, C.
Guger, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Guger
  fullname: Guger, C.
  email: guger@dpmi.tu-graz.ac.at
  organization: Dept. of Med. Inf., Tech. Univ. Graz, Austria
– sequence: 2
  givenname: A.
  surname: Schlogl
  fullname: Schlogl, A.
– sequence: 3
  givenname: C.
  surname: Neuper
  fullname: Neuper, C.
– sequence: 4
  givenname: D.
  surname: Walterspacher
  fullname: Walterspacher, D.
– sequence: 5
  givenname: T.
  surname: Strein
  fullname: Strein, T.
– sequence: 6
  givenname: G.
  surname: Pfurtscheller
  fullname: Pfurtscheller, G.
  email: pfu@dpmi.tu-graz.ac.at
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11482363$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFTEQAPAgFfuhJ28eZPGgFdmayXdu6uNZCwVB9Byy2VlJeS9ZN7uH_vfm8Z49FGkvSSC_GYaZOSVHKSck5CXQCwBqP2rO-YUFw7R6Qk5AStNSBvRo9-aiFZzRY3Jayg2loJXUz8gxgDCMK35CPv3wY-ybccpznm_HmH43eWh8atbry7bzBfumm3xMbcjbcZlxamKq5-ADNudfVlfvn5Ong98UfHG4z8ivr-ufq2_t9ffLq9Xn6zZIJuZWIGXBKCGZHoLswyCZ6qUCz7uu15IGidRaZJJqqZjoeO-1xdB5wW0v5MDPyLt93lrqnwXL7LaxBNxsfMK8FGeMAWCMiirfPig1UCOVhUchM1LX0vTjEIS2VtkKzx-EoDRwQ63ZVfnmHr3Jy5RqC521dWQGDK3o9QEt3RZ7N05x66db929-FcAehCmXMuHgQpz9HHOa69Q2Dqjb7Yjb7Yjb70iN-XAv5i7tf_WrvY6IeCcPn38Boi6_CQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TNSRE_2003_814452
crossref_primary_10_3390_s20154186
crossref_primary_10_1109_TNSRE_2003_814454
crossref_primary_10_1016_j_neulet_2009_06_045
crossref_primary_10_1109_JIOT_2021_3105647
crossref_primary_10_3390_s19204596
crossref_primary_10_3389_fnins_2015_00054
crossref_primary_10_1142_S0129065712002979
crossref_primary_10_1155_2015_780849
crossref_primary_10_1109_TR_2023_3317643
crossref_primary_10_3390_app14125048
crossref_primary_10_1109_MC_2008_407
crossref_primary_10_1007_s10439_005_5772_1
crossref_primary_10_3109_17483107_2014_961569
crossref_primary_10_1016_S0167_8655_01_00075_7
crossref_primary_10_1162_pres_15_5_500
crossref_primary_10_1016_j_neucom_2024_128027
crossref_primary_10_3233_RNN_201030
crossref_primary_10_1080_10749357_2021_1926149
crossref_primary_10_1016_j_compbiomed_2011_05_014
crossref_primary_10_1016_j_eswa_2011_07_106
crossref_primary_10_1515_bams_2019_0053
crossref_primary_10_1109_TNSRE_2005_857690
crossref_primary_10_1016_j_neulet_2008_10_099
crossref_primary_10_1109_TBME_2006_888836
crossref_primary_10_1007_s00521_014_1753_3
crossref_primary_10_1007_s12293_015_0155_0
crossref_primary_10_1021_acsami_0c16981
crossref_primary_10_1162_pres_19_1_71
crossref_primary_10_1016_j_bspc_2016_09_005
crossref_primary_10_1016_j_neucom_2008_02_017
crossref_primary_10_1088_2057_1976_ab6e20
crossref_primary_10_1016_j_brainresrev_2005_04_005
crossref_primary_10_1007_s12021_008_9015_0
crossref_primary_10_1109_86_847821
crossref_primary_10_1016_j_jneumeth_2017_10_001
crossref_primary_10_1177_1550059412456094
crossref_primary_10_1016_j_jneumeth_2007_02_004
crossref_primary_10_1109_TBME_2004_827062
crossref_primary_10_1016_j_clinph_2013_11_034
crossref_primary_10_1177_1550059413514974
crossref_primary_10_1016_j_bspc_2010_03_004
crossref_primary_10_3951_biomechanisms_26_171
crossref_primary_10_1109_TBME_2008_918566
crossref_primary_10_1109_TBME_2014_2312397
crossref_primary_10_1109_THMS_2019_2904615
crossref_primary_10_1145_3335815
crossref_primary_10_1515_BMT_2009_014
crossref_primary_10_1109_TNSRE_2003_810423
crossref_primary_10_1007_s11517_010_0726_7
crossref_primary_10_1109_5_939829
crossref_primary_10_1016_S0304_3940_03_00947_9
crossref_primary_10_1007_BF02916107
crossref_primary_10_1016_S1388_2457_02_00387_5
crossref_primary_10_3390_s19040772
crossref_primary_10_1162_pres_16_1_111
crossref_primary_10_1177_1550059414555123
crossref_primary_10_1007_s13534_024_00360_9
crossref_primary_10_1109_TNSRE_2003_816866
crossref_primary_10_1109_TNSRE_2003_814445
crossref_primary_10_3390_ijerph19042158
crossref_primary_10_1016_j_jneumeth_2008_09_014
crossref_primary_10_1016_j_cmpb_2013_12_020
crossref_primary_10_3389_fnhum_2021_635777
crossref_primary_10_1016_j_cmpb_2013_01_012
crossref_primary_10_1186_1471_2202_11_117
crossref_primary_10_1016_S0933_3657_02_00083_0
crossref_primary_10_1177_1545968314543308
crossref_primary_10_1142_S0219635209002071
crossref_primary_10_1016_j_neucom_2012_11_038
crossref_primary_10_1109_TNSRE_2002_802854
crossref_primary_10_1088_1741_2552_ac2bb7
crossref_primary_10_1109_5326_983937
crossref_primary_10_1515_BMT_2005_012
crossref_primary_10_1016_j_compbiomed_2020_103843
crossref_primary_10_1016_j_eswa_2014_02_043
crossref_primary_10_1142_S012906571350007X
crossref_primary_10_1109_MSP_2008_4408445
crossref_primary_10_1016_j_procs_2015_12_140
crossref_primary_10_1080_10447318_2024_2362486
crossref_primary_10_3389_fnins_2021_757679
crossref_primary_10_1108_01439910810909501
crossref_primary_10_1177_1550059413491559
crossref_primary_10_1109_TBME_2006_873542
crossref_primary_10_1016_j_robot_2015_05_010
crossref_primary_10_1109_TITB_2011_2153208
crossref_primary_10_1007_s11517_010_0578_1
crossref_primary_10_1016_j_patrec_2010_04_009
crossref_primary_10_1007_s11517_012_0992_7
crossref_primary_10_1016_j_neucom_2014_09_078
crossref_primary_10_1088_1741_2560_8_2_025001
crossref_primary_10_1109_86_895947
crossref_primary_10_1017_sjp_2018_39
crossref_primary_10_1109_TNSRE_2012_2189584
crossref_primary_10_3233_BME_151554
crossref_primary_10_1109_TMECH_2020_3015207
crossref_primary_10_1109_TNSRE_2004_841881
crossref_primary_10_1007_s00221_007_0858_7
crossref_primary_10_1016_j_jneumeth_2010_03_030
crossref_primary_10_1016_j_measurement_2007_07_007
crossref_primary_10_1109_TNSRE_2023_3237583
crossref_primary_10_1007_s11517_006_0122_5
crossref_primary_10_1109_TNSRE_2018_2826559
crossref_primary_10_1186_s12984_015_0082_9
crossref_primary_10_1515_bams_2020_0013
crossref_primary_10_1016_j_clinph_2013_05_006
crossref_primary_10_1109_ACCESS_2019_2892492
crossref_primary_10_1142_S0129065715500379
crossref_primary_10_1007_s00521_020_04804_y
crossref_primary_10_1109_TBME_2004_827072
crossref_primary_10_1016_j_asoc_2021_107453
crossref_primary_10_1080_2326263X_2021_2009654
crossref_primary_10_1109_MSP_2003_1166626
crossref_primary_10_1109_TNSRE_2003_814481
crossref_primary_10_1088_1741_2552_ac2459
crossref_primary_10_1109_TNNLS_2015_2441137
crossref_primary_10_1142_S0129065713500159
crossref_primary_10_1080_2326263X_2018_1493073
crossref_primary_10_1109_THMS_2020_2968411
crossref_primary_10_1109_TNSRE_2004_827220
crossref_primary_10_1007_s11517_023_02845_8
crossref_primary_10_3390_s19081911
Cites_doi 10.1097/00004691-199907000-00010
10.1109/86.547945
10.1038/18581
10.1093/oso/9780198538493.001.0001
10.1016/0013-4694(94)90135-X
10.1515/bmte.1997.42.6.162
10.1515/bmte.1992.37.12.303
10.1016/0013-4694(70)90143-4
10.1007/BF02520010
10.1109/86.712230
10.3758/BF03200585
10.1109/10.247801
10.1007/BF02522476
10.1515/bmte.1999.44.1-2.12
10.1007/s002210050617
10.1016/0013-4694(90)90015-C
10.1016/S0304-3940(97)00889-6
10.1146/annurev.bb.02.060173.001105
10.1016/S0013-4694(96)95689-8
10.1016/S1388-2457(98)00038-8
10.1016/S0013-4694(97)00080-1
10.1016/0745-7138(92)90045-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/7333.918276
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Technology Research Database
MEDLINE - Academic
Computer and Information Systems Abstracts

Engineering Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 58
ExternalDocumentID 579354
2631212131
11482363
10_1109_7333_918276
918276
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c524t-4e02c864527fc5dcf526d561a3bbd750c5e099e25075624b3da79ecba439d45f3
IEDL.DBID RIE
ISSN 1534-4320
IngestDate Fri Jul 11 02:52:43 EDT 2025
Fri Jul 11 03:58:33 EDT 2025
Fri Jul 11 04:00:27 EDT 2025
Fri Jul 11 16:26:05 EDT 2025
Fri Jul 11 16:10:37 EDT 2025
Sun Jul 13 04:22:58 EDT 2025
Wed Feb 19 01:29:32 EST 2025
Tue Aug 05 12:09:38 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Wed Aug 27 02:51:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-4e02c864527fc5dcf526d561a3bbd750c5e099e25075624b3da79ecba439d45f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 11482363
PQID 993208180
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_28577507
crossref_citationtrail_10_1109_7333_918276
proquest_journals_993208180
ieee_primary_918276
proquest_miscellaneous_71085691
pubmed_primary_11482363
proquest_miscellaneous_888112204
proquest_miscellaneous_1671380984
proquest_miscellaneous_21479969
crossref_primary_10_1109_7333_918276
PublicationCentury 2000
PublicationDate 2001-03-01
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: 2001-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2001
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
(ref25) 1997
ref10
Guger (ref19) 1997
Schlögl (ref26)
ref2
ref1
ref17
ref16
(ref22) 1997
Haykin (ref20) 1986
ref24
ref23
Guger (ref18) 1999; 44
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Flotzinger (ref14) 1992; 37
Schlögl (ref13) 1997; 42
References_xml – volume-title: Implementation of different EEG processing algorithms with S-Functions
  year: 1997
  ident: ref19
– ident: ref17
  doi: 10.1097/00004691-199907000-00010
– ident: ref27
  doi: 10.1109/86.547945
– ident: ref7
  doi: 10.1038/18581
– ident: ref21
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref3
  doi: 10.1016/0013-4694(94)90135-X
– volume: 42
  start-page: 162
  year: 1997
  ident: ref13
  article-title: Adaptive autoregressive modeling used for single-trial EEG classification
  publication-title: Biomed. Technik
  doi: 10.1515/bmte.1997.42.6.162
– volume-title: Simulink. Real-Time Workshop
  year: 1997
  ident: ref25
– volume: 37
  start-page: 303
  year: 1992
  ident: ref14
  article-title: EEG classification by learning vector quantization
  publication-title: Biomed. Technik
  doi: 10.1515/bmte.1992.37.12.303
– ident: ref23
  doi: 10.1016/0013-4694(70)90143-4
– ident: ref1
  doi: 10.1007/BF02520010
– ident: ref16
  doi: 10.1109/86.712230
– ident: ref12
  doi: 10.3758/BF03200585
– volume-title: Adaptive Filter Theory
  year: 1986
  ident: ref20
– ident: ref8
  doi: 10.1109/10.247801
– ident: ref15
  doi: 10.1007/BF02522476
– volume: 44
  start-page: 12
  year: 1999
  ident: ref18
  article-title: Design of an EEG-based brain–computer interface (BCI) from standard components running in real-time under Windows
  publication-title: Biomed. Technik
  doi: 10.1515/bmte.1999.44.1-2.12
– ident: ref5
  doi: 10.1007/s002210050617
– ident: ref24
  doi: 10.1016/0013-4694(90)90015-C
– ident: ref10
  doi: 10.1016/S0304-3940(97)00889-6
– ident: ref2
  doi: 10.1146/annurev.bb.02.060173.001105
– ident: ref6
  doi: 10.1016/S0013-4694(96)95689-8
– ident: ref11
  doi: 10.1016/S1388-2457(98)00038-8
– volume-title: Simulink. Dynamic System Simulation for Matlab
  year: 1997
  ident: ref22
– ident: ref9
  doi: 10.1016/S0013-4694(97)00080-1
– ident: ref4
  doi: 10.1016/0745-7138(92)90045-7
– start-page: 1533
  volume-title: Proc. IEEE—EMBS’97
  ident: ref26
  article-title: Using adaptive autoregressive parameters for a brain–computer-interface experiment
SSID ssj0017657
Score 2.1234286
Snippet The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral...
A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms Adolescent
Adult
Algorithms
Brain - physiopathology
Brain computer interfaces
Channels
Classification
Classification algorithms
Communication Aids for Disabled
Computer interfaces
Computer Systems
Cortical Synchronization - instrumentation
Digital signal processing
Discriminant Analysis
Electroencephalography
Electroencephalography - instrumentation
Equipment Design - instrumentation
Human computer interaction
Humans
Interfaces (computer)
Internet
Least-Squares Analysis
Male
Mathematical models
Matlab
Neuromuscular Diseases - physiopathology
On-line systems
Parameter estimation
Performance analysis
Prototypes
Rapid prototyping
Real time
Real time systems
Regression Analysis
Reproducibility of Results
Software prototyping
Studies
System testing
Time Factors
User-Computer Interface
Title Rapid prototyping of an EEG-based brain-computer interface (BCI)
URI https://ieeexplore.ieee.org/document/918276
https://www.ncbi.nlm.nih.gov/pubmed/11482363
https://www.proquest.com/docview/993208180
https://www.proquest.com/docview/1671380984
https://www.proquest.com/docview/21479969
https://www.proquest.com/docview/28577507
https://www.proquest.com/docview/71085691
https://www.proquest.com/docview/888112204
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp15KC21J6cNIULVIWbLxK7lB0QJFag8IJG6R7YylqlWC2Oyh_fWdcbJLqVjELUomij3jkb_JeL5hbEcZqUNtDTpSSaTaLk-tsC4W55QQQElN9c7fvuvTS3l2pa4Gnu1YCwMA8fAZjOgy5vLr1s_oV9l-iWDY6BW2gnFbX6q1SBgYHUk90X8lfifPhlK8cVbuGyHEqH-VKEKJ-FJocWcfio1VlmPMuNccr_VF3NNIUUhHTH6OZp0b-T__ETg-chrP2bMBc_LDfpG8YE-gWWe7__IL84ueXIB_5Od3qLs32MG5vf5Rc-JzaLvfVF3F28BtwyeTk5T2wJo7ajOR-qE_BCcGiptgPfBPX46-fn7JLo8nF0en6dB2IfUql10qIct9QQlPE7yqfVC5rhFmWeFcjQDDK0BYCYidDIIn6QSaugTvLGKbWqogXrHVpm1gk3GQIfdjEcCIgIFkYUMWEBGo4HAtOGUStjc3QuWHiVFrjF9VjE2ysiLjVb3CErazEL7uqTjuF1snlS9E5ne35satBi-dVojNcqL0yxK2vXiK7kU5E9tAO5tWY41RfIFDlwn7sESGWj1h2Fg-IFEog5ozyyUMVYHocpwwvkSiKArExnmGA3ndL85bLQxr-s29U99iT28Pzr1lq93NDN4hkurc--hDfwErlxff
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOcCFR3mFAjVSQYCUbTZ-JTeg2rKFtodqK_UW2Y4tIVBSdbMH-PXMONktRV3ELUomiu2ZkT_H_r4B2JFaqFAbjYlUkqi2zVPDjY3knNIHL4UivvPRsZqeii9n8mzQ2Y5cGO99PHzmR3QZ9_Lr1i3oV9luiWBYq5twSxIXtydrrbYMtIqynpjBAr-UZwMZb5yVu5pzPupfJpFQkr7kil-ZiWJplfUoM842-_d6Gvc8ihTSIZPvo0VnR-7XXxKO_9mR-3B3QJ3sYx8mD-CGbzbh9Z8Kw2zWywuwN-zkinj3Q_hwYs6_1YwUHdruJ_GrWBuYadhk8jmlWbBmlgpNpG6oEMFIg-IiGOfZ2097B-8ewen-ZLY3TYfCC6mTuehS4bPcFbTlqYOTtQsyVzUCLcOtrRFiOOkRWHpETxrhk7AcnV16Zw2im1rIwB_DRtM2_ikwL0Luxjx4zQMuJQsTsoCYQAaL0WClTuD90gmVGzpGxTF-VHF1kpUVOa_qByyBnZXxeS_Gcb3ZJg35ymR5d2vp3GrI03mF6CwnUb8sgVerp5hgtGtiGt8u5tVY4Tq-wKaLBLbX2FCxJ1w4lv-wKKTGkdPrLTTxQFQ5ToCtsSiKAtFxnmFDnvTBeTkKQ0w_u7br23B7Ojs6rA4Pjr9uwZ3LY3TPYaO7WPgXiKs6-zLm02_eFBsn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+prototyping+of+an+EEG-based+brain-computer+interface+%28BCI%29&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Guger%2C+C.&rft.au=Schlogl%2C+A.&rft.au=Neuper%2C+C.&rft.au=Walterspacher%2C+D.&rft.date=2001-03-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=9&rft.issue=1&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1109%2F7333.918276&rft_id=info%3Apmid%2F11482363&rft.externalDocID=918276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon