Rapid prototyping of an EEG-based brain-computer interface (BCI)
The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 9; no. 1; pp. 49 - 58 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 |
DOI | 10.1109/7333.918276 |
Cover
Loading…
Abstract | The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis. |
---|---|
AbstractList | The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA). The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis. The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA). The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis. |
Author | Pfurtscheller, G. Strein, T. Schlogl, A. Walterspacher, D. Neuper, C. Guger, C. |
Author_xml | – sequence: 1 givenname: C. surname: Guger fullname: Guger, C. email: guger@dpmi.tu-graz.ac.at organization: Dept. of Med. Inf., Tech. Univ. Graz, Austria – sequence: 2 givenname: A. surname: Schlogl fullname: Schlogl, A. – sequence: 3 givenname: C. surname: Neuper fullname: Neuper, C. – sequence: 4 givenname: D. surname: Walterspacher fullname: Walterspacher, D. – sequence: 5 givenname: T. surname: Strein fullname: Strein, T. – sequence: 6 givenname: G. surname: Pfurtscheller fullname: Pfurtscheller, G. email: pfu@dpmi.tu-graz.ac.at |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11482363$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFTEQAPAgFfuhJ28eZPGgFdmayXdu6uNZCwVB9Byy2VlJeS9ZN7uH_vfm8Z49FGkvSSC_GYaZOSVHKSck5CXQCwBqP2rO-YUFw7R6Qk5AStNSBvRo9-aiFZzRY3Jayg2loJXUz8gxgDCMK35CPv3wY-ybccpznm_HmH43eWh8atbry7bzBfumm3xMbcjbcZlxamKq5-ADNudfVlfvn5Ong98UfHG4z8ivr-ufq2_t9ffLq9Xn6zZIJuZWIGXBKCGZHoLswyCZ6qUCz7uu15IGidRaZJJqqZjoeO-1xdB5wW0v5MDPyLt93lrqnwXL7LaxBNxsfMK8FGeMAWCMiirfPig1UCOVhUchM1LX0vTjEIS2VtkKzx-EoDRwQ63ZVfnmHr3Jy5RqC521dWQGDK3o9QEt3RZ7N05x66db929-FcAehCmXMuHgQpz9HHOa69Q2Dqjb7Yjb7Yjb70iN-XAv5i7tf_WrvY6IeCcPn38Boi6_CQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2003_814452 crossref_primary_10_3390_s20154186 crossref_primary_10_1109_TNSRE_2003_814454 crossref_primary_10_1016_j_neulet_2009_06_045 crossref_primary_10_1109_JIOT_2021_3105647 crossref_primary_10_3390_s19204596 crossref_primary_10_3389_fnins_2015_00054 crossref_primary_10_1142_S0129065712002979 crossref_primary_10_1155_2015_780849 crossref_primary_10_1109_TR_2023_3317643 crossref_primary_10_3390_app14125048 crossref_primary_10_1109_MC_2008_407 crossref_primary_10_1007_s10439_005_5772_1 crossref_primary_10_3109_17483107_2014_961569 crossref_primary_10_1016_S0167_8655_01_00075_7 crossref_primary_10_1162_pres_15_5_500 crossref_primary_10_1016_j_neucom_2024_128027 crossref_primary_10_3233_RNN_201030 crossref_primary_10_1080_10749357_2021_1926149 crossref_primary_10_1016_j_compbiomed_2011_05_014 crossref_primary_10_1016_j_eswa_2011_07_106 crossref_primary_10_1515_bams_2019_0053 crossref_primary_10_1109_TNSRE_2005_857690 crossref_primary_10_1016_j_neulet_2008_10_099 crossref_primary_10_1109_TBME_2006_888836 crossref_primary_10_1007_s00521_014_1753_3 crossref_primary_10_1007_s12293_015_0155_0 crossref_primary_10_1021_acsami_0c16981 crossref_primary_10_1162_pres_19_1_71 crossref_primary_10_1016_j_bspc_2016_09_005 crossref_primary_10_1016_j_neucom_2008_02_017 crossref_primary_10_1088_2057_1976_ab6e20 crossref_primary_10_1016_j_brainresrev_2005_04_005 crossref_primary_10_1007_s12021_008_9015_0 crossref_primary_10_1109_86_847821 crossref_primary_10_1016_j_jneumeth_2017_10_001 crossref_primary_10_1177_1550059412456094 crossref_primary_10_1016_j_jneumeth_2007_02_004 crossref_primary_10_1109_TBME_2004_827062 crossref_primary_10_1016_j_clinph_2013_11_034 crossref_primary_10_1177_1550059413514974 crossref_primary_10_1016_j_bspc_2010_03_004 crossref_primary_10_3951_biomechanisms_26_171 crossref_primary_10_1109_TBME_2008_918566 crossref_primary_10_1109_TBME_2014_2312397 crossref_primary_10_1109_THMS_2019_2904615 crossref_primary_10_1145_3335815 crossref_primary_10_1515_BMT_2009_014 crossref_primary_10_1109_TNSRE_2003_810423 crossref_primary_10_1007_s11517_010_0726_7 crossref_primary_10_1109_5_939829 crossref_primary_10_1016_S0304_3940_03_00947_9 crossref_primary_10_1007_BF02916107 crossref_primary_10_1016_S1388_2457_02_00387_5 crossref_primary_10_3390_s19040772 crossref_primary_10_1162_pres_16_1_111 crossref_primary_10_1177_1550059414555123 crossref_primary_10_1007_s13534_024_00360_9 crossref_primary_10_1109_TNSRE_2003_816866 crossref_primary_10_1109_TNSRE_2003_814445 crossref_primary_10_3390_ijerph19042158 crossref_primary_10_1016_j_jneumeth_2008_09_014 crossref_primary_10_1016_j_cmpb_2013_12_020 crossref_primary_10_3389_fnhum_2021_635777 crossref_primary_10_1016_j_cmpb_2013_01_012 crossref_primary_10_1186_1471_2202_11_117 crossref_primary_10_1016_S0933_3657_02_00083_0 crossref_primary_10_1177_1545968314543308 crossref_primary_10_1142_S0219635209002071 crossref_primary_10_1016_j_neucom_2012_11_038 crossref_primary_10_1109_TNSRE_2002_802854 crossref_primary_10_1088_1741_2552_ac2bb7 crossref_primary_10_1109_5326_983937 crossref_primary_10_1515_BMT_2005_012 crossref_primary_10_1016_j_compbiomed_2020_103843 crossref_primary_10_1016_j_eswa_2014_02_043 crossref_primary_10_1142_S012906571350007X crossref_primary_10_1109_MSP_2008_4408445 crossref_primary_10_1016_j_procs_2015_12_140 crossref_primary_10_1080_10447318_2024_2362486 crossref_primary_10_3389_fnins_2021_757679 crossref_primary_10_1108_01439910810909501 crossref_primary_10_1177_1550059413491559 crossref_primary_10_1109_TBME_2006_873542 crossref_primary_10_1016_j_robot_2015_05_010 crossref_primary_10_1109_TITB_2011_2153208 crossref_primary_10_1007_s11517_010_0578_1 crossref_primary_10_1016_j_patrec_2010_04_009 crossref_primary_10_1007_s11517_012_0992_7 crossref_primary_10_1016_j_neucom_2014_09_078 crossref_primary_10_1088_1741_2560_8_2_025001 crossref_primary_10_1109_86_895947 crossref_primary_10_1017_sjp_2018_39 crossref_primary_10_1109_TNSRE_2012_2189584 crossref_primary_10_3233_BME_151554 crossref_primary_10_1109_TMECH_2020_3015207 crossref_primary_10_1109_TNSRE_2004_841881 crossref_primary_10_1007_s00221_007_0858_7 crossref_primary_10_1016_j_jneumeth_2010_03_030 crossref_primary_10_1016_j_measurement_2007_07_007 crossref_primary_10_1109_TNSRE_2023_3237583 crossref_primary_10_1007_s11517_006_0122_5 crossref_primary_10_1109_TNSRE_2018_2826559 crossref_primary_10_1186_s12984_015_0082_9 crossref_primary_10_1515_bams_2020_0013 crossref_primary_10_1016_j_clinph_2013_05_006 crossref_primary_10_1109_ACCESS_2019_2892492 crossref_primary_10_1142_S0129065715500379 crossref_primary_10_1007_s00521_020_04804_y crossref_primary_10_1109_TBME_2004_827072 crossref_primary_10_1016_j_asoc_2021_107453 crossref_primary_10_1080_2326263X_2021_2009654 crossref_primary_10_1109_MSP_2003_1166626 crossref_primary_10_1109_TNSRE_2003_814481 crossref_primary_10_1088_1741_2552_ac2459 crossref_primary_10_1109_TNNLS_2015_2441137 crossref_primary_10_1142_S0129065713500159 crossref_primary_10_1080_2326263X_2018_1493073 crossref_primary_10_1109_THMS_2020_2968411 crossref_primary_10_1109_TNSRE_2004_827220 crossref_primary_10_1007_s11517_023_02845_8 crossref_primary_10_3390_s19081911 |
Cites_doi | 10.1097/00004691-199907000-00010 10.1109/86.547945 10.1038/18581 10.1093/oso/9780198538493.001.0001 10.1016/0013-4694(94)90135-X 10.1515/bmte.1997.42.6.162 10.1515/bmte.1992.37.12.303 10.1016/0013-4694(70)90143-4 10.1007/BF02520010 10.1109/86.712230 10.3758/BF03200585 10.1109/10.247801 10.1007/BF02522476 10.1515/bmte.1999.44.1-2.12 10.1007/s002210050617 10.1016/0013-4694(90)90015-C 10.1016/S0304-3940(97)00889-6 10.1146/annurev.bb.02.060173.001105 10.1016/S0013-4694(96)95689-8 10.1016/S1388-2457(98)00038-8 10.1016/S0013-4694(97)00080-1 10.1016/0745-7138(92)90045-7 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
DBID | RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/7333.918276 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic Computer and Information Systems Abstracts Engineering Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 58 |
ExternalDocumentID | 579354 2631212131 11482363 10_1109_7333_918276 918276 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c524t-4e02c864527fc5dcf526d561a3bbd750c5e099e25075624b3da79ecba439d45f3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 |
IngestDate | Fri Jul 11 02:52:43 EDT 2025 Fri Jul 11 03:58:33 EDT 2025 Fri Jul 11 04:00:27 EDT 2025 Fri Jul 11 16:26:05 EDT 2025 Fri Jul 11 16:10:37 EDT 2025 Sun Jul 13 04:22:58 EDT 2025 Wed Feb 19 01:29:32 EST 2025 Tue Aug 05 12:09:38 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Wed Aug 27 02:51:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-4e02c864527fc5dcf526d561a3bbd750c5e099e25075624b3da79ecba439d45f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 11482363 |
PQID | 993208180 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_28577507 crossref_citationtrail_10_1109_7333_918276 proquest_journals_993208180 ieee_primary_918276 proquest_miscellaneous_71085691 pubmed_primary_11482363 proquest_miscellaneous_888112204 proquest_miscellaneous_1671380984 proquest_miscellaneous_21479969 crossref_primary_10_1109_7333_918276 |
PublicationCentury | 2000 |
PublicationDate | 2001-03-01 |
PublicationDateYYYYMMDD | 2001-03-01 |
PublicationDate_xml | – month: 03 year: 2001 text: 2001-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2001 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref11 (ref25) 1997 ref10 Guger (ref19) 1997 Schlögl (ref26) ref2 ref1 ref17 ref16 (ref22) 1997 Haykin (ref20) 1986 ref24 ref23 Guger (ref18) 1999; 44 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Flotzinger (ref14) 1992; 37 Schlögl (ref13) 1997; 42 |
References_xml | – volume-title: Implementation of different EEG processing algorithms with S-Functions year: 1997 ident: ref19 – ident: ref17 doi: 10.1097/00004691-199907000-00010 – ident: ref27 doi: 10.1109/86.547945 – ident: ref7 doi: 10.1038/18581 – ident: ref21 doi: 10.1093/oso/9780198538493.001.0001 – ident: ref3 doi: 10.1016/0013-4694(94)90135-X – volume: 42 start-page: 162 year: 1997 ident: ref13 article-title: Adaptive autoregressive modeling used for single-trial EEG classification publication-title: Biomed. Technik doi: 10.1515/bmte.1997.42.6.162 – volume-title: Simulink. Real-Time Workshop year: 1997 ident: ref25 – volume: 37 start-page: 303 year: 1992 ident: ref14 article-title: EEG classification by learning vector quantization publication-title: Biomed. Technik doi: 10.1515/bmte.1992.37.12.303 – ident: ref23 doi: 10.1016/0013-4694(70)90143-4 – ident: ref1 doi: 10.1007/BF02520010 – ident: ref16 doi: 10.1109/86.712230 – ident: ref12 doi: 10.3758/BF03200585 – volume-title: Adaptive Filter Theory year: 1986 ident: ref20 – ident: ref8 doi: 10.1109/10.247801 – ident: ref15 doi: 10.1007/BF02522476 – volume: 44 start-page: 12 year: 1999 ident: ref18 article-title: Design of an EEG-based brain–computer interface (BCI) from standard components running in real-time under Windows publication-title: Biomed. Technik doi: 10.1515/bmte.1999.44.1-2.12 – ident: ref5 doi: 10.1007/s002210050617 – ident: ref24 doi: 10.1016/0013-4694(90)90015-C – ident: ref10 doi: 10.1016/S0304-3940(97)00889-6 – ident: ref2 doi: 10.1146/annurev.bb.02.060173.001105 – ident: ref6 doi: 10.1016/S0013-4694(96)95689-8 – ident: ref11 doi: 10.1016/S1388-2457(98)00038-8 – volume-title: Simulink. Dynamic System Simulation for Matlab year: 1997 ident: ref22 – ident: ref9 doi: 10.1016/S0013-4694(97)00080-1 – ident: ref4 doi: 10.1016/0745-7138(92)90045-7 – start-page: 1533 volume-title: Proc. IEEE—EMBS’97 ident: ref26 article-title: Using adaptive autoregressive parameters for a brain–computer-interface experiment |
SSID | ssj0017657 |
Score | 2.1234286 |
Snippet | The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral... A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | Adolescent Adult Algorithms Brain - physiopathology Brain computer interfaces Channels Classification Classification algorithms Communication Aids for Disabled Computer interfaces Computer Systems Cortical Synchronization - instrumentation Digital signal processing Discriminant Analysis Electroencephalography Electroencephalography - instrumentation Equipment Design - instrumentation Human computer interaction Humans Interfaces (computer) Internet Least-Squares Analysis Male Mathematical models Matlab Neuromuscular Diseases - physiopathology On-line systems Parameter estimation Performance analysis Prototypes Rapid prototyping Real time Real time systems Regression Analysis Reproducibility of Results Software prototyping Studies System testing Time Factors User-Computer Interface |
Title | Rapid prototyping of an EEG-based brain-computer interface (BCI) |
URI | https://ieeexplore.ieee.org/document/918276 https://www.ncbi.nlm.nih.gov/pubmed/11482363 https://www.proquest.com/docview/993208180 https://www.proquest.com/docview/1671380984 https://www.proquest.com/docview/21479969 https://www.proquest.com/docview/28577507 https://www.proquest.com/docview/71085691 https://www.proquest.com/docview/888112204 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp15KC21J6cNIULVIWbLxK7lB0QJFag8IJG6R7YylqlWC2Oyh_fWdcbJLqVjELUomij3jkb_JeL5hbEcZqUNtDTpSSaTaLk-tsC4W55QQQElN9c7fvuvTS3l2pa4Gnu1YCwMA8fAZjOgy5vLr1s_oV9l-iWDY6BW2gnFbX6q1SBgYHUk90X8lfifPhlK8cVbuGyHEqH-VKEKJ-FJocWcfio1VlmPMuNccr_VF3NNIUUhHTH6OZp0b-T__ETg-chrP2bMBc_LDfpG8YE-gWWe7__IL84ueXIB_5Od3qLs32MG5vf5Rc-JzaLvfVF3F28BtwyeTk5T2wJo7ajOR-qE_BCcGiptgPfBPX46-fn7JLo8nF0en6dB2IfUql10qIct9QQlPE7yqfVC5rhFmWeFcjQDDK0BYCYidDIIn6QSaugTvLGKbWqogXrHVpm1gk3GQIfdjEcCIgIFkYUMWEBGo4HAtOGUStjc3QuWHiVFrjF9VjE2ysiLjVb3CErazEL7uqTjuF1snlS9E5ne35satBi-dVojNcqL0yxK2vXiK7kU5E9tAO5tWY41RfIFDlwn7sESGWj1h2Fg-IFEog5ozyyUMVYHocpwwvkSiKArExnmGA3ndL85bLQxr-s29U99iT28Pzr1lq93NDN4hkurc--hDfwErlxff |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOcCFR3mFAjVSQYCUbTZ-JTeg2rKFtodqK_UW2Y4tIVBSdbMH-PXMONktRV3ELUomiu2ZkT_H_r4B2JFaqFAbjYlUkqi2zVPDjY3knNIHL4UivvPRsZqeii9n8mzQ2Y5cGO99PHzmR3QZ9_Lr1i3oV9luiWBYq5twSxIXtydrrbYMtIqynpjBAr-UZwMZb5yVu5pzPupfJpFQkr7kil-ZiWJplfUoM842-_d6Gvc8ihTSIZPvo0VnR-7XXxKO_9mR-3B3QJ3sYx8mD-CGbzbh9Z8Kw2zWywuwN-zkinj3Q_hwYs6_1YwUHdruJ_GrWBuYadhk8jmlWbBmlgpNpG6oEMFIg-IiGOfZ2097B-8ewen-ZLY3TYfCC6mTuehS4bPcFbTlqYOTtQsyVzUCLcOtrRFiOOkRWHpETxrhk7AcnV16Zw2im1rIwB_DRtM2_ikwL0Luxjx4zQMuJQsTsoCYQAaL0WClTuD90gmVGzpGxTF-VHF1kpUVOa_qByyBnZXxeS_Gcb3ZJg35ymR5d2vp3GrI03mF6CwnUb8sgVerp5hgtGtiGt8u5tVY4Tq-wKaLBLbX2FCxJ1w4lv-wKKTGkdPrLTTxQFQ5ToCtsSiKAtFxnmFDnvTBeTkKQ0w_u7br23B7Ojs6rA4Pjr9uwZ3LY3TPYaO7WPgXiKs6-zLm02_eFBsn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+prototyping+of+an+EEG-based+brain-computer+interface+%28BCI%29&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Guger%2C+C.&rft.au=Schlogl%2C+A.&rft.au=Neuper%2C+C.&rft.au=Walterspacher%2C+D.&rft.date=2001-03-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=9&rft.issue=1&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1109%2F7333.918276&rft_id=info%3Apmid%2F11482363&rft.externalDocID=918276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |