Probing the inherent stability of siRNA immobilized on nanoparticle constructs

Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 27; pp. 9739 - 9744
Main Authors Barnaby, Stacey N., Lee, Andrew, Mirkin, Chad A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.07.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR, which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models.
AbstractList Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNAAR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNAAR, which were different from those of siRNAAR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2'-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNAAR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA-nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models.
Significance Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides conjugated to nanoparticles opens up a new avenue of research that has yet to be fully explored. In this work, we probed the degradation of a model small interfering RNA (siRNA) immobilized on gold nanoparticles (AuNPs). We show that serum nucleases are able to recognize and degrade the immobilized siRNA at specific sites within 4 nm of the AuNP surface, which were different than the sites for siRNA free in solution. These data suggest that oligonucleotides immobilized on nanoparticle surfaces must be studied independently from siRNA free in solution due to the potential influence of the local chemical environment of the oligonucleotide–nanoparticle conjugates. Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR ). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR , which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models.
Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides conjugated to nanoparticles opens up a new avenue of research that has yet to be fully explored. In this work, we probed the degradation of a model small interfering RNA (siRNA) immobilized on gold nanoparticles (AuNPs). We show that serum nucleases are able to recognize and degrade the immobilized siRNA at specific sites within 4 nm of the AuNP surface, which were different than the sites for siRNA free in solution. These data suggest that oligonucleotides immobilized on nanoparticle surfaces must be studied independently from siRNA free in solution due to the potential influence of the local chemical environment of the oligonucleotide–nanoparticle conjugates. Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR ). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR , which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models.
Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR, which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models.
Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA...). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA..., which were different from those of siRNA... free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2'-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA... results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA-nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. (ProQuest: ... denotes formulae/symbols omitted.)
Author Lee, Andrew
Mirkin, Chad A.
Barnaby, Stacey N.
Author_xml – sequence: 1
  givenname: Stacey N.
  surname: Barnaby
  fullname: Barnaby, Stacey N.
– sequence: 2
  givenname: Andrew
  surname: Lee
  fullname: Lee, Andrew
– sequence: 3
  givenname: Chad A.
  surname: Mirkin
  fullname: Mirkin, Chad A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24946803$$D View this record in MEDLINE/PubMed
BookMark eNpdks9rFDEUx4NU7LZ69qQOePEy7cvPSS5CKVaFUkXtOWQymd0sM8mazAj1r2-WXXfVXAJ5n_fhPb45QychBofQSwwXGBp6uQkmX2AGilFczhO0wKBwLZiCE7QAIE0tGWGn6CznNQAoLuEZOiVMMSGBLtDd1xRbH5bVtHKVDyuXXJiqPJnWD356qGJfZf_t7qry4xi3b79dV8VQBRPixqTJ28FVNoY8pdlO-Tl62pshuxf7-xzd33z4cf2pvv3y8fP11W1tOWFTTXvZSQkOMLQ9VYQT3gtsiRKS08Y6rHDbOOhF03UtZ4YRKzqOCbFUEqVaeo7e77ybuR1dZ8vQyQx6k_xo0oOOxut_K8Gv9DL-0gwDpQIXwbu9IMWfs8uTHn22bhhMcHHOGnOOBWOKQkHf_oeu45xCWa9QjMtGUCYLdbmjbIo5J9cfhsGgt1npbVb6mFXpeP33Dgf-TzgFeLMHtp0HHcaaNFo1VBXi1Y5Y5ymmo4FKIII3R0NvojbL5LO-_04ACwDMePke9BEJf66Z
CitedBy_id crossref_primary_10_1002_mabi_202300362
crossref_primary_10_1186_s12951_024_02648_5
crossref_primary_10_3762_bjnano_10_248
crossref_primary_10_1016_j_ijpx_2023_100161
crossref_primary_10_3390_pharmaceutics15051346
crossref_primary_10_1002_smll_201902864
crossref_primary_10_3390_molecules25010204
crossref_primary_10_1021_acs_bioconjchem_8b00575
crossref_primary_10_1016_j_molmed_2019_08_012
crossref_primary_10_1007_s40259_018_0290_5
crossref_primary_10_1021_acs_analchem_1c03598
crossref_primary_10_1021_acs_bioconjchem_6b00350
crossref_primary_10_3390_ijms19072096
crossref_primary_10_1021_acsami_6b02969
crossref_primary_10_1039_C4TB01263A
crossref_primary_10_1021_jacs_1c12750
crossref_primary_10_1002_adhm_201400751
crossref_primary_10_32481_djph_2017_06_006
crossref_primary_10_1021_acs_bioconjchem_2c00389
crossref_primary_10_1039_C8TB02484G
crossref_primary_10_1007_s11095_018_2460_z
crossref_primary_10_1016_j_addr_2021_114035
crossref_primary_10_1002_anie_202214958
crossref_primary_10_1016_j_apsb_2022_11_019
crossref_primary_10_1021_jacs_5b07908
crossref_primary_10_2217_nnm_14_143
crossref_primary_10_1002_advs_202001048
crossref_primary_10_1021_jacs_5b07104
crossref_primary_10_1021_acs_langmuir_8b02038
crossref_primary_10_1016_j_omtn_2018_05_008
crossref_primary_10_1002_wnan_1590
crossref_primary_10_1039_D3CS00194F
crossref_primary_10_1016_j_bbrep_2021_100991
crossref_primary_10_3390_molecules25153489
crossref_primary_10_1038_s41467_021_23250_5
crossref_primary_10_1146_annurev_chembioeng_080615_034446
crossref_primary_10_1002_adma_202110219
crossref_primary_10_1021_acsnano_8b02200
crossref_primary_10_1016_j_nantod_2022_101687
crossref_primary_10_1002_adhm_202304626
crossref_primary_10_1126_scitranslmed_abb3945
crossref_primary_10_2174_1568009623666230329085618
crossref_primary_10_1021_acsnano_9b04752
crossref_primary_10_1002_agt2_120
crossref_primary_10_1002_ange_202214958
crossref_primary_10_1021_acssensors_1c01277
crossref_primary_10_1016_j_addr_2020_06_020
crossref_primary_10_1016_j_apmt_2021_101217
crossref_primary_10_1016_j_jinorgbio_2018_09_007
crossref_primary_10_1021_acsanm_2c05172
crossref_primary_10_1073_pnas_1610028113
crossref_primary_10_1021_acs_bioconjchem_1c00211
crossref_primary_10_1002_ppsc_201800493
crossref_primary_10_1073_pnas_1915907117
crossref_primary_10_1021_acs_bioconjchem_7b00657
crossref_primary_10_1021_acs_bioconjchem_7b00252
crossref_primary_10_1016_j_mattod_2017_11_022
crossref_primary_10_1021_acsami_0c06608
crossref_primary_10_1186_s12951_023_02147_z
crossref_primary_10_1021_acs_bioconjchem_7b00774
crossref_primary_10_1039_D1RA08335J
crossref_primary_10_1002_adma_201903637
crossref_primary_10_3390_ph13110360
crossref_primary_10_1088_1361_6528_aac933
crossref_primary_10_1364_BOE_10_003152
Cites_doi 10.1089/108729003321629638
10.1073/pnas.1305804110
10.1016/j.bbrc.2005.08.001
10.1016/S0021-9258(18)69712-1
10.1002/cmdc.200900444
10.1038/mt.2011.263
10.1021/bc800249n
10.1093/nar/26.9.2224
10.1089/oli.2008.0164
10.1021/jo2012225
10.1126/scitranslmed.3006839
10.1093/nar/gkg393
10.1021/nl072471q
10.1261/rna.5103703
10.1158/0008-5472.CAN-09-0919
10.1021/bc1002423
10.1016/j.colsurfb.2006.08.005
10.1096/fj.09.142398
10.1073/pnas.0910603106
10.1261/rna.602307
10.1021/cr960427h
10.1073/pnas.1118425109
10.1261/rna.5239604
10.1021/ja808719p
10.1016/j.bbrc.2006.02.049
10.1089/oli.2008.0162
10.1002/elps.200500099
10.1038/nature03121
10.1261/rna.2150806
10.1038/nprot.2007.278
10.1021/mp3001364
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 8, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 8, 2014
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1409431111
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList MEDLINE
CrossRef



Nucleic Acids Abstracts
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Stability of siRNA on nanoparticle constructs
EISSN 1091-6490
EndPage 9744
ExternalDocumentID 3376980161
10_1073_pnas_1409431111
24946803
111_27_9739
23802657
US201600145002
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA151880
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c524t-3f8d880e010bf392525f61c2968537ce191b7e0f67ddb54a42c6d5122c38299b3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:23:22 EDT 2024
Sat Aug 17 01:49:46 EDT 2024
Thu Oct 10 20:04:31 EDT 2024
Fri Aug 23 03:01:20 EDT 2024
Sat Sep 28 08:05:13 EDT 2024
Wed Nov 11 00:30:18 EST 2020
Fri Feb 02 07:04:44 EST 2024
Wed Dec 27 19:16:27 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords nanotechnology
polyacrylamide gel electrophoresis
OliGreen
biological recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-3f8d880e010bf392525f61c2968537ce191b7e0f67ddb54a42c6d5122c38299b3
Notes http://dx.doi.org/10.1073/pnas.1409431111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1S.N.B. and A.L. contributed equally to this work.
Contributed by Chad A. Mirkin, May 21, 2014 (sent for review April 11, 2014)
Author contributions: S.N.B., A.L., and C.A.M. designed research; S.N.B. and A.L. performed research; S.N.B., A.L., and C.A.M. analyzed data; and S.N.B., A.L., and C.A.M. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/111/27/9739.full.pdf
PMID 24946803
PQID 1545876348
PQPubID 42026
PageCount 6
ParticipantIDs fao_agris_US201600145002
proquest_miscellaneous_1551644930
jstor_primary_23802657
proquest_journals_1545876348
pubmed_primary_24946803
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103361
pnas_primary_111_27_9739
crossref_primary_10_1073_pnas_1409431111
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-07-08
PublicationDateYYYYMMDD 2014-07-08
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 22548294 - Mol Pharm. 2012 Jun 4;9(6):1812-21
9547284 - Nucleic Acids Res. 1998 May 1;26(9):2224-9
23613589 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7625-30
21070003 - Bioconjug Chem. 2010 Dec 15;21(12):2250-6
19808968 - Cancer Res. 2009 Oct 15;69(20):8141-9
16301602 - RNA. 2006 Jan;12(1):163-76
17804643 - RNA. 2007 Nov;13(11):1887-93
20080679 - Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1864-9
16102730 - Biochem Biophys Res Commun. 2005 Sep 30;335(3):943-8
15100431 - RNA. 2004 May;10(5):766-71
21834582 - J Org Chem. 2011 Sep 16;76(18):7295-300
14445348 - J Biol Chem. 1959 Nov;234:3003-6
20043313 - ChemMedChem. 2010 Mar 1;5(3):328-49
11848924 - Chem Rev. 1998 May 7;98(3):1045-1066
15538359 - Nature. 2004 Nov 11;432(7014):173-8
18850733 - Bioconjug Chem. 2008 Nov 19;19(11):2156-62
16315172 - Electrophoresis. 2005 Dec;26(23):4449-55
12923253 - RNA. 2003 Sep;9(9):1034-48
17853862 - Nat Protoc. 2007;2(9):2068-78
19344210 - Oligonucleotides. 2009 Jun;19(2):191-202
19170493 - J Am Chem Soc. 2009 Feb 18;131(6):2072-3
19025401 - Oligonucleotides. 2008 Dec;18(4):305-19
17997588 - Nano Lett. 2007 Dec;7(12):3818-21
12804036 - Antisense Nucleic Acid Drug Dev. 2003 Apr;13(2):83-105
20732955 - FASEB J. 2010 Dec;24(12):4844-55
22186795 - Mol Ther. 2012 Mar;20(3):483-512
6704974 - Cancer Res. 1984 Apr;44(4):1682-7
16997536 - Colloids Surf B Biointerfaces. 2007 Jul 1;58(1):3-7
12771196 - Nucleic Acids Res. 2003 Jun 1;31(11):2705-16
16598842 - Biochem Biophys Res Commun. 2006 Apr 14;342(3):919-27
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
Weickmann JL (e_1_3_3_24_2) 1984; 44
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_19_2
  doi: 10.1089/108729003321629638
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.1305804110
– ident: e_1_3_3_15_2
  doi: 10.1016/j.bbrc.2005.08.001
– ident: e_1_3_3_32_2
  doi: 10.1016/S0021-9258(18)69712-1
– ident: e_1_3_3_13_2
  doi: 10.1002/cmdc.200900444
– ident: e_1_3_3_30_2
  doi: 10.1038/mt.2011.263
– ident: e_1_3_3_2_2
  doi: 10.1021/bc800249n
– ident: e_1_3_3_31_2
  doi: 10.1093/nar/26.9.2224
– ident: e_1_3_3_11_2
  doi: 10.1089/oli.2008.0164
– ident: e_1_3_3_14_2
  doi: 10.1021/jo2012225
– ident: e_1_3_3_4_2
  doi: 10.1126/scitranslmed.3006839
– ident: e_1_3_3_12_2
  doi: 10.1093/nar/gkg393
– ident: e_1_3_3_8_2
  doi: 10.1021/nl072471q
– ident: e_1_3_3_18_2
  doi: 10.1261/rna.5103703
– ident: e_1_3_3_21_2
  doi: 10.1158/0008-5472.CAN-09-0919
– volume: 44
  start-page: 1682
  year: 1984
  ident: e_1_3_3_24_2
  article-title: Immunological assay of pancreatic ribonuclease in serum as an indicator of pancreatic cancer
  publication-title: Cancer Res
  contributor:
    fullname: Weickmann JL
– ident: e_1_3_3_7_2
  doi: 10.1021/bc1002423
– ident: e_1_3_3_23_2
  doi: 10.1016/j.colsurfb.2006.08.005
– ident: e_1_3_3_27_2
  doi: 10.1096/fj.09.142398
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.0910603106
– ident: e_1_3_3_10_2
  doi: 10.1261/rna.602307
– ident: e_1_3_3_25_2
  doi: 10.1021/cr960427h
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.1118425109
– ident: e_1_3_3_17_2
  doi: 10.1261/rna.5239604
– ident: e_1_3_3_9_2
  doi: 10.1021/ja808719p
– ident: e_1_3_3_29_2
  doi: 10.1016/j.bbrc.2006.02.049
– ident: e_1_3_3_20_2
  doi: 10.1089/oli.2008.0162
– ident: e_1_3_3_22_2
  doi: 10.1002/elps.200500099
– ident: e_1_3_3_26_2
  doi: 10.1038/nature03121
– ident: e_1_3_3_28_2
  doi: 10.1261/rna.2150806
– ident: e_1_3_3_16_2
  doi: 10.1038/nprot.2007.278
– ident: e_1_3_3_3_2
  doi: 10.1021/mp3001364
SSID ssj0009580
Score 2.4621067
Snippet Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum...
Significance Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides...
Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides conjugated to...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9739
SubjectTerms Androgens
Catalysis
Electrophoresis, Polyacrylamide Gel
Gene expression
Gold - chemistry
Half lives
Hydrolysis
Medical treatment
Metal Nanoparticles
Nanoparticles
Nucleic acids
Nucleotides
Oligonucleotides
Oligonucleotides, Antisense - chemistry
Physical Sciences
Range errors
Ribonucleic acid
RNA
RNA, Small Interfering - chemistry
Small interfering RNA
Title Probing the inherent stability of siRNA immobilized on nanoparticle constructs
URI https://www.jstor.org/stable/23802657
http://www.pnas.org/content/111/27/9739.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24946803
https://www.proquest.com/docview/1545876348
https://search.proquest.com/docview/1551644930
https://pubmed.ncbi.nlm.nih.gov/PMC4103361
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnHqpCpSSFpAr9UAP2c36I46PCBVBK1ao7UrcothxIBI4K-32UH49Y8cJpeqpOSb2JPLMeN5oxi8An6yqLZtbkXLfQuUJ6FLNC5tqVWS24hZtyld0rxb5xZJ_vRE3WyCGszChad_oduruH6auvQu9lasHMxv6xGbXV2d8njGWz2cTmKCBDin6yLRb9OdOKG6_nPKBz0ey2cpV66lneMKoiZcnAuaK58Xwx6wYlSZN1Q3tiZ7zFGf9C3_-3Ub5R1w6fwOvI6Akp_2H78CWdbuwE112TU4ir_TnPVhce84ld0sQ85HW3fmDfhuC6DD0x_4mXUPW7ffFKWnRNv29R1uTzhFXOcyse_nEdJFydv0Wludffp5dpPF3CqkRlG9S1hQ1eqvFDEw3CIsEFU0-N1TlGLKlsZi5aWmzJpd1rQWvODV5jXiAGlZg0NJsH7Zd5-wBkIwa1WgjJLo7R6GqQSggaCYyrWTFdAInw3KWq541owzVbslKv5zlsxISOMDlLqtb3NPK5Q_qGe98qRP1l8B-0MEoAuEFpoxC4pwgZRSNSQyVpZJMJXA4KKqM3ohv89VB3Eh5kcDH8TH6kS-OVM52v_wYgZkjVyxL4F2v1-f3RitJQL7Q-DjAc3S_fIKmG7i6o6m-_--ZH-AVrgkPHcLFIWyjiu0R4qCNPsYM4PLbcbD-J0ACAlU
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAXRIHSQAEjcSiH7Gb9EcfHqqJaoLuqoCv1ZsWO00aizkq7HODXM06clCJO5JjYk8gz43mjGb8AvHeqcmzmRMpDC1UgoEsNL1xqVJG5kju0qVDRXSzz-Yp_vhJXOyCGszBd0741zcR_v5345qbrrVzf2unQJza9WJzyWcZYPpvuwgP014wPSfrItVv0J08obsCc8oHRR7Lp2pebSeB4wriJV6AC5ornxfDPrBiXduuyHRoUA-spzvoXAv27kfKPyHT2BB5HSElO-k_fhx3nn8J-dNoNOY7M0h-ewfIisC75a4KojzT-Jhz12xLEh12H7E_S1mTTfF2ekAatM9z75SrSeuJLj7l1L5_YNpLObp7D6uzj5ek8jT9USK2gfJuyuqjQXx3mYKZGYCSoqPOZpSrHoC2tw9zNSJfVuawqI3jJqc0rRATUsgLDlmEHsOdb7w6BZNSq2lgh0eE5ClU1ggFBM5EZJUtmEjgellOve94M3dW7JdNhOfWdEhI4xOXW5TXuanr1jQbOu1DsRP0lcNDpYBSBAAOTRiFxTidlFI1pDJVaSaYSOBoUpaM_4ttCfRC3Ul4k8G58jJ4UyiOld-2PMEZg7sgVyxJ40ev17r3RShKQ9zQ-Dggs3fefoPF2bN3RWF_-98y38HB-uTjX55-WX17BI1wf3vULF0ewh-p2rxEVbc2bzgd-A-ycBLI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuFQVKU0oxEodyyCbrRxwfq9JVeXS1AlbqzYodp43UOivtcoBfzzivtogTOSb2JPLMeL7RTD4DvHeqdGzqRMxDC1UgoIsNz11sVJ66gju0qVDRvZhn50v--VJc3jvqq23at6ae-Jvbia-v297K1a1Nhj6xZHFxyqcpY9k0WZVVsgWP0WfTbEjUR77dvPv7hOImzCkfWH0kS1a-WE8CzxPGTrwCHTBXPMuHc7P62LRVFc3QpBiYT3HWv1Do382U96LT7Bns9LCSnHSfvwuPnH8Ou73jrslxzy794QXMF4F5yV8RRH6k9tfhd78NQYzYdsn-Ik1F1vW3-Qmp0ULDvd-uJI0nvvCYX3fyiW164tn1S1jOzn6cnsf9oQqxFZRvYlblJfqswzzMVAiOBBVVNrVUZRi4pXWYvxnp0iqTZWkELzi1WYmogFqWY-gybA-2fePdPpCUWlUZKyQ6PUehqkJAIGgqUqNkwUwEx8Ny6lXHnaHbmrdkOiynvlNCBPu43Lq4wp1NL7_TwHsXCp6ovwj2Wh2MIhBkYOIoJM5ppYyiMZWhUivJVASHg6J075P4tlAjxO2U5xG8Gx-jN4USSeFd8zOMEZg_csXSCF51er17b28lEcgHGh8HBKbuh0_QgFvG7t5gD_575lt4svg4018_zb-8hqe4PLxtGc4PYRu17d4gMNqYo9YF_gDF3wXF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+inherent+stability+of+siRNA+immobilized+on+nanoparticle+constructs&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Barnaby%2C+Stacey+N&rft.au=Lee%2C+Andrew&rft.au=Mirkin%2C+Chad+A&rft.date=2014-07-08&rft.eissn=1091-6490&rft.volume=111&rft.issue=27&rft.spage=9739&rft_id=info:doi/10.1073%2Fpnas.1409431111&rft_id=info%3Apmid%2F24946803&rft.externalDocID=24946803
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F27.cover.gif