Probing the inherent stability of siRNA immobilized on nanoparticle constructs
Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 27; pp. 9739 - 9744 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.07.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR, which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. |
---|---|
AbstractList | Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNAAR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNAAR, which were different from those of siRNAAR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2'-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNAAR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA-nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. Significance Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides conjugated to nanoparticles opens up a new avenue of research that has yet to be fully explored. In this work, we probed the degradation of a model small interfering RNA (siRNA) immobilized on gold nanoparticles (AuNPs). We show that serum nucleases are able to recognize and degrade the immobilized siRNA at specific sites within 4 nm of the AuNP surface, which were different than the sites for siRNA free in solution. These data suggest that oligonucleotides immobilized on nanoparticle surfaces must be studied independently from siRNA free in solution due to the potential influence of the local chemical environment of the oligonucleotide–nanoparticle conjugates. Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR ). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR , which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides conjugated to nanoparticles opens up a new avenue of research that has yet to be fully explored. In this work, we probed the degradation of a model small interfering RNA (siRNA) immobilized on gold nanoparticles (AuNPs). We show that serum nucleases are able to recognize and degrade the immobilized siRNA at specific sites within 4 nm of the AuNP surface, which were different than the sites for siRNA free in solution. These data suggest that oligonucleotides immobilized on nanoparticle surfaces must be studied independently from siRNA free in solution due to the potential influence of the local chemical environment of the oligonucleotide–nanoparticle conjugates. Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR ). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR , which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA AR). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA AR, which were different from those of siRNA AR free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2′-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA AR results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA–nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to nanoparticle surfaces. Herein, we use spherical nucleic acid nanoparticle conjugates, consisting of gold nanoparticles (AuNPs) with siRNA chemisorbed to the surface, as a platform to study how a model siRNA targeting androgen receptor degrades in serum (SNA-siRNA...). In solutions of 10% (vol/vol) FBS, we find rapid endonuclease hydrolysis at specific sites near the AuNP-facing terminus of siRNA..., which were different from those of siRNA... free in solution. These data indicate that the chemical environment of siRNA on a nanoparticle surface can alter the recognition of siRNA by serum nucleases and change the inherent stability of the nucleic acid. Finally, we demonstrate that incorporation of 2'-O-methyl RNA nucleotides at sites of nuclease hydrolysis on SNA-siRNA... results in a 10-fold increase in siRNA lifetime. These data suggest that strategies for enhancing the serum stability of siRNA immobilized to nanoparticles must be developed from a dedicated analysis of the siRNA-nanoparticle conjugate, rather than a reliance on strategies developed for siRNA free in solution. We believe these findings are important for fundamentally understanding interactions between biological media and oligonucleotides conjugated to nanoparticles for the development of gene regulatory and therapeutic agents in a variety of disease models. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Lee, Andrew Mirkin, Chad A. Barnaby, Stacey N. |
Author_xml | – sequence: 1 givenname: Stacey N. surname: Barnaby fullname: Barnaby, Stacey N. – sequence: 2 givenname: Andrew surname: Lee fullname: Lee, Andrew – sequence: 3 givenname: Chad A. surname: Mirkin fullname: Mirkin, Chad A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24946803$$D View this record in MEDLINE/PubMed |
BookMark | eNpdks9rFDEUx4NU7LZ69qQOePEy7cvPSS5CKVaFUkXtOWQymd0sM8mazAj1r2-WXXfVXAJ5n_fhPb45QychBofQSwwXGBp6uQkmX2AGilFczhO0wKBwLZiCE7QAIE0tGWGn6CznNQAoLuEZOiVMMSGBLtDd1xRbH5bVtHKVDyuXXJiqPJnWD356qGJfZf_t7qry4xi3b79dV8VQBRPixqTJ28FVNoY8pdlO-Tl62pshuxf7-xzd33z4cf2pvv3y8fP11W1tOWFTTXvZSQkOMLQ9VYQT3gtsiRKS08Y6rHDbOOhF03UtZ4YRKzqOCbFUEqVaeo7e77ybuR1dZ8vQyQx6k_xo0oOOxut_K8Gv9DL-0gwDpQIXwbu9IMWfs8uTHn22bhhMcHHOGnOOBWOKQkHf_oeu45xCWa9QjMtGUCYLdbmjbIo5J9cfhsGgt1npbVb6mFXpeP33Dgf-TzgFeLMHtp0HHcaaNFo1VBXi1Y5Y5ymmo4FKIII3R0NvojbL5LO-_04ACwDMePke9BEJf66Z |
CitedBy_id | crossref_primary_10_1002_mabi_202300362 crossref_primary_10_1186_s12951_024_02648_5 crossref_primary_10_3762_bjnano_10_248 crossref_primary_10_1016_j_ijpx_2023_100161 crossref_primary_10_3390_pharmaceutics15051346 crossref_primary_10_1002_smll_201902864 crossref_primary_10_3390_molecules25010204 crossref_primary_10_1021_acs_bioconjchem_8b00575 crossref_primary_10_1016_j_molmed_2019_08_012 crossref_primary_10_1007_s40259_018_0290_5 crossref_primary_10_1021_acs_analchem_1c03598 crossref_primary_10_1021_acs_bioconjchem_6b00350 crossref_primary_10_3390_ijms19072096 crossref_primary_10_1021_acsami_6b02969 crossref_primary_10_1039_C4TB01263A crossref_primary_10_1021_jacs_1c12750 crossref_primary_10_1002_adhm_201400751 crossref_primary_10_32481_djph_2017_06_006 crossref_primary_10_1021_acs_bioconjchem_2c00389 crossref_primary_10_1039_C8TB02484G crossref_primary_10_1007_s11095_018_2460_z crossref_primary_10_1016_j_addr_2021_114035 crossref_primary_10_1002_anie_202214958 crossref_primary_10_1016_j_apsb_2022_11_019 crossref_primary_10_1021_jacs_5b07908 crossref_primary_10_2217_nnm_14_143 crossref_primary_10_1002_advs_202001048 crossref_primary_10_1021_jacs_5b07104 crossref_primary_10_1021_acs_langmuir_8b02038 crossref_primary_10_1016_j_omtn_2018_05_008 crossref_primary_10_1002_wnan_1590 crossref_primary_10_1039_D3CS00194F crossref_primary_10_1016_j_bbrep_2021_100991 crossref_primary_10_3390_molecules25153489 crossref_primary_10_1038_s41467_021_23250_5 crossref_primary_10_1146_annurev_chembioeng_080615_034446 crossref_primary_10_1002_adma_202110219 crossref_primary_10_1021_acsnano_8b02200 crossref_primary_10_1016_j_nantod_2022_101687 crossref_primary_10_1002_adhm_202304626 crossref_primary_10_1126_scitranslmed_abb3945 crossref_primary_10_2174_1568009623666230329085618 crossref_primary_10_1021_acsnano_9b04752 crossref_primary_10_1002_agt2_120 crossref_primary_10_1002_ange_202214958 crossref_primary_10_1021_acssensors_1c01277 crossref_primary_10_1016_j_addr_2020_06_020 crossref_primary_10_1016_j_apmt_2021_101217 crossref_primary_10_1016_j_jinorgbio_2018_09_007 crossref_primary_10_1021_acsanm_2c05172 crossref_primary_10_1073_pnas_1610028113 crossref_primary_10_1021_acs_bioconjchem_1c00211 crossref_primary_10_1002_ppsc_201800493 crossref_primary_10_1073_pnas_1915907117 crossref_primary_10_1021_acs_bioconjchem_7b00657 crossref_primary_10_1021_acs_bioconjchem_7b00252 crossref_primary_10_1016_j_mattod_2017_11_022 crossref_primary_10_1021_acsami_0c06608 crossref_primary_10_1186_s12951_023_02147_z crossref_primary_10_1021_acs_bioconjchem_7b00774 crossref_primary_10_1039_D1RA08335J crossref_primary_10_1002_adma_201903637 crossref_primary_10_3390_ph13110360 crossref_primary_10_1088_1361_6528_aac933 crossref_primary_10_1364_BOE_10_003152 |
Cites_doi | 10.1089/108729003321629638 10.1073/pnas.1305804110 10.1016/j.bbrc.2005.08.001 10.1016/S0021-9258(18)69712-1 10.1002/cmdc.200900444 10.1038/mt.2011.263 10.1021/bc800249n 10.1093/nar/26.9.2224 10.1089/oli.2008.0164 10.1021/jo2012225 10.1126/scitranslmed.3006839 10.1093/nar/gkg393 10.1021/nl072471q 10.1261/rna.5103703 10.1158/0008-5472.CAN-09-0919 10.1021/bc1002423 10.1016/j.colsurfb.2006.08.005 10.1096/fj.09.142398 10.1073/pnas.0910603106 10.1261/rna.602307 10.1021/cr960427h 10.1073/pnas.1118425109 10.1261/rna.5239604 10.1021/ja808719p 10.1016/j.bbrc.2006.02.049 10.1089/oli.2008.0162 10.1002/elps.200500099 10.1038/nature03121 10.1261/rna.2150806 10.1038/nprot.2007.278 10.1021/mp3001364 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 8, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 8, 2014 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1409431111 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE CrossRef Nucleic Acids Abstracts Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Stability of siRNA on nanoparticle constructs |
EISSN | 1091-6490 |
EndPage | 9744 |
ExternalDocumentID | 3376980161 10_1073_pnas_1409431111 24946803 111_27_9739 23802657 US201600145002 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA151880 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c524t-3f8d880e010bf392525f61c2968537ce191b7e0f67ddb54a42c6d5122c38299b3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:23:22 EDT 2024 Sat Aug 17 01:49:46 EDT 2024 Thu Oct 10 20:04:31 EDT 2024 Fri Aug 23 03:01:20 EDT 2024 Sat Sep 28 08:05:13 EDT 2024 Wed Nov 11 00:30:18 EST 2020 Fri Feb 02 07:04:44 EST 2024 Wed Dec 27 19:16:27 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | nanotechnology polyacrylamide gel electrophoresis OliGreen biological recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-3f8d880e010bf392525f61c2968537ce191b7e0f67ddb54a42c6d5122c38299b3 |
Notes | http://dx.doi.org/10.1073/pnas.1409431111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1S.N.B. and A.L. contributed equally to this work. Contributed by Chad A. Mirkin, May 21, 2014 (sent for review April 11, 2014) Author contributions: S.N.B., A.L., and C.A.M. designed research; S.N.B. and A.L. performed research; S.N.B., A.L., and C.A.M. analyzed data; and S.N.B., A.L., and C.A.M. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/27/9739.full.pdf |
PMID | 24946803 |
PQID | 1545876348 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | fao_agris_US201600145002 proquest_miscellaneous_1551644930 jstor_primary_23802657 proquest_journals_1545876348 pubmed_primary_24946803 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103361 pnas_primary_111_27_9739 crossref_primary_10_1073_pnas_1409431111 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-07-08 |
PublicationDateYYYYMMDD | 2014-07-08 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 22548294 - Mol Pharm. 2012 Jun 4;9(6):1812-21 9547284 - Nucleic Acids Res. 1998 May 1;26(9):2224-9 23613589 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7625-30 21070003 - Bioconjug Chem. 2010 Dec 15;21(12):2250-6 19808968 - Cancer Res. 2009 Oct 15;69(20):8141-9 16301602 - RNA. 2006 Jan;12(1):163-76 17804643 - RNA. 2007 Nov;13(11):1887-93 20080679 - Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1864-9 16102730 - Biochem Biophys Res Commun. 2005 Sep 30;335(3):943-8 15100431 - RNA. 2004 May;10(5):766-71 21834582 - J Org Chem. 2011 Sep 16;76(18):7295-300 14445348 - J Biol Chem. 1959 Nov;234:3003-6 20043313 - ChemMedChem. 2010 Mar 1;5(3):328-49 11848924 - Chem Rev. 1998 May 7;98(3):1045-1066 15538359 - Nature. 2004 Nov 11;432(7014):173-8 18850733 - Bioconjug Chem. 2008 Nov 19;19(11):2156-62 16315172 - Electrophoresis. 2005 Dec;26(23):4449-55 12923253 - RNA. 2003 Sep;9(9):1034-48 17853862 - Nat Protoc. 2007;2(9):2068-78 19344210 - Oligonucleotides. 2009 Jun;19(2):191-202 19170493 - J Am Chem Soc. 2009 Feb 18;131(6):2072-3 19025401 - Oligonucleotides. 2008 Dec;18(4):305-19 17997588 - Nano Lett. 2007 Dec;7(12):3818-21 12804036 - Antisense Nucleic Acid Drug Dev. 2003 Apr;13(2):83-105 20732955 - FASEB J. 2010 Dec;24(12):4844-55 22186795 - Mol Ther. 2012 Mar;20(3):483-512 6704974 - Cancer Res. 1984 Apr;44(4):1682-7 16997536 - Colloids Surf B Biointerfaces. 2007 Jul 1;58(1):3-7 12771196 - Nucleic Acids Res. 2003 Jun 1;31(11):2705-16 16598842 - Biochem Biophys Res Commun. 2006 Apr 14;342(3):919-27 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 Weickmann JL (e_1_3_3_24_2) 1984; 44 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1089/108729003321629638 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.1305804110 – ident: e_1_3_3_15_2 doi: 10.1016/j.bbrc.2005.08.001 – ident: e_1_3_3_32_2 doi: 10.1016/S0021-9258(18)69712-1 – ident: e_1_3_3_13_2 doi: 10.1002/cmdc.200900444 – ident: e_1_3_3_30_2 doi: 10.1038/mt.2011.263 – ident: e_1_3_3_2_2 doi: 10.1021/bc800249n – ident: e_1_3_3_31_2 doi: 10.1093/nar/26.9.2224 – ident: e_1_3_3_11_2 doi: 10.1089/oli.2008.0164 – ident: e_1_3_3_14_2 doi: 10.1021/jo2012225 – ident: e_1_3_3_4_2 doi: 10.1126/scitranslmed.3006839 – ident: e_1_3_3_12_2 doi: 10.1093/nar/gkg393 – ident: e_1_3_3_8_2 doi: 10.1021/nl072471q – ident: e_1_3_3_18_2 doi: 10.1261/rna.5103703 – ident: e_1_3_3_21_2 doi: 10.1158/0008-5472.CAN-09-0919 – volume: 44 start-page: 1682 year: 1984 ident: e_1_3_3_24_2 article-title: Immunological assay of pancreatic ribonuclease in serum as an indicator of pancreatic cancer publication-title: Cancer Res contributor: fullname: Weickmann JL – ident: e_1_3_3_7_2 doi: 10.1021/bc1002423 – ident: e_1_3_3_23_2 doi: 10.1016/j.colsurfb.2006.08.005 – ident: e_1_3_3_27_2 doi: 10.1096/fj.09.142398 – ident: e_1_3_3_1_2 doi: 10.1073/pnas.0910603106 – ident: e_1_3_3_10_2 doi: 10.1261/rna.602307 – ident: e_1_3_3_25_2 doi: 10.1021/cr960427h – ident: e_1_3_3_5_2 doi: 10.1073/pnas.1118425109 – ident: e_1_3_3_17_2 doi: 10.1261/rna.5239604 – ident: e_1_3_3_9_2 doi: 10.1021/ja808719p – ident: e_1_3_3_29_2 doi: 10.1016/j.bbrc.2006.02.049 – ident: e_1_3_3_20_2 doi: 10.1089/oli.2008.0162 – ident: e_1_3_3_22_2 doi: 10.1002/elps.200500099 – ident: e_1_3_3_26_2 doi: 10.1038/nature03121 – ident: e_1_3_3_28_2 doi: 10.1261/rna.2150806 – ident: e_1_3_3_16_2 doi: 10.1038/nprot.2007.278 – ident: e_1_3_3_3_2 doi: 10.1021/mp3001364 |
SSID | ssj0009580 |
Score | 2.4621067 |
Snippet | Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum... Significance Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides... Previous research has investigated the interactions between linear oligonucleotides and serum nucleases but the emergence of oligonucleotides conjugated to... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9739 |
SubjectTerms | Androgens Catalysis Electrophoresis, Polyacrylamide Gel Gene expression Gold - chemistry Half lives Hydrolysis Medical treatment Metal Nanoparticles Nanoparticles Nucleic acids Nucleotides Oligonucleotides Oligonucleotides, Antisense - chemistry Physical Sciences Range errors Ribonucleic acid RNA RNA, Small Interfering - chemistry Small interfering RNA |
Title | Probing the inherent stability of siRNA immobilized on nanoparticle constructs |
URI | https://www.jstor.org/stable/23802657 http://www.pnas.org/content/111/27/9739.abstract https://www.ncbi.nlm.nih.gov/pubmed/24946803 https://www.proquest.com/docview/1545876348 https://search.proquest.com/docview/1551644930 https://pubmed.ncbi.nlm.nih.gov/PMC4103361 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnHqpCpSSFpAr9UAP2c36I46PCBVBK1ao7UrcothxIBI4K-32UH49Y8cJpeqpOSb2JPLMeN5oxi8An6yqLZtbkXLfQuUJ6FLNC5tqVWS24hZtyld0rxb5xZJ_vRE3WyCGszChad_oduruH6auvQu9lasHMxv6xGbXV2d8njGWz2cTmKCBDin6yLRb9OdOKG6_nPKBz0ey2cpV66lneMKoiZcnAuaK58Xwx6wYlSZN1Q3tiZ7zFGf9C3_-3Ub5R1w6fwOvI6Akp_2H78CWdbuwE112TU4ir_TnPVhce84ld0sQ85HW3fmDfhuC6DD0x_4mXUPW7ffFKWnRNv29R1uTzhFXOcyse_nEdJFydv0Wludffp5dpPF3CqkRlG9S1hQ1eqvFDEw3CIsEFU0-N1TlGLKlsZi5aWmzJpd1rQWvODV5jXiAGlZg0NJsH7Zd5-wBkIwa1WgjJLo7R6GqQSggaCYyrWTFdAInw3KWq541owzVbslKv5zlsxISOMDlLqtb3NPK5Q_qGe98qRP1l8B-0MEoAuEFpoxC4pwgZRSNSQyVpZJMJXA4KKqM3ohv89VB3Eh5kcDH8TH6kS-OVM52v_wYgZkjVyxL4F2v1-f3RitJQL7Q-DjAc3S_fIKmG7i6o6m-_--ZH-AVrgkPHcLFIWyjiu0R4qCNPsYM4PLbcbD-J0ACAlU |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAXRIHSQAEjcSiH7Gb9EcfHqqJaoLuqoCv1ZsWO00aizkq7HODXM06clCJO5JjYk8gz43mjGb8AvHeqcmzmRMpDC1UgoEsNL1xqVJG5kju0qVDRXSzz-Yp_vhJXOyCGszBd0741zcR_v5345qbrrVzf2unQJza9WJzyWcZYPpvuwgP014wPSfrItVv0J08obsCc8oHRR7Lp2pebSeB4wriJV6AC5ornxfDPrBiXduuyHRoUA-spzvoXAv27kfKPyHT2BB5HSElO-k_fhx3nn8J-dNoNOY7M0h-ewfIisC75a4KojzT-Jhz12xLEh12H7E_S1mTTfF2ekAatM9z75SrSeuJLj7l1L5_YNpLObp7D6uzj5ek8jT9USK2gfJuyuqjQXx3mYKZGYCSoqPOZpSrHoC2tw9zNSJfVuawqI3jJqc0rRATUsgLDlmEHsOdb7w6BZNSq2lgh0eE5ClU1ggFBM5EZJUtmEjgellOve94M3dW7JdNhOfWdEhI4xOXW5TXuanr1jQbOu1DsRP0lcNDpYBSBAAOTRiFxTidlFI1pDJVaSaYSOBoUpaM_4ttCfRC3Ul4k8G58jJ4UyiOld-2PMEZg7sgVyxJ40ev17r3RShKQ9zQ-Dggs3fefoPF2bN3RWF_-98y38HB-uTjX55-WX17BI1wf3vULF0ewh-p2rxEVbc2bzgd-A-ycBLI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuFQVKU0oxEodyyCbrRxwfq9JVeXS1AlbqzYodp43UOivtcoBfzzivtogTOSb2JPLMeL7RTD4DvHeqdGzqRMxDC1UgoIsNz11sVJ66gju0qVDRvZhn50v--VJc3jvqq23at6ae-Jvbia-v297K1a1Nhj6xZHFxyqcpY9k0WZVVsgWP0WfTbEjUR77dvPv7hOImzCkfWH0kS1a-WE8CzxPGTrwCHTBXPMuHc7P62LRVFc3QpBiYT3HWv1Do382U96LT7Bns9LCSnHSfvwuPnH8Ou73jrslxzy794QXMF4F5yV8RRH6k9tfhd78NQYzYdsn-Ik1F1vW3-Qmp0ULDvd-uJI0nvvCYX3fyiW164tn1S1jOzn6cnsf9oQqxFZRvYlblJfqswzzMVAiOBBVVNrVUZRi4pXWYvxnp0iqTZWkELzi1WYmogFqWY-gybA-2fePdPpCUWlUZKyQ6PUehqkJAIGgqUqNkwUwEx8Ny6lXHnaHbmrdkOiynvlNCBPu43Lq4wp1NL7_TwHsXCp6ovwj2Wh2MIhBkYOIoJM5ppYyiMZWhUivJVASHg6J075P4tlAjxO2U5xG8Gx-jN4USSeFd8zOMEZg_csXSCF51er17b28lEcgHGh8HBKbuh0_QgFvG7t5gD_575lt4svg4018_zb-8hqe4PLxtGc4PYRu17d4gMNqYo9YF_gDF3wXF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+inherent+stability+of+siRNA+immobilized+on+nanoparticle+constructs&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Barnaby%2C+Stacey+N&rft.au=Lee%2C+Andrew&rft.au=Mirkin%2C+Chad+A&rft.date=2014-07-08&rft.eissn=1091-6490&rft.volume=111&rft.issue=27&rft.spage=9739&rft_id=info:doi/10.1073%2Fpnas.1409431111&rft_id=info%3Apmid%2F24946803&rft.externalDocID=24946803 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F27.cover.gif |