Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis
The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease...
Saved in:
Published in | Gigascience Vol. 7; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource.
To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis.
Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community. |
---|---|
AbstractList | The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource.BackgroundThe yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource.To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis.FindingsTo construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis.Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community.ConclusionsTaking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community. The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource. To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis. Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community. Background The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource. Findings To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis. Conclusions Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community. |
Author | Zhang, Jicheng Xiong, Yang He, Yan Xiao, Shijun Guo, Wenjie Li, Xiaohui Huang, Peipei Gui, Jian-Fang Dan, Cheng Chen, Nansheng Gong, Gaorui Wu, Junjie Mei, Jie |
AuthorAffiliation | 2 Wuhan Frasergen Bioinformatics, East Lake High-Tech Zone, Wuhan, Hubei, 430075, China 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academyof Sciences, University of the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China 1 College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China 5 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada 4 Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China |
AuthorAffiliation_xml | – name: 2 Wuhan Frasergen Bioinformatics, East Lake High-Tech Zone, Wuhan, Hubei, 430075, China – name: 5 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada – name: 4 Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China – name: 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academyof Sciences, University of the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China – name: 1 College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China |
Author_xml | – sequence: 1 givenname: Gaorui surname: Gong fullname: Gong, Gaorui – sequence: 2 givenname: Cheng surname: Dan fullname: Dan, Cheng – sequence: 3 givenname: Shijun surname: Xiao fullname: Xiao, Shijun – sequence: 4 givenname: Wenjie surname: Guo fullname: Guo, Wenjie – sequence: 5 givenname: Peipei surname: Huang fullname: Huang, Peipei – sequence: 6 givenname: Yang surname: Xiong fullname: Xiong, Yang – sequence: 7 givenname: Junjie surname: Wu fullname: Wu, Junjie – sequence: 8 givenname: Yan surname: He fullname: He, Yan – sequence: 9 givenname: Jicheng surname: Zhang fullname: Zhang, Jicheng – sequence: 10 givenname: Xiaohui surname: Li fullname: Li, Xiaohui – sequence: 11 givenname: Nansheng surname: Chen fullname: Chen, Nansheng – sequence: 12 givenname: Jian-Fang orcidid: 0000-0003-4969-1482 surname: Gui fullname: Gui, Jian-Fang – sequence: 13 givenname: Jie orcidid: 0000-0001-5308-3864 surname: Mei fullname: Mei, Jie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30256939$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQtFAR_aB_gAOyxIVLwB9JbF-QqldKkSq4gMTNchwnz8Wxizcpyr_H5bXo0UN98cg7O5pZ7zE6iCk6hF5R8o4Sxd-PfjRgvYvWFbxSRp6hI0ZqUTEqfhzs4UN0CnBNyhFCSsFfoENOWNMqro7Qz802pylBmkyogrt1ARsAN3VhxWnAqwsh_cbWzIOHLR5dTJPDC_g44nnrc1-VJ5fN7FPE51_OMLhfS_F0Vzexx5e-2hRgwgoeXqLngwngTu_vE_T94uO3zWV19fXT583ZVWUbVs8VJ4MQ1hI7CNUPSlo11KYWnaWO246UWFz2vDa063rTSaMEI1bJXg6MKsM5P0Efdro3Sze53ro4ZxP0TfaTyatOxuv_K9Fv9ZhudcuYpEIVgbf3AjmVODDryYMtozDRpQU0o5SzltVEFuqbR9TrtOQSGDSnrRJ100r2FIsJ2kgiVFMX1ut93_8MP_xWIcgdweYEkN2grZ__zr7E8EFTou92Q-_tht7tRmllj1of1J9o-gOwaMPM |
CitedBy_id | crossref_primary_10_1007_s00018_024_05452_4 crossref_primary_10_3389_fgene_2021_707546 crossref_primary_10_3389_fgene_2021_747684 crossref_primary_10_1016_j_bbagrm_2024_195041 crossref_primary_10_1021_acs_est_1c07198 crossref_primary_10_3389_fgene_2020_603454 crossref_primary_10_1016_j_fsi_2024_109866 crossref_primary_10_1186_s12864_023_09394_2 crossref_primary_10_1186_s12964_024_01829_x crossref_primary_10_1093_gigascience_giz124 crossref_primary_10_1038_s41598_021_93257_x crossref_primary_10_3390_ani14111586 crossref_primary_10_1038_s41597_024_03796_x crossref_primary_10_1093_gigascience_giy120 crossref_primary_10_1155_2024_5513585 crossref_primary_10_1038_s41598_021_83903_9 crossref_primary_10_1111_1755_0998_13494 crossref_primary_10_1016_j_bbagrm_2024_195075 crossref_primary_10_1111_1755_0998_13731 crossref_primary_10_1016_j_foodchem_2021_129814 crossref_primary_10_3389_fimmu_2022_1039956 crossref_primary_10_1038_s41597_025_04662_0 crossref_primary_10_1186_s12934_022_01871_9 crossref_primary_10_3389_fgene_2023_1297119 crossref_primary_10_1016_j_tjnut_2025_03_012 crossref_primary_10_1007_s00018_019_03263_6 crossref_primary_10_1038_s41597_024_03802_2 crossref_primary_10_3389_fcell_2020_603815 crossref_primary_10_1093_molbev_msae169 crossref_primary_10_3389_fgene_2022_1050192 crossref_primary_10_3390_antiox10040535 crossref_primary_10_1186_s12964_020_0525_1 crossref_primary_10_1007_s11427_023_2670_5 crossref_primary_10_1089_ars_2022_0194 crossref_primary_10_3390_ijms22094505 crossref_primary_10_3389_fimmu_2023_1163781 crossref_primary_10_1038_s41597_019_0279_z crossref_primary_10_1093_jn_nxz135 crossref_primary_10_1111_raq_12939 crossref_primary_10_3390_fishes9080327 crossref_primary_10_3389_fgene_2022_994471 crossref_primary_10_1007_s10695_022_01071_7 crossref_primary_10_1016_j_ijbiomac_2023_125908 crossref_primary_10_1093_gigascience_giz089 crossref_primary_10_3389_fgene_2020_00279 crossref_primary_10_1038_s41597_022_01601_1 crossref_primary_10_1093_gigascience_giae045 crossref_primary_10_1002_1438_390X_12183 crossref_primary_10_3389_fmars_2022_839225 |
Cites_doi | 10.1186/1471-2105-14-33 10.1101/gr.215087.116 10.1093/molbev/msw108 10.1093/gigascience/giy120 10.1186/s13059-015-0831-x 10.1186/gb-2009-10-3-r25 10.7150/ijbs.7203 10.1038/nmeth.2474 10.1093/nar/gkt1196 10.1016/S0022-2836(05)80360-2 10.1101/gr.1224503 10.3390/molecules191016402 10.1186/1741-7007-4-41 10.1093/bioinformatics/btw370 10.1016/j.ymeth.2017.04.004 10.1038/nmeth.4035 10.1126/science.aal3327 10.1093/bioinformatics/btv351 10.1093/bioinformatics/bti610 10.1007/s10126-014-9607-7 10.1016/j.scib.2018.08.012 10.1093/bioinformatics/btl505 10.1038/ng.3098 10.1093/nar/27.1.29 10.1002/0471250953.bi0411s48 10.1371/journal.pone.0112963 10.1126/science.1181369 10.1186/s13100-015-0041-9 10.1101/gr.107524.110 10.1093/bioinformatics/btp120 10.1007/s10126-012-9487-7 10.1093/nar/27.2.573 10.1038/ncomms11757 10.1038/nbt.2727 10.1093/nar/gkh036 10.1007/s11427-014-4797-9 10.1093/nar/gkl200 10.1007/978-1-4939-3167-5_18 10.1016/j.fsi.2016.02.020 10.1093/bioinformatics/btl097 10.7717/peerj.2664 |
ContentType | Journal Article |
Copyright | The Authors 2018. Published by Oxford University Press. The Authors 2018. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Authors 2018. Published by Oxford University Press. 2018 |
Copyright_xml | – notice: The Authors 2018. Published by Oxford University Press. – notice: The Authors 2018. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Authors 2018. Published by Oxford University Press. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 5PM |
DOI | 10.1093/gigascience/giy120 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 2047-217X |
ExternalDocumentID | PMC6228179 30256939 10_1093_gigascience_giy120 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; ; grantid: CARS-46 – fundername: ; grantid: 2662017PY013 |
GroupedDBID | 0R~ 53G 5VS 7X7 AAFWJ AAHBH AAPXW AAVAP AAYXX ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACPRK ACUHS ADBBV ADRAZ AEGXH AENZO AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS BAWUL BAYMD BBNVY BCNDV BFQNJ C6C CITATION DIK EBS EJD GROUPED_DOAJ GX1 H13 HYE IAO IHR IHW INR KQ8 KSI M48 M~E O9- OK1 RBZ RNS ROL RPM RSV SBL SOJ TJX TOX CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c524t-30f77cc0cf79df98c9f4a47bc1e3cb004738d34a1bbdab8a9720c98d8f219a333 |
IEDL.DBID | M48 |
ISSN | 2047-217X |
IngestDate | Thu Aug 21 17:56:50 EDT 2025 Fri Jul 11 02:07:48 EDT 2025 Mon Jun 30 09:54:18 EDT 2025 Mon Jun 30 09:56:07 EDT 2025 Thu Apr 03 07:07:43 EDT 2025 Tue Jul 01 01:07:50 EDT 2025 Thu Apr 24 23:13:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c524t-30f77cc0cf79df98c9f4a47bc1e3cb004738d34a1bbdab8a9720c98d8f219a333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-5308-3864 0000-0003-4969-1482 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/gigascience/giy120 |
PMID | 30256939 |
PQID | 2715807954 |
PQPubID | 2040230 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6228179 proquest_miscellaneous_2113262408 proquest_journals_3169745682 proquest_journals_2715807954 pubmed_primary_30256939 crossref_citationtrail_10_1093_gigascience_giy120 crossref_primary_10_1093_gigascience_giy120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Gigascience |
PublicationTitleAlternate | Gigascience |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Xiao (2024111706531282200_bib9) 2016; 4 Bao (2024111706531282200_bib31) 2015; 6 Li (2024111706531282200_bib43) 2003; 13 Lieberman-Aiden (2024111706531282200_bib18) 2009; 326 Yang (2024111706531282200_bib10) 2013; 14 Zhang (2024111706531282200_bib2) 2014; 19 Chin (2024111706531282200_bib16) 2013; 10 Hedges (2024111706531282200_bib46) 2006; 22 Liu (2024111706531282200_bib48) 2016; 7 Koren (2024111706531282200_bib13) 2017; 27 Yang (2024111706531282200_bib7) 2018; 42 Zhang (2024111706531282200_bib14) 2016; 32 Zhang (2024111706531282200_bib15) 2016; 113 Yang (2024111706531282200_bib47) 1997; 13 Chen (2024111706531282200_bib32) 2004; 4.10 Belaghzal (2024111706531282200_bib19) 2017; 123 Chin (2024111706531282200_bib12) 2016; 13 Guindon (2024111706531282200_bib45) 2009 Chen (2024111706531282200_bib5) 2015; 17 Xu (2024111706531282200_bib11) 2014; 46 Burton (2024111706531282200_bib24) 2013; 31 Xie (2024111706531282200_bib23) 2016; 33 Benson (2024111706531282200_bib29) 1999; 27 2024111706531282200_bib30 Mckenna (2024111706531282200_bib28) 2010; 20 Servant (2024111706531282200_bib22) 2015; 16 De Bie (2024111706531282200_bib49) 2006; 22 Conesa (2024111706531282200_bib42) 2005; 21 Dan (2024111706531282200_bib8) 2018 Campbell (2024111706531282200_bib38) 2014; 48 Dan (2024111706531282200_bib6) 2013; 9 Gertz (2024111706531282200_bib35) 2006; 4 Walker (2024111706531282200_bib17) 2014; 9 Simão (2024111706531282200_bib27) 2015; 31 Xue (2024111706531282200_bib25) 2006; 19 Langmead (2024111706531282200_bib21) 2009; 10 Trapnell (2024111706531282200_bib36) 2009; 25 Ogata (2024111706531282200_bib41) 2000; 27 Dudchenko (2024111706531282200_bib20) 2017; 356 Flicek (2024111706531282200_bib34) 2014; 42 Liu (2024111706531282200_bib3) 2016; 51 Altschul (2024111706531282200_bib39) 1990; 215 Thompson (2024111706531282200_bib44) 2002 Liu (2024111706531282200_bib1) 2013; 15 Stanke (2024111706531282200_bib33) 2006; 34 Ghosh (2024111706531282200_bib37) 2016; 1374 Harris (2024111706531282200_bib40) 2004; 32 Dudchenko (2024111706531282200_bib26) 2018 Jie (2024111706531282200_bib4) 2015; 58 2024111706531282200_bib50 |
References_xml | – volume: 19: start-page: 11 year: 2006 ident: 2024111706531282200_bib25 article-title: Karyotype analyses of Pseudobagrusfulvidraco publication-title: Chinese Journal of Fisheries – volume: 14 start-page: 1 year: 2013 ident: 2024111706531282200_bib10 article-title: HTQC: a fast quality control toolkit for Illumina sequencing data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-33 – volume: 27 start-page: 722 year: 2017 ident: 2024111706531282200_bib13 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res doi: 10.1101/gr.215087.116 – volume: 33 start-page: 2368 year: 2016 ident: 2024111706531282200_bib23 article-title: Spatial colocalization of human onolog pairs acts to maintain dosage-balance publication-title: Molecular Biology & Evolution doi: 10.1093/molbev/msw108 – ident: 2024111706531282200_bib50 doi: 10.1093/gigascience/giy120 – volume: 16 start-page: 259 year: 2015 ident: 2024111706531282200_bib22 article-title: HiC-Pro: an optimized and flexible pipeline for Hi-C data processing publication-title: Genome Biol doi: 10.1186/s13059-015-0831-x – volume: 10 start-page: R25 year: 2009 ident: 2024111706531282200_bib21 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 9 start-page: 1043 year: 2013 ident: 2024111706531282200_bib6 article-title: Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish publication-title: Int J Biol Sci doi: 10.7150/ijbs.7203 – volume: 10 start-page: 563 year: 2013 ident: 2024111706531282200_bib16 article-title: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.2474 – volume: 42 start-page: D749 year: 2014 ident: 2024111706531282200_bib34 article-title: Ensembl 2014 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1196 – volume: 215 start-page: 403 year: 1990 ident: 2024111706531282200_bib39 article-title: Basic local alignment search tool publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 13 start-page: 2178 year: 2003 ident: 2024111706531282200_bib43 article-title: OrthoMCL: identification of ortholog groups for eukaryotic genomes publication-title: Genome Res doi: 10.1101/gr.1224503 – volume: 19 start-page: 16402 year: 2014 ident: 2024111706531282200_bib2 article-title: Characterization and development of EST-SSR markers derived from transcriptome of yellow catfish publication-title: Molecules doi: 10.3390/molecules191016402 – volume: 4 start-page: 41 year: 2006 ident: 2024111706531282200_bib35 article-title: Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST publication-title: BMC Biol doi: 10.1186/1741-7007-4-41 – volume: 32 start-page: 3058 year: 2016 ident: 2024111706531282200_bib14 article-title: Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw370 – volume: 123 start-page: 56 year: 2017 ident: 2024111706531282200_bib19 article-title: HI-C 2.0: an optimized hi-c procedure for high-resolution genome-wide mapping of chromosome conformation publication-title: Methods doi: 10.1016/j.ymeth.2017.04.004 – volume: 13 start-page: 1050 year: 2016 ident: 2024111706531282200_bib12 article-title: Phased diploid genome assembly with single molecule real-time sequencing publication-title: Nat Methods doi: 10.1038/nmeth.4035 – volume: 356 start-page: 92 year: 2017 ident: 2024111706531282200_bib20 article-title: De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds publication-title: Science doi: 10.1126/science.aal3327 – volume: 31 start-page: 3210 year: 2015 ident: 2024111706531282200_bib27 article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – ident: 2024111706531282200_bib30 – volume: 21 start-page: 3674 year: 2005 ident: 2024111706531282200_bib42 article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti610 – volume: 17 start-page: 190 year: 2015 ident: 2024111706531282200_bib5 article-title: A comprehensive transcriptome provides candidate genes for sex determination/differentiation and SSR/SNP markers in yellow catfish publication-title: Mar Biotechnol doi: 10.1007/s10126-014-9607-7 – volume-title: Multiple Sequence Alignment Using ClustalW and ClustalX year: 2002 ident: 2024111706531282200_bib44 – year: 2018 ident: 2024111706531282200_bib8 article-title: A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrusfulvidraco) publication-title: Science Bulletin doi: 10.1016/j.scib.2018.08.012 – volume: 22 start-page: 2971 year: 2006 ident: 2024111706531282200_bib46 article-title: TimeTree: a public knowledge-base of divergence times among organisms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl505 – volume: 46 start-page: 1212 year: 2014 ident: 2024111706531282200_bib11 article-title: Genome sequence and genetic diversity of the common carp, Cyprinuscarpio publication-title: Nat Genet doi: 10.1038/ng.3098 – volume: 27 start-page: 29 year: 2000 ident: 2024111706531282200_bib41 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.29 – volume: 48 start-page: 4.11.11 year: 2014 ident: 2024111706531282200_bib38 article-title: Genome annotation and curation using MAKER and MAKER-P publication-title: Current Protocols in Bioinformatics doi: 10.1002/0471250953.bi0411s48 – volume: 4.10: start-page: 1 year: 2004 ident: 2024111706531282200_bib32 article-title: Using RepeatMasker to identify repetitive elements in genomic sequences publication-title: Current Protocols in Bioinformatics – volume: 9 start-page: e112963 year: 2014 ident: 2024111706531282200_bib17 article-title: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement publication-title: PLoS One doi: 10.1371/journal.pone.0112963 – volume: 326 start-page: 289 year: 2009 ident: 2024111706531282200_bib18 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 6 start-page: 11 year: 2015 ident: 2024111706531282200_bib31 article-title: Repbase Update, a database of repetitive elements in eukaryotic genomes publication-title: Mobile Dna doi: 10.1186/s13100-015-0041-9 – volume: 20 start-page: 1297 year: 2010 ident: 2024111706531282200_bib28 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 25 start-page: 1105 year: 2009 ident: 2024111706531282200_bib36 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 42 start-page: 871 year: 2018 ident: 2024111706531282200_bib7 article-title: Production of XX male yellow catfish by sex-reversal technology publication-title: Acta Hydrobiologica Sinica – volume: 13 start-page: 555 year: 1997 ident: 2024111706531282200_bib47 article-title: PAML: a program package for phylogenetic analysis by maximum likelihood publication-title: Computer Applications in Bioscience – volume: 15 start-page: 321 year: 2013 ident: 2024111706531282200_bib1 article-title: Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrusfulvidraco (Richardson)) publication-title: Mar Biotechnol doi: 10.1007/s10126-012-9487-7 – volume: 27 start-page: 573 year: 1999 ident: 2024111706531282200_bib29 article-title: Tandem repeats finder: a program to analyze DNA sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/27.2.573 – volume: 7 start-page: 11757 year: 2016 ident: 2024111706531282200_bib48 article-title: The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts publication-title: Nature Communications doi: 10.1038/ncomms11757 – volume: 31 start-page: 1119 year: 2013 ident: 2024111706531282200_bib24 article-title: Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions publication-title: Nat Biotechnol doi: 10.1038/nbt.2727 – volume: 32 start-page: D258 year: 2004 ident: 2024111706531282200_bib40 article-title: The Gene Ontology (GO) database and informatics resource publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh036 – start-page: 384 volume-title: Infect Genet Evol year: 2009 ident: 2024111706531282200_bib45 article-title: PhyML: fast and accurate phylogeny reconstruction by maximum likelihood – volume: 58 start-page: 124 year: 2015 ident: 2024111706531282200_bib4 article-title: Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish publication-title: Science China Life Sciences doi: 10.1007/s11427-014-4797-9 – volume: 34 start-page: 435 year: 2006 ident: 2024111706531282200_bib33 article-title: AUGUSTUS: ab initio prediction of alternative transcripts publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl200 – year: 2018 ident: 2024111706531282200_bib26 – volume: 1374 start-page: 339 year: 2016 ident: 2024111706531282200_bib37 article-title: Analysis of RNA-seq data using TopHat and Cufflinks publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-3167-5_18 – volume: 113 start-page: E5163 year: 2016 ident: 2024111706531282200_bib15 article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63 publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 125 year: 2016 ident: 2024111706531282200_bib3 article-title: Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrusfulvidraco) publication-title: Fish & Shellfish Immunology doi: 10.1016/j.fsi.2016.02.020 – volume: 22 start-page: 1269 year: 2006 ident: 2024111706531282200_bib49 article-title: CAFE: a computational tool for the study of gene family evolution publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl097 – volume: 4 start-page: e2664 year: 2016 ident: 2024111706531282200_bib9 article-title: Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthyscrocea publication-title: Peerj doi: 10.7717/peerj.2664 |
SSID | ssj0000778873 |
Score | 2.496739 |
Snippet | The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia,... Background The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Aquaculture Assembly Biosynthesis Catfish Catfishes - classification Catfishes - genetics Chromosomes Computational Biology - methods Data Note Degeneration Dimorphism Disease resistance DNA sequencing Economic importance Fatty acids Female Gene families Gene Library Gene sequencing Genome Genomes Genomics Genomics - methods Germplasm Immune system Male Molecular Sequence Annotation Multigene Family Phylogeny Scaffolds Sex determination Sexual dimorphism Signal transduction |
Title | Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30256939 https://www.proquest.com/docview/2715807954 https://www.proquest.com/docview/3169745682 https://www.proquest.com/docview/2113262408 https://pubmed.ncbi.nlm.nih.gov/PMC6228179 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBele9nL2Pe8tUWDsZehLbJkS3oopXQtYdA-LZA3I8lSYubYW-Ky5WV_e3W2EpotDPZiDJKFrbvT3fnufofQO9vDnHFGgilrCDfKEl16RrwHuC9ONXfwH_L6Jh9P-JdpNj1Am3ZHcQNXe1076Cc1WdYff_1YnwWBP41gSJ9m1UxHfRHu1zQNLvyDoJkECOp1NPf7k1lA7hwEndMeoICKaayj2b_Mrq76ywD9M4_ynmK6eoweRYsSnw8s8AQduOYpOo71CPg9jgVHQAAcJfkZ-gaguIt21S50TWpIHMLBinYLU69x6_EaQjI_sdWdr1ZzDECuC4chR36Gu3m1LMmsh6vuF_18c45jRjaM66bE44pchJsB7-Q5mlxdfr0Yk9h3gdgs5R1hIy-EtSPrhSq9klZ5rrkwljpmQcwFkyXjmhpTaiO1EunIKllKH44_zRh7gQ6btnGvEM600tzkytNAc-qp4TkgFlLLHMuN9wmimx0ubAQlh94YdTEEx1lxjyrFQJUEfdg-832A5Pjn7KMN4YoNdxWpoJkcCZXxvcOM5sHNynKZJujtdjjIHQRTdOPa27AEDX58DgBxCXo5sMH2bRgYkoqpBIkdBtlOAEzv3ZGmmvfY3nmaynBGvv6vb3yDHgY7Tg4lkkfosFveuuNgK3XmpBcAuP6-vAMiphw5 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosomal-level+assembly+of+yellow+catfish+genome+using+third-generation+DNA+sequencing+and+Hi-C+analysis&rft.jtitle=Gigascience&rft.au=Gong%2C+Gaorui&rft.au=Dan%2C+Cheng&rft.au=Xiao%2C+Shijun&rft.au=Guo%2C+Wenjie&rft.date=2018-11-01&rft.issn=2047-217X&rft.eissn=2047-217X&rft.volume=7&rft.issue=11&rft_id=info:doi/10.1093%2Fgigascience%2Fgiy120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gigascience_giy120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon |