Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome

To examine predictive factors for abdominal obesity or metabolic syndrome, we investigated the association of plasma fatty acid composition, estimated desaturase activity, and nutrient intakes, with abdominal obesity or metabolic syndrome in Japanese males. Clinical characteristics, the fatty acid c...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nutritional Science and Vitaminology Vol. 55; no. 5; pp. 400 - 406
Main Authors Kawashima, A.(Nara Women's Univ. (Japan)), Sugawara, S, Okita, M, Akahane, T, Fukui, K, Hashiuchi, M, Kataoka, C, Tsukamoto, I
Format Journal Article
LanguageEnglish
Published Tokyo Center for Academic Publications Japan 2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To examine predictive factors for abdominal obesity or metabolic syndrome, we investigated the association of plasma fatty acid composition, estimated desaturase activity, and nutrient intakes, with abdominal obesity or metabolic syndrome in Japanese males. Clinical characteristics, the fatty acid composition of plasma cholesteryl esters, and energy and nutrient intakes were analyzed in 3 groups: metabolic syndrome (MS, n = 24), abdominal obesity (OB, n = 43), and control (n = 27). The estimated desaturase activities were calculated by the ratio of 16:1n-7/16:0, 18:3n-6/18:2n-6, and 20:4n-6/20:3n-6 in plasma cholesteryl esters as surrogates of the measure of the delta 9, delta 6, delta 5 desaturase (D9-16D, D6D and D5D) activities, respectively. Plasma fatty acid composition did not differ significantly between the OB group and the control group. The MS group had higher levels of palmitoleic, oleic, and gamma-linolenic acids, but a lower level of linoleic acid than the control. Stronger D6D activity and weaker D5D activity were observed in the OB group. A higher level of D9-16D activity as well as a higher level of D6D activity and a lower level of D5D activity was observed in the MS group. A logistic regression analysis showed that the low D5D activity and high D9-16D activity were predictive of the development of abdominal obesity from controls (odds ratio = 0.39, p 0.05) and metabolic syndrome from abdominal obesity (odds ratio
AbstractList To examine predictive factors for abdominal obesity or metabolic syndrome, we investigated the association of plasma fatty acid composition, estimated desaturase activity, and nutrient intakes, with abdominal obesity or metabolic syndrome in Japanese males. Clinical characteristics, the fatty acid composition of plasma cholesteryl esters, and energy and nutrient intakes were analyzed in 3 groups: metabolic syndrome (MS, n=24), abdominal obesity (OB, n=43), and control (n=27). The estimated desaturase activities were calculated by the ratio of 16:1n-7/16:0, 18:3n-6/18:2n-6, and 20:4n-6/20:3n-6 in plasma cholesteryl esters as surrogates of the measure of the delta 9, delta 6, delta 5 desaturase (D9-16D, D6D and D5D) activities, respectively. Plasma fatty acid composition did not differ significantly between the OB group and the control group. The MS group had higher levels of palmitoleic, oleic, and gamma-linolenic acids, but a lower level of linoleic acid than the control. Stronger D6D activity and weaker D5D activity were observed in the OB group. A higher level of D9-16D activity as well as a higher level of D6D activity and a lower level of D5D activity was observed in the MS group. A logistic regression analysis showed that the low D5D activity and high D9-16D activity were predictive of the development of abdominal obesity from controls (odds ratio=0.39, p<0.05) and metabolic syndrome from abdominal obesity (odds ratio=2.44, p<0.05), respectively. In the multiple linear regression analysis, D5D activity positively correlated with the intake of eicosapentaenoic acid (EPA). In conclusion, the estimated D5D activity was a predictive factor for abdominal obesity and the estimated D9-16D activity was a predictive factor for developing metabolic syndrome from abdominal obesity in Japanese male subjects. Dietary intake of EPA would play an important role in preventing abdominal obesity and the development of metabolic syndrome.
To examine predictive factors for abdominal obesity or metabolic syndrome, we investigated the association of plasma fatty acid composition, estimated desaturase activity, and nutrient intakes, with abdominal obesity or metabolic syndrome in Japanese males. Clinical characteristics, the fatty acid composition of plasma cholesteryl esters, and energy and nutrient intakes were analyzed in 3 groups: metabolic syndrome (MS, n = 24), abdominal obesity (OB, n = 43), and control (n = 27). The estimated desaturase activities were calculated by the ratio of 16:1n-7/16:0, 18:3n-6/18:2n-6, and 20:4n-6/20:3n-6 in plasma cholesteryl esters as surrogates of the measure of the delta 9, delta 6, delta 5 desaturase (D9-16D, D6D and D5D) activities, respectively. Plasma fatty acid composition did not differ significantly between the OB group and the control group. The MS group had higher levels of palmitoleic, oleic, and gamma-linolenic acids, but a lower level of linoleic acid than the control. Stronger D6D activity and weaker D5D activity were observed in the OB group. A higher level of D9-16D activity as well as a higher level of D6D activity and a lower level of D5D activity was observed in the MS group. A logistic regression analysis showed that the low D5D activity and high D9-16D activity were predictive of the development of abdominal obesity from controls (odds ratio = 0.39, p 0.05) and metabolic syndrome from abdominal obesity (odds ratio
To examine predictive factors for abdominal obesity or metabolic syndrome, we investigated the association of plasma fatty acid composition, estimated desaturase activity, and nutrient intakes, with abdominal obesity or metabolic syndrome in Japanese males. Clinical characteristics, the fatty acid composition of plasma cholesteryl esters, and energy and nutrient intakes were analyzed in 3 groups: metabolic syndrome (MS, n=24), abdominal obesity (OB, n=43), and control (n=27). The estimated desaturase activities were calculated by the ratio of 16:1n-7/16:0, 18:3n-6/18:2n-6, and 20:4n-6/20:3n-6 in plasma cholesteryl esters as surrogates of the measure of the delta 9, delta 6, delta 5 desaturase (D9-16D, D6D and D5D) activities, respectively. Plasma fatty acid composition did not differ significantly between the OB group and the control group. The MS group had higher levels of palmitoleic, oleic, and γ-linolenic acids, but a lower level of linoleic acid than the control. Stronger D6D activity and weaker D5D activity were observed in the OB group. A higher level of D9-16D activity as well as a higher level of D6D activity and a lower level of D5D activity was observed in the MS group. A logistic regression analysis showed that the low D5D activity and high D9-16D activity were predictive of the development of abdominal obesity from controls (odds ratio=0.39, p<0.05) and metabolic syndrome from abdominal obesity (odds ratio=2.44, p<0.05), respectively. In the multiple linear regression analysis, D5D activity positively correlated with the intake of eicosapentaenoic acid (EPA). In conclusion, the estimated D5D activity was a predictive factor for abdominal obesity and the estimated D9-16D activity was a predictive factor for developing metabolic syndrome from abdominal obesity in Japanese male subjects. Dietary intake of EPA would play an important role in preventing abdominal obesity and the development of metabolic syndrome.
Author Fukui, K
Akahane, T
Tsukamoto, I
Hashiuchi, M
Sugawara, S
Kawashima, A.(Nara Women's Univ. (Japan))
Okita, M
Kataoka, C
Author_xml – sequence: 1
  fullname: Kawashima, A.(Nara Women's Univ. (Japan))
– sequence: 2
  fullname: Sugawara, S
– sequence: 3
  fullname: Okita, M
– sequence: 4
  fullname: Akahane, T
– sequence: 5
  fullname: Fukui, K
– sequence: 6
  fullname: Hashiuchi, M
– sequence: 7
  fullname: Kataoka, C
– sequence: 8
  fullname: Tsukamoto, I
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22610942$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19926925$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS1URLeFE2eQL5zoLrbj1MmtqOJfVYkeercmznjrJbFXtrcon4avipeUHBAXj-T5vTeaeWfkxAePhLzmbFNxpT7sfHrc1PVGMvaMrHjT8LVSUpyQFasYX8uGsVNyltKOMdk2snlBTnnbistW1Cvy626ANAK1kPNEwbiemjDuQ3LZBX9BMWU3Qsae9pggHyIkLFh2jwXAdEHB99T5DD8w0WApeozb6c-vP-To0OfSpjewB49FOqKnP11-oND1YXQeBho6LNMmGmLpZujC4AxNk-9jGPEleW5hSPjqqZ6T-8-f7q-_rm-_f_l2_fF2bWoh87os2vJeSSZQyAoBjODQdQ1gz6RUCoyRiLYCriorEKxqrKx5q1jbcsWrc_J2tt0fuhF7vY9l6zjpv4cqwLsnAJKBwUbwxqWFE-KSs1aKwvGZMzGkFNFq4zIcb5kjuEFzpo-h6WNouq51Ca1o3v-jWcb_l76a6V3KsMWFhZidGXBh6_kpkqVlHiBq9MXizWxhIWjYxrLIzZ1grGVM1YxXvwHqiLy0
CitedBy_id crossref_primary_10_1016_j_nutres_2011_12_006
crossref_primary_10_3390_nu9070703
crossref_primary_10_3945_ajcn_113_061218
crossref_primary_10_3389_fnmol_2021_691733
crossref_primary_10_1017_S000711451700054X
crossref_primary_10_3390_metabo12060568
crossref_primary_10_1016_j_plefa_2011_06_006
crossref_primary_10_1097_MCO_0b013e32833ec41b
crossref_primary_10_33549_physiolres_932868
crossref_primary_10_1016_j_plefa_2018_06_006
crossref_primary_10_4162_nrp_2015_9_6_650
crossref_primary_10_1016_j_etap_2016_04_009
crossref_primary_10_1089_met_2015_0168
crossref_primary_10_1007_s40200_021_00958_1
crossref_primary_10_1016_j_orcp_2013_03_001
crossref_primary_10_3164_jcbn_10_147
crossref_primary_10_1016_j_clnu_2013_03_001
crossref_primary_10_1016_j_plefa_2019_102039
crossref_primary_10_1017_S0007114519001600
crossref_primary_10_1155_2021_8869571
crossref_primary_10_1194_jlr_R027904
crossref_primary_10_3109_0886022X_2011_601831
crossref_primary_10_3390_nu10010031
crossref_primary_10_5551_jat_6270
crossref_primary_10_3164_jcbn_11_12
crossref_primary_10_3389_fped_2021_628496
crossref_primary_10_1093_jn_nxy238
crossref_primary_10_4093_dmj_2017_41_4_303
crossref_primary_10_1002_jsfa_7977
crossref_primary_10_1016_j_envpol_2020_114714
crossref_primary_10_3945_ajcn_112_040204
crossref_primary_10_2217_clp_11_48
crossref_primary_10_1007_s00394_018_1866_z
crossref_primary_10_1053_j_jrn_2011_05_005
crossref_primary_10_1371_journal_pone_0116195
crossref_primary_10_1186_1476_511X_12_2
crossref_primary_10_1016_j_nutres_2012_07_004
crossref_primary_10_3892_br_2017_1015
crossref_primary_10_1016_j_plefa_2015_04_010
crossref_primary_10_1371_journal_pone_0041503
crossref_primary_10_4327_jsnfs_67_127
crossref_primary_10_1007_s13340_024_00760_3
crossref_primary_10_1186_s12944_017_0459_9
crossref_primary_10_3945_jn_114_203133
crossref_primary_10_1111_obr_12280
crossref_primary_10_1016_j_plefa_2019_102028
crossref_primary_10_1016_j_plefa_2013_01_005
crossref_primary_10_14712_fb2019065040159
Cites_doi 10.1016/j.numecd.2007.11.002
10.1093/ajcn/55.6.1174
10.1093/ajcn/62.3.564
10.1016/S0022-2275(20)37132-7
10.1007/s00394-008-0769-9
10.1016/S0899-9007(01)00543-3
10.1093/ajcn/78.1.91
10.1111/j.1749-6632.2002.tb04275.x
10.1093/ajcn/45.2.443
10.2188/jea.15.203
10.1093/ajcn/87.6.1981S
10.1139/y59-099
10.1016/j.metabol.2008.09.008
10.1016/j.numecd.2005.06.001
10.1194/jlr.M200189-JLR200
10.1074/jbc.M005488200
10.1097/00041433-200302000-00004
10.5551/jat.E564
10.1007/s00125-005-1897-x
10.1046/j.1464-5491.2002.00707.x
10.2337/diacare.26.9.2493
10.2337/diacare.24.4.683
10.1093/ajcn/71.2.412
10.1194/jlr.M200289-JLR200
ContentType Journal Article
Copyright 2009 by the Center for Academic Publications Japan
2015 INIST-CNRS
Copyright_xml – notice: 2009 by the Center for Academic Publications Japan
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3177/jnsv.55.400
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1881-7742
EndPage 406
ExternalDocumentID 19926925
22610942
10_3177_jnsv_55_400
article_jnsv_55_5_55_5_400_article_char_en
JP2009007501
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
2WC
3O-
53G
5GY
5RE
AAWTL
AAYJJ
ABIWU
ADBBV
AENEX
AEQTP
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
F5P
FBQ
JSF
JSH
KQ8
OK1
RJT
RYR
RZJ
TKC
TR2
VH1
X7J
X7M
ZGI
ZXP
AAFWJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c524t-30191d7402e243eaac21abb8aed04477acc4eef3a173f2eaf78f451970991713
ISSN 0301-4800
IngestDate Sat Sep 18 03:25:46 EDT 2021
Mon Jul 21 09:14:45 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Tue Jul 01 01:41:04 EDT 2025
Wed Sep 03 06:30:47 EDT 2025
Wed Dec 27 19:05:45 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Endocrinopathy
Human
Lipids
Metabolic diseases
Cardiovascular disease
Metabolic syndrome
n-3 fatty acid
Fatty acids
Japanese
Visceral obesity
delta 5 desaturase
Blood plasma
delta 9 desaturase
Vertebrata
Mammalia
Energy
Food intake
abdominal obesity
dietary intake of eicosapentaenoic acid (EPA)
Eicosapentaenoic acid
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-30191d7402e243eaac21abb8aed04477acc4eef3a173f2eaf78f451970991713
Notes S20
S30
2009007501
OpenAccessLink https://www.jstage.jst.go.jp/article/jnsv/55/5/55_5_400/_article/-char/en
PMID 19926925
PageCount 7
ParticipantIDs pubmed_primary_19926925
pascalfrancis_primary_22610942
crossref_citationtrail_10_3177_jnsv_55_400
crossref_primary_10_3177_jnsv_55_400
jstage_primary_article_jnsv_55_5_55_5_400_article_char_en
fao_agris_JP2009007501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-00-00
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009-00-00
PublicationDecade 2000
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Japan
PublicationTitle Journal of Nutritional Science and Vitaminology
PublicationTitleAlternate J Nutr Sci Vitaminol
PublicationYear 2009
Publisher Center for Academic Publications Japan
Publisher_xml – name: Center for Academic Publications Japan
References 22) Miyaki K, Sutani S, Kikuchi H, Takei I, Murata M, Watanabe K, Omae K. 2005. Increased risk of obesity resulting from the interaction between high energy intake and the Trp64Arg polymorphism of the beta3-adrenergic receptor gene in healthy Japanese men. J Epidemiol 15: 203-210.
11) Laaksonen DE, Lakka TA, Lakka HM, Nyyssönen K, Rissanen T, Niskanen LK, Salonen JT. 2002. Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Diabet Med 19: 456-464.
2) Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, Taskinen MR, Groop L. 2001. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24: 683-689.
3) Li JJ, Huang CJ, Xie D. 2008. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52: 631-645.
5) Parks EJ, Hellerstein MK. 2000. Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 71: 412-433.
28) Ramel A, Parra D, Martinéz JA, Kiely M, Thorsdottir I. 2009. Effects of seafood consumption and weight loss on fasting leptin and ghrelin concentrations in overweight and obese European young adults. Eur J Nutr 13 [PMID: 19142567].
26) Nakatani T, Kim HJ, Kaburagi Y, Yasuda K, Ezaki O. 2003. A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 44: 369-379.
13) Warensjö E, Ohrvall M, Vessby B. 2006. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis 16: 128-136.
19) Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911.
4) Lovejoy J, DiGirolamo M. 1992. Habitual dietary intake and insulin sensitivity in lean and obese adults. Am J Clin Nutr 55: 1174-1179.
10) Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH; ARIC Study Investigators. 2003. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 78: 91-98.
27) Robinson LE, Buchholz AC, Mazurak VC. 2007. Inflammation, obesity, and fatty acid metabolism: influence of n-3 polyunsaturated fatty acids on factors contributing to metabolic syndrome. Appl Physiol Nutr Metab 32: 1008-1024.
16) Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM. 2002. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43: 1899-1907.
31) Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM. 2000. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275: 30132-30138.
12) Vessby B. 2003. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol 14: 15-19.
29) Jacobson TA. 2008. Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr 87: 1981S-1990S.
25) Li JJ, Huang CJ, Xie D. 2008. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52: 631-645.
17) The Examination Committee of Criteria for Metabolic Syndrome. 2005. Definition and criteria for metabolic syndrome. J Jpn Soc Int Med 94: 794-809.
24) Suzuki K, Sasagawa T, Okita O, Fujiwara Y, Mori K, Saito M, Abe Y. 1996. Development of new simplified-food frequency method for use in the surveillance on life style in order to promote healthy condition in Okayama Prefecture, computed by Microsoft Excel. Bull Fac Health Welfare Sci Okayama Prefect Univ 3: 143-153.
20) Okita M, Hayashi M, Sasagawa T, Takagi K, Suzuki K, Kinoyama S, Ito T, Yamada G. 2001. Effect of a moderately energy-restricted diet on obese patients with fatty liver. Nutrition 17: 542-547.
9) Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. 2002. Desaturation and elongation of fatty acids and insulin action. Ann NY Acad Sci 967: 183-195.
7) Dougherty RM, Galli C, Ferro-Luzzi A, Iacono JM. 1987. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am J Clin Nutr 45: 443-455.
21) Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. 1996. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 97: 2081-2091.
8) Ma J, Folsom AR, Shahar E, Eckfeldt JH. 1995. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr 62: 564-571.
23) Science and Technology Agency. 2005. Standard Tables of Food Composition in Japan, Fatty Acid Section, 5th revised and enlarged ed, Printing Bureau of the Ministry of Finance, Tokyo.
15) Maruyama C, Yoneyama M, Suyama N, Yoshimi K, Teramoto A, Sakaki Y, Suto Y, Takahashi K, Araki R, Ishizaka Y, Yamakado M, Teramoto T. 2008. Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome. J Atheroscler Thromb 15: 306-313.
14) Warensjö E, Risérus U, Vessby B. 2005. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 48: 1999-2005.
1) Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C. 2004. Definition of metabolic syndrome. Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 24: 13-18.
6) Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. 1997. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38: 2012-2022.
18) Satoh N, Ogawa Y, Usui T, Tagami T, Kono S, Uesugi H, Sugiyama H, Sugawara A, Yamada K, Shimatsu A, Kuzuya H, Nakao K. 2003. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 26: 2493-2499.
30) Zhou YE, Egeland GM, Meltzer SJ, Kubow S. 2009. The association of desaturase 9 and plasma fatty acid composition with insulin resistance-associated factors in female adolescents. Metabolism 58: 158-166.
32) Warensjö E, Risérus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B. 2008. Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis 18: 683-690.
22
23
24
25
26
27
(6) 1997; 38
28
29
30
31
10
32
11
12
13
14
16
17
18
19
1
2
3
4
5
7
8
MARUYAMA CHIZUKO (15) 2008; 15
9
20
21
References_xml – reference: 8) Ma J, Folsom AR, Shahar E, Eckfeldt JH. 1995. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr 62: 564-571.
– reference: 22) Miyaki K, Sutani S, Kikuchi H, Takei I, Murata M, Watanabe K, Omae K. 2005. Increased risk of obesity resulting from the interaction between high energy intake and the Trp64Arg polymorphism of the beta3-adrenergic receptor gene in healthy Japanese men. J Epidemiol 15: 203-210.
– reference: 24) Suzuki K, Sasagawa T, Okita O, Fujiwara Y, Mori K, Saito M, Abe Y. 1996. Development of new simplified-food frequency method for use in the surveillance on life style in order to promote healthy condition in Okayama Prefecture, computed by Microsoft Excel. Bull Fac Health Welfare Sci Okayama Prefect Univ 3: 143-153.
– reference: 31) Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM. 2000. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275: 30132-30138.
– reference: 13) Warensjö E, Ohrvall M, Vessby B. 2006. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis 16: 128-136.
– reference: 10) Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH; ARIC Study Investigators. 2003. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 78: 91-98.
– reference: 16) Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM. 2002. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43: 1899-1907.
– reference: 20) Okita M, Hayashi M, Sasagawa T, Takagi K, Suzuki K, Kinoyama S, Ito T, Yamada G. 2001. Effect of a moderately energy-restricted diet on obese patients with fatty liver. Nutrition 17: 542-547.
– reference: 2) Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, Taskinen MR, Groop L. 2001. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24: 683-689.
– reference: 6) Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. 1997. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38: 2012-2022.
– reference: 25) Li JJ, Huang CJ, Xie D. 2008. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52: 631-645.
– reference: 9) Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. 2002. Desaturation and elongation of fatty acids and insulin action. Ann NY Acad Sci 967: 183-195.
– reference: 17) The Examination Committee of Criteria for Metabolic Syndrome. 2005. Definition and criteria for metabolic syndrome. J Jpn Soc Int Med 94: 794-809.
– reference: 21) Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. 1996. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 97: 2081-2091.
– reference: 29) Jacobson TA. 2008. Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr 87: 1981S-1990S.
– reference: 32) Warensjö E, Risérus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B. 2008. Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis 18: 683-690.
– reference: 4) Lovejoy J, DiGirolamo M. 1992. Habitual dietary intake and insulin sensitivity in lean and obese adults. Am J Clin Nutr 55: 1174-1179.
– reference: 15) Maruyama C, Yoneyama M, Suyama N, Yoshimi K, Teramoto A, Sakaki Y, Suto Y, Takahashi K, Araki R, Ishizaka Y, Yamakado M, Teramoto T. 2008. Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome. J Atheroscler Thromb 15: 306-313.
– reference: 23) Science and Technology Agency. 2005. Standard Tables of Food Composition in Japan, Fatty Acid Section, 5th revised and enlarged ed, Printing Bureau of the Ministry of Finance, Tokyo.
– reference: 5) Parks EJ, Hellerstein MK. 2000. Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 71: 412-433.
– reference: 1) Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C. 2004. Definition of metabolic syndrome. Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 24: 13-18.
– reference: 11) Laaksonen DE, Lakka TA, Lakka HM, Nyyssönen K, Rissanen T, Niskanen LK, Salonen JT. 2002. Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Diabet Med 19: 456-464.
– reference: 28) Ramel A, Parra D, Martinéz JA, Kiely M, Thorsdottir I. 2009. Effects of seafood consumption and weight loss on fasting leptin and ghrelin concentrations in overweight and obese European young adults. Eur J Nutr 13 [PMID: 19142567].
– reference: 7) Dougherty RM, Galli C, Ferro-Luzzi A, Iacono JM. 1987. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am J Clin Nutr 45: 443-455.
– reference: 18) Satoh N, Ogawa Y, Usui T, Tagami T, Kono S, Uesugi H, Sugiyama H, Sugawara A, Yamada K, Shimatsu A, Kuzuya H, Nakao K. 2003. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 26: 2493-2499.
– reference: 30) Zhou YE, Egeland GM, Meltzer SJ, Kubow S. 2009. The association of desaturase 9 and plasma fatty acid composition with insulin resistance-associated factors in female adolescents. Metabolism 58: 158-166.
– reference: 19) Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911.
– reference: 12) Vessby B. 2003. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol 14: 15-19.
– reference: 3) Li JJ, Huang CJ, Xie D. 2008. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52: 631-645.
– reference: 14) Warensjö E, Risérus U, Vessby B. 2005. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 48: 1999-2005.
– reference: 26) Nakatani T, Kim HJ, Kaburagi Y, Yasuda K, Ezaki O. 2003. A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 44: 369-379.
– reference: 27) Robinson LE, Buchholz AC, Mazurak VC. 2007. Inflammation, obesity, and fatty acid metabolism: influence of n-3 polyunsaturated fatty acids on factors contributing to metabolic syndrome. Appl Physiol Nutr Metab 32: 1008-1024.
– ident: 32
  doi: 10.1016/j.numecd.2007.11.002
– ident: 4
  doi: 10.1093/ajcn/55.6.1174
– ident: 8
  doi: 10.1093/ajcn/62.3.564
– volume: 38
  start-page: 2012
  issn: 0022-2275
  issue: 10
  year: 1997
  ident: 6
  doi: 10.1016/S0022-2275(20)37132-7
– ident: 28
  doi: 10.1007/s00394-008-0769-9
– ident: 20
  doi: 10.1016/S0899-9007(01)00543-3
– ident: 10
  doi: 10.1093/ajcn/78.1.91
– ident: 9
  doi: 10.1111/j.1749-6632.2002.tb04275.x
– ident: 24
– ident: 7
  doi: 10.1093/ajcn/45.2.443
– ident: 22
  doi: 10.2188/jea.15.203
– ident: 29
  doi: 10.1093/ajcn/87.6.1981S
– ident: 19
  doi: 10.1139/y59-099
– ident: 17
– ident: 30
  doi: 10.1016/j.metabol.2008.09.008
– ident: 3
– ident: 13
  doi: 10.1016/j.numecd.2005.06.001
– ident: 16
  doi: 10.1194/jlr.M200189-JLR200
– ident: 31
  doi: 10.1074/jbc.M005488200
– ident: 12
  doi: 10.1097/00041433-200302000-00004
– volume: 15
  start-page: 306
  issn: 1340-3478
  issue: 6
  year: 2008
  ident: 15
  doi: 10.5551/jat.E564
– ident: 1
– ident: 14
  doi: 10.1007/s00125-005-1897-x
– ident: 11
  doi: 10.1046/j.1464-5491.2002.00707.x
– ident: 18
  doi: 10.2337/diacare.26.9.2493
– ident: 2
  doi: 10.2337/diacare.24.4.683
– ident: 5
  doi: 10.1093/ajcn/71.2.412
– ident: 26
  doi: 10.1194/jlr.M200289-JLR200
– ident: 21
– ident: 27
– ident: 25
– ident: 23
SSID ssj0049848
Score 2.0373435
Snippet To examine predictive factors for abdominal obesity or metabolic syndrome, we investigated the association of plasma fatty acid composition, estimated...
SourceID pubmed
pascalfrancis
crossref
jstage
fao
SourceType Index Database
Enrichment Source
Publisher
StartPage 400
SubjectTerms ABDOMINAL FAT
abdominal obesity
ACIDE EICOSAPENTAENOIQUE
ACIDE GRAS
ACIDE GRAS POLYINSATURE
ACIDE ORGANIQUE
ACIDO EICOSAPENTAENOICO
ACIDOS GRASOS
ACIDOS GRASOS POLIINSATURADOS
ACIDOS ORGANICOS
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
ADIPOSE TISSUE
Adult
Analysis of Variance
Biological and medical sciences
delta 5 desaturase
delta 9 desaturase
Diet
Dietary Fats - metabolism
dietary intake of eicosapentaenoic acid (EPA)
DISORDERS
EICOSAPENTAENOIC ACID
Eicosapentaenoic Acid - administration & dosage
Energy Intake
ENZYME ACTIVITY
Fatty Acid Desaturases - metabolism
FATTY ACIDS
Fatty Acids - administration & dosage
Fatty Acids - blood
Feeding. Feeding behavior
Fundamental and applied biological sciences. Psychology
GRAISSE ABDOMINALE
GRASA ABDOMINAL
Humans
Japan
Logistic Models
Male
METABOLIC DISORDERS
metabolic syndrome
Metabolic Syndrome - etiology
Metabolic Syndrome - metabolism
Middle Aged
Obesity, Abdominal - etiology
Obesity, Abdominal - metabolism
ORGANIC ACIDS
OVERWEIGHT
POLYUNSATURATED FATTY ACIDS
Risk Factors
SOBREPESO
SURPOIDS
TEJIDO ADIPOSO
TISSU ADIPEUX
TRASTORNOS
TRASTORNOS METABOLICOS
TROUBLE
TROUBLE DU METABOLISME
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome
URI https://www.jstage.jst.go.jp/article/jnsv/55/5/55_5_400/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/19926925
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Nutritional Science and Vitaminology, 2009, Vol.55(5), pp.400-406
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5YKEEFBKw6PaQ8WB1iW216-jBS15KFFEUtGbNbbX4JbYVeIiwZ_hn_FbmN21N06VQ-GyctaetZ35PDuzOw9CjsCG2PWzwDBjHw0UL-UGeC4zelnMkqRngiuTJI0nbv-CDS-dy07nT8tr6baKT5NfW-NK_oer2Id8FVGy_8BZPSh24DHyF1vkMLb34vEUVd8FHJ9Dhap0mOSp_LxrNywp5fADRpWUC2_jlUjhCSIPSSIrRuRKQCh_4AquVfbZMxULKHonIlG_cBXIi-MhzqmiVqXwglVrt2GclqogWF1bQHi2j3mFoBJ5s2dbMiG0lN-iKQLQxGTWcQv4XICjbqz1j8Iv4aw_GIdSjuXXpV4VuviEpz7L_tm3vFzmesl4NJiHKipgBWuCcBT2w4n0_5zjCy_yjTWPoCUUUSAZzO-pvRyuhLaPMEM1dkOqq-S_NXqdlohmDW39y902kdhqK_uqWP04dZxTTdNO131nGtXOjWhWCfJIEEeOEyHxDnlgoRkjJo6Pg1GjKbDAl9Xd9Dup-FFB_L515w2NaSeDEpWlKzQdRE6IRzewwm85U0VY7phGUkWaPyGPa_bSUAH1Kenw4hnZCwuoysVP-pZKb2PJ2j3yW2GXSuxSgV3awu4J1cila-TSNXJPKKKF1rilZUYVbmVvg1uaF7TBLUXcUoFbqnFLa9zSckk1bmmD2-dkfn42_9A36mIhRuJYrDLwPwzM1GM9i1vM5gCJZUIc-8DTHmOeB0nCOM9sMD07szhknp-J1EoemkimZ9r7ZLcoC35AqO8BjpKiJgs2HqA-7EBqpm6SeCb3U7tL3jX8iJI6kb6o5_I92sL5LjnSF9-o_DHbL9tHxkbwFWf2aDgVmJfKvNklgeK1pq6ljaZ2VIOD6FMiYBPlY5ccbsBDD4Eml9kLmNUlLxRe1o8WBJYbWM7L-z32K_JQ7a6KJcnXZLda3vI3qKRX8aFEOraT6fgvzCbuWA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+Fatty+Acid+Composition%2C+Estimated+Desaturase+Activities%2C+and+Intakes+of+Energy+and+Nutrient+in+Japanese+Men+with+Abdominal+Obesity+or+Metabolic+Syndrome&rft.jtitle=Journal+of+nutritional+science+and+vitaminology&rft.au=KAWASHIMA%2C+Aiko&rft.au=SUGAWARA%2C+Shiori&rft.au=OKITA%2C+Misako&rft.au=AKAHANE%2C+Takemi&rft.date=2009&rft.issn=0301-4800&rft.eissn=1881-7742&rft.volume=55&rft.issue=5&rft.spage=400&rft.epage=406&rft_id=info:doi/10.3177%2Fjnsv.55.400&rft.externalDBID=n%2Fa&rft.externalDocID=10_3177_jnsv_55_400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4800&client=summon