A generalized LSTM-like training algorithm for second-order recurrent neural networks

The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 25; no. 1; pp. 70 - 83
Main Authors Monner, Derek, Reggia, James A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting its applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory(LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks.
AbstractList The long short term memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM's original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting its applicability to a small set of network architectures. Here we introduce the generalized long short-term memory(LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks.
The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting its applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory(LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks.
The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting it’s applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory (LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks.
The long short term memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM's original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting its applicability to a small set of network architectures. Here we introduce the generalized long short-term memory(LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks.The long short term memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM's original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting its applicability to a small set of network architectures. Here we introduce the generalized long short-term memory(LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks.
Author Monner, Derek
Reggia, James A.
AuthorAffiliation Department of Computer Science, University of Maryland, College Park, MD 20742, USA
AuthorAffiliation_xml – name: Department of Computer Science, University of Maryland, College Park, MD 20742, USA
Author_xml – sequence: 1
  givenname: Derek
  surname: Monner
  fullname: Monner, Derek
  email: dmonner@cs.umd.edu
– sequence: 2
  givenname: James A.
  surname: Reggia
  fullname: Reggia, James A.
  email: reggia@cs.umd.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25331405$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21803542$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFf4BQNqirpH7EccwCqap4SYNY0K4tx76Zepqxi-0Uwa_Ho5mWwqJd3cX97tHRuecIHfjgAaHXBDcEk-503XiYPeSGYkIaLBqM2TO0IL2QNRU9PUAL3EtWd7jHh-gopTXGuOtb9gIdUtJjxlu6QJdn1Qo8RD2532Cr5feLr_XkrqHKUTvv_KrS0ypEl6821RhilcAEb-sQLcQqgpljBJ-rYqVIlJF_hnidXqLno54SvNrPY3T58cPF-ed6-e3Tl_OzZW04bXNNO6N7IoyEAQ_ctoPUVBBpgEIPsoWRUt1aOlDB-DBwwezQcswoL2vTacGO0fud7s08bMCaYqXYUDfRbXT8pYJ26t-Nd1dqFW4Vo0QQwYrAyV4ghh8zpKw2LhmYJu0hzElJQiUlXPRPkyVmQjouC_nmoal7N3ehF-DtHtDJ6GmM2huX_nKcMdJiXrh2x5kYUoow3iMEq20H1FrtOqC2HVBYqNKBcvbuvzPjss4ubCNw01PH-0ShvO3WQVTJOPAGrCvfzsoG97jAH9Hu0JQ
CitedBy_id crossref_primary_10_1016_j_cropro_2024_107003
crossref_primary_10_1016_j_neunet_2013_01_010
crossref_primary_10_1016_j_anucene_2020_108077
crossref_primary_10_1088_1361_6501_aab945
crossref_primary_10_1007_s10614_020_10008_2
crossref_primary_10_1109_ACCESS_2019_2957837
crossref_primary_10_1162_neco_a_01339
crossref_primary_10_1109_TNNLS_2013_2270376
crossref_primary_10_1007_s11837_024_06408_6
crossref_primary_10_1016_j_neunet_2015_07_006
crossref_primary_10_1109_TAI_2023_3265641
crossref_primary_10_1007_s11869_023_01385_2
crossref_primary_10_1016_j_net_2018_03_010
crossref_primary_10_3390_app9132656
crossref_primary_10_1080_09540091_2013_798262
crossref_primary_10_1016_j_jag_2021_102344
crossref_primary_10_1016_j_asoc_2024_111512
crossref_primary_10_1016_j_scs_2024_105378
crossref_primary_10_1109_MIE_2020_3026197
crossref_primary_10_1017_S1366728912000454
crossref_primary_10_1109_LGRS_2021_3072191
crossref_primary_10_1177_0142331220932390
crossref_primary_10_2514_1_A35897
crossref_primary_10_3390_rs12244172
crossref_primary_10_1016_j_asoc_2017_10_030
crossref_primary_10_1016_j_pnucene_2021_104005
crossref_primary_10_3390_info15040175
crossref_primary_10_1016_j_anucene_2018_05_020
crossref_primary_10_1016_j_neucom_2019_08_058
crossref_primary_10_1109_MCI_2016_2601759
crossref_primary_10_7769_gesec_v13i4_1488
crossref_primary_10_1016_j_asoc_2013_03_019
crossref_primary_10_1016_j_imu_2023_101284
crossref_primary_10_1016_j_bica_2012_06_002
crossref_primary_10_1080_19475705_2024_2383270
crossref_primary_10_1016_j_mechmachtheory_2018_11_005
crossref_primary_10_3846_jcem_2021_14649
crossref_primary_10_1371_journal_pone_0266186
crossref_primary_10_3390_s21103551
crossref_primary_10_1007_s42979_022_01118_9
crossref_primary_10_1016_j_bica_2015_09_003
crossref_primary_10_1080_03019233_2021_1959871
crossref_primary_10_1007_s11042_023_14432_y
crossref_primary_10_1115_1_4054955
crossref_primary_10_1109_ACCESS_2020_3036726
crossref_primary_10_3390_ijerph20115943
crossref_primary_10_1109_TITS_2021_3098309
crossref_primary_10_3390_app14177773
crossref_primary_10_1109_TNNLS_2019_2935796
Cites_doi 10.1109/IJCNN.2000.861302
10.1162/neco.1997.9.8.1735
10.1109/5.58337
10.1007/978-3-642-04277-5_76
10.1109/72.279191
10.1207/s15516709cog1402_1
10.1364/AO.26.004972
10.1007/978-3-642-22887-2_12
10.1162/neco.1989.1.2.270
10.1007/978-3-540-27835-1_10
10.1162/neco.2007.19.3.757
10.1016/0004-3702(89)90049-0
10.1109/IJCNN.2009.5179016
10.1162/089976600300015015
10.1016/j.bandl.2006.06.001
10.1109/IJCNN.1991.155142
10.1109/72.963769
10.1016/S0893-6080(02)00219-8
10.1038/323533a0
10.1142/S0218001493000431
10.1016/0893-6080(88)90017-2
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2011 Elsevier Ltd. All rights reserved.
2011 Elsevier Ltd. All rights reserved. 2011
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
– notice: 2011 Elsevier Ltd. All rights reserved. 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
5PM
DOI 10.1016/j.neunet.2011.07.003
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE


MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 83
ExternalDocumentID PMC3217173
21803542
25331405
10_1016_j_neunet_2011_07_003
S0893608011002036
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: HD064653
– fundername: NICHD NIH HHS
  grantid: P01 HD064653
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c524t-26ca817c9eb0b5d4b9a2719ce2e8e94ef22a4d2b2735bb573db450325e8ec6a73
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Aug 21 13:32:00 EDT 2025
Fri Jul 11 05:10:31 EDT 2025
Thu Jul 10 18:09:52 EDT 2025
Sat May 31 02:06:23 EDT 2025
Mon Jul 21 09:14:59 EDT 2025
Tue Jul 01 01:24:25 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:28:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gradient-based training
Long Short Term Memory (LSTM)
Recurrent neural network
Sequential retrieval
Temporal sequence processing
Short term
Recurrent neural nets
Gradient
Locality
Network architecture
Neural network
Long term
Temporal logic
Local network
Memory effect
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-26ca817c9eb0b5d4b9a2719ce2e8e94ef22a4d2b2735bb573db450325e8ec6a73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3217173
PMID 21803542
PQID 908011659
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3217173
proquest_miscellaneous_912921578
proquest_miscellaneous_908011659
pubmed_primary_21803542
pascalfrancis_primary_25331405
crossref_primary_10_1016_j_neunet_2011_07_003
crossref_citationtrail_10_1016_j_neunet_2011_07_003
elsevier_sciencedirect_doi_10_1016_j_neunet_2011_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In
Rumelhart, Hinton, Williams (br000085) 1986; 323
Bayer, J., Wierstra, D., Togelius, J., & Schmidhuber, J. (2009). Evolving memory cell structures for sequence learning. In
Puskorius, Feldkamp (br000080) 1994; 5
Gers, Cummins (br000015) 2000; 12
Hinton (br000050) 1989; 40
Monner, D., & Reggia, J. A. (2009). An unsupervised learning method for representing simple sentences. In
Schmidhuber, Wierstra, Gagliolo, Gomez (br000090) 2007; 19
Miller, Giles (br000060) 1993; 7
Psaltis, Park, Hong (br000075) 1988; 1
Giles, Maxwell (br000035) 1987; 26
Sutton, Barto (br000100) 1998
Graves, Schmidhuber (br000045) 2008
Elman (br000010) 1990; 14
Weems, Reggia (br000105) 2006; 98
Werbos (br000110) 1990; 78
(pp. 127–136).
Monner, D., & Reggia, J. A. (2011). Systematically grounding language through vision in a deep, recurrent neural network. To appear
Gers, Schmidhuber (br000030) 2001; 12
(pp. 13–18).
.
Williams, Zipser (br000115) 1989; 1
Hochreiter, Schmidhuber (br000055) 1997; 9
(pp. 189–194).
Gers, Pérez-Ortiz, Eck, Schmidhuber (br000020) 2003; 16
Shin, Y., & Ghosh, J. (1991). The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation. In
Graves, A., Eck, D., Beringer, N., & Schmidhuber, J. (2004). Biologically plausible speech recognition with LSTM neural nets. In
(pp. 2133–2140).
Gers (10.1016/j.neunet.2011.07.003_br000020) 2003; 16
Miller (10.1016/j.neunet.2011.07.003_br000060) 1993; 7
Hinton (10.1016/j.neunet.2011.07.003_br000050) 1989; 40
Sutton (10.1016/j.neunet.2011.07.003_br000100) 1998
Gers (10.1016/j.neunet.2011.07.003_br000030) 2001; 12
10.1016/j.neunet.2011.07.003_br000040
10.1016/j.neunet.2011.07.003_br000095
Elman (10.1016/j.neunet.2011.07.003_br000010) 1990; 14
Giles (10.1016/j.neunet.2011.07.003_br000035) 1987; 26
Puskorius (10.1016/j.neunet.2011.07.003_br000080) 1994; 5
Gers (10.1016/j.neunet.2011.07.003_br000015) 2000; 12
Graves (10.1016/j.neunet.2011.07.003_br000045) 2008
10.1016/j.neunet.2011.07.003_br000070
Williams (10.1016/j.neunet.2011.07.003_br000115) 1989; 1
Hochreiter (10.1016/j.neunet.2011.07.003_br000055) 1997; 9
10.1016/j.neunet.2011.07.003_br000005
10.1016/j.neunet.2011.07.003_br000025
Werbos (10.1016/j.neunet.2011.07.003_br000110) 1990; 78
10.1016/j.neunet.2011.07.003_br000065
Schmidhuber (10.1016/j.neunet.2011.07.003_br000090) 2007; 19
Psaltis (10.1016/j.neunet.2011.07.003_br000075) 1988; 1
Rumelhart (10.1016/j.neunet.2011.07.003_br000085) 1986; 323
Weems (10.1016/j.neunet.2011.07.003_br000105) 2006; 98
References_xml – reference: (pp. 127–136).
– volume: 40
  start-page: 185
  year: 1989
  end-page: 234
  ident: br000050
  article-title: Connectionist learning procedures
  publication-title: Artificial Intelligence
– reference: Graves, A., Eck, D., Beringer, N., & Schmidhuber, J. (2004). Biologically plausible speech recognition with LSTM neural nets. In
– reference: (pp. 2133–2140).
– reference: Monner, D., & Reggia, J. A. (2009). An unsupervised learning method for representing simple sentences. In
– reference: Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In
– year: 2008
  ident: br000045
  article-title: offline handwriting recognition with multidimensional recurrent neural networks
  publication-title: Neural information processing systems: Vol. 21
– reference: (pp. 13–18).
– volume: 1
  start-page: 149
  year: 1988
  end-page: 163
  ident: br000075
  article-title: Higher order associative memories and their optical implementations
  publication-title: Neural Networks
– volume: 19
  start-page: 757
  year: 2007
  end-page: 779
  ident: br000090
  article-title: Training recurrent networks by Evolino
  publication-title: Neural Computation
– reference: Monner, D., & Reggia, J. A. (2011). Systematically grounding language through vision in a deep, recurrent neural network. To appear
– volume: 5
  start-page: 279
  year: 1994
  end-page: 297
  ident: br000080
  article-title: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: br000010
  article-title: Finding structure in time
  publication-title: Cognitive Science
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: br000110
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proceedings of the IEEE
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: br000015
  article-title: learning to forget: continual prediction with LSTM
  publication-title: Neural Computation
– volume: 7
  start-page: 849
  year: 1993
  end-page: 872
  ident: br000060
  article-title: Experimental comparison of the effect of order in recurrent neural networks
  publication-title: Pattern Recognition
– reference: Shin, Y., & Ghosh, J. (1991). The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation. In
– start-page: 167
  year: 1998
  end-page: 200
  ident: br000100
  article-title: Temporal-difference learning
  publication-title: Reinforcement learning: an introduction
– reference: (pp. 189–194).
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: br000085
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 26
  start-page: 4972
  year: 1987
  end-page: 4978
  ident: br000035
  article-title: Learning, invariance, and generalization in high-order neural networks
  publication-title: Applied Optics
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: br000115
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Computation
– reference: Bayer, J., Wierstra, D., Togelius, J., & Schmidhuber, J. (2009). Evolving memory cell structures for sequence learning. In
– volume: 12
  start-page: 1333
  year: 2001
  end-page: 1340
  ident: br000030
  article-title: LSTM recurrent networks learn simple context-free and context-sensitive languages
  publication-title: IEEE Transactions on Neural Networks
– volume: 98
  start-page: 291
  year: 2006
  end-page: 309
  ident: br000105
  article-title: Simulating single word processing in the classic aphasia syndromes based on the Wernicke–Lichtheim–Geschwind theory
  publication-title: Brain and Language
– volume: 16
  start-page: 241
  year: 2003
  end-page: 250
  ident: br000020
  article-title: Kalman filters improve LSTM network performancee in problems unsolvable by traditional recurrent nets
  publication-title: Neural Networks
– reference: .
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: br000055
  article-title: Long short-term memory
  publication-title: Neural Computation
– ident: 10.1016/j.neunet.2011.07.003_br000025
  doi: 10.1109/IJCNN.2000.861302
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.neunet.2011.07.003_br000055
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 78
  start-page: 1550
  year: 1990
  ident: 10.1016/j.neunet.2011.07.003_br000110
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58337
– ident: 10.1016/j.neunet.2011.07.003_br000005
  doi: 10.1007/978-3-642-04277-5_76
– volume: 5
  start-page: 279
  year: 1994
  ident: 10.1016/j.neunet.2011.07.003_br000080
  article-title: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279191
– volume: 14
  start-page: 179
  year: 1990
  ident: 10.1016/j.neunet.2011.07.003_br000010
  article-title: Finding structure in time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– year: 2008
  ident: 10.1016/j.neunet.2011.07.003_br000045
  article-title: offline handwriting recognition with multidimensional recurrent neural networks
– volume: 26
  start-page: 4972
  year: 1987
  ident: 10.1016/j.neunet.2011.07.003_br000035
  article-title: Learning, invariance, and generalization in high-order neural networks
  publication-title: Applied Optics
  doi: 10.1364/AO.26.004972
– start-page: 167
  year: 1998
  ident: 10.1016/j.neunet.2011.07.003_br000100
  article-title: Temporal-difference learning
– ident: 10.1016/j.neunet.2011.07.003_br000070
  doi: 10.1007/978-3-642-22887-2_12
– volume: 1
  start-page: 270
  year: 1989
  ident: 10.1016/j.neunet.2011.07.003_br000115
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.2.270
– ident: 10.1016/j.neunet.2011.07.003_br000040
  doi: 10.1007/978-3-540-27835-1_10
– volume: 19
  start-page: 757
  year: 2007
  ident: 10.1016/j.neunet.2011.07.003_br000090
  article-title: Training recurrent networks by Evolino
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.3.757
– volume: 40
  start-page: 185
  year: 1989
  ident: 10.1016/j.neunet.2011.07.003_br000050
  article-title: Connectionist learning procedures
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(89)90049-0
– ident: 10.1016/j.neunet.2011.07.003_br000065
  doi: 10.1109/IJCNN.2009.5179016
– volume: 12
  start-page: 2451
  year: 2000
  ident: 10.1016/j.neunet.2011.07.003_br000015
  article-title: learning to forget: continual prediction with LSTM
  publication-title: Neural Computation
  doi: 10.1162/089976600300015015
– volume: 98
  start-page: 291
  year: 2006
  ident: 10.1016/j.neunet.2011.07.003_br000105
  article-title: Simulating single word processing in the classic aphasia syndromes based on the Wernicke–Lichtheim–Geschwind theory
  publication-title: Brain and Language
  doi: 10.1016/j.bandl.2006.06.001
– ident: 10.1016/j.neunet.2011.07.003_br000095
  doi: 10.1109/IJCNN.1991.155142
– volume: 12
  start-page: 1333
  year: 2001
  ident: 10.1016/j.neunet.2011.07.003_br000030
  article-title: LSTM recurrent networks learn simple context-free and context-sensitive languages
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.963769
– volume: 16
  start-page: 241
  year: 2003
  ident: 10.1016/j.neunet.2011.07.003_br000020
  article-title: Kalman filters improve LSTM network performancee in problems unsolvable by traditional recurrent nets
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00219-8
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.neunet.2011.07.003_br000085
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 7
  start-page: 849
  year: 1993
  ident: 10.1016/j.neunet.2011.07.003_br000060
  article-title: Experimental comparison of the effect of order in recurrent neural networks
  publication-title: Pattern Recognition
  doi: 10.1142/S0218001493000431
– volume: 1
  start-page: 149
  year: 1988
  ident: 10.1016/j.neunet.2011.07.003_br000075
  article-title: Higher order associative memories and their optical implementations
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90017-2
SSID ssj0006843
Score 2.2969973
Snippet The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving...
The long short term memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 70
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Exact sciences and technology
Gradient-based training
Learning - physiology
Long Short Term Memory (LSTM)
Neural Networks, Computer
Recurrent neural network
Sequential retrieval
Software
Temporal sequence processing
Time Factors
Title A generalized LSTM-like training algorithm for second-order recurrent neural networks
URI https://dx.doi.org/10.1016/j.neunet.2011.07.003
https://www.ncbi.nlm.nih.gov/pubmed/21803542
https://www.proquest.com/docview/908011659
https://www.proquest.com/docview/912921578
https://pubmed.ncbi.nlm.nih.gov/PMC3217173
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCdClQtOnbSWpw6Mpa4lMcjaCB-0iWxEA2gqToRK0rG7a8dOhvz1GUnLhoG6CjpKMk8o68j-TxO4TeA2ATMlBHssAE4YF7orlWZFa6woO7V3mbee7sXE6m_POVuNpDJ_1ZmBhW2Y39aUxvR-vuzqhrzdGyqkYXGbhaCYAnkp7F7bR4gp2raOUfft2FecgiRc6BMInS_fG5NsarDps6NB2RZ-QyZH9zT0-Wdg2NNkvZLv4ER3-Pqrznpk4P0NMOX-JxqsJztBfqF-hZn7sBd135JZqO8XVinK5-hhJ_vbg8I_Pqe8B9zghs59eLVdXc_MCAa_E6TpxL0jJ14lVcpI-0TjjSYcLn6hRMvn6FpqcfL08mpEuxQLygvCFUelvkyuvgMidK7rSlKtc-0FAEzcOMUstL6gDkCOeEYqXjImNUwGMvrWKv0X69qMNbhG3ptfJQmjvKyyCt5tIL5VXmS-mkGyDWt6zxHf94rNLc9IFm30zSh4n6MFncGGcDRLallol_4wF51SvN7NiRARfxQMnhjo63n6OAiGEaKgYI90o30Afjxoqtw2KzNrq1Qin0P0QAVwG6UsUAvUlmcvf-vMiY4BR-fceAtgKRAXz3SV3dtEzgDCaUuWKH_13pI_QYrmhaUzpG-81qE94BymrcsO1GQ_Ro_OnL5PwWxWgp2g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGdwAJ8Q0rH8MHrlYTf8bHamLqWNvLWmk3K3bcLVDSqk0v--t5jpNCETCJa_ycxH72ez_bz7-H0CcAbEJ6aknimSDcc0c014osCps5cPcqbTLPTaZyNOdfrsX1ETrr7sKEsMrW9keb3ljr9smg7c3BuiwHVwm4WgmAJ5CeheO0B-g4sFOJHjoeXlyOpnuDLLMYPAfyJFTobtA1YV6V31W-brk8A50h-5uHerzOt9Bvi5jw4k-I9PfAyl881fkz9KSFmHgYW_EcHfnqBXrapW_A7Wx-ieZDfBNJp8s7X-Dx1WxCluU3j7u0EThf3qw2ZX37HQO0xduwdi5IQ9aJN2GfPjA74cCICZ-rYjz59hWan3-enY1Im2WBOEF5Tah0eZYqp71NrCi41TlVqXae-sxr7heU5rygFnCOsFYoVlguEkYFFDuZK_Ya9apV5U8QzgunlYPa3FJeeJlrLp1QTiWukFbaPmJdzxrXUpCHJi1NF2v21UR9mKAPk4SzcdZHZF9rHSk47pFXndLMwVAy4CXuqXl6oOP95yiAYliJij7CndINTMNwtpJXfrXbGt0MRCn0P0QAWgHAUlkfvYnD5Of70yxhglP49YMBtBcIJOCHJVV525CBM1hTpoq9_e9Gf0QPR7PJ2Iwvppfv0CMooXGL6T3q1Zud_wCgq7an7aT6AdksLIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+LSTM-like+training+algorithm+for+second-order+recurrent+neural+networks&rft.jtitle=Neural+networks&rft.au=Monner%2C+Derek&rft.au=Reggia%2C+James+A.&rft.date=2012-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=25&rft.spage=70&rft.epage=83&rft_id=info:doi/10.1016%2Fj.neunet.2011.07.003&rft.externalDocID=S0893608011002036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon