A roadmap for HEP software and computing R&D for the 2020s

Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of sof...

Full description

Saved in:
Bibliographic Details
Published inComputing and software for big science Vol. 3; no. 7
Main Authors The HEP Software Foundation, Castro, Nuno Filipe
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing AG 01.12.2019
Springer International Publishing
Springer
Subjects
Online AccessGet full text
ISSN2510-2036
2510-2044
2510-2044
DOI10.1007/s41781-018-0018-8

Cover

Loading…
Abstract Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.
AbstractList Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.
ArticleNumber 7
Author Castro, Nuno Filipe
The HEP Software Foundation
Author_xml – sequence: 1
  fullname: The HEP Software Foundation
– sequence: 2
  fullname: Castro, Nuno Filipe
BackLink https://www.osti.gov/servlets/purl/1431575$$D View this record in Osti.gov
oai:portal.research.lu.se:publications/3394725b-eb3b-471f-982f-382f75cc065d$$DView record from Swedish Publication Index
BookMark eNp9UU1v1TAQtFCRKKU_gFvEgVtg_ZHY5VaVQpEqgRCcVxvH6XOVZ0e2HxX_vk5TOPTQy9qHmZ2ZndfsKMTgGHvL4QMH0B-z4trwFrhpYR3mBTsWHYdWgFJH__-yf8VOc74FAMEVdKCO2afzJkUa97Q0U0zN1eWPJsep3FFyDYWxsXG_HIoPN83P958fIGXnGgEC8hv2cqI5u9PH94T9_nL56-Kqvf7-9dvF-XVrO6FMO8qBD4Yr2Q2mh2pUC9DT2FsSxkxm6HspVzdSWzmQIOg7NSlO_QhcnikjTxhte_OdWw4DLsnvKf3FSB6XmArNmFx2lOwO5wNmhxU1e0vFx5BR1iVadAO6QQ6oNJ_wzIgJZR26s7bqjVXj3aYRc_GYrS_O7mwMwdmC1TvvdFdBegPZFHNObsKKe1ApifyMHHCtA7c6sDaBax24RuBPmP9CPMcRj7ErNty4hLfxkEK99LOkZiMlS7TUu_zxuVBlGCGwHloLeQ8E_qUA
CitedBy_id crossref_primary_10_1016_j_ppnp_2022_103947
crossref_primary_10_1051_epjconf_202429503027
crossref_primary_10_1051_epjconf_202429501003
crossref_primary_10_1103_PhysRevD_106_094016
crossref_primary_10_1051_epjconf_202024507046
crossref_primary_10_1088_1748_0221_19_04_P04020
crossref_primary_10_1051_epjconf_202429507027
crossref_primary_10_1088_2632_2153_acefa9
crossref_primary_10_1088_1748_0221_15_09_P09030
crossref_primary_10_1140_epjc_s10052_021_09885_0
crossref_primary_10_1007_s42484_021_00054_w
crossref_primary_10_1088_1742_6596_2210_1_012013
crossref_primary_10_1007_s41781_021_00060_4
crossref_primary_10_1007_s42484_021_00055_9
crossref_primary_10_1051_epjconf_202429501006
crossref_primary_10_21468_SciPostPhys_15_3_094
crossref_primary_10_1109_TCC_2025_3535793
crossref_primary_10_1051_epjconf_202024507038
crossref_primary_10_21468_SciPostPhys_17_3_081
crossref_primary_10_1007_s41781_020_00048_6
crossref_primary_10_4018_IJERTCS_302112
crossref_primary_10_1051_epjconf_201921402019
crossref_primary_10_1016_j_nima_2022_167743
crossref_primary_10_1051_epjconf_202024508020
crossref_primary_10_21468_SciPostPhys_12_3_104
crossref_primary_10_3389_fdata_2024_1485344
crossref_primary_10_1103_PhysRevD_105_076012
crossref_primary_10_1109_TPDS_2023_3241598
crossref_primary_10_1007_s41365_024_01506_1
crossref_primary_10_1088_1361_6560_acdfb1
crossref_primary_10_3389_fphy_2022_913510
crossref_primary_10_1109_ACCESS_2021_3101946
crossref_primary_10_1088_2632_2153_ac7c56
crossref_primary_10_1103_PhysRevD_107_L071901
crossref_primary_10_1080_10420150_2019_1683840
crossref_primary_10_1007_s41365_022_01133_8
crossref_primary_10_1007_s41781_021_00055_1
crossref_primary_10_1038_s42254_023_00569_0
crossref_primary_10_1007_s41365_024_01604_0
crossref_primary_10_1088_2632_2153_ac7848
crossref_primary_10_1051_epjconf_202024507007
crossref_primary_10_1051_epjconf_202024502034
crossref_primary_10_1051_epjconf_202024504015
crossref_primary_10_1016_j_nima_2022_167434
crossref_primary_10_1088_1742_6596_1525_1_012023
crossref_primary_10_1007_s41781_021_00057_z
crossref_primary_10_21468_SciPostPhysCodeb_3
crossref_primary_10_1088_1748_0221_18_11_P11025
crossref_primary_10_1162_qss_a_00167
crossref_primary_10_1103_PhysRevD_102_076004
crossref_primary_10_1007_s11227_022_05016_y
crossref_primary_10_1088_1742_6596_1525_1_012064
crossref_primary_10_1051_epjconf_202429507045
crossref_primary_10_1088_1361_6471_ac841a
crossref_primary_10_1007_s41781_020_00050_y
crossref_primary_10_1007_s41781_023_00100_1
crossref_primary_10_1140_epjc_s10052_022_10665_7
crossref_primary_10_3389_fdata_2021_652881
crossref_primary_10_1088_1748_0221_14_11_P11028
crossref_primary_10_1140_epjc_s10052_021_09366_4
crossref_primary_10_1088_2632_2153_ad9136
crossref_primary_10_1007_s41781_022_00085_3
crossref_primary_10_1088_1742_6596_2438_1_012055
crossref_primary_10_1088_2632_2153_ac7a02
crossref_primary_10_1016_j_cpc_2020_107663
crossref_primary_10_1088_1742_6596_2438_1_012053
crossref_primary_10_21468_SciPostPhysCore_3_2_009
crossref_primary_10_3390_app10041455
crossref_primary_10_1007_s41781_019_0031_6
crossref_primary_10_1140_epjc_s10052_021_09204_7
crossref_primary_10_3389_fphy_2021_738112
crossref_primary_10_1088_1748_0221_18_12_P12007
crossref_primary_10_1051_epjconf_202024505038
crossref_primary_10_1007_s11467_024_1422_7
crossref_primary_10_1051_epjconf_202024502020
crossref_primary_10_1051_epjconf_202024504045
crossref_primary_10_1051_epjconf_202024507035
crossref_primary_10_1103_PhysRevD_106_036021
crossref_primary_10_1051_epjconf_202429504046
crossref_primary_10_1186_s40537_020_00408_4
crossref_primary_10_21468_SciPostPhys_10_2_034
crossref_primary_10_1088_1742_6596_2438_1_012080
crossref_primary_10_21468_SciPostPhysCore_7_4_073
crossref_primary_10_1109_TPDS_2022_3163472
crossref_primary_10_1007_s41781_021_00071_1
crossref_primary_10_1088_2632_2153_ad66ad
crossref_primary_10_26599_AIR_2022_9150004
crossref_primary_10_1051_epjconf_202429509010
crossref_primary_10_1088_1742_6596_2438_1_012087
crossref_primary_10_1007_s41781_023_00104_x
crossref_primary_10_1088_1748_0221_19_09_P09003
crossref_primary_10_1088_1361_6560_abf276
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_1007_s41781_021_00074_y
crossref_primary_10_1140_epjc_s10052_023_11885_1
Cites_doi 10.1088/1742-6596/396/2/022020
10.1142/9789814675475_0002
10.1016/S0168-9002(97)00048-X
10.14778/3229863.3229871
10.1145/2723372.2742797
10.1088/1126-6708/2003/07/001
10.1016/j.cpc.2016.07.022
10.3390/ijms18020412
10.1016/S0010-4655(01)00254-5
10.1088/1126-6708/2009/02/007
10.1016/j.nima.2005.11.138
10.1201/9781315382555
10.25080/Majora-7b98e3ed-013
10.1364/JOCN.9.000C12
10.1088/1742-6596/608/1/012021
10.1103/PhysRevD.97.014021
10.25080/Majora-14bd3278-00f
10.1109/BigData.2016.7840603
10.1088/1742-6596/219/3/032057
10.1088/1742-6596/664/7/072026
10.5281/zenodo.260230
10.1103/PhysRevLett.117.031802
10.1088/1742-6596/898/10/102006
10.17226/12980
10.5281/zenodo.853492
10.1016/j.future.2016.11.035
10.1088/1126-6708/2005/04/002
10.1016/S0168-9002(03)01368-8
10.1145/2783258.2789993
10.1371/journal.pbio.1002195
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
CorporateAuthor The HEP Software Foundation
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Argonne National Laboratory (ANL), Argonne, IL (United States)
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Profile areas and other strong research environments
Lunds universitet
Naturvetenskapliga fakulteten
Fysiska institutionen
Faculty of Science
Lund University
Department of Physics
Particle and nuclear physics
Strategiska forskningsområden (SFO)
Partikel- och kärnfysik
Strategic research areas (SRA)
eSSENCE: The e-Science Collaboration
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: The HEP Software Foundation
– name: Argonne National Laboratory (ANL), Argonne, IL (United States)
– name: Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
– name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
– name: Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
– name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
– name: Strategiska forskningsområden (SFO)
– name: Naturvetenskapliga fakulteten
– name: Department of Physics
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Faculty of Science
– name: Partikel- och kärnfysik
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
– name: eSSENCE: The e-Science Collaboration
– name: Particle and nuclear physics
– name: Fysiska institutionen
DBID RCLKO
C6C
AAYXX
CITATION
OIOZB
OTOTI
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1007/s41781-018-0018-8
DatabaseName RCAAP open access repository
Springer Nature OA Free Journals
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DissertationSchool Universidade do Minho
EISSN 2510-2044
ExternalDocumentID oai_portal_research_lu_se_publications_3394725b_eb3b_471f_982f_382f75cc065d
1431575
10_1007_s41781_018_0018_8
1822_63372
GroupedDBID 0R~
AAAVM
AAHNG
AAIAL
AAJSJ
AAKKN
AANZL
AASML
AATVU
AAUYE
ABDBE
ABDZT
ABECU
ABEEZ
ABFSG
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTMW
ABXPI
ACACY
ACGFS
ACMLO
ACOKC
ACSTC
ACULB
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEXYK
AEZWR
AFBBN
AFGXO
AFHIU
AFQWF
AGDGC
AGMZJ
AHSBF
AHWEU
AIAKS
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
AYFIA
BGNMA
C24
C6C
CSCUP
DNIVK
EBLON
EBS
EIOEI
EJD
FERAY
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
KOV
M4Y
NQJWS
NU0
O9J
RCLKO
RLLFE
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
-EM
AAYZJ
ACZOJ
JZLTJ
RSV
SNX
AAYXX
CITATION
OIOZB
OTOTI
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c5248-d3b1b81435b8601787207fd6ca288f8b6633140537c3ba2a0654f41a6d0139483
IEDL.DBID C6C
ISSN 2510-2036
2510-2044
IngestDate Thu Aug 21 06:53:21 EDT 2025
Mon Jun 16 03:01:47 EDT 2025
Tue Jul 01 01:23:53 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Fri Feb 21 02:33:23 EST 2025
Fri Aug 01 16:28:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Computing & software upgrade
Particle physics
Software performance
Machine learning
HL-LHC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5248-d3b1b81435b8601787207fd6ca288f8b6633140537c3ba2a0654f41a6d0139483
Notes AC02-07CH11359
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
arXiv:1712.06982; HSF-CWP--2017-01; HSF-CWP--2017-001; FERMILAB-PUB--17-607-CD
ORCID 0000-0002-6574-1593
0000000265741593
OpenAccessLink https://doi.org/10.1007/s41781-018-0018-8
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_3394725b_eb3b_471f_982f_382f75cc065d
osti_scitechconnect_1431575
crossref_citationtrail_10_1007_s41781_018_0018_8
crossref_primary_10_1007_s41781_018_0018_8
springer_journals_10_1007_s41781_018_0018_8
rcaap_revistas_1822_63372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationTitle Computing and software for big science
PublicationTitleAbbrev Comput Softw Big Sci
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
– name: Springer
References BianchiRiccardo MariaBoudreauJosephVukoticIlijaA new experiment-independent mechanism to persistify and serve the detector geometry of ATLASJournal of Physics: Conference Series2017898072015
Goodfellow I et al (2014) Generative adversarial nets. In: Ghahramani Z et al (eds) Advances in neural information processing systems, vol 27. Curran Associates, Inc., pp 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
Elmer P (2014) Recent HEP experience with common software. In: HEP software collaboration meeting. CERN. https://indico.cern.ch/event/297652/contributions/1657190/attachments/558837/769950/20140403-elmer-hepcollab.pdf
INFN International School on: architectures, tools and methodologies for developing efficient large scale scientific computing applications. https://web.infn.it/esc17/index.php
The European Strategy for Particle Physics Update 2013. In: 16th Session of European Strategy Council (2013). https://cds.cern.ch/record/1567258
The Large Hadron Collider project. http://home.cern/topics/large-hadron-collider
PiparoDaniloTejedorEnricMatoPereMascettiLucaMoscickiJakubLamannaMassimoSWAN: A service for interactive analysis in the cloudFuture Generation Computer Systems2018781071107810.1016/j.future.2016.11.035
GridKA School. http://gridka-school.scc.kit.edu
HeKarenGeDongliangHeMaxBig Data Analytics for Genomic MedicineInternational Journal of Molecular Sciences201718241210.3390/ijms18020412
EGI Security Policy Group. https://wiki.egi.eu/wiki/Security_Policy_Group
Abdurachmanov D et al (2014) Power-aware applications for scientific cluster and distributed computing. arXiv:1404.6929 [physics.comp-ph]
The MadGraph event generator. http://madgraph.physics.illinois.edu
The Scala programming language. https://www.scala-lang.org
Spearmint: Practical Bayesian Optimization of Machine Learning Algorithms. https://github.com/JasperSnoek/spearmint
Concurrency Forum. http://concurrency.web.cern.ch
CERN School of Computing. https://csc.web.cern.ch
Contardo D et al (2015) Technical proposal for the phase-II upgrade of the CMS detector
Pythia. http://home.thep.lu.se/~torbjorn/Pythia.html
Aderholz M et al (2000) Models of networked analysis at regional centres for LHC experiments (MONARC), Phase 2 Report, 24th March 2000. Tech. rep. CERN-LCB-2000-001. KEK-2000-8. CERN, Geneva. http://cds.cern.ch/record/510694
Chollet F et al (2018) Keras. https://github.com/fchollet/keras
ClemencicMGaudi components for concurrency: concurrency for existing and future experimentsJ Phys Conf Ser2015608101202110.1088/1742-6596/608/1/012021
WikiToLearn: a web-based collaborative tool to share knowledge. https://it.wikitolearn.org
Reproducible Experiment Platform. http://github.com/yandex/rep
Lucchesi D (2017) Computing resources scrutiny group report. Tech. rep. CERN-RRB-2017-125. CERN, Geneva. http://cds.cern.ch/record/2284575
CERN Analysis Preservation Portal. https://analysispreservation.cern.ch
Mount R, Butler M, Hildreth M (2013) Snowmass 2013 computing frontier storage and data management. arXiv:1311.4580
Shiers J et al (2016) CERN services for long term data preservation. Tech. rep. CERN-IT-Note-2016-004. CERN, Geneva. https://cds.cern.ch/record/2195937
The B factory experiment at the SuperKEKB accelerator. https://www.belle2.org
ATLAS Data Access Policy (2015) Tech. rep. ATL-CB-PUB-2015-001. CERN, Geneva. https://cds.cern.ch/record/2002139
Khachatryan V et al (2016) Search for narrow resonances in dijet final states at (s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{(s)}$$\end{document} = 8 TeV with the novel CMS technique of data scouting. Phys Rev Lett 117(3):031802. https://doi.org/10.1103/PhysRevLett.117.031802. arXiv:1604.08907 [hep-ex]
The DIANA/HEP project. http://diana-hep.org
ManganoMLALPGEN, a generator for hard multiparton processes in hadronic collisionsJHEP2003070012003JHEP...07..001M10.1088/1126-6708/2003/07/001arXiv:hep-ph/0206293
PANDA experiment. https://panda.gsi.de
Bird I et al (2014) Update of the Computing Models of the WLCG and the LHC Experiments. Tech. rep. CERN-LHCC-2014-014. LCG-TDR-002. https://cds.cern.ch/record/1695401
OpenHub Analysis of AliPhysics Project. https://www.openhub.net/p/AliPhysics
Paganini M, de Oliveira L, Nachman B (2017) CaloGAN: simulating 3D high energy particle showers in multi-layer electromagnetic calorimeters with generative adversarial networks. arXiv:1705.02355 [hep-ex]
A Toroidal LHC Apparatus experiment at CERN. https://atlas.cern
OpenHub Analysis of AliRoot Project. https://www.openhub.net/p/AliRoot
The HSF Community White Paper Initiative. http://hepsoftwarefoundation.org/activities/cwp.html
SandersAndrewAn introduction to unreal engine 42016NatickA. K. Peters Ltd10.1201/9781315382555
The Helix Nebula Science Cloud European Project. http://www.hnscicloud.eu
Research & Education Network Information Sharing and Analysis Center. https://www.ren-isac.net
Creighton RH (2010) Unity Ref: unity 3D game development by example beginner’s guide. Packt Publishing
Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. ISSN: 1532-4435. http://dl.acm.org/citation.cfm?id=1953048.2078195
The Research and Education Federations Group. https://refeds.org
The Extreme Science and Engineering Discovery Environment. https://www.xsede.org
A Large Ion Collider Experiment at CERN. http://aliceinfo.cern.ch/Public/Welcome.html
Bendavid J (2017) Use of machine learning techniques for improved Monte Carlo integration.https://indico.cern.ch/event/632141/contributions/2628851/attachments/1478273/2290943/mlmc-Jun16-2017.pdf. Accessed 16 June 2010
eduGAIN. https://www.geant.org/Services/Trust_identity_and_security/eduGAIN
Jupyter Notebooks. https://jupyter.org
The Robust Independent Validation of Experiment and Theory toolkit. https://rivet.hepforge.org
Buncic P, Krzewicki M, Vande Vyvre P (2015) Technical design report for the upgrade of the online-offline computing system. Tech. rep. CERN-LHCC-2015-006. ALICE-TDR-019. https://cds.cern.ch/record/2011297
Intel Threading Building Blocks. https://www.threadingbuildingblocks.org
Shanahan JG, Dai L (2015) Large scale distributed data science using apache spark. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’15. Sydney. ACM, pp 2323–2324. ISBN: 978-1-4503-3664-2. https://doi.org/10.1145/2783258.2789993
Bayatian GL et al (2006) CMS physics: technical design report volume 1: detector performance and software. Technical Design Report CMS. CERN, Geneva. http://cds.cern.ch/record/922757
Sexton-KennedyEHEP Software Development in the Next Decade; the Views of the HSF CommunityJournal of Physics: Conference Series20181085022006
WLCG Working Group on Security Operations Centres. http://indico4.twgrid.org/indico/event/2/session/14/contribution/16/material/slides/0.pdf
Frontier Distributed Database Caching System. http://frontier.cern.ch
Software Carpentry. https://software-carpentry.org
Blikra E, Astigarraga P, Eukeni M (2016) An SDN based approach for the ATLAS data acquisition network. http://cds.cern.ch/record/2221659
CBM: the compressed baryonic matter experiment. http://www.fair-center.eu/for-users/experiments/cbm-and-hades/cbm.html
Charge for Producing a HSF Community White Paper (2016). http://hepsoftwarefoundation.org/assets/CWP-Charge-HSF.pdf
Scikit-Optimize (skopt). http://scikit-optimize.github.io
ATLAS Phase-II Upgrade Scoping Document (2015) Tech. rep. CERN-LHCC-2015-020. LHCC-G-166. CERN, Geneva. https://cds.cern.ch/record/2055248
Couturier B et al (2017) HEP software foundation community white paper working group—software development, deployment and validation. Tech. rep. HSF-CWP-2017-13. HEP Software Foundation. arXiv:1712.07959 [physics.comp-ph]
HEP Software Foundation (HSF) (2015) White Paper Analysis and Proposed Startup Plan. http://hepsoftwarefoundation.org/assets/HSFwhitepaperanalysisandstartupplanV1.1.pdf
WISE Community. https://wise-community.org
AgostinelliSGEANT4: a simulation toolkitNucl Instrum Methods2003A5062503032003NIMPA.506..250A10.1016/S0168-9002(03)01368-8
Open Storage Research Infrastructure (OSiRIS). https://www.osris.org
The Large Synoptic Survey Telescope. https://www.lsst.org
Worldwide LHC Computing Grid. http://wlcg.web.cern.ch
The FAIR Guiding Principles for scientific data management and stewardship. https://www.nature.com/articles/sdata201618
Fermilab Accelerator and Experiments Schedule. http://programplanning.fnal.gov/accelerator-and-experiments-schedule
JonesC DContrerasLGartungPHufnagelDSexton-KennedyLUsing the CMS Threaded Framework In A Production EnvironmentJournal of Physics: Conference Series20156647072026
Dask Development Team (2016) Dask: library for dynamic task scheduling. https://dask.org
Bird I. The challenges of big (science) data. https://indico.cern.ch/event/466934/contributions/2524828/attachments/1490181/2315978/BigDataChallenges-EPS-Venice-080717.pdf
Cranmer K, Yavin I (2010) RECAST: extending the impact of existing analyses. Tech. rep. arXiv:1010.2506. http://cds.cern.ch/record/1299950
The Cherenkov Telescope Array observatory. https://www.cta-observatory.org
Guiraud E, Naumann A, Danilo P (2017) TDataFrame: functional chains for ROOT data analyses. https://doi.org/10.5281/zenodo.260230
GitLab. https://about.gitlab.com
HEPiX Benchmarking Working Group. http://w3.hepix.org/benchmarking.html
SpeckmayerPHöckerAStelzerJVossHThe toolkit for multivariate data analysis, TMVA 4Journal of Physics: Conference Series20102193032057
Git. https://git-scm.com
GreenCKowalkowskiJPaternoMFischlerMGarrenLLuQThe art frameworkJournal of Physics: Conference Series20123962022020
Martin A et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org
Security for Collaboration among Infrastructures. https://www.eugridpma.org/sci
Systems Performance and Cost Modelin
18_CR132
18_CR134
18_CR133
18_CR136
18_CR135
18_CR138
18_CR137
Kim Roberts (18_CR113) 2017; 9
Graeme A Stewart (18_CR131) 2017; 898
18_CR15
18_CR14
18_CR13
18_CR12
ML Mangano (18_CR95) 2003; 07
18_CR19
R Brun (18_CR29) 1997; A389
18_CR17
18_CR16
18_CR94
18_CR139
18_CR92
Zachary D. Stephens (18_CR130) 2015; 13
18_CR11
18_CR99
18_CR10
18_CR97
18_CR96
18_CR121
18_CR122
18_CR91
18_CR125
18_CR90
18_CR126
S Vijay Kartik (18_CR84) 2014; 513
18_CR89
18_CR129
18_CR83
18_CR128
18_CR81
18_CR88
M Clemencic (18_CR38) 2015; 608
18_CR86
18_CR85
Riccardo Maria Bianchi (18_CR23) 2017; 898
18_CR110
18_CR112
18_CR111
18_CR80
18_CR115
18_CR9
18_CR7
C Green (18_CR71) 2012; 396
18_CR5
18_CR6
18_CR79
18_CR4
18_CR78
18_CR1
18_CR2
18_CR73
18_CR118
18_CR72
18_CR70
18_CR119
18_CR77
18_CR76
18_CR75
18_CR101
18_CR100
18_CR103
J W Smith (18_CR124) 2015; 608
18_CR102
18_CR105
18_CR104
Jakob Blomer (18_CR28) 2011; 331
18_CR68
18_CR67
18_CR62
18_CR107
18_CR61
18_CR106
18_CR60
C D Jones (18_CR82) 2015; 664
18_CR109
18_CR66
18_CR64
18_CR63
E Sexton-Kennedy (18_CR120) 2018; 1085
E Maguire (18_CR93) 2017; 898
Andrew Sanders (18_CR117) 2016
18_CR59
18_CR58
P La Rocca (18_CR114) 2014; 515
18_CR57
18_CR56
18_CR51
Danilo Piparo (18_CR108) 2018; 78
18_CR50
18_CR55
18_CR54
18_CR53
18_CR52
18_CR164
P J Laycock (18_CR87) 2018; 1085
18_CR161
18_CR160
18_CR163
18_CR162
18_CR48
18_CR47
18_CR46
18_CR45
Bart Samwel (18_CR116) 2018; 11
18_CR49
18_CR40
G Barrand (18_CR18) 2001; 140
18_CR44
18_CR43
18_CR42
18_CR41
18_CR154
18_CR153
18_CR156
R. Aaij (18_CR3) 2016; 208
18_CR155
18_CR158
F Gaede (18_CR65) 2006; A559
18_CR157
18_CR159
18_CR150
18_CR152
18_CR151
18_CR37
18_CR36
18_CR35
18_CR34
18_CR39
Roland Sipos (18_CR123) 2017; 898
18_CR33
18_CR32
18_CR31
18_CR30
S Agostinelli (18_CR8) 2003; A506
18_CR143
18_CR142
18_CR145
18_CR144
18_CR147
18_CR146
18_CR149
18_CR148
Karen He (18_CR74) 2017; 18
P Speckmayer (18_CR127) 2010; 219
18_CR141
T Gleisberg (18_CR69) 2009; 2009
18_CR140
18_CR26
18_CR25
18_CR24
18_CR27
Andreas Moll (18_CR98) 2011; 331
18_CR22
18_CR21
18_CR20
References_xml – reference: Spearmint: Practical Bayesian Optimization of Machine Learning Algorithms. https://github.com/JasperSnoek/spearmint
– reference: The Future Circular Collider project at CERN. https://fcc.web.cern.ch/
– reference: SamwelBartApteHimaniWeigelFelixWilhiteDavidYangJiachengXuJunLiJiexingYuanZhanChasseurCraigZengQiangRaeIanCieslewiczJohnBiyaniAnuragHarnAndrewXiaYangGubichevAndreyEl-HelwAmrErlingOrriYanZhepengYangMohanWeiYiqunDoThanhHandyBenZhengColinGraefeGoetzSardashtiSomayehAlyAhmed M.AgrawalDivyGuptaAshishVenkataramanShivGovigJasonVenetisPetrosYangChanjunPetersKeithShuteJeffTenedorioDanielF1 queryProceedings of the VLDB Endowment201811121835184810.14778/3229863.3229871
– reference: Abdurachmanov D et al (2014) Power-aware applications for scientific cluster and distributed computing. arXiv:1404.6929 [physics.comp-ph]
– reference: ATLAS Experiment Computing and Software—Public Results. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
– reference: JonesC DContrerasLGartungPHufnagelDSexton-KennedyLUsing the CMS Threaded Framework In A Production EnvironmentJournal of Physics: Conference Series20156647072026
– reference: The Large Hadron Collider project. http://home.cern/topics/large-hadron-collider
– reference: ClemencicMGaudi components for concurrency: concurrency for existing and future experimentsJ Phys Conf Ser2015608101202110.1088/1742-6596/608/1/012021
– reference: Computing Evolution: Technology and Markets. In: Presented at the HSF CWP Workshop in San Diego (2017). https://indico.cern.ch/event/570249/contributions/2404412/attachments/1400426/2137004/2017-01-23-HSFWorkshop-TechnologyEvolution.pdf
– reference: WISE Community. https://wise-community.org
– reference: LHAPDF, a general purpose C++ interpolator used for evaluating PDFs from discretised data files. https://lhapdf.hepforge.org/
– reference: BarrandGGAUDI—a software architecture and framework for building HEP data processing applicationsComput Phys Commun200114045552001CoPhC.140...45B10.1016/S0010-4655(01)00254-50990.68609
– reference: MaguireEHeinrichLWattGHEPData: a repository for high energy physics dataJ Phys Conf Ser20178981010200610.1088/1742-6596/898/10/102006arXiv:1704.05473 [hep-ex]
– reference: Federated Identity Management for Research. https://fim4r.org
– reference: Bingmann T et al (2016) Thrill: high-performance algorithmic distributed batch data processing with C++. In: Big data (Big Data), 2016 IEEE international conference. IEEE, pp 172–183
– reference: Intel Threading Building Blocks. https://www.threadingbuildingblocks.org/
– reference: Cook S (2013) CUDA programming: a developer’s guide to parallel computing with GPUs. In: 1st. San Francisco. Morgan Kaufmann Publishers Inc
– reference: The Pachyderm Team. Pachyderm—Scalable, Reproducible Data Science. http://www.pachyderm.io/. Accessed 11 Mar 2017
– reference: GreenCKowalkowskiJPaternoMFischlerMGarrenLLuQThe art frameworkJournal of Physics: Conference Series20123962022020
– reference: Babuji Y et al (2017) Introducing Parsl: a python parallel scripting library. https://doi.org/10.5281/zenodo.853492
– reference: OpenHub Analysis of AliRoot Project. https://www.openhub.net/p/AliRoot
– reference: DPHEP Update (2017) Presented in the Grid Deployment Board. https://indico.cern.ch/event/578991/
– reference: Compact Muon Solenoid experiment at CERN. https://cms.cern/
– reference: XRootD file access protocol. http://xrootd.org
– reference: Worldwide LHC Computing Grid. http://wlcg.web.cern.ch/
– reference: Software Carpentry. https://software-carpentry.org
– reference: BrunRRademakersFROOT: an object oriented data analysis frameworkNucl Instrum Methods1997A38981861997NIMPA.389...81B10.1016/S0168-9002(97)00048-X
– reference: Shanahan JG, Dai L (2015) Large scale distributed data science using apache spark. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’15. Sydney. ACM, pp 2323–2324. ISBN: 978-1-4503-3664-2. https://doi.org/10.1145/2783258.2789993
– reference: The HSF Community White Paper Initiative. http://hepsoftwarefoundation.org/activities/cwp.html
– reference: The Cherenkov Telescope Array observatory. https://www.cta-observatory.org/
– reference: Systems Performance and Cost Modeling Working Group. https://twiki.cern.ch/twiki/bin/view/LCG/WLCGSystemsPerformanceModeling
– reference: Dask Development Team (2016) Dask: library for dynamic task scheduling. https://dask.org
– reference: ManganoMLALPGEN, a generator for hard multiparton processes in hadronic collisionsJHEP2003070012003JHEP...07..001M10.1088/1126-6708/2003/07/001arXiv:hep-ph/0206293
– reference: Jupyter Notebooks. https://jupyter.org/
– reference: Bendavid J (2017) Efficient Monte Carlo integration using boosted decision trees and generative deep neural networks. arXiv:1707.00028
– reference: CMS Open Data. http://opendata.cern.ch/research/CMS
– reference: Cranmer K, Yavin I (2010) RECAST: extending the impact of existing analyses. Tech. rep. arXiv:1010.2506. http://cds.cern.ch/record/1299950
– reference: AaijR.AmatoS.AnderliniL.BensonS.CattaneoM.ClemencicM.CouturierB.FrankM.GligorovV.V.HeadT.JonesC.KomarovI.LuptonO.MatevR.RavenG.SciasciaB.SkwarnickiT.SpradlinP.StahlS.StoraciB.VesterinenM.Tesla: An application for real-time data analysis in High Energy PhysicsComputer Physics Communications201620835422016CoPhC.208...35A10.1016/j.cpc.2016.07.022
– reference: National Research Council (2011) The future of computing performance: game over or next level? In: Fuller SH, Millett LI (eds) The National Academies Press, Washington, DC. ISBN: 978-0-309-15951-7. https://doi.org/10.17226/12980. https://www.nap.edu/catalog/12980/the-future-of-computing-performance-game-over-or-next-level
– reference: The HERWIG Event Generator. https://herwig.hepforge.org
– reference: Chollet F et al (2018) Keras. https://github.com/fchollet/keras
– reference: WikiToLearn: a web-based collaborative tool to share knowledge. https://it.wikitolearn.org/
– reference: ATLAS Phase-II Upgrade Scoping Document (2015) Tech. rep. CERN-LHCC-2015-020. LHCC-G-166. CERN, Geneva. https://cds.cern.ch/record/2055248
– reference: Collobert R et al (2011) Natural language processing (Almost) from scratch. J Mach Learn Res 12:2493–2537. ISSN: 1532-4435. http://dl.acm.org/citation.cfm?id=1953048.2078186
– reference: Open Storage Research Infrastructure (OSiRIS). https://www.osris.org
– reference: Scikit-Optimize (skopt). http://scikit-optimize.github.io
– reference: Apollinari G et al (2017) High-luminosity large hadron collider (HL-LHC). Technical Design Report V. 0.1. CERN Yellow Reports: Monographs. CERN, Geneva. https://cds.cern.ch/record/2284929
– reference: Bird I et al (2014) Update of the Computing Models of the WLCG and the LHC Experiments. Tech. rep. CERN-LHCC-2014-014. LCG-TDR-002. https://cds.cern.ch/record/1695401
– reference: The HepMC event record. http://hepmc.web.cern.ch/
– reference: Inter-Experimental LHC Machine Learning Working Group. https://iml.web.cern.ch
– reference: Adam-Bourdarios C et al (2015) The Higgs boson machine learning challenge. In: Cowan G et al (eds) Proceedings of the NIPS 2014 workshop on high-energy physics and machine learning, vol 42. Proceedings of machine learning research, Montreal, PMLR, pp 19–55. http://proceedings.mlr.press/v42/cowa14.html
– reference: The Research and Education Federations Group. https://refeds.org
– reference: Contardo D et al (2015) Technical proposal for the phase-II upgrade of the CMS detector
– reference: Beck H (2017) The Junior Community in ALICE. In: Presented at EPS conference. https://indico.cern.ch/event/466934/contributions/2589553/attachments/1489205/2314059/EPS-Juniors-v6.pdf
– reference: Zenodo. https://zenodo.org
– reference: Square Kilometre Array. https://www.skatelescope.org/
– reference: Git. https://git-scm.com/
– reference: GaedeFMarlin and LCCD: software tools for the ILCNucl Instrum Methods2006A5591771802006NIMPA.559..177G10.1016/j.nima.2005.11.138
– reference: The High-Luminosity LHC project. https://home.cern/topics/high-luminosity-lhc
– reference: PANDA experiment. https://panda.gsi.de
– reference: Albrecht J et al (2018) HEP community white paper on software trigger and event reconstruction. arXiv:1802.08638
– reference: Martin A et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/
– reference: The Robust Independent Validation of Experiment and Theory toolkit. https://rivet.hepforge.org/
– reference: Bayatian GL et al (2006) CMS physics: technical design report volume 1: detector performance and software. Technical Design Report CMS. CERN, Geneva. http://cds.cern.ch/record/922757
– reference: OpenID Connect Federation 1.0. https://openid.net/specs/openid-connect-federation-1_0.html
– reference: ALICE OpenData. http://opendata.cern.ch/education/ALICE
– reference: HeKarenGeDongliangHeMaxBig Data Analytics for Genomic MedicineInternational Journal of Molecular Sciences201718241210.3390/ijms18020412
– reference: Fermilab HEPCloud. http://hepcloud.fnal.gov/
– reference: Aderholz M et al (2000) Models of networked analysis at regional centres for LHC experiments (MONARC), Phase 2 Report, 24th March 2000. Tech. rep. CERN-LCB-2000-001. KEK-2000-8. CERN, Geneva. http://cds.cern.ch/record/510694
– reference: The Scala programming language. https://www.scala-lang.org/
– reference: The B factory experiment at the SuperKEKB accelerator. https://www.belle2.org
– reference: Mangano M (2015) The physics landscape of the high luminosity LHC. Adv Ser Dir High Energy Phys 24:19–30. https://cds.cern.ch/record/2130740
– reference: Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. ISSN: 1532-4435. http://dl.acm.org/citation.cfm?id=1953048.2078195
– reference: CBM: the compressed baryonic matter experiment. http://www.fair-center.eu/for-users/experiments/cbm-and-hades/cbm.html
– reference: Wiebe M et al (2014) Blaze: building a foundation for array-oriented computing in python. In: van der Walt S, Bergstra J (eds) Proceedings of the 13th Python in science conference, pp 99–102
– reference: SandersAndrewAn introduction to unreal engine 42016NatickA. K. Peters Ltd10.1201/9781315382555
– reference: CERN Hardware Cost Estimates. https://twiki.cern.ch/twiki/bin/view/Main/CostEst
– reference: Data Preservation in HEP Project. https://hep-project-dphep-portal.web.cern.ch/
– reference: CERN Open Data Portal. http://opendata.cern.ch/
– reference: Eulisse G, Tuura LA (2005) IgProf profiling tool. In: Computing in high energy physics and nuclear physics. Proceedings, conference, CHEP’04, Interlaken, September 27–October 1, 2004. pp 655–658. http://doc.cern.ch/yellowrep/2005/2005-002/p655.pdf
– reference: Sexton-KennedyEHEP Software Development in the Next Decade; the Views of the HSF CommunityJournal of Physics: Conference Series20181085022006
– reference: Reproducible Experiment Platform. http://github.com/yandex/rep
– reference: Lucchesi D (2017) Computing resources scrutiny group report. Tech. rep. CERN-RRB-2017-125. CERN, Geneva. http://cds.cern.ch/record/2284575
– reference: BianchiRiccardo MariaBoudreauJosephVukoticIlijaA new experiment-independent mechanism to persistify and serve the detector geometry of ATLASJournal of Physics: Conference Series2017898072015
– reference: High Energy Physics Data Repository. https://hepdata.net/
– reference: GridKA School. http://gridka-school.scc.kit.edu
– reference: PiparoDaniloTejedorEnricMatoPereMascettiLucaMoscickiJakubLamannaMassimoSWAN: A service for interactive analysis in the cloudFuture Generation Computer Systems2018781071107810.1016/j.future.2016.11.035
– reference: Pythia. http://home.thep.lu.se/~torbjorn/Pythia.html
– reference: CERN School of Computing. https://csc.web.cern.ch/
– reference: LaycockP JDykstraDFormicaAGoviGPfeifferARoeSSiposRA Conditions Data Management System for HEP ExperimentsJournal of Physics: Conference Series20181085032040
– reference: Intel’s exascale dataow engine drops X86 and Von Neumann. https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/
– reference: The European Strategy for Particle Physics Update 2013. In: 16th Session of European Strategy Council (2013). https://cds.cern.ch/record/1567258
– reference: StephensZachary D.LeeSkylar Y.FaghriFarazCampbellRoy H.ZhaiChengxiangEfronMiles J.IyerRavishankarSchatzMichael C.SinhaSaurabhRobinsonGene E.Big Data: Astronomical or Genomical?PLOS Biology2015137e100219510.1371/journal.pbio.1002195
– reference: Frontier Distributed Database Caching System. http://frontier.cern.ch
– reference: Mount R, Butler M, Hildreth M (2013) Snowmass 2013 computing frontier storage and data management. arXiv:1311.4580
– reference: SmithJ WHamiltonAMassive affordable computing using ARM processors in high energy physicsJournal of Physics: Conference Series2015608012001
– reference: Sustainable Software Institute: In which journals should I publish my software? https://www.software.ac.uk/which-journals-should-i-publish-my-software
– reference: WLCG Data Organization Management Access Evolution Project. https://twiki.cern.ch/twiki/bin/view/LCG/DomaActivities
– reference: The DIANA/HEP project. http://diana-hep.org/
– reference: Stackoverow. https://stackoverflow.com/
– reference: Authentication and Authorisation for Research and Collaboration project. https://aarc-project.eu
– reference: SiposRolandFormicaAndreaFranzoniGiovanniGoviGiacomoPfeifferAndreasFunctional tests of a prototype for the CMS-ATLAS common non-event data handling frameworkJournal of Physics: Conference Series2017898042047
– reference: Couturier B et al (2017) HEP software foundation community white paper working group—software development, deployment and validation. Tech. rep. HSF-CWP-2017-13. HEP Software Foundation. arXiv:1712.07959 [physics.comp-ph]
– reference: AgostinelliSGEANT4: a simulation toolkitNucl Instrum Methods2003A5062503032003NIMPA.506..250A10.1016/S0168-9002(03)01368-8
– reference: EGI Security Policy Group. https://wiki.egi.eu/wiki/Security_Policy_Group
– reference: SpeckmayerPHöckerAStelzerJVossHThe toolkit for multivariate data analysis, TMVA 4Journal of Physics: Conference Series20102193032057
– reference: Bendavid J (2017) Use of machine learning techniques for improved Monte Carlo integration.https://indico.cern.ch/event/632141/contributions/2628851/attachments/1478273/2290943/mlmc-Jun16-2017.pdf. Accessed 16 June 2010
– reference: Concurrency Forum. http://concurrency.web.cern.ch/
– reference: OpenHub Analysis of AliPhysics Project. https://www.openhub.net/p/AliPhysics
– reference: RoccaP LaRiggiFThe upgrade programme of the major experiments at the Large Hadron ColliderJournal of Physics: Conference Series2014515012012
– reference: A Toroidal LHC Apparatus experiment at CERN. https://atlas.cern/
– reference: Blikra E, Astigarraga P, Eukeni M (2016) An SDN based approach for the ATLAS data acquisition network. http://cds.cern.ch/record/2221659
– reference: Rocklin M (2015) Dask: parallel computation with blocked algorithms and task scheduling. In: Proceedings of the 14th python in science conference, pp 130–136
– reference: GleisbergTHöcheSKraussFSchönherrMSchumannSSiegertFWinterJEvent generation with SHERPA 1.1Journal of High Energy Physics200920090200700710.1088/1126-6708/2009/02/007
– reference: The Large Hadron Collider Beauty Experiment at CERN. http://lhcb-public.web.cern.ch/lhcb-public/
– reference: eduGAIN. https://www.geant.org/Services/Trust_identity_and_security/eduGAIN
– reference: LHCb Trigger and Online Upgrade Technical Design Report. Tech. rep. CERN-LHCC-2014-016. LHCB-TDR-016 (2014). https://cds.cern.ch/record/1701361
– reference: Bird I. The challenges of big (science) data. https://indico.cern.ch/event/466934/contributions/2524828/attachments/1490181/2315978/BigDataChallenges-EPS-Venice-080717.pdf
– reference: Elmer P (2014) Recent HEP experience with common software. In: HEP software collaboration meeting. CERN. https://indico.cern.ch/event/297652/contributions/1657190/attachments/558837/769950/20140403-elmer-hepcollab.pdf
– reference: Novák M (2018) Updates of some standard EM models. In: Geant4 Collaboration Meeting. Lund, Sweden. https://indico.cern.ch/event/727112/contributions/3090616/attachments/1705631/2748151/MNovak_geant4_23.pdf
– reference: Apache Spark—unified analytics engine for large-scale data processing. https://spark.apache.org/
– reference: Trigger-object Level Analysis with the ATLAS detector at the Large Hadron Collider: summary and perspectives. Tech. rep. ATL-DAQ-PUB-2017-003. CERN, Geneva (2017). http://cds.cern.ch/record/2295739
– reference: Guiraud E, Naumann A, Danilo P (2017) TDataFrame: functional chains for ROOT data analyses. https://doi.org/10.5281/zenodo.260230
– reference: Khachatryan V et al (2016) Search for narrow resonances in dijet final states at (s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{(s)}$$\end{document} = 8 TeV with the novel CMS technique of data scouting. Phys Rev Lett 117(3):031802. https://doi.org/10.1103/PhysRevLett.117.031802. arXiv:1604.08907 [hep-ex]
– reference: MollAndreasThe Software Framework of the Belle II ExperimentJournal of Physics: Conference Series20113313032024
– reference: Shiers J et al (2016) CERN services for long term data preservation. Tech. rep. CERN-IT-Note-2016-004. CERN, Geneva. https://cds.cern.ch/record/2195937
– reference: RobertsKimZhugeQunbiMongaInderGareauSebastienLaperleCharlesBeyond 100  Gb/s: Capacity, Flexibility, and Network OptimizationJournal of Optical Communications and Networking201794C1210.1364/JOCN.9.000C12
– reference: European Grid Infrastructure Computer Security Incident Response Team. https://csirt.egi.eu/
– reference: The Extreme Science and Engineering Discovery Environment. https://www.xsede.org
– reference: Paganini M, de Oliveira L, Nachman B (2017) CaloGAN: simulating 3D high energy particle showers in multi-layer electromagnetic calorimeters with generative adversarial networks. arXiv:1705.02355 [hep-ex]
– reference: Ritz S et al (2014) Building for discovery: strategic plan for U.S. particle physics in the global context. http://inspirehep.net/record/1299183/
– reference: EU-funded Monte Carlo network. http://www.montecarlonet.org/
– reference: Goodfellow I et al (2014) Generative adversarial nets. In: Ghahramani Z et al (eds) Advances in neural information processing systems, vol 27. Curran Associates, Inc., pp 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
– reference: LHCb Starterkit. https://lhcb.github.io/starterkit/
– reference: WLCG Working Group on Security Operations Centres. http://indico4.twgrid.org/indico/event/2/session/14/contribution/16/material/slides/0.pdf
– reference: A Large Ion Collider Experiment at CERN. http://aliceinfo.cern.ch/Public/Welcome.html
– reference: BlomerJakobAguado-SánchezCarlosBuncicPredragHarutyunyanArtemDistributing LHC application software and conditions databases using the CernVM file systemJournal of Physics: Conference Series20113314042003
– reference: KartikS VijayCouturierBenClemencicMarcoNeufeldNikoMeasurements of the LHCb software stack on the ARM architectureJournal of Physics: Conference Series20145135052014
– reference: Armbrust M et al (2015) Spark SQL: relational data processing in spark. In: Proceedings of the 2015 ACM SIGMOD International conference on management of data. SIGMOD ’15. Melbourne. ACM, pp 1383–1394. ISBN: 978-1-4503-2758-9. https://doi.org/10.1145/2723372.2742797
– reference: CERN Analysis Preservation Portal. https://analysispreservation.cern.ch
– reference: Buncic P, Krzewicki M, Vande Vyvre P (2015) Technical design report for the upgrade of the online-offline computing system. Tech. rep. CERN-LHCC-2015-006. ALICE-TDR-019. https://cds.cern.ch/record/2011297
– reference: The Large Synoptic Survey Telescope. https://www.lsst.org/
– reference: GitHub. https://github.com/
– reference: The FAIR Guiding Principles for scientific data management and stewardship. https://www.nature.com/articles/sdata201618
– reference: Wood L (2017) Implementing the Belle II conditions database using industry-standard tools. In: Presented at ACAT conference. https://indico.cern.ch/event/567550/contributions/2686391/attachments/1512060/2358335/ACAT_CondDB_release.pdf
– reference: Advanced Multi-Variate Analysis for New Physics Searches at the LHC. https://amva4newphysics.wordpress.com/
– reference: Creighton RH (2010) Unity Ref: unity 3D game development by example beginner’s guide. Packt Publishing
– reference: Research & Education Network Information Sharing and Analysis Center. https://www.ren-isac.net
– reference: INFN International School on: architectures, tools and methodologies for developing efficient large scale scientific computing applications. https://web.infn.it/esc17/index.php
– reference: ATLAS Data Access Policy (2015) Tech. rep. ATL-CB-PUB-2015-001. CERN, Geneva. https://cds.cern.ch/record/2002139
– reference: Märtin C (2014) Multicore processors: challenges, opportunities, emerging trends. In: Proceedings of embedded world conference. https://www.researchgate.net/publication/265057541_Multicore_Processors_Challenges_Opportunities_Emerging_Trends_Proceedings_Embedded_World_Conference_2014_25-27_February_2014_Nuremberg_Germany_Design_Elektronik_2014
– reference: StewartGraeme ALamplWalterHow to review 4 million lines of ATLAS codeJournal of Physics: Conference Series2017898072013
– reference: GitLab. https://about.gitlab.com/
– reference: Charge for Producing a HSF Community White Paper (2016). http://hepsoftwarefoundation.org/assets/CWP-Charge-HSF.pdf
– reference: CMake. https://cmake.org/
– reference: Particle Physics Project Prioritization Panel (P5). https://science.energy.gov/~/media/hep/hepap/pdf/May-2014/FINAL_P5_Report_Interactive_060214.pdf
– reference: The MadGraph event generator. http://madgraph.physics.illinois.edu
– reference: Fermilab Accelerator and Experiments Schedule. http://programplanning.fnal.gov/accelerator-and-experiments-schedule/
– reference: The Helix Nebula Science Cloud European Project. http://www.hnscicloud.eu/
– reference: Security for Collaboration among Infrastructures. https://www.eugridpma.org/sci/
– reference: The Security Incident Response Trust Framework for Federated Identity. https://refeds.org/sirtfi
– reference: HEP Software Foundation (HSF) (2015) White Paper Analysis and Proposed Startup Plan. http://hepsoftwarefoundation.org/assets/HSFwhitepaperanalysisandstartupplanV1.1.pdf
– reference: HEPiX Benchmarking Working Group. http://w3.hepix.org/benchmarking.html
– reference: Kingma DP, Welling M (2013) Auto-encoding variational Bayes. arXiv:1312.6114 [stat.ML]
– ident: 18_CR55
– ident: 18_CR78
– ident: 18_CR141
– ident: 18_CR164
– ident: 18_CR61
– ident: 18_CR49
– ident: 18_CR103
– ident: 18_CR26
– volume: 396
  start-page: 022020
  issue: 2
  year: 2012
  ident: 18_CR71
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/396/2/022020
– ident: 18_CR129
– ident: 18_CR106
– ident: 18_CR132
– ident: 18_CR155
– ident: 18_CR94
  doi: 10.1142/9789814675475_0002
– ident: 18_CR70
– ident: 18_CR32
– volume: 1085
  start-page: 032040
  year: 2018
  ident: 18_CR87
  publication-title: Journal of Physics: Conference Series
– volume: A389
  start-page: 81
  year: 1997
  ident: 18_CR29
  publication-title: Nucl Instrum Methods
  doi: 10.1016/S0168-9002(97)00048-X
– ident: 18_CR144
– ident: 18_CR161
– ident: 18_CR109
– ident: 18_CR5
– volume: 898
  start-page: 042047
  year: 2017
  ident: 18_CR123
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR46
– ident: 18_CR21
– ident: 18_CR41
– ident: 18_CR2
– ident: 18_CR66
– ident: 18_CR90
– ident: 18_CR126
– ident: 18_CR158
– ident: 18_CR112
– ident: 18_CR150
– ident: 18_CR52
– volume: 11
  start-page: 1835
  issue: 12
  year: 2018
  ident: 18_CR116
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3229863.3229871
– ident: 18_CR14
– ident: 18_CR35
– ident: 18_CR30
– ident: 18_CR118
– ident: 18_CR143
– ident: 18_CR12
  doi: 10.1145/2723372.2742797
– ident: 18_CR86
– volume: 07
  start-page: 001
  year: 2003
  ident: 18_CR95
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/07/001
– ident: 18_CR101
– ident: 18_CR67
– ident: 18_CR19
– ident: 18_CR44
– ident: 18_CR157
– ident: 18_CR11
– ident: 18_CR72
– volume: 208
  start-page: 35
  year: 2016
  ident: 18_CR3
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2016.07.022
– ident: 18_CR53
– volume: 18
  start-page: 412
  issue: 2
  year: 2017
  ident: 18_CR74
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms18020412
– volume: 140
  start-page: 45
  year: 2001
  ident: 18_CR18
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(01)00254-5
– volume: 2009
  start-page: 007
  issue: 02
  year: 2009
  ident: 18_CR69
  publication-title: Journal of High Energy Physics
  doi: 10.1088/1126-6708/2009/02/007
– ident: 18_CR81
– ident: 18_CR138
– ident: 18_CR163
– volume: A559
  start-page: 177
  year: 2006
  ident: 18_CR65
  publication-title: Nucl Instrum Methods
  doi: 10.1016/j.nima.2005.11.138
– ident: 18_CR146
– ident: 18_CR7
– ident: 18_CR27
– ident: 18_CR64
– volume-title: An introduction to unreal engine 4
  year: 2016
  ident: 18_CR117
  doi: 10.1201/9781315382555
– ident: 18_CR92
– ident: 18_CR107
– ident: 18_CR4
– ident: 18_CR152
– ident: 18_CR115
  doi: 10.25080/Majora-7b98e3ed-013
– ident: 18_CR89
– ident: 18_CR149
– ident: 18_CR135
– ident: 18_CR75
– volume: 898
  start-page: 072013
  year: 2017
  ident: 18_CR131
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR110
– ident: 18_CR16
– ident: 18_CR33
– ident: 18_CR50
– volume: 1085
  start-page: 022006
  year: 2018
  ident: 18_CR120
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR80
– ident: 18_CR145
– ident: 18_CR139
– ident: 18_CR160
– ident: 18_CR122
– ident: 18_CR22
– ident: 18_CR45
– ident: 18_CR42
– ident: 18_CR1
– ident: 18_CR88
– volume: 9
  start-page: C12
  issue: 4
  year: 2017
  ident: 18_CR113
  publication-title: Journal of Optical Communications and Networking
  doi: 10.1364/JOCN.9.000C12
– ident: 18_CR151
– volume: 608
  start-page: 012021
  issue: 1
  year: 2015
  ident: 18_CR38
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/608/1/012021
– ident: 18_CR97
– ident: 18_CR148
– ident: 18_CR13
– ident: 18_CR36
– ident: 18_CR136
– ident: 18_CR59
– volume: 515
  start-page: 012012
  year: 2014
  ident: 18_CR114
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR51
– volume: 898
  start-page: 072015
  year: 2017
  ident: 18_CR23
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR31
– ident: 18_CR56
– ident: 18_CR140
– ident: 18_CR83
– ident: 18_CR104
  doi: 10.1103/PhysRevD.97.014021
– ident: 18_CR77
– ident: 18_CR119
– ident: 18_CR156
  doi: 10.25080/Majora-14bd3278-00f
– ident: 18_CR62
– volume: 608
  start-page: 012001
  year: 2015
  ident: 18_CR124
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR102
– ident: 18_CR9
– ident: 18_CR25
– volume: 331
  start-page: 032024
  issue: 3
  year: 2011
  ident: 18_CR98
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR105
– ident: 18_CR154
– volume: 331
  start-page: 042003
  issue: 4
  year: 2011
  ident: 18_CR28
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR24
  doi: 10.1109/BigData.2016.7840603
– volume: 219
  start-page: 032057
  issue: 3
  year: 2010
  ident: 18_CR127
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/219/3/032057
– volume: 513
  start-page: 052014
  issue: 5
  year: 2014
  ident: 18_CR84
  publication-title: Journal of Physics: Conference Series
– ident: 18_CR133
– ident: 18_CR10
– ident: 18_CR39
– volume: 664
  start-page: 072026
  issue: 7
  year: 2015
  ident: 18_CR82
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/664/7/072026
– ident: 18_CR73
  doi: 10.5281/zenodo.260230
– ident: 18_CR57
– ident: 18_CR85
  doi: 10.1103/PhysRevLett.117.031802
– volume: 898
  start-page: 102006
  issue: 10
  year: 2017
  ident: 18_CR93
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/898/10/102006
– ident: 18_CR76
– ident: 18_CR137
– ident: 18_CR162
– ident: 18_CR99
– ident: 18_CR47
  doi: 10.17226/12980
– ident: 18_CR147
– ident: 18_CR17
  doi: 10.5281/zenodo.853492
– ident: 18_CR63
– ident: 18_CR6
– ident: 18_CR40
– volume: 78
  start-page: 1071
  year: 2018
  ident: 18_CR108
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2016.11.035
– ident: 18_CR20
– ident: 18_CR153
– ident: 18_CR91
– ident: 18_CR111
– ident: 18_CR134
– ident: 18_CR15
– ident: 18_CR34
– ident: 18_CR58
  doi: 10.1088/1126-6708/2005/04/002
– ident: 18_CR79
– ident: 18_CR142
– ident: 18_CR54
– volume: A506
  start-page: 250
  year: 2003
  ident: 18_CR8
  publication-title: Nucl Instrum Methods
  doi: 10.1016/S0168-9002(03)01368-8
– ident: 18_CR159
– ident: 18_CR121
  doi: 10.1145/2783258.2789993
– ident: 18_CR48
– ident: 18_CR125
– volume: 13
  start-page: e1002195
  issue: 7
  year: 2015
  ident: 18_CR130
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1002195
– ident: 18_CR60
– ident: 18_CR100
– ident: 18_CR43
– ident: 18_CR68
– ident: 18_CR128
– ident: 18_CR96
– ident: 18_CR37
SSID ssj0002140504
Score 2.499222
Snippet Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware,...
SourceID swepub
osti
crossref
springer
rcaap
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms Ciências Físicas
Ciências Naturais
Computing & software upgrade
Fysik
HL-LHC
Machine learning
Natural Sciences
Naturvetenskap
Original Article
Particle and Nuclear Physics
Particle physics
Physical Sciences
Physics
Physics and Astronomy
Software performance
Subatomic Physics
Subatomär fysik
Title A roadmap for HEP software and computing R&D for the 2020s
URI http://hdl.handle.net/1822/63372
https://link.springer.com/article/10.1007/s41781-018-0018-8
https://www.osti.gov/servlets/purl/1431575
oai:portal.research.lu.se:publications/3394725b-eb3b-471f-982f-382f75cc065d
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDYVeSvqibh7oUHpoELX1spzbsk1YFhpKHhB6GfSw6SHdXdYb-vczsr1LEkqgF59kyf5keb7RjL4B-ExGv2ykVrwg_4orET33pTJc53kjfOWVdmm_48e5mV6r2Y2-GcSi01mYJ_H7b62iTpLDa3mqH8ftC9jVhTQpe2tiJtvtFEGOgu6KBZLBznkKr21imP_q5ZEVGi1oNRE5XQXnlg8iok_UQzuLc7YHrweqyMb93L6BnXr-Fl52KZuhfQcnY3axcPGPWzIinmx6-pNd0j_1r1vVzM0j6-s10BDs4sv3rglxPSaIuLXv4frs9Goy5UMlBB60UJZH6QtvE7XxljwoWmSCII4mOGFtYz3RBpkAkGWQ3gmXTow2qnAmJoanrPwAo_liXn8EphpRhUqE6ESuPDkfMVZBicKYqimDMBnkG2QwDDLhqVrFLW4FjjswkXBMCXEWbQZft7cse42M5xrvJ7iRDHxSqQ0pnSesyQORBTHHDLJuFjDlOBM9bpH8H4H0eqXI4HgzMzgstPa5cX71k7d9pCSk3fs0OAgp_cbbO2xrXD7YIUVJgJVCe6y99Ei2u8HKigYlXUodAmEbP_3Xo-zDK6JZVZ8EcwCj9equPiQqs_ZHsDsezy5nR93HfA8DQ-NT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgguqLxEaAEfEAeQpcSPxOG2Kq2Wpa1QH1LFZeRHoh7K7mqzVf9-x3mpoKoSl5wcO_nG9nzjGc8AfCKlX9RSK56RfcWVCI67QuVcp2ktXOmUtvG84-g4n52r-YW-6O9xN0O0--CSbHfq8bKbou6i6Wt4rCTHzWPYMjo3NLm3ptP56Xw8WhFkNOi2cCAp75RHV9vgz7yvn7800mRJK4uI6tpbu7rjHf0nk2irfQ624XlPG9m0k_MLeFQtXsKTNnzTN6_g25SdLG34Y1eMSCib7f9ip7S_3th1xewisK52Aw3BTj5_b5sQ72OCSFzzGs4P9s_2ZryvisC9FsrwIF3mTKQ5zpA1RQtOENwh91YYUxtHFEJGAGThpbPCxtujtcpsHiLbU0a-gcliuajeAlO1KH0pfLAiVY4MkRBKr0SW52VdeJEnkA7IoO9ThsfKFVc4JjtuwUTCMQbHGTQJfBlfWXX5Mh5qvBPhRlL2MWOtj6E9fkPWiMyIRSaQtFLAGO9MVLlBsoUE0u8VIoGvg2SwX3TNQ-P87oQ3flJMqt3ZN9gnVbrEq2tsKlzdOS1FSYAVQjusnHRIerzG0ogaJT0K7T1hG97916d8hKezs6NDPPxx_HMHnhH9KrvgmF2YbNbX1XuiOBv3oZ_St4Bd6iE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BViAuqLxEKBQfEAeQ1cR2Eofbina1LFBVLZUqLiM_EnEo2WizFX-fcV4qVVWJS06OH9_EmW884xmAd6T080qmiidkX3ElvOU2VxlP47gStrAqNeG84_txtjxXq4v0Yqhz2o7R7qNLsr_TELI01duDxlcH08U3RV0HM1jzUFWO6_uwozNi5zPYmc9XZ6vpmEWQAZF2RQRJkcc8uN1G3-Zt_fyjnWZr2mVEWjfOmOaap_RGVtFOEy124fFAIdm8l_kTuFfWT-FBF8rp2mfwac5O18b_Ng0jQsqWRyfsjP61f8ymZKb2rK_jQEOw0_eHXRPigEwQoWufw_ni6MfnJR8qJHCXCqW5lzaxOlAeS8unteSCoPeZM0LrSluiEzIAIHMnrREm3CStVGIyH5if0vIFzOp1Xb4EpipRuEI4b0SsLBkl3hdOiSTLiip3IosgHpFBN6QPD1UsLnFKfNyBiYRjCJTTqCP4ML3S9Lkz7mq8F-BGUvwhe60LYT5uS5aJTIhRRhB1UsAQ-0y0uUWyiwTS8nIRwcdRMjhswPaucX72wpumFBJs97YODgmWfuHlFbYlNtdOTlESYLlILZZWWiSdXmGhRYWSHnnqHGHrX_3XVN7Cw5PDBX77cvx1Dx4REyv6OJnXMNturso3xHa2dn_4ov8Cdj3uYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Roadmap+for+HEP+Software+and+Computing+R%26D+for+the+2020s&rft.jtitle=Computing+and+software+for+big+science&rft.au=Albrecht%2C+Johannes&rft.au=Alves%2C+Antonio+Augusto&rft.au=Amadio%2C+Guilherme&rft.au=Andronico%2C+Giuseppe&rft.date=2019-12-01&rft.pub=Springer+International+Publishing&rft.issn=2510-2036&rft.eissn=2510-2044&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1007%2Fs41781-018-0018-8&rft.externalDocID=10_1007_s41781_018_0018_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2510-2036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2510-2036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2510-2036&client=summon