Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization
The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initi...
Saved in:
Published in | Advanced energy materials Vol. 7; no. 6; pp. np - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.03.2017
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full‐cell operation are systematically analyzed. These factors include the first‐cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind.
An overview of current research activities addressing the key challenges of LMR cathodes is presented, focusing on discussion of the facile strategies to improve the initial Coulombic efficiency, working voltage stability, and rate capability. Promising perspectives for LMR studies are suggested by providing full‐cell data of LMR electrodes with commercialization specifications. |
---|---|
AbstractList | The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full‐cell operation are systematically analyzed. These factors include the first‐cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind.
An overview of current research activities addressing the key challenges of LMR cathodes is presented, focusing on discussion of the facile strategies to improve the initial Coulombic efficiency, working voltage stability, and rate capability. Promising perspectives for LMR studies are suggested by providing full‐cell data of LMR electrodes with commercialization specifications. The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ( approximately 900 W h kg super(-1)) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full-cell operation are systematically analyzed. These factors include the first-cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind. An overview of current research activities addressing the key challenges of LMR cathodes is presented, focusing on discussion of the facile strategies to improve the initial Coulombic efficiency, working voltage stability, and rate capability. Promising perspectives for LMR studies are suggested by providing full-cell data of LMR electrodes with commercialization specifications. The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ([asymptotically =]900 W h kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full-cell operation are systematically analyzed. These factors include the first-cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind. The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg −1 ) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full‐cell operation are systematically analyzed. These factors include the first‐cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind. The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density, electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind. |
Author | Xiao, Jie Myeong, Seungjun Zheng, Jianming Cho, Jaephil Zhang, Ji‐Guang Yan, Pengfei Cho, Woongrae Wang, Chongmin |
Author_xml | – sequence: 1 givenname: Jianming surname: Zheng fullname: Zheng, Jianming organization: Pacific Northwest National Laboratory – sequence: 2 givenname: Seungjun surname: Myeong fullname: Myeong, Seungjun organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 3 givenname: Woongrae surname: Cho fullname: Cho, Woongrae organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 4 givenname: Pengfei surname: Yan fullname: Yan, Pengfei organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Jie surname: Xiao fullname: Xiao, Jie organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Chongmin surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Jaephil surname: Cho fullname: Cho, Jaephil email: jpcho@unist.ac.kr organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 8 givenname: Ji‐Guang surname: Zhang fullname: Zhang, Ji‐Guang email: jiguang.zhang@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/biblio/1373002$$D View this record in Osti.gov |
BookMark | eNqFkc1OGzEUha0KpFJg2_UINt0k-Hc8wy4aEaiUUKlq15bjudMYzdjBdoTCikfgGXkSnAYFCamqN77W_c61zj1f0IHzDhD6SvCYYEwvNLhhTDEpMaEV_4SOSEn4qKw4PtjXjH5GpzHe4Xx4TTBjR2g6sy9Pz4V2bTF3ufppzbJodFr6Foq5ThCs7uNl0Sx134P7A7FIvmj8MEAwuWUfdbLenaDDLnNw-nYfo9_Tq1_NzWj24_p7M5mNjKCcj7QEsehEKzEnpOatlABVq-u6o8YsdCVAlCXLD6GprjqKZStBt0R0LRW0qtgxOtvN9TFZFY1NYJbGOwcmKcIky7vI0LcdtAr-fg0xqcFGA32vHfh1VKSqWbZPapbR8w_onV8Hly1kStaSEia2FN9RJvgYA3Qqf_zXdwra9opgtQ1BbUNQ-xCybPxBtgp20GHzb0G9EzzYHjb_odXk6nb-rn0FEMqbzw |
CitedBy_id | crossref_primary_10_1039_D4TA05416D crossref_primary_10_1016_j_nanoen_2018_04_077 crossref_primary_10_1149_1945_7111_abf05f crossref_primary_10_1039_D3SU00168G crossref_primary_10_1038_s41467_017_02291_9 crossref_primary_10_1039_D3TA08095A crossref_primary_10_1002_adma_201905245 crossref_primary_10_1016_j_ensm_2022_05_002 crossref_primary_10_1038_s41578_019_0165_5 crossref_primary_10_1016_j_mtcomm_2024_108176 crossref_primary_10_1016_j_nanoen_2019_103887 crossref_primary_10_1002_adma_202408543 crossref_primary_10_1021_acs_jpcc_9b11896 crossref_primary_10_1016_j_est_2022_105353 crossref_primary_10_4028_www_scientific_net_MSF_1044_59 crossref_primary_10_1039_C9NJ04531G crossref_primary_10_1149_2_1021906jes crossref_primary_10_1002_admi_201901749 crossref_primary_10_1002_aenm_202101962 crossref_primary_10_1039_D4EE00791C crossref_primary_10_1007_s11581_019_03342_5 crossref_primary_10_1016_j_nanoen_2019_05_021 crossref_primary_10_1002_admt_201700376 crossref_primary_10_1007_s10800_024_02133_9 crossref_primary_10_3390_inorganics10030039 crossref_primary_10_1021_acs_chemrev_2c00214 crossref_primary_10_1002_ange_202000262 crossref_primary_10_1016_j_jechem_2024_03_050 crossref_primary_10_3390_met14020151 crossref_primary_10_1016_j_est_2023_106616 crossref_primary_10_1002_ijch_201900116 crossref_primary_10_1007_s10853_019_03425_8 crossref_primary_10_1007_s12613_022_2483_7 crossref_primary_10_1039_D3MH00780D crossref_primary_10_1002_aenm_202100640 crossref_primary_10_20964_2018_01_42 crossref_primary_10_1016_j_scib_2019_03_019 crossref_primary_10_1038_s41563_019_0318_3 crossref_primary_10_1016_j_jcis_2022_03_101 crossref_primary_10_1002_aenm_201904264 crossref_primary_10_1039_C9TA12683J crossref_primary_10_1002_advs_202201896 crossref_primary_10_1016_j_est_2024_114402 crossref_primary_10_1039_D1CP02963K crossref_primary_10_1021_acsami_0c05756 crossref_primary_10_1016_j_cej_2024_149546 crossref_primary_10_1016_j_jallcom_2023_168846 crossref_primary_10_1021_acsami_8b16319 crossref_primary_10_1007_s13369_017_2719_4 crossref_primary_10_1007_s40843_020_1433_4 crossref_primary_10_1002_smll_201800887 crossref_primary_10_1021_acs_chemmater_4c01762 crossref_primary_10_1002_adma_202307404 crossref_primary_10_1002_adma_201801348 crossref_primary_10_1007_s10853_020_05246_6 crossref_primary_10_1016_j_chempr_2022_09_015 crossref_primary_10_1039_D0EE01694B crossref_primary_10_1016_j_jcis_2023_06_050 crossref_primary_10_1016_j_electacta_2019_135466 crossref_primary_10_1021_acsaem_1c01816 crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_1021_acsami_9b02827 crossref_primary_10_1002_aenm_202404391 crossref_primary_10_1088_1755_1315_267_6_062020 crossref_primary_10_1039_C8NR08461K crossref_primary_10_1002_eom2_12338 crossref_primary_10_1007_s12598_022_02158_z crossref_primary_10_1016_j_jpowsour_2019_227017 crossref_primary_10_1021_acsami_7b09002 crossref_primary_10_1002_ece2_92 crossref_primary_10_1002_aenm_201800297 crossref_primary_10_1021_acs_energyfuels_0c03608 crossref_primary_10_1016_j_jallcom_2023_173064 crossref_primary_10_1021_acs_langmuir_3c03794 crossref_primary_10_1088_1361_6528_ac4c60 crossref_primary_10_1002_anie_202000262 crossref_primary_10_1088_1361_6528_ab4447 crossref_primary_10_1021_acsami_7b15808 crossref_primary_10_1021_acsenergylett_2c01521 crossref_primary_10_1021_acs_iecr_0c04374 crossref_primary_10_1149_1945_7111_ac15ba crossref_primary_10_1016_j_electacta_2017_09_032 crossref_primary_10_1016_j_nanoen_2019_03_012 crossref_primary_10_1021_acsami_1c21853 crossref_primary_10_1002_aenm_201802105 crossref_primary_10_1021_acsami_3c16122 crossref_primary_10_1002_ente_202200800 crossref_primary_10_1021_jacs_9b03710 crossref_primary_10_3390_ma13194388 crossref_primary_10_1016_j_ssi_2017_07_012 crossref_primary_10_1016_j_jpowsour_2024_235232 crossref_primary_10_1002_elt2_33 crossref_primary_10_1016_j_jechem_2022_12_008 crossref_primary_10_1002_cjoc_202000387 crossref_primary_10_1021_acsaem_4c00915 crossref_primary_10_1002_adma_201804822 crossref_primary_10_1002_adma_202100352 crossref_primary_10_1016_j_nanoen_2021_106252 crossref_primary_10_1002_aenm_202100901 crossref_primary_10_1021_acsami_1c06890 crossref_primary_10_1021_jacs_9b13050 crossref_primary_10_1007_s11581_022_04873_0 crossref_primary_10_1039_C8TA11415C crossref_primary_10_1007_s12598_024_03092_y crossref_primary_10_1016_j_joule_2021_11_005 crossref_primary_10_1021_acsaem_0c00898 crossref_primary_10_1002_adma_202001944 crossref_primary_10_1016_j_cej_2021_130293 crossref_primary_10_1038_d41586_022_01179_z crossref_primary_10_1016_j_ensm_2024_103559 crossref_primary_10_1021_acsami_4c03545 crossref_primary_10_1002_smtd_201700332 crossref_primary_10_1007_s11051_018_4235_1 crossref_primary_10_1039_C8TA10786F crossref_primary_10_1039_D3QI01275A crossref_primary_10_1016_j_electacta_2017_03_133 crossref_primary_10_1039_C8TA06150E crossref_primary_10_1021_jacs_0c10270 crossref_primary_10_3390_mi12111410 crossref_primary_10_1016_j_jcis_2023_02_054 crossref_primary_10_1021_acs_chemmater_8b01958 crossref_primary_10_1002_adfm_202214775 crossref_primary_10_1016_j_electacta_2023_142210 crossref_primary_10_1038_s41467_020_17126_3 crossref_primary_10_1021_acs_chemmater_9b05362 crossref_primary_10_1002_aenm_201904092 crossref_primary_10_1021_acsaem_1c01941 crossref_primary_10_3390_batteries9010031 crossref_primary_10_1021_acs_jpclett_9b01516 crossref_primary_10_1007_s41918_023_00184_8 crossref_primary_10_1021_jacs_8b07858 crossref_primary_10_1016_j_ensm_2021_02_025 crossref_primary_10_1016_j_jechem_2022_07_007 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1021_acsami_3c00392 crossref_primary_10_1021_acsami_1c18651 crossref_primary_10_1039_D0MA00614A crossref_primary_10_1149_1945_7111_ac60f3 crossref_primary_10_1021_acsaem_1c01955 crossref_primary_10_1039_D2TA09097J crossref_primary_10_1016_j_mattod_2021_03_017 crossref_primary_10_1002_aenm_201900551 crossref_primary_10_1016_j_jcis_2024_03_115 crossref_primary_10_1039_C8ME00025E crossref_primary_10_1021_acs_energyfuels_3c01920 crossref_primary_10_1016_j_cej_2023_145986 crossref_primary_10_1021_acsami_1c14229 crossref_primary_10_1038_s41563_019_0572_4 crossref_primary_10_1002_adfm_202425669 crossref_primary_10_1002_anie_202203698 crossref_primary_10_1021_jacs_0c02302 crossref_primary_10_1021_acsami_4c00291 crossref_primary_10_3390_en11102712 crossref_primary_10_1002_aenm_201802057 crossref_primary_10_1002_aenm_201702561 crossref_primary_10_1039_D4CS00797B crossref_primary_10_1088_2516_1083_ac3894 crossref_primary_10_1021_acssuschemeng_3c04620 crossref_primary_10_1002_aenm_202001120 crossref_primary_10_1016_j_jechem_2023_09_036 crossref_primary_10_1016_j_etran_2024_100382 crossref_primary_10_1002_aenm_201901530 crossref_primary_10_1002_adma_202212098 crossref_primary_10_3390_ma14164751 crossref_primary_10_1016_j_mtsust_2022_100277 crossref_primary_10_1021_acssuschemeng_0c02687 crossref_primary_10_1039_D0TA00355G crossref_primary_10_1002_chem_202302569 crossref_primary_10_1088_2752_5724_ad4572 crossref_primary_10_1016_j_jechem_2021_04_030 crossref_primary_10_1016_j_jpowsour_2020_228171 crossref_primary_10_6023_A19070265 crossref_primary_10_1016_j_mtener_2022_101116 crossref_primary_10_1038_s41560_023_01329_1 crossref_primary_10_1002_advs_202304938 crossref_primary_10_1021_acsaem_0c01897 crossref_primary_10_1016_j_ceramint_2017_06_028 crossref_primary_10_1038_s41560_019_0410_6 crossref_primary_10_1002_batt_202400443 crossref_primary_10_1021_jacs_3c01999 crossref_primary_10_1038_s41467_023_37122_7 crossref_primary_10_1038_s41560_018_0222_0 crossref_primary_10_1002_smll_202200713 crossref_primary_10_1016_j_electacta_2022_141047 crossref_primary_10_1021_acs_chemmater_9b05285 crossref_primary_10_1002_aenm_202400985 crossref_primary_10_1021_acsnano_1c00304 crossref_primary_10_1021_acsami_1c02020 crossref_primary_10_1016_j_nanoen_2020_105188 crossref_primary_10_1002_adma_201800561 crossref_primary_10_1021_acsaem_2c01753 crossref_primary_10_1002_aenm_202302017 crossref_primary_10_1002_smll_201802570 crossref_primary_10_1039_D4RA06047D crossref_primary_10_1149_2_1291712jes crossref_primary_10_1007_s41918_022_00155_5 crossref_primary_10_1039_C8SE00157J crossref_primary_10_1021_acsami_9b21738 crossref_primary_10_1021_acs_chemmater_9b04066 crossref_primary_10_1007_s11581_021_04185_9 crossref_primary_10_1007_s11581_023_05016_9 crossref_primary_10_1021_acsaem_0c01912 crossref_primary_10_1039_D2NR05936C crossref_primary_10_1007_s11581_018_2673_5 crossref_primary_10_1016_j_jallcom_2020_154489 crossref_primary_10_1016_j_jechem_2021_01_034 crossref_primary_10_1021_acs_chemmater_3c03307 crossref_primary_10_1002_aenm_202301983 crossref_primary_10_1039_D2CC03259G crossref_primary_10_1016_j_cej_2019_03_247 crossref_primary_10_2139_ssrn_4114032 crossref_primary_10_1039_D4RA03660C crossref_primary_10_1002_aenm_201903634 crossref_primary_10_1016_j_jpowsour_2018_08_056 crossref_primary_10_2139_ssrn_4013335 crossref_primary_10_1007_s11581_017_2387_0 crossref_primary_10_1016_j_jallcom_2020_154491 crossref_primary_10_1021_acsami_1c24580 crossref_primary_10_1039_C7TA08735G crossref_primary_10_1016_j_jallcom_2020_155342 crossref_primary_10_1021_acsami_2c10613 crossref_primary_10_1149_1945_7111_aba6cb crossref_primary_10_3390_chemengineering7010015 crossref_primary_10_1002_aenm_202001413 crossref_primary_10_1002_aenm_202002506 crossref_primary_10_1016_j_cej_2022_138114 crossref_primary_10_1039_D0CP00400F crossref_primary_10_1021_acsaem_1c00453 crossref_primary_10_1016_j_mtener_2020_100474 crossref_primary_10_1149_1945_7111_ad0490 crossref_primary_10_1002_aenm_201901795 crossref_primary_10_1016_j_ensm_2019_10_029 crossref_primary_10_1039_D1SE00312G crossref_primary_10_1021_acsami_3c00554 crossref_primary_10_1016_j_ensm_2022_10_020 crossref_primary_10_1016_j_nanoen_2019_104084 crossref_primary_10_1016_j_cej_2023_147419 crossref_primary_10_1002_smll_202404059 crossref_primary_10_1002_adma_202208974 crossref_primary_10_1002_smll_202305606 crossref_primary_10_1007_s11581_022_04502_w crossref_primary_10_1002_adma_202205229 crossref_primary_10_1007_s12274_022_5333_z crossref_primary_10_1021_acsami_1c03680 crossref_primary_10_1021_acs_chemmater_3c02411 crossref_primary_10_1021_acs_chemmater_7b02299 crossref_primary_10_1007_s11581_021_04110_0 crossref_primary_10_34133_energymatadv_0115 crossref_primary_10_1007_s11814_023_00009_w crossref_primary_10_1149_2_0121908jes crossref_primary_10_1016_j_jechem_2021_07_021 crossref_primary_10_1002_advs_202307397 crossref_primary_10_1016_j_jechem_2021_07_023 crossref_primary_10_1515_ntrev_2024_0034 crossref_primary_10_1007_s11426_018_9410_0 crossref_primary_10_1016_j_jpowsour_2018_01_045 crossref_primary_10_1016_j_cej_2020_125725 crossref_primary_10_1039_D1CS00450F crossref_primary_10_1016_j_tsf_2020_137925 crossref_primary_10_1016_j_nanoen_2020_104942 crossref_primary_10_1063_5_0096578 crossref_primary_10_1149_1945_7111_acaa5c crossref_primary_10_1002_celc_202000750 crossref_primary_10_1016_j_electacta_2019_134932 crossref_primary_10_1039_C8RA03852J crossref_primary_10_1016_j_jpowsour_2024_235497 crossref_primary_10_3390_molecules29051064 crossref_primary_10_1021_acsenergylett_2c01072 crossref_primary_10_1002_cssc_201800706 crossref_primary_10_1021_acsenergylett_9b01830 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1016_j_electacta_2020_135870 crossref_primary_10_1021_acsami_7b17424 crossref_primary_10_1021_acsami_1c02424 crossref_primary_10_1002_cey2_332 crossref_primary_10_1007_s11581_024_05618_x crossref_primary_10_1002_smll_202303353 crossref_primary_10_1021_acsami_1c21182 crossref_primary_10_1039_D0TA05429A crossref_primary_10_1021_acsami_0c08797 crossref_primary_10_1021_acs_jpcc_1c04339 crossref_primary_10_1016_j_ensm_2024_103509 crossref_primary_10_1016_j_jallcom_2024_178158 crossref_primary_10_1016_j_cej_2023_145552 crossref_primary_10_1088_1674_1056_ab5d07 crossref_primary_10_1002_adma_202410006 crossref_primary_10_1088_1361_6528_ab9579 crossref_primary_10_1002_eem2_12034 crossref_primary_10_1021_acs_chemmater_3c02404 crossref_primary_10_1002_aenm_202000997 crossref_primary_10_1002_smll_202500940 crossref_primary_10_1016_j_est_2018_03_002 crossref_primary_10_1039_C8EE00372F crossref_primary_10_1016_j_electacta_2018_01_130 crossref_primary_10_1002_aenm_201903658 crossref_primary_10_1016_j_susmat_2020_e00171 crossref_primary_10_1016_j_electacta_2022_140465 crossref_primary_10_1021_acsomega_8b00924 crossref_primary_10_1002_aenm_201902445 crossref_primary_10_1016_j_nanoen_2017_04_005 crossref_primary_10_1149_1945_7111_ac4cd5 crossref_primary_10_1002_adma_201701828 crossref_primary_10_1021_acsami_7b15494 crossref_primary_10_1007_s11705_024_2444_y crossref_primary_10_1021_acsami_2c12739 crossref_primary_10_1002_aenm_202001830 crossref_primary_10_1002_smll_202401839 crossref_primary_10_1149_1945_7111_acd87d crossref_primary_10_1002_aenm_202000982 crossref_primary_10_1038_s41598_020_66411_0 crossref_primary_10_1021_acsami_8b11471 crossref_primary_10_1038_s41560_023_01289_6 crossref_primary_10_1038_s41467_020_17396_x crossref_primary_10_1007_s42247_018_0014_0 crossref_primary_10_1002_aenm_202102646 crossref_primary_10_1007_s42864_022_00173_2 crossref_primary_10_1016_j_apsusc_2019_07_245 crossref_primary_10_1016_j_jelechem_2022_116623 crossref_primary_10_1016_j_nanoen_2019_104102 crossref_primary_10_1021_acsami_0c12541 crossref_primary_10_1038_s41560_023_01375_9 crossref_primary_10_1038_s41524_022_00893_6 crossref_primary_10_1039_D0SE01065K crossref_primary_10_1016_j_nanoen_2019_06_011 crossref_primary_10_1016_j_jallcom_2019_03_172 crossref_primary_10_1016_j_ceramint_2019_04_250 crossref_primary_10_1002_adma_202004419 crossref_primary_10_1016_j_jpowsour_2017_08_077 crossref_primary_10_1002_celc_201701193 crossref_primary_10_1021_acsaem_2c03785 crossref_primary_10_1021_acsami_3c02907 crossref_primary_10_1021_acsami_0c14995 crossref_primary_10_3390_inorganics12010008 crossref_primary_10_1016_j_ssi_2019_03_020 crossref_primary_10_1016_j_jallcom_2019_03_282 crossref_primary_10_1002_aenm_202102311 crossref_primary_10_1002_adfm_202008083 crossref_primary_10_1016_j_est_2025_115974 crossref_primary_10_1007_s42864_022_00187_w crossref_primary_10_1021_acssuschemeng_8b02436 crossref_primary_10_1002_smll_202106337 crossref_primary_10_1007_s11051_018_4165_y crossref_primary_10_20964_2022_02_22 crossref_primary_10_1021_acs_chemmater_4c01879 crossref_primary_10_1002_adfm_202107769 crossref_primary_10_1016_j_mtener_2020_100518 crossref_primary_10_1007_s10008_019_04232_6 crossref_primary_10_1016_j_ensm_2021_11_044 crossref_primary_10_1016_j_jechem_2023_02_025 crossref_primary_10_1002_aenm_202103894 crossref_primary_10_1007_s40820_021_00643_1 crossref_primary_10_1002_aenm_202403374 crossref_primary_10_1115_1_4047222 crossref_primary_10_1016_j_jallcom_2023_171808 crossref_primary_10_1039_C9TA01708A crossref_primary_10_1002_aenm_202201044 crossref_primary_10_1016_j_electacta_2019_134951 crossref_primary_10_1021_acsami_0c22235 crossref_primary_10_1021_acsami_0c01558 crossref_primary_10_1016_j_cej_2023_148223 crossref_primary_10_1021_acssuschemeng_3c07007 crossref_primary_10_1021_acs_nanolett_2c01401 crossref_primary_10_1002_aenm_201703092 crossref_primary_10_1016_j_ssc_2019_113733 crossref_primary_10_1007_s11837_020_04163_y crossref_primary_10_1021_acsenergylett_8b01798 crossref_primary_10_1021_acsaem_1c03396 crossref_primary_10_1002_ente_201800415 crossref_primary_10_1016_j_ensm_2022_12_006 crossref_primary_10_1016_j_ceramint_2019_06_176 crossref_primary_10_1002_adfm_201704808 crossref_primary_10_1016_j_electacta_2022_140737 crossref_primary_10_1002_adfm_202205199 crossref_primary_10_1016_j_jelechem_2021_115439 crossref_primary_10_1002_adma_202000496 crossref_primary_10_1002_adfm_202107703 crossref_primary_10_1002_adfm_202208586 crossref_primary_10_1021_acs_chemmater_7b04861 crossref_primary_10_1016_j_rineng_2022_100472 crossref_primary_10_1063_5_0217139 crossref_primary_10_3389_fchem_2022_914930 crossref_primary_10_1016_j_nanoen_2021_105926 crossref_primary_10_23919_CHAIN_2024_000011 crossref_primary_10_1007_s10853_023_09065_3 crossref_primary_10_1002_ente_201800769 crossref_primary_10_1021_acsami_1c01726 crossref_primary_10_1038_s41467_018_05802_4 crossref_primary_10_1038_s41560_018_0097_0 crossref_primary_10_1016_j_ssi_2021_115661 crossref_primary_10_1038_s41586_022_04689_y crossref_primary_10_1016_j_jpowsour_2019_227648 crossref_primary_10_1039_C9CP06165G crossref_primary_10_1002_adfm_202002643 crossref_primary_10_1016_j_cej_2021_131978 crossref_primary_10_1021_acs_chemmater_8b04504 crossref_primary_10_1149_1945_7111_ac766c crossref_primary_10_1149_1945_7111_ab8401 crossref_primary_10_1002_adma_202200655 crossref_primary_10_1002_adma_202005937 crossref_primary_10_1016_j_cej_2023_141924 crossref_primary_10_1016_j_jallcom_2023_169795 crossref_primary_10_1021_acsami_0c19040 crossref_primary_10_1002_aenm_202100204 crossref_primary_10_1039_C8CP07718E crossref_primary_10_1016_j_pmatsci_2024_101247 crossref_primary_10_1002_cssc_201901739 crossref_primary_10_1002_batt_202300103 crossref_primary_10_1002_ange_202203698 crossref_primary_10_1016_j_electacta_2024_144343 crossref_primary_10_1016_j_materresbull_2020_110923 crossref_primary_10_1039_D2TA04876K crossref_primary_10_1016_j_ceramint_2018_11_087 crossref_primary_10_1149_1945_7111_ad8d50 crossref_primary_10_1002_celc_202400391 crossref_primary_10_1016_j_electacta_2021_139467 crossref_primary_10_1007_s12598_022_02070_6 crossref_primary_10_1021_acsami_3c11511 crossref_primary_10_1038_s41467_021_24694_5 crossref_primary_10_1016_j_jpowsour_2019_02_086 crossref_primary_10_3390_batteries8100132 crossref_primary_10_1007_s11581_020_03700_8 crossref_primary_10_1016_j_eng_2023_08_021 crossref_primary_10_1002_smtd_201900065 crossref_primary_10_1149_1945_7111_ac0948 |
Cites_doi | 10.1149/2.1141412jes 10.1039/C5TA03415A 10.1039/c3cp53658k 10.1021/nl5038598 10.1021/nn305065u 10.1149/2.090311jes 10.1021/nl501164y 10.1039/C5TA04157K 10.1016/j.jpowsour.2013.11.055 10.1016/j.jpowsour.2016.05.038 10.1016/j.electacta.2012.01.032 10.1016/j.jpowsour.2013.02.022 10.1016/j.elecom.2013.08.022 10.1021/cm030047u 10.1016/j.electacta.2010.12.049 10.1039/C4RA04976D 10.1016/j.jpowsour.2014.11.018 10.1016/S0378-7753(03)00171-X 10.1021/cm4000119 10.1039/C5TA04099J 10.1021/cm502071h 10.1016/j.electacta.2013.10.087 10.1021/cm504583y 10.1149/1.2180528 10.1016/j.jpowsour.2012.07.135 10.1016/j.jpowsour.2013.10.044 10.1021/ja407318h 10.1039/b211558a 10.1021/jp312658q 10.1149/2.0111514jes 10.1002/adma.200904247 10.1016/j.jallcom.2012.08.026 10.1149/2.0631610jes 10.1016/j.jpowsour.2012.11.138 10.1039/C6TA01878E 10.1016/j.electacta.2011.09.069 10.1016/j.elecom.2009.03.020 10.1149/2.0071513jes 10.1039/c2dt11833e 10.1016/j.jpowsour.2012.09.014 10.1002/anie.201506408 10.1149/2.066302jes 10.1002/aenm.201501717 10.1021/am508579r 10.1016/j.jpowsour.2012.04.031 10.1016/j.electacta.2004.04.033 10.1007/s12274-013-0378-7 10.1039/b417616m 10.1021/cm047779m 10.1016/j.jpowsour.2015.06.035 10.1016/j.jpowsour.2016.03.090 10.1149/1.3515900 10.1016/j.jpowsour.2006.07.064 10.1039/c3ta14513a 10.1016/j.electacta.2013.04.150 10.1016/j.jpowsour.2013.01.082 10.1002/adma.201500956 10.1021/acsami.5b01770 10.1021/acs.chemmater.5b02331 10.1016/j.elecom.2006.11.006 10.1016/j.jpowsour.2008.03.016 10.1021/acsami.5b04514 10.1126/science.1246432 10.1149/2.0251504jes 10.1021/cm200831c 10.1016/j.jpowsour.2015.03.113 10.1039/b702425h 10.1021/acsami.5b08349 10.1021/acs.chemmater.5b02016 10.1016/j.jpowsour.2014.03.099 10.1149/2.0071410jes 10.1002/aenm.201502398 10.1039/b904098f 10.1016/j.jpowsour.2009.07.052 10.1109/JPROC.2012.2190170 10.1021/nl4019275 10.1039/C4TA03692A 10.1002/anie.201301236 10.1039/c3ta01182h 10.1002/aenm.201501010 10.1039/C5RA03368C 10.1002/adfm.201503276 10.1039/c3ta12296d 10.1039/C6RA06169A 10.1016/j.electacta.2004.07.038 10.1149/2.005308eel 10.1039/C6TA00069J 10.1038/ncomms9711 10.1039/c3ee43870h 10.1021/am5017649 10.1016/j.jpowsour.2011.04.030 10.1149/1.1480014 10.1039/C5TA03764F 10.1021/am504412n 10.1021/jz400032v 10.1016/j.jpowsour.2009.02.005 10.1149/2.1071605jes 10.1038/srep03094 10.1021/acsami.6b04687 10.1039/c3cp51279g 10.1039/c2jm33484d 10.1016/j.jpowsour.2007.01.070 10.1016/j.electacta.2015.09.067 10.1149/1.2966694 10.1002/aenm.201400631 10.1016/j.jpowsour.2015.02.085 10.1016/j.ssi.2008.01.091 10.1016/j.jpowsour.2015.05.036 10.1016/j.electacta.2012.06.118 10.1002/aenm.201300950 10.1021/ja108588y 10.1021/am504796n 10.1149/2.040403jes 10.1021/nl500486y 10.1021/am501280t 10.1039/C4TA06856D 10.1039/c1jm11077b 10.1016/j.jpowsour.2008.10.035 10.1021/cm301140g 10.1016/j.jpowsour.2013.10.071 10.1016/j.jpowsour.2007.11.076 10.1002/aenm.201600906 10.1038/ncomms12108 10.1016/S0378-7753(03)00195-2 10.1016/j.jpowsour.2004.11.018 10.1149/2.0461410jes 10.1149/1.3473830 10.1016/j.elecom.2004.08.002 10.1149/2.049301jes 10.1039/c3ta10586e 10.1016/j.ssi.2008.11.002 10.1016/j.elecom.2009.01.025 10.1149/2.1001504jes 10.1039/c2ra20772a 10.1021/ja062027 10.1016/j.jpowsour.2013.07.070 10.1149/1.3597319 10.1016/j.jpowsour.2011.11.076 10.3389/fenrg.2014.00036 10.1039/c1ee01131f 10.1016/j.elecom.2008.10.036 10.1021/acsami.5b10219 10.1149/1.3479382 10.1021/jp102050s 10.1016/j.elecom.2010.03.024 10.1016/j.ssi.2005.02.006 10.1149/2.080206jes 10.1016/j.nanoen.2015.06.011 10.1016/j.electacta.2015.12.021 10.1021/acs.chemmater.5b00405 10.1039/c2ta00309k 10.1021/cm801245r 10.1149/2.049403jes 10.1002/aenm.201500274 10.1002/aenm.201400062 10.1149/2.0211414jes 10.1039/C5CC10534J 10.1179/1753555714Y.0000000166 10.1039/C4RA11894D 10.1002/anie.201201429 10.1149/1.1471541 10.1016/j.elecom.2011.07.004 10.1149/2.0161512jes 10.1016/j.jpowsour.2014.04.143 10.1021/cm070435m 10.1002/chem.201406641 10.1016/j.jpowsour.2012.10.029 10.1016/j.electacta.2015.06.085 10.1039/c3ce26972h 10.1016/j.electacta.2005.10.006 10.1002/adma.201104106 10.1149/2.0071514jes 10.1021/nl302249v 10.1149/1.3274205 10.1002/aenm.201400478 10.1149/1.3496402 10.1021/cm5045978 10.1149/1.2194764 10.1039/C6TA00460A 10.1016/j.jpowsour.2005.03.152 10.1039/c3cp51927a 10.1016/j.elecom.2008.05.043 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M OTOTI |
DOI | 10.1002/aenm.201601284 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 1373002 4321066547 10_1002_aenm_201601284 AENM201601284 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U. S. and Department of Energy funderid: DE‐AC02‐05CH11231; 18769 – fundername: IT R&D program of MOTIE/KEIT funderid: 10046306 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M AAPBV AEUQT OTOTI |
ID | FETCH-LOGICAL-c5244-a7e5bf5d7041194d77ee8da99f2ccba85e5663f2c5a2a8f207d7ead15fd252883 |
ISSN | 1614-6832 |
IngestDate | Fri May 19 01:40:21 EDT 2023 Fri Jul 11 12:11:40 EDT 2025 Fri Jul 25 12:30:45 EDT 2025 Tue Jul 01 01:43:18 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Jan 22 16:38:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5244-a7e5bf5d7041194d77ee8da99f2ccba85e5663f2c5a2a8f207d7ead15fd252883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC05-76RL01830 PNNL-SA-117202 |
OpenAccessLink | https://www.osti.gov/biblio/1401043 |
PQID | 1879721353 |
PQPubID | 886389 |
PageCount | 25 |
ParticipantIDs | osti_scitechconnect_1373002 proquest_miscellaneous_1893910193 proquest_journals_1879721353 crossref_citationtrail_10_1002_aenm_201601284 crossref_primary_10_1002_aenm_201601284 wiley_primary_10_1002_aenm_201601284_AENM201601284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 22, 2017 |
PublicationDateYYYYMMDD | 2017-03-22 |
PublicationDate_xml | – month: 03 year: 2017 text: March 22, 2017 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Advanced energy materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2010 2014; 12 4 2013; 3 2011 2013 2015; 23 52 6 2013; 1 2013; 2 2014 2016; 7 8 2003 2008; 119–121 20 2014; 26 2014 2014; 161 246 2014; 250 2011; 56 2011; 196 2014; 251 2012; 12 2014 2014; 343 4 2009; 11 2014; 248 2007 2014; 167 161 2016; 317 2010; 114 2013; 236 2013; 233 2013 2015 2015 2014 2016; 4 162 162 29 6 2014; 14 2002; 149 2013; 231 2012 2013; 2 160 2009; 19 2014 2013; 161 1 2012; 22 2012 2013; 51 7 2012; 220 2006; 51 2009; 180 2015 2014; 162 115 2010 2012 2013; 22 213 135 2015; 54 2013; 222 2016; 323 2011; 4 2014 2015 2015 2013; 2 16 25 1 2016; 163 2016; 4 2016; 6 2004; 50 2015 2015; 27 3 2009; 191 2008 2012; 20 159 2014; 262 2016; 8 2012; 41 2014; 266 2011; 158 2015; 182 2015 2010; 21 195 2013 2013; 160 10–15 2010 2005 2002 2003; 157 17 149 13 2005 2005; 176 147 2012 2013 2015; 24 15 2 2003; 13 2003; 15 2016; 188 2007 2016; 9 7 2004 2016; 49 2015 2014 2015; 285 161 162 2012; 59 2011; 14 2012; 203 2013; 160 2015; 174 2015; 294 2015; 292 2013; 15 2014; 2 2013; 13 2010; 157 2015 2014 2014 2016; 27 6 4 8 2011; 21 2014; 161 2007 2012; 100 2008; 155 2014; 7 2012; 66 2014; 6 2012 2013 2013; 159 36 161 2008 2013 2011 2008; 184 225 13 10 2015; 162 2012; 80 2015; 5 2015; 3 2013 2015; 105 283 2006; 9 2013; 546 2016; 52 2006; 153 2015; 7 2004 2006 2009; 6 162 189 2015; 27 2014 2015 2015; 4 27 15 2003; 119–121 2015; 275 2013 2014 2013; 117 4 25 2008; 179 2008; 177 2002 2005 2005 2006 2007 2011 2012; 149 146 15 128 17 133 24 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_75_3 e_1_2_9_33_1 e_1_2_9_52_3 e_1_2_9_75_2 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_41_2 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_83_2 e_1_2_9_41_3 e_1_2_9_2_7 e_1_2_9_2_6 e_1_2_9_2_5 e_1_2_9_6_1 e_1_2_9_2_4 e_1_2_9_119_1 e_1_2_9_2_3 e_1_2_9_60_1 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_26_2 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_95_1 e_1_2_9_53_3 e_1_2_9_11_2 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_91_1 Thackeray M. M. (e_1_2_9_54_2) 2013 e_1_2_9_102_2 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_2 Mohanty D. (e_1_2_9_37_3) 2015; 2 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_38_2 e_1_2_9_34_3 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_38_3 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_2 e_1_2_9_61_1 e_1_2_9_80_4 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_42_2 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_2 e_1_2_9_80_2 e_1_2_9_5_1 e_1_2_9_80_3 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_92_2 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 Yu R. (e_1_2_9_60_2) 2016 e_1_2_9_39_2 e_1_2_9_62_2 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_43_3 e_1_2_9_43_4 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_43_2 e_1_2_9_8_1 e_1_2_9_4_3 e_1_2_9_81_1 e_1_2_9_4_2 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_78_1 e_1_2_9_93_3 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_4 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_59_2 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_2 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_21_4 e_1_2_9_21_3 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_2 e_1_2_9_3_5 e_1_2_9_7_1 e_1_2_9_3_4 e_1_2_9_3_3 e_1_2_9_82_1 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_112_1 Qing R.‐P. (e_1_2_9_20_1) 2015; 5 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 3 start-page: 21219 year: 2015 publication-title: J. Mater. Chem. A – volume: 13 start-page: 3857 year: 2013 publication-title: Nano Lett. – volume: 4 start-page: 7689 year: 2016 publication-title: J. Mater. Chem. A – volume: 80 start-page: 187 year: 2012 publication-title: Electrochim. Acta – volume: 153 start-page: A1186 year: 2006 publication-title: J. Electrochem. Soc. – volume: 119–121 start-page: 161 year: 2003 publication-title: J. Power Sources – volume: 6 start-page: 10330 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 46325 year: 2016 publication-title: RSC Adv. – volume: 174 start-page: 875 year: 2015 publication-title: Electrochim. Acta – volume: 6 start-page: 16888 year: 2014 publication-title: ACS Appl. Mat. Interfaces – volume: 236 start-page: 25 year: 2013 publication-title: J. Power Sources – volume: 21 start-page: 9290 year: 2011 publication-title: J. Mater. Chem. – volume: 9 7 start-page: 787 12108 year: 2007 2016 publication-title: Electrochem. Commun. Nat Commun – volume: 2 start-page: 3899 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1501914 year: 2015 publication-title: Adv. Energy Mater. – volume: 4 162 162 29 6 start-page: 1268 A2447 A2490 A59 1600906 year: 2013 2015 2015 2014 2016 publication-title: J. Phys. Chem. Lett. J. Electrochem. Soc. J. Electrochem. Soc. Mater. Technol. Adv. Energy Mater. – volume: 41 start-page: 3053 year: 2012 publication-title: Dalton Trans. – volume: 4 27 15 start-page: 1400631 1381 514 year: 2014 2015 2015 publication-title: Adv. Energy Mater. Chem. Mater. Nano Lett. – volume: 323 start-page: 220 year: 2016 publication-title: J. Power Sources – volume: 158 start-page: A47 year: 2011 publication-title: J. Electrochem. Soc. – volume: 59 start-page: 14 year: 2012 publication-title: Electrochim. Acta – volume: 222 start-page: 455 year: 2013 publication-title: J. Power Sources – volume: 51 7 start-page: 9994 760 year: 2012 2013 publication-title: Angew. Chem. Int. Ed. ACS Nano – volume: 191 start-page: 644 year: 2009 publication-title: J. Power Sources – volume: 317 start-page: 65 year: 2016 publication-title: J. Power Sources – volume: 11 start-page: 748 year: 2009 publication-title: Electrochem. Commun. – volume: 546 start-page: 239 year: 2013 publication-title: J. Alloys Compd. – volume: 4 start-page: 2223 year: 2011 publication-title: Energy Environ. Sci. – volume: 251 start-page: 208 year: 2014 publication-title: J. Power Sources – volume: 2 start-page: 36 year: 2014 publication-title: Front. Energy Res. – volume: 3 start-page: 17113 year: 2015 publication-title: J. Mater. Chem. A – volume: 15 start-page: 11128 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 8319 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 5186 year: 2012 publication-title: Nano Lett. – volume: 6 start-page: 1501717 year: 2016 publication-title: Adv. Energy Mater. – volume: 162 start-page: A2259 year: 2015 publication-title: J. Electrochem. Soc. – volume: 266 start-page: 175 year: 2014 publication-title: J. Power Sources – volume: 15 start-page: 2592 year: 2013 publication-title: CrystEngComm – volume: 14 start-page: 3550 year: 2014 publication-title: Nano Lett. – volume: 157 start-page: A267 year: 2010 publication-title: J. Electrochem. Soc. – volume: 159 36 161 start-page: A781 103 A318 year: 2012 2013 2013 publication-title: J Electrochem Soc Electrochem. Commun. J Electrochem Soc – volume: 157 start-page: A1177 year: 2010 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 17376 year: 2015 publication-title: J. Mater. Chem. A – volume: 248 start-page: 1077 year: 2014 publication-title: J. Power Sources – volume: 6 start-page: 1501010 year: 2016 publication-title: Adv. Energy Mater. – volume: 162 115 start-page: A774 223 year: 2015 2014 publication-title: J. Electrochem. Soc. Electrochim. Acta – volume: 196 start-page: 7687 year: 2011 publication-title: J. Power Sources – volume: 6 start-page: 17965 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 3773 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 3094 year: 2013 publication-title: Sci. Rep. – volume: 275 start-page: 64 year: 2015 publication-title: J. Power Sources – volume: 182 start-page: 1175 year: 2015 publication-title: Electrochim. Acta – volume: 158 start-page: A883 year: 2011 publication-title: J. Electrochem. Soc. – volume: 117 4 25 start-page: 6525 1300950 1621 year: 2013 2014 2013 publication-title: J. Phys. Chem. C Adv. Energy Mater. Chem. Mater. – volume: 100 start-page: 1518 year: 2007 2012 publication-title: Proc. IEE – volume: 2 16 25 1 start-page: 18767 143 7488 2833 year: 2014 2015 2015 2013 publication-title: J. Mater. Chem. A Nano Energy Adv. Funct. Mater. J. Mater. Chem. A – volume: 56 start-page: 3071 year: 2011 publication-title: Electrochim. Acta – volume: 24 15 2 start-page: 3558 19496 year: 2012 2013 2015 publication-title: Chem. Mater. Phys. Chem. Chem. Phys. MRS Energy & Sustainability – A Review Journal – volume: 161 start-page: A1564 year: 2014 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 5942 year: 2016 publication-title: J. Mater. Chem. A – volume: 220 start-page: 422 year: 2012 publication-title: J. Power Sources – volume: 250 start-page: 313 year: 2014 publication-title: J. Power Sources – volume: 7 8 start-page: 110 18832 year: 2014 2016 publication-title: Nano Res. ACS Appl. Mater. Interfaces – volume: 7 start-page: 1555 year: 2014 publication-title: Energy Environ. Sci. – volume: 292 start-page: 58 year: 2015 publication-title: J. Power Sources – volume: 177 start-page: 528 year: 2008 publication-title: J. Power Sources – volume: 262 start-page: 123 year: 2014 publication-title: J. Power Sources – volume: 5 start-page: 2947 year: 2015 publication-title: RSC Advances – volume: 167 161 start-page: 178 A1723 year: 2007 2014 publication-title: J. Power Sources J. Electrochem. Soc. – volume: 26 start-page: 6320 year: 2014 publication-title: Chem. Mater. – volume: 231 start-page: 44 year: 2013 publication-title: J. Power Sources – volume: 27 start-page: 5745 year: 2015 publication-title: Chem. Mater. – volume: 160 start-page: A285 year: 2013 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 17910 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 4117 year: 2016 publication-title: J. Mater. Chem. A – volume: 163 start-page: A766 year: 2016 publication-title: J. Electrochem. Soc. – volume: 12 4 start-page: 750 44244 year: 2010 2014 publication-title: Electrochem. Commun. RSC Adv. – volume: 160 10–15 start-page: A31 year: 2013 2013 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 15507 year: 2012 publication-title: J. Mater. Chem. – volume: 23 52 6 start-page: 3614 5969 8711 year: 2011 2013 2015 publication-title: Chem. Mater. Angew. Chem. Int. Ed. Nat. Commun. – volume: 203 start-page: 115 year: 2012 publication-title: J. Power Sources – volume: 157 17 149 13 start-page: A1202 2386 A778 590 year: 2010 2005 2002 2003 publication-title: J. Electrochem. Soc. Chem. Mater. J. Electrochem. Soc. J. Mater. Chem. – volume: 14 start-page: 2628 year: 2014 publication-title: Nano Lett. – volume: 179 start-page: 1794 year: 2008 publication-title: Solid State Ionics – volume: 285 161 162 start-page: 360 A2012 A596 year: 2015 2014 2015 publication-title: J. Power Sources J. Electrochem. Soc. J. Electrochem. Soc. – volume: 114 start-page: 9528 year: 2010 publication-title: J. Phys. Chem. C – volume: 343 4 start-page: 519 1400478 year: 2014 2014 publication-title: Science Adv. Energy Mater. – volume: 161 246 start-page: A2002 184 year: 2014 2014 publication-title: J. Electrochem. Soc. J. Power Sources – volume: 233 start-page: 346 year: 2013 publication-title: J. Power Sources – volume: 66 start-page: 61 year: 2012 publication-title: Electrochim. Acta – volume: 6 162 189 start-page: 1085 1346 571 year: 2004 2006 2009 publication-title: Electrochem. Commun. J. Power Sources J. Power Sources – volume: 27 start-page: 757 year: 2015 publication-title: Chem. Mater. – volume: 2 160 start-page: 8797 A2212 year: 2012 2013 publication-title: RSC Adv. J. Electrochem. Soc. – volume: 22 213 135 start-page: 1122 304 14912 year: 2010 2012 2013 publication-title: Adv. Mater. J. Power Sources J. Am. Chem. Soc. – volume: 161 1 start-page: A290 11397 year: 2014 2013 publication-title: J. Electrochem. Soc. J. Mater. Chem. A – volume: 11 start-page: 84 year: 2009 publication-title: Electrochem. Commun. – volume: 163 start-page: A2258 year: 2016 publication-title: J. Electrochem. Soc. – volume: 105 283 start-page: 200 162 year: 2013 2015 publication-title: Electrochim. Acta J. Power Sources – volume: 155 start-page: A775 year: 2008 publication-title: J. Electrochem. Soc. – volume: 52 start-page: 4683 year: 2016 publication-title: Chem. Commun. – volume: 180 start-page: 50 year: 2009 publication-title: Solid State Ionics – volume: 27 start-page: 5393 year: 2015 publication-title: Chem. Mater. – volume: 162 start-page: A7049 year: 2015 publication-title: J. Electrochem. Soc. – volume: 27 3 start-page: 3915 17627 year: 2015 2015 publication-title: Adv. Mater. J. Mater. Chem. A – volume: 2 start-page: A84 year: 2013 publication-title: ECS Electrochem. Lett. – volume: 8 start-page: 208 year: 2016 publication-title: ACS Appl. Mat. Interfaces – volume: 49 start-page: 4425 year: 2004 2016 publication-title: Electrochim. Acta J. Mater. Chem. A – volume: 9 start-page: A221 year: 2006 publication-title: Electrochem. Solid‐State Lett. – volume: 15 start-page: 16579 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 176 147 start-page: 1035 214 year: 2005 2005 publication-title: Solid State Ionics J. Power Sources – volume: 21 195 start-page: 7503 567 year: 2015 2010 publication-title: Chem. Eur. J. J. Power Sources – volume: 27 6 4 8 start-page: 2600 8363 1400062 4575 year: 2015 2014 2014 2016 publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Adv. Energy Mater. ACS Appl. Mater. Interfaces – volume: 11 start-page: 1073 year: 2009 publication-title: Electrochem. Commun. – volume: 14 start-page: A1 year: 2011 publication-title: Electrochem. Solid‐State Lett. – volume: 1 start-page: 5587 year: 2013 publication-title: J. Mater. Chem. A – volume: 294 start-page: 22 year: 2015 publication-title: J. Power Sources – volume: 50 start-page: 939 year: 2004 publication-title: Electrochim. Acta – volume: 5 start-page: 1500274 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 5385 year: 2015 publication-title: J. Mater. Chem. A – volume: 19 start-page: 4510 year: 2009 publication-title: J. Mater. Chem. – volume: 119–121 20 start-page: 649 4815 year: 2003 2008 publication-title: J. Power Sources Chem. Mater. – volume: 1 start-page: 3659 year: 2013 publication-title: J. Mater. Chem. A – volume: 15 start-page: 1984 year: 2003 publication-title: Chem. Mater. – volume: 188 start-page: 336 year: 2016 publication-title: Electrochim. Acta – volume: 51 start-page: 3413 year: 2006 publication-title: Electrochim. Acta – volume: 149 start-page: A815 year: 2002 publication-title: J. Electrochem. Soc. – volume: 184 225 13 10 start-page: 517 95 1090 1195 year: 2008 2013 2011 2008 publication-title: J. Power Sources J. Power Sources Electrochem. Commun. Electrochem. Commun. – volume: 13 start-page: 590 year: 2003 publication-title: J. Mater. Chem. – volume: 6 start-page: 1502398 year: 2016 publication-title: Adv. Energy Mater. – volume: 20 159 start-page: 6095 A781 year: 2008 2012 publication-title: Chem. Mater. J. Electrochem. Soc. – volume: 149 146 15 128 17 133 24 start-page: A815 654 2257 8694 3112 4404 1192 year: 2002 2005 2005 2006 2007 2011 2012 publication-title: J. Electrochem. Soc. J. Power Sources J. Mater. Chem. J. Am. Chem. Soc. J. Mater. Chem. J. Am. Chem. Soc. Adv. Mater. – volume: 54 start-page: 13058 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 36015 year: 2015 publication-title: RSC Adv. – year: 2016 ident: e_1_2_9_60_2 publication-title: J. Mater. Chem. A – ident: e_1_2_9_78_1 doi: 10.1149/2.1141412jes – volume-title: International Battery Association Meeting year: 2013 ident: e_1_2_9_54_2 – ident: e_1_2_9_92_2 doi: 10.1039/C5TA03415A – ident: e_1_2_9_37_2 doi: 10.1039/c3cp53658k – ident: e_1_2_9_38_3 doi: 10.1021/nl5038598 – ident: e_1_2_9_7_2 doi: 10.1021/nn305065u – ident: e_1_2_9_16_2 doi: 10.1149/2.090311jes – ident: e_1_2_9_70_1 doi: 10.1021/nl501164y – ident: e_1_2_9_117_1 doi: 10.1039/C5TA04157K – ident: e_1_2_9_14_1 doi: 10.1016/j.jpowsour.2013.11.055 – ident: e_1_2_9_128_1 doi: 10.1016/j.jpowsour.2016.05.038 – ident: e_1_2_9_17_1 doi: 10.1016/j.electacta.2012.01.032 – ident: e_1_2_9_95_1 doi: 10.1016/j.jpowsour.2013.02.022 – ident: e_1_2_9_41_2 doi: 10.1016/j.elecom.2013.08.022 – ident: e_1_2_9_8_1 doi: 10.1021/cm030047u – ident: e_1_2_9_105_1 doi: 10.1016/j.electacta.2010.12.049 – ident: e_1_2_9_102_2 doi: 10.1039/C4RA04976D – ident: e_1_2_9_120_1 doi: 10.1016/j.jpowsour.2014.11.018 – ident: e_1_2_9_55_1 doi: 10.1016/S0378-7753(03)00171-X – ident: e_1_2_9_34_3 doi: 10.1021/cm4000119 – ident: e_1_2_9_98_1 doi: 10.1039/C5TA04099J – ident: e_1_2_9_73_1 doi: 10.1021/cm502071h – ident: e_1_2_9_83_2 doi: 10.1016/j.electacta.2013.10.087 – ident: e_1_2_9_13_1 doi: 10.1021/cm504583y – ident: e_1_2_9_94_1 doi: 10.1149/1.2180528 – ident: e_1_2_9_110_1 doi: 10.1016/j.jpowsour.2012.07.135 – ident: e_1_2_9_126_1 doi: 10.1016/j.jpowsour.2013.10.044 – ident: e_1_2_9_52_3 doi: 10.1021/ja407318h – ident: e_1_2_9_43_4 doi: 10.1039/b211558a – ident: e_1_2_9_34_1 doi: 10.1021/jp312658q – ident: e_1_2_9_3_3 doi: 10.1149/2.0111514jes – ident: e_1_2_9_52_1 doi: 10.1002/adma.200904247 – ident: e_1_2_9_88_1 doi: 10.1016/j.jallcom.2012.08.026 – ident: e_1_2_9_81_1 doi: 10.1149/2.0631610jes – ident: e_1_2_9_72_1 doi: 10.1016/j.jpowsour.2012.11.138 – ident: e_1_2_9_116_1 doi: 10.1039/C6TA01878E – ident: e_1_2_9_31_1 doi: 10.1016/j.electacta.2011.09.069 – ident: e_1_2_9_85_1 doi: 10.1016/j.elecom.2009.03.020 – ident: e_1_2_9_129_1 doi: 10.1149/2.0071513jes – ident: e_1_2_9_57_1 doi: 10.1039/c2dt11833e – ident: e_1_2_9_100_1 doi: 10.1016/j.jpowsour.2012.09.014 – ident: e_1_2_9_68_1 doi: 10.1002/anie.201506408 – ident: e_1_2_9_76_1 doi: 10.1149/2.066302jes – volume: 5 start-page: 1501914 year: 2015 ident: e_1_2_9_20_1 publication-title: Adv. Energy Mater. – ident: e_1_2_9_74_1 doi: 10.1002/aenm.201501717 – ident: e_1_2_9_97_1 doi: 10.1021/am508579r – ident: e_1_2_9_52_2 doi: 10.1016/j.jpowsour.2012.04.031 – ident: e_1_2_9_45_1 doi: 10.1039/b211558a – ident: e_1_2_9_60_1 doi: 10.1016/j.electacta.2004.04.033 – ident: e_1_2_9_106_1 doi: 10.1007/s12274-013-0378-7 – ident: e_1_2_9_2_3 doi: 10.1039/b417616m – ident: e_1_2_9_43_2 doi: 10.1021/cm047779m – ident: e_1_2_9_82_1 doi: 10.1016/j.jpowsour.2015.06.035 – ident: e_1_2_9_127_1 doi: 10.1016/j.jpowsour.2016.03.090 – volume: 2 year: 2015 ident: e_1_2_9_37_3 publication-title: MRS Energy & Sustainability – A Review Journal – ident: e_1_2_9_27_1 doi: 10.1149/1.3515900 – ident: e_1_2_9_4_2 doi: 10.1016/j.jpowsour.2006.07.064 – ident: e_1_2_9_115_1 doi: 10.1039/c3ta14513a – ident: e_1_2_9_61_1 doi: 10.1016/j.electacta.2013.04.150 – ident: e_1_2_9_1_1 – ident: e_1_2_9_64_1 doi: 10.1016/j.jpowsour.2013.01.082 – ident: e_1_2_9_92_1 doi: 10.1002/adma.201500956 – ident: e_1_2_9_77_1 doi: 10.1021/acsami.5b01770 – ident: e_1_2_9_99_1 doi: 10.1021/acs.chemmater.5b02331 – ident: e_1_2_9_5_1 doi: 10.1016/j.elecom.2006.11.006 – ident: e_1_2_9_80_1 doi: 10.1016/j.jpowsour.2008.03.016 – ident: e_1_2_9_90_1 doi: 10.1021/acsami.5b04514 – ident: e_1_2_9_39_1 doi: 10.1126/science.1246432 – ident: e_1_2_9_75_3 doi: 10.1149/2.0251504jes – ident: e_1_2_9_53_1 doi: 10.1021/cm200831c – ident: e_1_2_9_75_1 doi: 10.1016/j.jpowsour.2015.03.113 – ident: e_1_2_9_2_5 doi: 10.1039/b702425h – ident: e_1_2_9_134_1 doi: 10.1021/acsami.5b08349 – ident: e_1_2_9_44_1 doi: 10.1021/acs.chemmater.5b02016 – ident: e_1_2_9_86_1 doi: 10.1016/j.jpowsour.2014.03.099 – ident: e_1_2_9_96_1 doi: 10.1149/2.0071410jes – ident: e_1_2_9_63_1 doi: 10.1149/1.2180528 – ident: e_1_2_9_48_1 doi: 10.1002/aenm.201502398 – ident: e_1_2_9_6_1 doi: 10.1039/b904098f – ident: e_1_2_9_50_2 doi: 10.1016/j.jpowsour.2009.07.052 – ident: e_1_2_9_1_2 doi: 10.1109/JPROC.2012.2190170 – ident: e_1_2_9_35_1 doi: 10.1021/nl4019275 – ident: e_1_2_9_21_1 doi: 10.1039/C4TA03692A – ident: e_1_2_9_53_2 doi: 10.1002/anie.201301236 – ident: e_1_2_9_84_1 doi: 10.1039/c3ta01182h – ident: e_1_2_9_12_1 doi: 10.1002/aenm.201501010 – ident: e_1_2_9_122_1 doi: 10.1039/C5RA03368C – ident: e_1_2_9_21_3 doi: 10.1002/adfm.201503276 – ident: e_1_2_9_26_2 doi: 10.1039/c3ta12296d – ident: e_1_2_9_123_1 doi: 10.1039/C6RA06169A – ident: e_1_2_9_15_1 doi: 10.1016/j.electacta.2004.07.038 – ident: e_1_2_9_132_1 doi: 10.1149/2.005308eel – ident: e_1_2_9_133_1 doi: 10.1039/C6TA00069J – ident: e_1_2_9_53_3 doi: 10.1038/ncomms9711 – ident: e_1_2_9_10_1 doi: 10.1039/c3ee43870h – ident: e_1_2_9_25_1 doi: 10.1021/am5017649 – ident: e_1_2_9_87_1 doi: 10.1016/j.jpowsour.2011.04.030 – ident: e_1_2_9_2_1 doi: 10.1149/1.1480014 – ident: e_1_2_9_56_1 doi: 10.1039/C5TA03764F – ident: e_1_2_9_104_1 doi: 10.1021/am504412n – ident: e_1_2_9_3_1 doi: 10.1021/jz400032v – ident: e_1_2_9_29_1 doi: 10.1016/j.jpowsour.2009.02.005 – ident: e_1_2_9_119_1 doi: 10.1149/2.1071605jes – ident: e_1_2_9_23_1 doi: 10.1038/srep03094 – ident: e_1_2_9_106_2 doi: 10.1021/acsami.6b04687 – ident: e_1_2_9_114_1 doi: 10.1039/c3cp51279g – ident: e_1_2_9_58_1 doi: 10.1039/c2jm33484d – ident: e_1_2_9_59_1 doi: 10.1016/j.jpowsour.2007.01.070 – ident: e_1_2_9_131_1 doi: 10.1016/j.electacta.2015.09.067 – ident: e_1_2_9_79_1 doi: 10.1149/1.2966694 – ident: e_1_2_9_38_1 doi: 10.1002/aenm.201400631 – ident: e_1_2_9_61_2 doi: 10.1016/j.jpowsour.2015.02.085 – ident: e_1_2_9_65_1 doi: 10.1016/j.ssi.2008.01.091 – ident: e_1_2_9_113_1 doi: 10.1016/j.jpowsour.2015.05.036 – ident: e_1_2_9_91_1 doi: 10.1016/j.electacta.2012.06.118 – ident: e_1_2_9_34_2 doi: 10.1002/aenm.201300950 – ident: e_1_2_9_2_6 doi: 10.1021/ja108588y – ident: e_1_2_9_71_1 doi: 10.1021/am504796n – ident: e_1_2_9_26_1 doi: 10.1149/2.040403jes – ident: e_1_2_9_46_1 doi: 10.1021/nl500486y – ident: e_1_2_9_93_2 doi: 10.1021/am501280t – ident: e_1_2_9_32_1 doi: 10.1039/C4TA06856D – ident: e_1_2_9_112_1 doi: 10.1039/c1jm11077b – ident: e_1_2_9_4_3 doi: 10.1016/j.jpowsour.2008.10.035 – ident: e_1_2_9_37_1 doi: 10.1021/cm301140g – ident: e_1_2_9_36_1 doi: 10.1016/j.jpowsour.2013.10.071 – ident: e_1_2_9_103_1 doi: 10.1016/j.jpowsour.2007.11.076 – ident: e_1_2_9_3_5 doi: 10.1002/aenm.201600906 – ident: e_1_2_9_5_2 doi: 10.1038/ncomms12108 – ident: e_1_2_9_11_1 doi: 10.1016/S0378-7753(03)00195-2 – ident: e_1_2_9_42_2 doi: 10.1016/j.jpowsour.2004.11.018 – ident: e_1_2_9_59_2 doi: 10.1149/2.0461410jes – ident: e_1_2_9_43_1 doi: 10.1149/1.3473830 – ident: e_1_2_9_4_1 doi: 10.1016/j.elecom.2004.08.002 – ident: e_1_2_9_54_1 doi: 10.1149/2.049301jes – ident: e_1_2_9_124_1 doi: 10.1039/c3ta10586e – ident: e_1_2_9_40_1 doi: 10.1016/j.ssi.2008.11.002 – ident: e_1_2_9_66_1 doi: 10.1016/j.elecom.2009.01.025 – ident: e_1_2_9_83_1 doi: 10.1149/2.1001504jes – ident: e_1_2_9_16_1 doi: 10.1039/c2ra20772a – ident: e_1_2_9_2_4 doi: 10.1021/ja062027 – ident: e_1_2_9_78_2 doi: 10.1016/j.jpowsour.2013.07.070 – ident: e_1_2_9_121_1 doi: 10.1149/1.3597319 – ident: e_1_2_9_111_1 doi: 10.1016/j.jpowsour.2011.11.076 – ident: e_1_2_9_107_1 doi: 10.3389/fenrg.2014.00036 – ident: e_1_2_9_9_1 doi: 10.1039/c1ee01131f – ident: e_1_2_9_28_1 doi: 10.1016/j.elecom.2008.10.036 – ident: e_1_2_9_93_4 doi: 10.1021/acsami.5b10219 – ident: e_1_2_9_19_1 doi: 10.1149/1.3479382 – ident: e_1_2_9_101_1 doi: 10.1021/jp102050s – ident: e_1_2_9_33_1 doi: 10.1149/1.1480014 – ident: e_1_2_9_102_1 doi: 10.1016/j.elecom.2010.03.024 – ident: e_1_2_9_42_1 doi: 10.1016/j.ssi.2005.02.006 – ident: e_1_2_9_62_2 doi: 10.1149/2.080206jes – ident: e_1_2_9_21_2 doi: 10.1016/j.nanoen.2015.06.011 – ident: e_1_2_9_22_1 doi: 10.1016/j.electacta.2015.12.021 – ident: e_1_2_9_93_1 doi: 10.1021/acs.chemmater.5b00405 – ident: e_1_2_9_21_4 doi: 10.1039/c2ta00309k – ident: e_1_2_9_62_1 doi: 10.1021/cm801245r – ident: e_1_2_9_41_3 doi: 10.1149/2.049403jes – ident: e_1_2_9_69_1 doi: 10.1002/aenm.201500274 – ident: e_1_2_9_93_3 doi: 10.1002/aenm.201400062 – ident: e_1_2_9_41_1 doi: 10.1149/2.080206jes – ident: e_1_2_9_75_2 doi: 10.1149/2.0211414jes – ident: e_1_2_9_49_1 doi: 10.1039/C5CC10534J – ident: e_1_2_9_3_4 doi: 10.1179/1753555714Y.0000000166 – ident: e_1_2_9_89_1 doi: 10.1039/C4RA11894D – ident: e_1_2_9_7_1 doi: 10.1002/anie.201201429 – ident: e_1_2_9_43_3 doi: 10.1149/1.1471541 – ident: e_1_2_9_80_3 doi: 10.1016/j.elecom.2011.07.004 – ident: e_1_2_9_118_1 doi: 10.1149/2.0161512jes – ident: e_1_2_9_108_1 doi: 10.1016/j.jpowsour.2014.04.143 – ident: e_1_2_9_11_2 doi: 10.1021/cm070435m – ident: e_1_2_9_50_1 doi: 10.1002/chem.201406641 – ident: e_1_2_9_80_2 doi: 10.1016/j.jpowsour.2012.10.029 – ident: e_1_2_9_30_1 doi: 10.1016/j.electacta.2015.06.085 – ident: e_1_2_9_109_1 doi: 10.1039/c3ce26972h – ident: e_1_2_9_125_1 doi: 10.1016/j.electacta.2005.10.006 – ident: e_1_2_9_2_7 doi: 10.1002/adma.201104106 – ident: e_1_2_9_3_2 doi: 10.1149/2.0071514jes – ident: e_1_2_9_51_1 doi: 10.1021/nl302249v – ident: e_1_2_9_130_1 doi: 10.1149/1.3274205 – ident: e_1_2_9_39_2 doi: 10.1002/aenm.201400478 – ident: e_1_2_9_67_1 doi: 10.1149/1.3496402 – ident: e_1_2_9_38_2 doi: 10.1021/cm5045978 – ident: e_1_2_9_18_1 doi: 10.1149/1.2194764 – ident: e_1_2_9_47_1 doi: 10.1039/C6TA00460A – ident: e_1_2_9_2_2 doi: 10.1016/j.jpowsour.2005.03.152 – ident: e_1_2_9_24_1 doi: 10.1039/c3cp51927a – ident: e_1_2_9_80_4 doi: 10.1016/j.elecom.2008.05.043 |
SSID | ssj0000491033 |
Score | 2.638595 |
SecondaryResourceType | review_article |
Snippet | The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials.... The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg −1 ) among all the cathode... The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ([asymptotically =]900 W h kg-1) among all the... The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ( approximately 900 W h kg super(-1)) among all... The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials.... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Cathodes Commercialization doping/coating Electric potential Electrodes Environmental Molecular Sciences Laboratory full cell full cells Graphite initial capacity loss Li-rich Mn-rich cathode Lithium Li‐ and Mn‐rich cathode rate capability Specifications Strategy Voltage voltage fade |
Title | Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201601284 https://www.proquest.com/docview/1879721353 https://www.proquest.com/docview/1893910193 https://www.osti.gov/biblio/1373002 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcILShISJwMiRNvEm6rpVWFdiuktqKcIseeqIvaBLXZS0_wD_iN_BLG8WOzKs9eoiT2OlnP5_HMZB6EvOQ8hzhSFVU8FTRNpKSCF5LmMOFQSIiE6h1kDyb7x-n7E34yGn0bRpd01Wt59cu4kptQFe8hXXWU7H9Q1g-KN_Ac6YtHpDAe_4nG86X3VTAOE42_1gHzfXhfq3R1oc68jtb_Z658Sp_bQQeI6KJL4swGZA6l1alzEAATIXjuxlmbm8F69CLKzt0uaGpJWF_fQ0B28nnlMTg77Y2zH1tsvxAeVp-MIfYDjlfDcmiLwP0tSigbmCdRfEzpJLcWSxjeM0mZHM_NBtCaDDZfvzVd4-wmU6yARqcPiCf9vrrew9x3e9-T_7mvyfi7e7Dw7bfIFkNNA1nl1vTdYn7oDXWoQsVR0gdquH_nkn9G7M3mQzaEm3GLTHpDcRmqP738cnSP3LWKRzg1KLpPRtA8IHcG6Sgfkr358sfX7yEiKVw0eKYxFFoMhR5Db8M1gsKuDa8h6BE53ts9mu1TW2eDSo7SHRUZ8KrmKovSOC5SlWUAuRJFUTMpK5FzQJk_wQsumMhrFmUqQwYU81rhPOd58piMm7aBJyQUWhzE5V3pz8eo6lcKsgp1Dh4xySJQAaFugkppk9DrWihnpUmfzUo9oaWf0IC88v2_mPQrv-25ree7RMFRZz-W2k1MdmWc6IIMLCA7jgylXcCXZZxnOndVwpOAvPDNyF71NzPRQLvSfYoE6Y9qTkBYT76_vEe5gaqnN_nRNrm9Xlw7ZNxdrOAZir5d9dyC8yfCqKU- |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Li%E2%80%90+and+Mn%E2%80%90Rich+Cathode+Materials%3A+Challenges+to+Commercialization&rft.jtitle=Advanced+energy+materials&rft.au=Zheng%2C+Jianming&rft.au=Myeong%2C+Seungjun&rft.au=Cho%2C+Woongrae&rft.au=Yan%2C+Pengfei&rft.date=2017-03-22&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201601284&rft.externalDBID=10.1002%252Faenm.201601284&rft.externalDocID=AENM201601284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |