Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization

The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 7; no. 6; pp. np - n/a
Main Authors Zheng, Jianming, Myeong, Seungjun, Cho, Woongrae, Yan, Pengfei, Xiao, Jie, Wang, Chongmin, Cho, Jaephil, Zhang, Ji‐Guang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.03.2017
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full‐cell operation are systematically analyzed. These factors include the first‐cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind. An overview of current research activities addressing the key challenges of LMR cathodes is presented, focusing on discussion of the facile strategies to improve the initial Coulombic efficiency, working voltage stability, and rate capability. Promising perspectives for LMR studies are suggested by providing full‐cell data of LMR electrodes with commercialization specifications.
AbstractList The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full‐cell operation are systematically analyzed. These factors include the first‐cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind. An overview of current research activities addressing the key challenges of LMR cathodes is presented, focusing on discussion of the facile strategies to improve the initial Coulombic efficiency, working voltage stability, and rate capability. Promising perspectives for LMR studies are suggested by providing full‐cell data of LMR electrodes with commercialization specifications.
The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ( approximately 900 W h kg super(-1)) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full-cell operation are systematically analyzed. These factors include the first-cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind. An overview of current research activities addressing the key challenges of LMR cathodes is presented, focusing on discussion of the facile strategies to improve the initial Coulombic efficiency, working voltage stability, and rate capability. Promising perspectives for LMR studies are suggested by providing full-cell data of LMR electrodes with commercialization specifications.
The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ([asymptotically =]900 W h kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full-cell operation are systematically analyzed. These factors include the first-cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind.
The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg −1 ) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full‐cell operation are systematically analyzed. These factors include the first‐cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind.
The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density, electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.
Author Xiao, Jie
Myeong, Seungjun
Zheng, Jianming
Cho, Jaephil
Zhang, Ji‐Guang
Yan, Pengfei
Cho, Woongrae
Wang, Chongmin
Author_xml – sequence: 1
  givenname: Jianming
  surname: Zheng
  fullname: Zheng, Jianming
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: Seungjun
  surname: Myeong
  fullname: Myeong, Seungjun
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 3
  givenname: Woongrae
  surname: Cho
  fullname: Cho, Woongrae
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 4
  givenname: Pengfei
  surname: Yan
  fullname: Yan, Pengfei
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Jie
  surname: Xiao
  fullname: Xiao, Jie
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Jaephil
  surname: Cho
  fullname: Cho, Jaephil
  email: jpcho@unist.ac.kr
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 8
  givenname: Ji‐Guang
  surname: Zhang
  fullname: Zhang, Ji‐Guang
  email: jiguang.zhang@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/biblio/1373002$$D View this record in Osti.gov
BookMark eNqFkc1OGzEUha0KpFJg2_UINt0k-Hc8wy4aEaiUUKlq15bjudMYzdjBdoTCikfgGXkSnAYFCamqN77W_c61zj1f0IHzDhD6SvCYYEwvNLhhTDEpMaEV_4SOSEn4qKw4PtjXjH5GpzHe4Xx4TTBjR2g6sy9Pz4V2bTF3ufppzbJodFr6Foq5ThCs7uNl0Sx134P7A7FIvmj8MEAwuWUfdbLenaDDLnNw-nYfo9_Tq1_NzWj24_p7M5mNjKCcj7QEsehEKzEnpOatlABVq-u6o8YsdCVAlCXLD6GprjqKZStBt0R0LRW0qtgxOtvN9TFZFY1NYJbGOwcmKcIky7vI0LcdtAr-fg0xqcFGA32vHfh1VKSqWbZPapbR8w_onV8Hly1kStaSEia2FN9RJvgYA3Qqf_zXdwra9opgtQ1BbUNQ-xCybPxBtgp20GHzb0G9EzzYHjb_odXk6nb-rn0FEMqbzw
CitedBy_id crossref_primary_10_1039_D4TA05416D
crossref_primary_10_1016_j_nanoen_2018_04_077
crossref_primary_10_1149_1945_7111_abf05f
crossref_primary_10_1039_D3SU00168G
crossref_primary_10_1038_s41467_017_02291_9
crossref_primary_10_1039_D3TA08095A
crossref_primary_10_1002_adma_201905245
crossref_primary_10_1016_j_ensm_2022_05_002
crossref_primary_10_1038_s41578_019_0165_5
crossref_primary_10_1016_j_mtcomm_2024_108176
crossref_primary_10_1016_j_nanoen_2019_103887
crossref_primary_10_1002_adma_202408543
crossref_primary_10_1021_acs_jpcc_9b11896
crossref_primary_10_1016_j_est_2022_105353
crossref_primary_10_4028_www_scientific_net_MSF_1044_59
crossref_primary_10_1039_C9NJ04531G
crossref_primary_10_1149_2_1021906jes
crossref_primary_10_1002_admi_201901749
crossref_primary_10_1002_aenm_202101962
crossref_primary_10_1039_D4EE00791C
crossref_primary_10_1007_s11581_019_03342_5
crossref_primary_10_1016_j_nanoen_2019_05_021
crossref_primary_10_1002_admt_201700376
crossref_primary_10_1007_s10800_024_02133_9
crossref_primary_10_3390_inorganics10030039
crossref_primary_10_1021_acs_chemrev_2c00214
crossref_primary_10_1002_ange_202000262
crossref_primary_10_1016_j_jechem_2024_03_050
crossref_primary_10_3390_met14020151
crossref_primary_10_1016_j_est_2023_106616
crossref_primary_10_1002_ijch_201900116
crossref_primary_10_1007_s10853_019_03425_8
crossref_primary_10_1007_s12613_022_2483_7
crossref_primary_10_1039_D3MH00780D
crossref_primary_10_1002_aenm_202100640
crossref_primary_10_20964_2018_01_42
crossref_primary_10_1016_j_scib_2019_03_019
crossref_primary_10_1038_s41563_019_0318_3
crossref_primary_10_1016_j_jcis_2022_03_101
crossref_primary_10_1002_aenm_201904264
crossref_primary_10_1039_C9TA12683J
crossref_primary_10_1002_advs_202201896
crossref_primary_10_1016_j_est_2024_114402
crossref_primary_10_1039_D1CP02963K
crossref_primary_10_1021_acsami_0c05756
crossref_primary_10_1016_j_cej_2024_149546
crossref_primary_10_1016_j_jallcom_2023_168846
crossref_primary_10_1021_acsami_8b16319
crossref_primary_10_1007_s13369_017_2719_4
crossref_primary_10_1007_s40843_020_1433_4
crossref_primary_10_1002_smll_201800887
crossref_primary_10_1021_acs_chemmater_4c01762
crossref_primary_10_1002_adma_202307404
crossref_primary_10_1002_adma_201801348
crossref_primary_10_1007_s10853_020_05246_6
crossref_primary_10_1016_j_chempr_2022_09_015
crossref_primary_10_1039_D0EE01694B
crossref_primary_10_1016_j_jcis_2023_06_050
crossref_primary_10_1016_j_electacta_2019_135466
crossref_primary_10_1021_acsaem_1c01816
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_1021_acsami_9b02827
crossref_primary_10_1002_aenm_202404391
crossref_primary_10_1088_1755_1315_267_6_062020
crossref_primary_10_1039_C8NR08461K
crossref_primary_10_1002_eom2_12338
crossref_primary_10_1007_s12598_022_02158_z
crossref_primary_10_1016_j_jpowsour_2019_227017
crossref_primary_10_1021_acsami_7b09002
crossref_primary_10_1002_ece2_92
crossref_primary_10_1002_aenm_201800297
crossref_primary_10_1021_acs_energyfuels_0c03608
crossref_primary_10_1016_j_jallcom_2023_173064
crossref_primary_10_1021_acs_langmuir_3c03794
crossref_primary_10_1088_1361_6528_ac4c60
crossref_primary_10_1002_anie_202000262
crossref_primary_10_1088_1361_6528_ab4447
crossref_primary_10_1021_acsami_7b15808
crossref_primary_10_1021_acsenergylett_2c01521
crossref_primary_10_1021_acs_iecr_0c04374
crossref_primary_10_1149_1945_7111_ac15ba
crossref_primary_10_1016_j_electacta_2017_09_032
crossref_primary_10_1016_j_nanoen_2019_03_012
crossref_primary_10_1021_acsami_1c21853
crossref_primary_10_1002_aenm_201802105
crossref_primary_10_1021_acsami_3c16122
crossref_primary_10_1002_ente_202200800
crossref_primary_10_1021_jacs_9b03710
crossref_primary_10_3390_ma13194388
crossref_primary_10_1016_j_ssi_2017_07_012
crossref_primary_10_1016_j_jpowsour_2024_235232
crossref_primary_10_1002_elt2_33
crossref_primary_10_1016_j_jechem_2022_12_008
crossref_primary_10_1002_cjoc_202000387
crossref_primary_10_1021_acsaem_4c00915
crossref_primary_10_1002_adma_201804822
crossref_primary_10_1002_adma_202100352
crossref_primary_10_1016_j_nanoen_2021_106252
crossref_primary_10_1002_aenm_202100901
crossref_primary_10_1021_acsami_1c06890
crossref_primary_10_1021_jacs_9b13050
crossref_primary_10_1007_s11581_022_04873_0
crossref_primary_10_1039_C8TA11415C
crossref_primary_10_1007_s12598_024_03092_y
crossref_primary_10_1016_j_joule_2021_11_005
crossref_primary_10_1021_acsaem_0c00898
crossref_primary_10_1002_adma_202001944
crossref_primary_10_1016_j_cej_2021_130293
crossref_primary_10_1038_d41586_022_01179_z
crossref_primary_10_1016_j_ensm_2024_103559
crossref_primary_10_1021_acsami_4c03545
crossref_primary_10_1002_smtd_201700332
crossref_primary_10_1007_s11051_018_4235_1
crossref_primary_10_1039_C8TA10786F
crossref_primary_10_1039_D3QI01275A
crossref_primary_10_1016_j_electacta_2017_03_133
crossref_primary_10_1039_C8TA06150E
crossref_primary_10_1021_jacs_0c10270
crossref_primary_10_3390_mi12111410
crossref_primary_10_1016_j_jcis_2023_02_054
crossref_primary_10_1021_acs_chemmater_8b01958
crossref_primary_10_1002_adfm_202214775
crossref_primary_10_1016_j_electacta_2023_142210
crossref_primary_10_1038_s41467_020_17126_3
crossref_primary_10_1021_acs_chemmater_9b05362
crossref_primary_10_1002_aenm_201904092
crossref_primary_10_1021_acsaem_1c01941
crossref_primary_10_3390_batteries9010031
crossref_primary_10_1021_acs_jpclett_9b01516
crossref_primary_10_1007_s41918_023_00184_8
crossref_primary_10_1021_jacs_8b07858
crossref_primary_10_1016_j_ensm_2021_02_025
crossref_primary_10_1016_j_jechem_2022_07_007
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1021_acsami_3c00392
crossref_primary_10_1021_acsami_1c18651
crossref_primary_10_1039_D0MA00614A
crossref_primary_10_1149_1945_7111_ac60f3
crossref_primary_10_1021_acsaem_1c01955
crossref_primary_10_1039_D2TA09097J
crossref_primary_10_1016_j_mattod_2021_03_017
crossref_primary_10_1002_aenm_201900551
crossref_primary_10_1016_j_jcis_2024_03_115
crossref_primary_10_1039_C8ME00025E
crossref_primary_10_1021_acs_energyfuels_3c01920
crossref_primary_10_1016_j_cej_2023_145986
crossref_primary_10_1021_acsami_1c14229
crossref_primary_10_1038_s41563_019_0572_4
crossref_primary_10_1002_adfm_202425669
crossref_primary_10_1002_anie_202203698
crossref_primary_10_1021_jacs_0c02302
crossref_primary_10_1021_acsami_4c00291
crossref_primary_10_3390_en11102712
crossref_primary_10_1002_aenm_201802057
crossref_primary_10_1002_aenm_201702561
crossref_primary_10_1039_D4CS00797B
crossref_primary_10_1088_2516_1083_ac3894
crossref_primary_10_1021_acssuschemeng_3c04620
crossref_primary_10_1002_aenm_202001120
crossref_primary_10_1016_j_jechem_2023_09_036
crossref_primary_10_1016_j_etran_2024_100382
crossref_primary_10_1002_aenm_201901530
crossref_primary_10_1002_adma_202212098
crossref_primary_10_3390_ma14164751
crossref_primary_10_1016_j_mtsust_2022_100277
crossref_primary_10_1021_acssuschemeng_0c02687
crossref_primary_10_1039_D0TA00355G
crossref_primary_10_1002_chem_202302569
crossref_primary_10_1088_2752_5724_ad4572
crossref_primary_10_1016_j_jechem_2021_04_030
crossref_primary_10_1016_j_jpowsour_2020_228171
crossref_primary_10_6023_A19070265
crossref_primary_10_1016_j_mtener_2022_101116
crossref_primary_10_1038_s41560_023_01329_1
crossref_primary_10_1002_advs_202304938
crossref_primary_10_1021_acsaem_0c01897
crossref_primary_10_1016_j_ceramint_2017_06_028
crossref_primary_10_1038_s41560_019_0410_6
crossref_primary_10_1002_batt_202400443
crossref_primary_10_1021_jacs_3c01999
crossref_primary_10_1038_s41467_023_37122_7
crossref_primary_10_1038_s41560_018_0222_0
crossref_primary_10_1002_smll_202200713
crossref_primary_10_1016_j_electacta_2022_141047
crossref_primary_10_1021_acs_chemmater_9b05285
crossref_primary_10_1002_aenm_202400985
crossref_primary_10_1021_acsnano_1c00304
crossref_primary_10_1021_acsami_1c02020
crossref_primary_10_1016_j_nanoen_2020_105188
crossref_primary_10_1002_adma_201800561
crossref_primary_10_1021_acsaem_2c01753
crossref_primary_10_1002_aenm_202302017
crossref_primary_10_1002_smll_201802570
crossref_primary_10_1039_D4RA06047D
crossref_primary_10_1149_2_1291712jes
crossref_primary_10_1007_s41918_022_00155_5
crossref_primary_10_1039_C8SE00157J
crossref_primary_10_1021_acsami_9b21738
crossref_primary_10_1021_acs_chemmater_9b04066
crossref_primary_10_1007_s11581_021_04185_9
crossref_primary_10_1007_s11581_023_05016_9
crossref_primary_10_1021_acsaem_0c01912
crossref_primary_10_1039_D2NR05936C
crossref_primary_10_1007_s11581_018_2673_5
crossref_primary_10_1016_j_jallcom_2020_154489
crossref_primary_10_1016_j_jechem_2021_01_034
crossref_primary_10_1021_acs_chemmater_3c03307
crossref_primary_10_1002_aenm_202301983
crossref_primary_10_1039_D2CC03259G
crossref_primary_10_1016_j_cej_2019_03_247
crossref_primary_10_2139_ssrn_4114032
crossref_primary_10_1039_D4RA03660C
crossref_primary_10_1002_aenm_201903634
crossref_primary_10_1016_j_jpowsour_2018_08_056
crossref_primary_10_2139_ssrn_4013335
crossref_primary_10_1007_s11581_017_2387_0
crossref_primary_10_1016_j_jallcom_2020_154491
crossref_primary_10_1021_acsami_1c24580
crossref_primary_10_1039_C7TA08735G
crossref_primary_10_1016_j_jallcom_2020_155342
crossref_primary_10_1021_acsami_2c10613
crossref_primary_10_1149_1945_7111_aba6cb
crossref_primary_10_3390_chemengineering7010015
crossref_primary_10_1002_aenm_202001413
crossref_primary_10_1002_aenm_202002506
crossref_primary_10_1016_j_cej_2022_138114
crossref_primary_10_1039_D0CP00400F
crossref_primary_10_1021_acsaem_1c00453
crossref_primary_10_1016_j_mtener_2020_100474
crossref_primary_10_1149_1945_7111_ad0490
crossref_primary_10_1002_aenm_201901795
crossref_primary_10_1016_j_ensm_2019_10_029
crossref_primary_10_1039_D1SE00312G
crossref_primary_10_1021_acsami_3c00554
crossref_primary_10_1016_j_ensm_2022_10_020
crossref_primary_10_1016_j_nanoen_2019_104084
crossref_primary_10_1016_j_cej_2023_147419
crossref_primary_10_1002_smll_202404059
crossref_primary_10_1002_adma_202208974
crossref_primary_10_1002_smll_202305606
crossref_primary_10_1007_s11581_022_04502_w
crossref_primary_10_1002_adma_202205229
crossref_primary_10_1007_s12274_022_5333_z
crossref_primary_10_1021_acsami_1c03680
crossref_primary_10_1021_acs_chemmater_3c02411
crossref_primary_10_1021_acs_chemmater_7b02299
crossref_primary_10_1007_s11581_021_04110_0
crossref_primary_10_34133_energymatadv_0115
crossref_primary_10_1007_s11814_023_00009_w
crossref_primary_10_1149_2_0121908jes
crossref_primary_10_1016_j_jechem_2021_07_021
crossref_primary_10_1002_advs_202307397
crossref_primary_10_1016_j_jechem_2021_07_023
crossref_primary_10_1515_ntrev_2024_0034
crossref_primary_10_1007_s11426_018_9410_0
crossref_primary_10_1016_j_jpowsour_2018_01_045
crossref_primary_10_1016_j_cej_2020_125725
crossref_primary_10_1039_D1CS00450F
crossref_primary_10_1016_j_tsf_2020_137925
crossref_primary_10_1016_j_nanoen_2020_104942
crossref_primary_10_1063_5_0096578
crossref_primary_10_1149_1945_7111_acaa5c
crossref_primary_10_1002_celc_202000750
crossref_primary_10_1016_j_electacta_2019_134932
crossref_primary_10_1039_C8RA03852J
crossref_primary_10_1016_j_jpowsour_2024_235497
crossref_primary_10_3390_molecules29051064
crossref_primary_10_1021_acsenergylett_2c01072
crossref_primary_10_1002_cssc_201800706
crossref_primary_10_1021_acsenergylett_9b01830
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1016_j_electacta_2020_135870
crossref_primary_10_1021_acsami_7b17424
crossref_primary_10_1021_acsami_1c02424
crossref_primary_10_1002_cey2_332
crossref_primary_10_1007_s11581_024_05618_x
crossref_primary_10_1002_smll_202303353
crossref_primary_10_1021_acsami_1c21182
crossref_primary_10_1039_D0TA05429A
crossref_primary_10_1021_acsami_0c08797
crossref_primary_10_1021_acs_jpcc_1c04339
crossref_primary_10_1016_j_ensm_2024_103509
crossref_primary_10_1016_j_jallcom_2024_178158
crossref_primary_10_1016_j_cej_2023_145552
crossref_primary_10_1088_1674_1056_ab5d07
crossref_primary_10_1002_adma_202410006
crossref_primary_10_1088_1361_6528_ab9579
crossref_primary_10_1002_eem2_12034
crossref_primary_10_1021_acs_chemmater_3c02404
crossref_primary_10_1002_aenm_202000997
crossref_primary_10_1002_smll_202500940
crossref_primary_10_1016_j_est_2018_03_002
crossref_primary_10_1039_C8EE00372F
crossref_primary_10_1016_j_electacta_2018_01_130
crossref_primary_10_1002_aenm_201903658
crossref_primary_10_1016_j_susmat_2020_e00171
crossref_primary_10_1016_j_electacta_2022_140465
crossref_primary_10_1021_acsomega_8b00924
crossref_primary_10_1002_aenm_201902445
crossref_primary_10_1016_j_nanoen_2017_04_005
crossref_primary_10_1149_1945_7111_ac4cd5
crossref_primary_10_1002_adma_201701828
crossref_primary_10_1021_acsami_7b15494
crossref_primary_10_1007_s11705_024_2444_y
crossref_primary_10_1021_acsami_2c12739
crossref_primary_10_1002_aenm_202001830
crossref_primary_10_1002_smll_202401839
crossref_primary_10_1149_1945_7111_acd87d
crossref_primary_10_1002_aenm_202000982
crossref_primary_10_1038_s41598_020_66411_0
crossref_primary_10_1021_acsami_8b11471
crossref_primary_10_1038_s41560_023_01289_6
crossref_primary_10_1038_s41467_020_17396_x
crossref_primary_10_1007_s42247_018_0014_0
crossref_primary_10_1002_aenm_202102646
crossref_primary_10_1007_s42864_022_00173_2
crossref_primary_10_1016_j_apsusc_2019_07_245
crossref_primary_10_1016_j_jelechem_2022_116623
crossref_primary_10_1016_j_nanoen_2019_104102
crossref_primary_10_1021_acsami_0c12541
crossref_primary_10_1038_s41560_023_01375_9
crossref_primary_10_1038_s41524_022_00893_6
crossref_primary_10_1039_D0SE01065K
crossref_primary_10_1016_j_nanoen_2019_06_011
crossref_primary_10_1016_j_jallcom_2019_03_172
crossref_primary_10_1016_j_ceramint_2019_04_250
crossref_primary_10_1002_adma_202004419
crossref_primary_10_1016_j_jpowsour_2017_08_077
crossref_primary_10_1002_celc_201701193
crossref_primary_10_1021_acsaem_2c03785
crossref_primary_10_1021_acsami_3c02907
crossref_primary_10_1021_acsami_0c14995
crossref_primary_10_3390_inorganics12010008
crossref_primary_10_1016_j_ssi_2019_03_020
crossref_primary_10_1016_j_jallcom_2019_03_282
crossref_primary_10_1002_aenm_202102311
crossref_primary_10_1002_adfm_202008083
crossref_primary_10_1016_j_est_2025_115974
crossref_primary_10_1007_s42864_022_00187_w
crossref_primary_10_1021_acssuschemeng_8b02436
crossref_primary_10_1002_smll_202106337
crossref_primary_10_1007_s11051_018_4165_y
crossref_primary_10_20964_2022_02_22
crossref_primary_10_1021_acs_chemmater_4c01879
crossref_primary_10_1002_adfm_202107769
crossref_primary_10_1016_j_mtener_2020_100518
crossref_primary_10_1007_s10008_019_04232_6
crossref_primary_10_1016_j_ensm_2021_11_044
crossref_primary_10_1016_j_jechem_2023_02_025
crossref_primary_10_1002_aenm_202103894
crossref_primary_10_1007_s40820_021_00643_1
crossref_primary_10_1002_aenm_202403374
crossref_primary_10_1115_1_4047222
crossref_primary_10_1016_j_jallcom_2023_171808
crossref_primary_10_1039_C9TA01708A
crossref_primary_10_1002_aenm_202201044
crossref_primary_10_1016_j_electacta_2019_134951
crossref_primary_10_1021_acsami_0c22235
crossref_primary_10_1021_acsami_0c01558
crossref_primary_10_1016_j_cej_2023_148223
crossref_primary_10_1021_acssuschemeng_3c07007
crossref_primary_10_1021_acs_nanolett_2c01401
crossref_primary_10_1002_aenm_201703092
crossref_primary_10_1016_j_ssc_2019_113733
crossref_primary_10_1007_s11837_020_04163_y
crossref_primary_10_1021_acsenergylett_8b01798
crossref_primary_10_1021_acsaem_1c03396
crossref_primary_10_1002_ente_201800415
crossref_primary_10_1016_j_ensm_2022_12_006
crossref_primary_10_1016_j_ceramint_2019_06_176
crossref_primary_10_1002_adfm_201704808
crossref_primary_10_1016_j_electacta_2022_140737
crossref_primary_10_1002_adfm_202205199
crossref_primary_10_1016_j_jelechem_2021_115439
crossref_primary_10_1002_adma_202000496
crossref_primary_10_1002_adfm_202107703
crossref_primary_10_1002_adfm_202208586
crossref_primary_10_1021_acs_chemmater_7b04861
crossref_primary_10_1016_j_rineng_2022_100472
crossref_primary_10_1063_5_0217139
crossref_primary_10_3389_fchem_2022_914930
crossref_primary_10_1016_j_nanoen_2021_105926
crossref_primary_10_23919_CHAIN_2024_000011
crossref_primary_10_1007_s10853_023_09065_3
crossref_primary_10_1002_ente_201800769
crossref_primary_10_1021_acsami_1c01726
crossref_primary_10_1038_s41467_018_05802_4
crossref_primary_10_1038_s41560_018_0097_0
crossref_primary_10_1016_j_ssi_2021_115661
crossref_primary_10_1038_s41586_022_04689_y
crossref_primary_10_1016_j_jpowsour_2019_227648
crossref_primary_10_1039_C9CP06165G
crossref_primary_10_1002_adfm_202002643
crossref_primary_10_1016_j_cej_2021_131978
crossref_primary_10_1021_acs_chemmater_8b04504
crossref_primary_10_1149_1945_7111_ac766c
crossref_primary_10_1149_1945_7111_ab8401
crossref_primary_10_1002_adma_202200655
crossref_primary_10_1002_adma_202005937
crossref_primary_10_1016_j_cej_2023_141924
crossref_primary_10_1016_j_jallcom_2023_169795
crossref_primary_10_1021_acsami_0c19040
crossref_primary_10_1002_aenm_202100204
crossref_primary_10_1039_C8CP07718E
crossref_primary_10_1016_j_pmatsci_2024_101247
crossref_primary_10_1002_cssc_201901739
crossref_primary_10_1002_batt_202300103
crossref_primary_10_1002_ange_202203698
crossref_primary_10_1016_j_electacta_2024_144343
crossref_primary_10_1016_j_materresbull_2020_110923
crossref_primary_10_1039_D2TA04876K
crossref_primary_10_1016_j_ceramint_2018_11_087
crossref_primary_10_1149_1945_7111_ad8d50
crossref_primary_10_1002_celc_202400391
crossref_primary_10_1016_j_electacta_2021_139467
crossref_primary_10_1007_s12598_022_02070_6
crossref_primary_10_1021_acsami_3c11511
crossref_primary_10_1038_s41467_021_24694_5
crossref_primary_10_1016_j_jpowsour_2019_02_086
crossref_primary_10_3390_batteries8100132
crossref_primary_10_1007_s11581_020_03700_8
crossref_primary_10_1016_j_eng_2023_08_021
crossref_primary_10_1002_smtd_201900065
crossref_primary_10_1149_1945_7111_ac0948
Cites_doi 10.1149/2.1141412jes
10.1039/C5TA03415A
10.1039/c3cp53658k
10.1021/nl5038598
10.1021/nn305065u
10.1149/2.090311jes
10.1021/nl501164y
10.1039/C5TA04157K
10.1016/j.jpowsour.2013.11.055
10.1016/j.jpowsour.2016.05.038
10.1016/j.electacta.2012.01.032
10.1016/j.jpowsour.2013.02.022
10.1016/j.elecom.2013.08.022
10.1021/cm030047u
10.1016/j.electacta.2010.12.049
10.1039/C4RA04976D
10.1016/j.jpowsour.2014.11.018
10.1016/S0378-7753(03)00171-X
10.1021/cm4000119
10.1039/C5TA04099J
10.1021/cm502071h
10.1016/j.electacta.2013.10.087
10.1021/cm504583y
10.1149/1.2180528
10.1016/j.jpowsour.2012.07.135
10.1016/j.jpowsour.2013.10.044
10.1021/ja407318h
10.1039/b211558a
10.1021/jp312658q
10.1149/2.0111514jes
10.1002/adma.200904247
10.1016/j.jallcom.2012.08.026
10.1149/2.0631610jes
10.1016/j.jpowsour.2012.11.138
10.1039/C6TA01878E
10.1016/j.electacta.2011.09.069
10.1016/j.elecom.2009.03.020
10.1149/2.0071513jes
10.1039/c2dt11833e
10.1016/j.jpowsour.2012.09.014
10.1002/anie.201506408
10.1149/2.066302jes
10.1002/aenm.201501717
10.1021/am508579r
10.1016/j.jpowsour.2012.04.031
10.1016/j.electacta.2004.04.033
10.1007/s12274-013-0378-7
10.1039/b417616m
10.1021/cm047779m
10.1016/j.jpowsour.2015.06.035
10.1016/j.jpowsour.2016.03.090
10.1149/1.3515900
10.1016/j.jpowsour.2006.07.064
10.1039/c3ta14513a
10.1016/j.electacta.2013.04.150
10.1016/j.jpowsour.2013.01.082
10.1002/adma.201500956
10.1021/acsami.5b01770
10.1021/acs.chemmater.5b02331
10.1016/j.elecom.2006.11.006
10.1016/j.jpowsour.2008.03.016
10.1021/acsami.5b04514
10.1126/science.1246432
10.1149/2.0251504jes
10.1021/cm200831c
10.1016/j.jpowsour.2015.03.113
10.1039/b702425h
10.1021/acsami.5b08349
10.1021/acs.chemmater.5b02016
10.1016/j.jpowsour.2014.03.099
10.1149/2.0071410jes
10.1002/aenm.201502398
10.1039/b904098f
10.1016/j.jpowsour.2009.07.052
10.1109/JPROC.2012.2190170
10.1021/nl4019275
10.1039/C4TA03692A
10.1002/anie.201301236
10.1039/c3ta01182h
10.1002/aenm.201501010
10.1039/C5RA03368C
10.1002/adfm.201503276
10.1039/c3ta12296d
10.1039/C6RA06169A
10.1016/j.electacta.2004.07.038
10.1149/2.005308eel
10.1039/C6TA00069J
10.1038/ncomms9711
10.1039/c3ee43870h
10.1021/am5017649
10.1016/j.jpowsour.2011.04.030
10.1149/1.1480014
10.1039/C5TA03764F
10.1021/am504412n
10.1021/jz400032v
10.1016/j.jpowsour.2009.02.005
10.1149/2.1071605jes
10.1038/srep03094
10.1021/acsami.6b04687
10.1039/c3cp51279g
10.1039/c2jm33484d
10.1016/j.jpowsour.2007.01.070
10.1016/j.electacta.2015.09.067
10.1149/1.2966694
10.1002/aenm.201400631
10.1016/j.jpowsour.2015.02.085
10.1016/j.ssi.2008.01.091
10.1016/j.jpowsour.2015.05.036
10.1016/j.electacta.2012.06.118
10.1002/aenm.201300950
10.1021/ja108588y
10.1021/am504796n
10.1149/2.040403jes
10.1021/nl500486y
10.1021/am501280t
10.1039/C4TA06856D
10.1039/c1jm11077b
10.1016/j.jpowsour.2008.10.035
10.1021/cm301140g
10.1016/j.jpowsour.2013.10.071
10.1016/j.jpowsour.2007.11.076
10.1002/aenm.201600906
10.1038/ncomms12108
10.1016/S0378-7753(03)00195-2
10.1016/j.jpowsour.2004.11.018
10.1149/2.0461410jes
10.1149/1.3473830
10.1016/j.elecom.2004.08.002
10.1149/2.049301jes
10.1039/c3ta10586e
10.1016/j.ssi.2008.11.002
10.1016/j.elecom.2009.01.025
10.1149/2.1001504jes
10.1039/c2ra20772a
10.1021/ja062027
10.1016/j.jpowsour.2013.07.070
10.1149/1.3597319
10.1016/j.jpowsour.2011.11.076
10.3389/fenrg.2014.00036
10.1039/c1ee01131f
10.1016/j.elecom.2008.10.036
10.1021/acsami.5b10219
10.1149/1.3479382
10.1021/jp102050s
10.1016/j.elecom.2010.03.024
10.1016/j.ssi.2005.02.006
10.1149/2.080206jes
10.1016/j.nanoen.2015.06.011
10.1016/j.electacta.2015.12.021
10.1021/acs.chemmater.5b00405
10.1039/c2ta00309k
10.1021/cm801245r
10.1149/2.049403jes
10.1002/aenm.201500274
10.1002/aenm.201400062
10.1149/2.0211414jes
10.1039/C5CC10534J
10.1179/1753555714Y.0000000166
10.1039/C4RA11894D
10.1002/anie.201201429
10.1149/1.1471541
10.1016/j.elecom.2011.07.004
10.1149/2.0161512jes
10.1016/j.jpowsour.2014.04.143
10.1021/cm070435m
10.1002/chem.201406641
10.1016/j.jpowsour.2012.10.029
10.1016/j.electacta.2015.06.085
10.1039/c3ce26972h
10.1016/j.electacta.2005.10.006
10.1002/adma.201104106
10.1149/2.0071514jes
10.1021/nl302249v
10.1149/1.3274205
10.1002/aenm.201400478
10.1149/1.3496402
10.1021/cm5045978
10.1149/1.2194764
10.1039/C6TA00460A
10.1016/j.jpowsour.2005.03.152
10.1039/c3cp51927a
10.1016/j.elecom.2008.05.043
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
OTOTI
DOI 10.1002/aenm.201601284
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 1373002
4321066547
10_1002_aenm_201601284
AENM201601284
Genre reviewArticle
GrantInformation_xml – fundername: Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U. S. and Department of Energy
  funderid: DE‐AC02‐05CH11231; 18769
– fundername: IT R&D program of MOTIE/KEIT
  funderid: 10046306
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
AAPBV
AEUQT
OTOTI
ID FETCH-LOGICAL-c5244-a7e5bf5d7041194d77ee8da99f2ccba85e5663f2c5a2a8f207d7ead15fd252883
ISSN 1614-6832
IngestDate Fri May 19 01:40:21 EDT 2023
Fri Jul 11 12:11:40 EDT 2025
Fri Jul 25 12:30:45 EDT 2025
Tue Jul 01 01:43:18 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Jan 22 16:38:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5244-a7e5bf5d7041194d77ee8da99f2ccba85e5663f2c5a2a8f207d7ead15fd252883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-117202
OpenAccessLink https://www.osti.gov/biblio/1401043
PQID 1879721353
PQPubID 886389
PageCount 25
ParticipantIDs osti_scitechconnect_1373002
proquest_miscellaneous_1893910193
proquest_journals_1879721353
crossref_citationtrail_10_1002_aenm_201601284
crossref_primary_10_1002_aenm_201601284
wiley_primary_10_1002_aenm_201601284_AENM201601284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 22, 2017
PublicationDateYYYYMMDD 2017-03-22
PublicationDate_xml – month: 03
  year: 2017
  text: March 22, 2017
  day: 22
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced energy materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2010 2014; 12 4
2013; 3
2011 2013 2015; 23 52 6
2013; 1
2013; 2
2014 2016; 7 8
2003 2008; 119–121 20
2014; 26
2014 2014; 161 246
2014; 250
2011; 56
2011; 196
2014; 251
2012; 12
2014 2014; 343 4
2009; 11
2014; 248
2007 2014; 167 161
2016; 317
2010; 114
2013; 236
2013; 233
2013 2015 2015 2014 2016; 4 162 162 29 6
2014; 14
2002; 149
2013; 231
2012 2013; 2 160
2009; 19
2014 2013; 161 1
2012; 22
2012 2013; 51 7
2012; 220
2006; 51
2009; 180
2015 2014; 162 115
2010 2012 2013; 22 213 135
2015; 54
2013; 222
2016; 323
2011; 4
2014 2015 2015 2013; 2 16 25 1
2016; 163
2016; 4
2016; 6
2004; 50
2015 2015; 27 3
2009; 191
2008 2012; 20 159
2014; 262
2016; 8
2012; 41
2014; 266
2011; 158
2015; 182
2015 2010; 21 195
2013 2013; 160 10–15
2010 2005 2002 2003; 157 17 149 13
2005 2005; 176 147
2012 2013 2015; 24 15 2
2003; 13
2003; 15
2016; 188
2007 2016; 9 7
2004 2016; 49
2015 2014 2015; 285 161 162
2012; 59
2011; 14
2012; 203
2013; 160
2015; 174
2015; 294
2015; 292
2013; 15
2014; 2
2013; 13
2010; 157
2015 2014 2014 2016; 27 6 4 8
2011; 21
2014; 161
2007 2012; 100
2008; 155
2014; 7
2012; 66
2014; 6
2012 2013 2013; 159 36 161
2008 2013 2011 2008; 184 225 13 10
2015; 162
2012; 80
2015; 5
2015; 3
2013 2015; 105 283
2006; 9
2013; 546
2016; 52
2006; 153
2015; 7
2004 2006 2009; 6 162 189
2015; 27
2014 2015 2015; 4 27 15
2003; 119–121
2015; 275
2013 2014 2013; 117 4 25
2008; 179
2008; 177
2002 2005 2005 2006 2007 2011 2012; 149 146 15 128 17 133 24
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_75_3
e_1_2_9_33_1
e_1_2_9_52_3
e_1_2_9_75_2
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_41_2
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_83_2
e_1_2_9_41_3
e_1_2_9_2_7
e_1_2_9_2_6
e_1_2_9_2_5
e_1_2_9_6_1
e_1_2_9_2_4
e_1_2_9_119_1
e_1_2_9_2_3
e_1_2_9_60_1
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_26_2
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_34_2
e_1_2_9_95_1
e_1_2_9_53_3
e_1_2_9_11_2
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_91_1
Thackeray M. M. (e_1_2_9_54_2) 2013
e_1_2_9_102_2
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_106_2
Mohanty D. (e_1_2_9_37_3) 2015; 2
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_38_2
e_1_2_9_34_3
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_38_3
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_2
e_1_2_9_61_1
e_1_2_9_80_4
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_42_2
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_2
e_1_2_9_80_2
e_1_2_9_5_1
e_1_2_9_80_3
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_92_2
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
Yu R. (e_1_2_9_60_2) 2016
e_1_2_9_39_2
e_1_2_9_62_2
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_43_3
e_1_2_9_43_4
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_43_2
e_1_2_9_8_1
e_1_2_9_4_3
e_1_2_9_81_1
e_1_2_9_4_2
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_78_1
e_1_2_9_93_3
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_4
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_59_2
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_2
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_21_4
e_1_2_9_21_3
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_2
e_1_2_9_3_5
e_1_2_9_7_1
e_1_2_9_3_4
e_1_2_9_3_3
e_1_2_9_82_1
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_112_1
Qing R.‐P. (e_1_2_9_20_1) 2015; 5
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 21219
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 3857
  year: 2013
  publication-title: Nano Lett.
– volume: 4
  start-page: 7689
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 80
  start-page: 187
  year: 2012
  publication-title: Electrochim. Acta
– volume: 153
  start-page: A1186
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 119–121
  start-page: 161
  year: 2003
  publication-title: J. Power Sources
– volume: 6
  start-page: 10330
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 46325
  year: 2016
  publication-title: RSC Adv.
– volume: 174
  start-page: 875
  year: 2015
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 16888
  year: 2014
  publication-title: ACS Appl. Mat. Interfaces
– volume: 236
  start-page: 25
  year: 2013
  publication-title: J. Power Sources
– volume: 21
  start-page: 9290
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 9 7
  start-page: 787 12108
  year: 2007 2016
  publication-title: Electrochem. Commun. Nat Commun
– volume: 2
  start-page: 3899
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1501914
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 4 162 162 29 6
  start-page: 1268 A2447 A2490 A59 1600906
  year: 2013 2015 2015 2014 2016
  publication-title: J. Phys. Chem. Lett. J. Electrochem. Soc. J. Electrochem. Soc. Mater. Technol. Adv. Energy Mater.
– volume: 41
  start-page: 3053
  year: 2012
  publication-title: Dalton Trans.
– volume: 4 27 15
  start-page: 1400631 1381 514
  year: 2014 2015 2015
  publication-title: Adv. Energy Mater. Chem. Mater. Nano Lett.
– volume: 323
  start-page: 220
  year: 2016
  publication-title: J. Power Sources
– volume: 158
  start-page: A47
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 14
  year: 2012
  publication-title: Electrochim. Acta
– volume: 222
  start-page: 455
  year: 2013
  publication-title: J. Power Sources
– volume: 51 7
  start-page: 9994 760
  year: 2012 2013
  publication-title: Angew. Chem. Int. Ed. ACS Nano
– volume: 191
  start-page: 644
  year: 2009
  publication-title: J. Power Sources
– volume: 317
  start-page: 65
  year: 2016
  publication-title: J. Power Sources
– volume: 11
  start-page: 748
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 546
  start-page: 239
  year: 2013
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 2223
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 251
  start-page: 208
  year: 2014
  publication-title: J. Power Sources
– volume: 2
  start-page: 36
  year: 2014
  publication-title: Front. Energy Res.
– volume: 3
  start-page: 17113
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 11128
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 8319
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 5186
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  start-page: 1501717
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 162
  start-page: A2259
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 266
  start-page: 175
  year: 2014
  publication-title: J. Power Sources
– volume: 15
  start-page: 2592
  year: 2013
  publication-title: CrystEngComm
– volume: 14
  start-page: 3550
  year: 2014
  publication-title: Nano Lett.
– volume: 157
  start-page: A267
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 159 36 161
  start-page: A781 103 A318
  year: 2012 2013 2013
  publication-title: J Electrochem Soc Electrochem. Commun. J Electrochem Soc
– volume: 157
  start-page: A1177
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 17376
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 248
  start-page: 1077
  year: 2014
  publication-title: J. Power Sources
– volume: 6
  start-page: 1501010
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 162 115
  start-page: A774 223
  year: 2015 2014
  publication-title: J. Electrochem. Soc. Electrochim. Acta
– volume: 196
  start-page: 7687
  year: 2011
  publication-title: J. Power Sources
– volume: 6
  start-page: 17965
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 3773
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 3094
  year: 2013
  publication-title: Sci. Rep.
– volume: 275
  start-page: 64
  year: 2015
  publication-title: J. Power Sources
– volume: 182
  start-page: 1175
  year: 2015
  publication-title: Electrochim. Acta
– volume: 158
  start-page: A883
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 117 4 25
  start-page: 6525 1300950 1621
  year: 2013 2014 2013
  publication-title: J. Phys. Chem. C Adv. Energy Mater. Chem. Mater.
– volume: 100
  start-page: 1518
  year: 2007 2012
  publication-title: Proc. IEE
– volume: 2 16 25 1
  start-page: 18767 143 7488 2833
  year: 2014 2015 2015 2013
  publication-title: J. Mater. Chem. A Nano Energy Adv. Funct. Mater. J. Mater. Chem. A
– volume: 56
  start-page: 3071
  year: 2011
  publication-title: Electrochim. Acta
– volume: 24 15 2
  start-page: 3558 19496
  year: 2012 2013 2015
  publication-title: Chem. Mater. Phys. Chem. Chem. Phys. MRS Energy & Sustainability – A Review Journal
– volume: 161
  start-page: A1564
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 5942
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 220
  start-page: 422
  year: 2012
  publication-title: J. Power Sources
– volume: 250
  start-page: 313
  year: 2014
  publication-title: J. Power Sources
– volume: 7 8
  start-page: 110 18832
  year: 2014 2016
  publication-title: Nano Res. ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1555
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 292
  start-page: 58
  year: 2015
  publication-title: J. Power Sources
– volume: 177
  start-page: 528
  year: 2008
  publication-title: J. Power Sources
– volume: 262
  start-page: 123
  year: 2014
  publication-title: J. Power Sources
– volume: 5
  start-page: 2947
  year: 2015
  publication-title: RSC Advances
– volume: 167 161
  start-page: 178 A1723
  year: 2007 2014
  publication-title: J. Power Sources J. Electrochem. Soc.
– volume: 26
  start-page: 6320
  year: 2014
  publication-title: Chem. Mater.
– volume: 231
  start-page: 44
  year: 2013
  publication-title: J. Power Sources
– volume: 27
  start-page: 5745
  year: 2015
  publication-title: Chem. Mater.
– volume: 160
  start-page: A285
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 17910
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 4117
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 163
  start-page: A766
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 12 4
  start-page: 750 44244
  year: 2010 2014
  publication-title: Electrochem. Commun. RSC Adv.
– volume: 160 10–15
  start-page: A31
  year: 2013 2013
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 15507
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 23 52 6
  start-page: 3614 5969 8711
  year: 2011 2013 2015
  publication-title: Chem. Mater. Angew. Chem. Int. Ed. Nat. Commun.
– volume: 203
  start-page: 115
  year: 2012
  publication-title: J. Power Sources
– volume: 157 17 149 13
  start-page: A1202 2386 A778 590
  year: 2010 2005 2002 2003
  publication-title: J. Electrochem. Soc. Chem. Mater. J. Electrochem. Soc. J. Mater. Chem.
– volume: 14
  start-page: 2628
  year: 2014
  publication-title: Nano Lett.
– volume: 179
  start-page: 1794
  year: 2008
  publication-title: Solid State Ionics
– volume: 285 161 162
  start-page: 360 A2012 A596
  year: 2015 2014 2015
  publication-title: J. Power Sources J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 114
  start-page: 9528
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 343 4
  start-page: 519 1400478
  year: 2014 2014
  publication-title: Science Adv. Energy Mater.
– volume: 161 246
  start-page: A2002 184
  year: 2014 2014
  publication-title: J. Electrochem. Soc. J. Power Sources
– volume: 233
  start-page: 346
  year: 2013
  publication-title: J. Power Sources
– volume: 66
  start-page: 61
  year: 2012
  publication-title: Electrochim. Acta
– volume: 6 162 189
  start-page: 1085 1346 571
  year: 2004 2006 2009
  publication-title: Electrochem. Commun. J. Power Sources J. Power Sources
– volume: 27
  start-page: 757
  year: 2015
  publication-title: Chem. Mater.
– volume: 2 160
  start-page: 8797 A2212
  year: 2012 2013
  publication-title: RSC Adv. J. Electrochem. Soc.
– volume: 22 213 135
  start-page: 1122 304 14912
  year: 2010 2012 2013
  publication-title: Adv. Mater. J. Power Sources J. Am. Chem. Soc.
– volume: 161 1
  start-page: A290 11397
  year: 2014 2013
  publication-title: J. Electrochem. Soc. J. Mater. Chem. A
– volume: 11
  start-page: 84
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 163
  start-page: A2258
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 105 283
  start-page: 200 162
  year: 2013 2015
  publication-title: Electrochim. Acta J. Power Sources
– volume: 155
  start-page: A775
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 52
  start-page: 4683
  year: 2016
  publication-title: Chem. Commun.
– volume: 180
  start-page: 50
  year: 2009
  publication-title: Solid State Ionics
– volume: 27
  start-page: 5393
  year: 2015
  publication-title: Chem. Mater.
– volume: 162
  start-page: A7049
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 27 3
  start-page: 3915 17627
  year: 2015 2015
  publication-title: Adv. Mater. J. Mater. Chem. A
– volume: 2
  start-page: A84
  year: 2013
  publication-title: ECS Electrochem. Lett.
– volume: 8
  start-page: 208
  year: 2016
  publication-title: ACS Appl. Mat. Interfaces
– volume: 49
  start-page: 4425
  year: 2004 2016
  publication-title: Electrochim. Acta J. Mater. Chem. A
– volume: 9
  start-page: A221
  year: 2006
  publication-title: Electrochem. Solid‐State Lett.
– volume: 15
  start-page: 16579
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 176 147
  start-page: 1035 214
  year: 2005 2005
  publication-title: Solid State Ionics J. Power Sources
– volume: 21 195
  start-page: 7503 567
  year: 2015 2010
  publication-title: Chem. Eur. J. J. Power Sources
– volume: 27 6 4 8
  start-page: 2600 8363 1400062 4575
  year: 2015 2014 2014 2016
  publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Adv. Energy Mater. ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1073
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 14
  start-page: A1
  year: 2011
  publication-title: Electrochem. Solid‐State Lett.
– volume: 1
  start-page: 5587
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 294
  start-page: 22
  year: 2015
  publication-title: J. Power Sources
– volume: 50
  start-page: 939
  year: 2004
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 1500274
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 5385
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 4510
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 119–121 20
  start-page: 649 4815
  year: 2003 2008
  publication-title: J. Power Sources Chem. Mater.
– volume: 1
  start-page: 3659
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 1984
  year: 2003
  publication-title: Chem. Mater.
– volume: 188
  start-page: 336
  year: 2016
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 3413
  year: 2006
  publication-title: Electrochim. Acta
– volume: 149
  start-page: A815
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 184 225 13 10
  start-page: 517 95 1090 1195
  year: 2008 2013 2011 2008
  publication-title: J. Power Sources J. Power Sources Electrochem. Commun. Electrochem. Commun.
– volume: 13
  start-page: 590
  year: 2003
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 1502398
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 20 159
  start-page: 6095 A781
  year: 2008 2012
  publication-title: Chem. Mater. J. Electrochem. Soc.
– volume: 149 146 15 128 17 133 24
  start-page: A815 654 2257 8694 3112 4404 1192
  year: 2002 2005 2005 2006 2007 2011 2012
  publication-title: J. Electrochem. Soc. J. Power Sources J. Mater. Chem. J. Am. Chem. Soc. J. Mater. Chem. J. Am. Chem. Soc. Adv. Mater.
– volume: 54
  start-page: 13058
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 36015
  year: 2015
  publication-title: RSC Adv.
– year: 2016
  ident: e_1_2_9_60_2
  publication-title: J. Mater. Chem. A
– ident: e_1_2_9_78_1
  doi: 10.1149/2.1141412jes
– volume-title: International Battery Association Meeting
  year: 2013
  ident: e_1_2_9_54_2
– ident: e_1_2_9_92_2
  doi: 10.1039/C5TA03415A
– ident: e_1_2_9_37_2
  doi: 10.1039/c3cp53658k
– ident: e_1_2_9_38_3
  doi: 10.1021/nl5038598
– ident: e_1_2_9_7_2
  doi: 10.1021/nn305065u
– ident: e_1_2_9_16_2
  doi: 10.1149/2.090311jes
– ident: e_1_2_9_70_1
  doi: 10.1021/nl501164y
– ident: e_1_2_9_117_1
  doi: 10.1039/C5TA04157K
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jpowsour.2013.11.055
– ident: e_1_2_9_128_1
  doi: 10.1016/j.jpowsour.2016.05.038
– ident: e_1_2_9_17_1
  doi: 10.1016/j.electacta.2012.01.032
– ident: e_1_2_9_95_1
  doi: 10.1016/j.jpowsour.2013.02.022
– ident: e_1_2_9_41_2
  doi: 10.1016/j.elecom.2013.08.022
– ident: e_1_2_9_8_1
  doi: 10.1021/cm030047u
– ident: e_1_2_9_105_1
  doi: 10.1016/j.electacta.2010.12.049
– ident: e_1_2_9_102_2
  doi: 10.1039/C4RA04976D
– ident: e_1_2_9_120_1
  doi: 10.1016/j.jpowsour.2014.11.018
– ident: e_1_2_9_55_1
  doi: 10.1016/S0378-7753(03)00171-X
– ident: e_1_2_9_34_3
  doi: 10.1021/cm4000119
– ident: e_1_2_9_98_1
  doi: 10.1039/C5TA04099J
– ident: e_1_2_9_73_1
  doi: 10.1021/cm502071h
– ident: e_1_2_9_83_2
  doi: 10.1016/j.electacta.2013.10.087
– ident: e_1_2_9_13_1
  doi: 10.1021/cm504583y
– ident: e_1_2_9_94_1
  doi: 10.1149/1.2180528
– ident: e_1_2_9_110_1
  doi: 10.1016/j.jpowsour.2012.07.135
– ident: e_1_2_9_126_1
  doi: 10.1016/j.jpowsour.2013.10.044
– ident: e_1_2_9_52_3
  doi: 10.1021/ja407318h
– ident: e_1_2_9_43_4
  doi: 10.1039/b211558a
– ident: e_1_2_9_34_1
  doi: 10.1021/jp312658q
– ident: e_1_2_9_3_3
  doi: 10.1149/2.0111514jes
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.200904247
– ident: e_1_2_9_88_1
  doi: 10.1016/j.jallcom.2012.08.026
– ident: e_1_2_9_81_1
  doi: 10.1149/2.0631610jes
– ident: e_1_2_9_72_1
  doi: 10.1016/j.jpowsour.2012.11.138
– ident: e_1_2_9_116_1
  doi: 10.1039/C6TA01878E
– ident: e_1_2_9_31_1
  doi: 10.1016/j.electacta.2011.09.069
– ident: e_1_2_9_85_1
  doi: 10.1016/j.elecom.2009.03.020
– ident: e_1_2_9_129_1
  doi: 10.1149/2.0071513jes
– ident: e_1_2_9_57_1
  doi: 10.1039/c2dt11833e
– ident: e_1_2_9_100_1
  doi: 10.1016/j.jpowsour.2012.09.014
– ident: e_1_2_9_68_1
  doi: 10.1002/anie.201506408
– ident: e_1_2_9_76_1
  doi: 10.1149/2.066302jes
– volume: 5
  start-page: 1501914
  year: 2015
  ident: e_1_2_9_20_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_9_74_1
  doi: 10.1002/aenm.201501717
– ident: e_1_2_9_97_1
  doi: 10.1021/am508579r
– ident: e_1_2_9_52_2
  doi: 10.1016/j.jpowsour.2012.04.031
– ident: e_1_2_9_45_1
  doi: 10.1039/b211558a
– ident: e_1_2_9_60_1
  doi: 10.1016/j.electacta.2004.04.033
– ident: e_1_2_9_106_1
  doi: 10.1007/s12274-013-0378-7
– ident: e_1_2_9_2_3
  doi: 10.1039/b417616m
– ident: e_1_2_9_43_2
  doi: 10.1021/cm047779m
– ident: e_1_2_9_82_1
  doi: 10.1016/j.jpowsour.2015.06.035
– ident: e_1_2_9_127_1
  doi: 10.1016/j.jpowsour.2016.03.090
– volume: 2
  year: 2015
  ident: e_1_2_9_37_3
  publication-title: MRS Energy & Sustainability – A Review Journal
– ident: e_1_2_9_27_1
  doi: 10.1149/1.3515900
– ident: e_1_2_9_4_2
  doi: 10.1016/j.jpowsour.2006.07.064
– ident: e_1_2_9_115_1
  doi: 10.1039/c3ta14513a
– ident: e_1_2_9_61_1
  doi: 10.1016/j.electacta.2013.04.150
– ident: e_1_2_9_1_1
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jpowsour.2013.01.082
– ident: e_1_2_9_92_1
  doi: 10.1002/adma.201500956
– ident: e_1_2_9_77_1
  doi: 10.1021/acsami.5b01770
– ident: e_1_2_9_99_1
  doi: 10.1021/acs.chemmater.5b02331
– ident: e_1_2_9_5_1
  doi: 10.1016/j.elecom.2006.11.006
– ident: e_1_2_9_80_1
  doi: 10.1016/j.jpowsour.2008.03.016
– ident: e_1_2_9_90_1
  doi: 10.1021/acsami.5b04514
– ident: e_1_2_9_39_1
  doi: 10.1126/science.1246432
– ident: e_1_2_9_75_3
  doi: 10.1149/2.0251504jes
– ident: e_1_2_9_53_1
  doi: 10.1021/cm200831c
– ident: e_1_2_9_75_1
  doi: 10.1016/j.jpowsour.2015.03.113
– ident: e_1_2_9_2_5
  doi: 10.1039/b702425h
– ident: e_1_2_9_134_1
  doi: 10.1021/acsami.5b08349
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.chemmater.5b02016
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jpowsour.2014.03.099
– ident: e_1_2_9_96_1
  doi: 10.1149/2.0071410jes
– ident: e_1_2_9_63_1
  doi: 10.1149/1.2180528
– ident: e_1_2_9_48_1
  doi: 10.1002/aenm.201502398
– ident: e_1_2_9_6_1
  doi: 10.1039/b904098f
– ident: e_1_2_9_50_2
  doi: 10.1016/j.jpowsour.2009.07.052
– ident: e_1_2_9_1_2
  doi: 10.1109/JPROC.2012.2190170
– ident: e_1_2_9_35_1
  doi: 10.1021/nl4019275
– ident: e_1_2_9_21_1
  doi: 10.1039/C4TA03692A
– ident: e_1_2_9_53_2
  doi: 10.1002/anie.201301236
– ident: e_1_2_9_84_1
  doi: 10.1039/c3ta01182h
– ident: e_1_2_9_12_1
  doi: 10.1002/aenm.201501010
– ident: e_1_2_9_122_1
  doi: 10.1039/C5RA03368C
– ident: e_1_2_9_21_3
  doi: 10.1002/adfm.201503276
– ident: e_1_2_9_26_2
  doi: 10.1039/c3ta12296d
– ident: e_1_2_9_123_1
  doi: 10.1039/C6RA06169A
– ident: e_1_2_9_15_1
  doi: 10.1016/j.electacta.2004.07.038
– ident: e_1_2_9_132_1
  doi: 10.1149/2.005308eel
– ident: e_1_2_9_133_1
  doi: 10.1039/C6TA00069J
– ident: e_1_2_9_53_3
  doi: 10.1038/ncomms9711
– ident: e_1_2_9_10_1
  doi: 10.1039/c3ee43870h
– ident: e_1_2_9_25_1
  doi: 10.1021/am5017649
– ident: e_1_2_9_87_1
  doi: 10.1016/j.jpowsour.2011.04.030
– ident: e_1_2_9_2_1
  doi: 10.1149/1.1480014
– ident: e_1_2_9_56_1
  doi: 10.1039/C5TA03764F
– ident: e_1_2_9_104_1
  doi: 10.1021/am504412n
– ident: e_1_2_9_3_1
  doi: 10.1021/jz400032v
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jpowsour.2009.02.005
– ident: e_1_2_9_119_1
  doi: 10.1149/2.1071605jes
– ident: e_1_2_9_23_1
  doi: 10.1038/srep03094
– ident: e_1_2_9_106_2
  doi: 10.1021/acsami.6b04687
– ident: e_1_2_9_114_1
  doi: 10.1039/c3cp51279g
– ident: e_1_2_9_58_1
  doi: 10.1039/c2jm33484d
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jpowsour.2007.01.070
– ident: e_1_2_9_131_1
  doi: 10.1016/j.electacta.2015.09.067
– ident: e_1_2_9_79_1
  doi: 10.1149/1.2966694
– ident: e_1_2_9_38_1
  doi: 10.1002/aenm.201400631
– ident: e_1_2_9_61_2
  doi: 10.1016/j.jpowsour.2015.02.085
– ident: e_1_2_9_65_1
  doi: 10.1016/j.ssi.2008.01.091
– ident: e_1_2_9_113_1
  doi: 10.1016/j.jpowsour.2015.05.036
– ident: e_1_2_9_91_1
  doi: 10.1016/j.electacta.2012.06.118
– ident: e_1_2_9_34_2
  doi: 10.1002/aenm.201300950
– ident: e_1_2_9_2_6
  doi: 10.1021/ja108588y
– ident: e_1_2_9_71_1
  doi: 10.1021/am504796n
– ident: e_1_2_9_26_1
  doi: 10.1149/2.040403jes
– ident: e_1_2_9_46_1
  doi: 10.1021/nl500486y
– ident: e_1_2_9_93_2
  doi: 10.1021/am501280t
– ident: e_1_2_9_32_1
  doi: 10.1039/C4TA06856D
– ident: e_1_2_9_112_1
  doi: 10.1039/c1jm11077b
– ident: e_1_2_9_4_3
  doi: 10.1016/j.jpowsour.2008.10.035
– ident: e_1_2_9_37_1
  doi: 10.1021/cm301140g
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jpowsour.2013.10.071
– ident: e_1_2_9_103_1
  doi: 10.1016/j.jpowsour.2007.11.076
– ident: e_1_2_9_3_5
  doi: 10.1002/aenm.201600906
– ident: e_1_2_9_5_2
  doi: 10.1038/ncomms12108
– ident: e_1_2_9_11_1
  doi: 10.1016/S0378-7753(03)00195-2
– ident: e_1_2_9_42_2
  doi: 10.1016/j.jpowsour.2004.11.018
– ident: e_1_2_9_59_2
  doi: 10.1149/2.0461410jes
– ident: e_1_2_9_43_1
  doi: 10.1149/1.3473830
– ident: e_1_2_9_4_1
  doi: 10.1016/j.elecom.2004.08.002
– ident: e_1_2_9_54_1
  doi: 10.1149/2.049301jes
– ident: e_1_2_9_124_1
  doi: 10.1039/c3ta10586e
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ssi.2008.11.002
– ident: e_1_2_9_66_1
  doi: 10.1016/j.elecom.2009.01.025
– ident: e_1_2_9_83_1
  doi: 10.1149/2.1001504jes
– ident: e_1_2_9_16_1
  doi: 10.1039/c2ra20772a
– ident: e_1_2_9_2_4
  doi: 10.1021/ja062027
– ident: e_1_2_9_78_2
  doi: 10.1016/j.jpowsour.2013.07.070
– ident: e_1_2_9_121_1
  doi: 10.1149/1.3597319
– ident: e_1_2_9_111_1
  doi: 10.1016/j.jpowsour.2011.11.076
– ident: e_1_2_9_107_1
  doi: 10.3389/fenrg.2014.00036
– ident: e_1_2_9_9_1
  doi: 10.1039/c1ee01131f
– ident: e_1_2_9_28_1
  doi: 10.1016/j.elecom.2008.10.036
– ident: e_1_2_9_93_4
  doi: 10.1021/acsami.5b10219
– ident: e_1_2_9_19_1
  doi: 10.1149/1.3479382
– ident: e_1_2_9_101_1
  doi: 10.1021/jp102050s
– ident: e_1_2_9_33_1
  doi: 10.1149/1.1480014
– ident: e_1_2_9_102_1
  doi: 10.1016/j.elecom.2010.03.024
– ident: e_1_2_9_42_1
  doi: 10.1016/j.ssi.2005.02.006
– ident: e_1_2_9_62_2
  doi: 10.1149/2.080206jes
– ident: e_1_2_9_21_2
  doi: 10.1016/j.nanoen.2015.06.011
– ident: e_1_2_9_22_1
  doi: 10.1016/j.electacta.2015.12.021
– ident: e_1_2_9_93_1
  doi: 10.1021/acs.chemmater.5b00405
– ident: e_1_2_9_21_4
  doi: 10.1039/c2ta00309k
– ident: e_1_2_9_62_1
  doi: 10.1021/cm801245r
– ident: e_1_2_9_41_3
  doi: 10.1149/2.049403jes
– ident: e_1_2_9_69_1
  doi: 10.1002/aenm.201500274
– ident: e_1_2_9_93_3
  doi: 10.1002/aenm.201400062
– ident: e_1_2_9_41_1
  doi: 10.1149/2.080206jes
– ident: e_1_2_9_75_2
  doi: 10.1149/2.0211414jes
– ident: e_1_2_9_49_1
  doi: 10.1039/C5CC10534J
– ident: e_1_2_9_3_4
  doi: 10.1179/1753555714Y.0000000166
– ident: e_1_2_9_89_1
  doi: 10.1039/C4RA11894D
– ident: e_1_2_9_7_1
  doi: 10.1002/anie.201201429
– ident: e_1_2_9_43_3
  doi: 10.1149/1.1471541
– ident: e_1_2_9_80_3
  doi: 10.1016/j.elecom.2011.07.004
– ident: e_1_2_9_118_1
  doi: 10.1149/2.0161512jes
– ident: e_1_2_9_108_1
  doi: 10.1016/j.jpowsour.2014.04.143
– ident: e_1_2_9_11_2
  doi: 10.1021/cm070435m
– ident: e_1_2_9_50_1
  doi: 10.1002/chem.201406641
– ident: e_1_2_9_80_2
  doi: 10.1016/j.jpowsour.2012.10.029
– ident: e_1_2_9_30_1
  doi: 10.1016/j.electacta.2015.06.085
– ident: e_1_2_9_109_1
  doi: 10.1039/c3ce26972h
– ident: e_1_2_9_125_1
  doi: 10.1016/j.electacta.2005.10.006
– ident: e_1_2_9_2_7
  doi: 10.1002/adma.201104106
– ident: e_1_2_9_3_2
  doi: 10.1149/2.0071514jes
– ident: e_1_2_9_51_1
  doi: 10.1021/nl302249v
– ident: e_1_2_9_130_1
  doi: 10.1149/1.3274205
– ident: e_1_2_9_39_2
  doi: 10.1002/aenm.201400478
– ident: e_1_2_9_67_1
  doi: 10.1149/1.3496402
– ident: e_1_2_9_38_2
  doi: 10.1021/cm5045978
– ident: e_1_2_9_18_1
  doi: 10.1149/1.2194764
– ident: e_1_2_9_47_1
  doi: 10.1039/C6TA00460A
– ident: e_1_2_9_2_2
  doi: 10.1016/j.jpowsour.2005.03.152
– ident: e_1_2_9_24_1
  doi: 10.1039/c3cp51927a
– ident: e_1_2_9_80_4
  doi: 10.1016/j.elecom.2008.05.043
SSID ssj0000491033
Score 2.638595
SecondaryResourceType review_article
Snippet The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials....
The lithium‐ and manganese‐rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg −1 ) among all the cathode...
The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ([asymptotically =]900 W h kg-1) among all the...
The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies ( approximately 900 W h kg super(-1)) among all...
The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials....
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Cathodes
Commercialization
doping/coating
Electric potential
Electrodes
Environmental Molecular Sciences Laboratory
full cell
full cells
Graphite
initial capacity loss
Li-rich Mn-rich cathode
Lithium
Li‐ and Mn‐rich cathode
rate capability
Specifications
Strategy
Voltage
voltage fade
Title Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201601284
https://www.proquest.com/docview/1879721353
https://www.proquest.com/docview/1893910193
https://www.osti.gov/biblio/1373002
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcILShISJwMiRNvEm6rpVWFdiuktqKcIseeqIvaBLXZS0_wD_iN_BLG8WOzKs9eoiT2OlnP5_HMZB6EvOQ8hzhSFVU8FTRNpKSCF5LmMOFQSIiE6h1kDyb7x-n7E34yGn0bRpd01Wt59cu4kptQFe8hXXWU7H9Q1g-KN_Ac6YtHpDAe_4nG86X3VTAOE42_1gHzfXhfq3R1oc68jtb_Z658Sp_bQQeI6KJL4swGZA6l1alzEAATIXjuxlmbm8F69CLKzt0uaGpJWF_fQ0B28nnlMTg77Y2zH1tsvxAeVp-MIfYDjlfDcmiLwP0tSigbmCdRfEzpJLcWSxjeM0mZHM_NBtCaDDZfvzVd4-wmU6yARqcPiCf9vrrew9x3e9-T_7mvyfi7e7Dw7bfIFkNNA1nl1vTdYn7oDXWoQsVR0gdquH_nkn9G7M3mQzaEm3GLTHpDcRmqP738cnSP3LWKRzg1KLpPRtA8IHcG6Sgfkr358sfX7yEiKVw0eKYxFFoMhR5Db8M1gsKuDa8h6BE53ts9mu1TW2eDSo7SHRUZ8KrmKovSOC5SlWUAuRJFUTMpK5FzQJk_wQsumMhrFmUqQwYU81rhPOd58piMm7aBJyQUWhzE5V3pz8eo6lcKsgp1Dh4xySJQAaFugkppk9DrWihnpUmfzUo9oaWf0IC88v2_mPQrv-25ree7RMFRZz-W2k1MdmWc6IIMLCA7jgylXcCXZZxnOndVwpOAvPDNyF71NzPRQLvSfYoE6Y9qTkBYT76_vEe5gaqnN_nRNrm9Xlw7ZNxdrOAZir5d9dyC8yfCqKU-
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Li%E2%80%90+and+Mn%E2%80%90Rich+Cathode+Materials%3A+Challenges+to+Commercialization&rft.jtitle=Advanced+energy+materials&rft.au=Zheng%2C+Jianming&rft.au=Myeong%2C+Seungjun&rft.au=Cho%2C+Woongrae&rft.au=Yan%2C+Pengfei&rft.date=2017-03-22&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201601284&rft.externalDBID=10.1002%252Faenm.201601284&rft.externalDocID=AENM201601284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon