Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment

Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at 110°C. In immersion tests, the as‐sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermal...

Full description

Saved in:
Bibliographic Details
Published inJournal of Biomedical Materials Research Part A Vol. 76A; no. 3; pp. 605 - 613
Main Authors Ozeki, K., Aoki, H., Fukui, Y.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2006
Wiley
Subjects
Online AccessGet full text
ISSN1549-3296
1552-4965
DOI10.1002/jbm.a.30574

Cover

Loading…
Abstract Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at 110°C. In immersion tests, the as‐sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3‐E1 osteoblast‐like cells on the as‐sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3‐E1 cells on the as‐sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as‐sputtered film. After a 96‐h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as‐sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3‐E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3‐E1 cells on the as‐sputtered films after a period of 24 h. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
AbstractList Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at 110°C. In immersion tests, the as‐sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3‐E1 osteoblast‐like cells on the as‐sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3‐E1 cells on the as‐sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as‐sputtered film. After a 96‐h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as‐sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3‐E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3‐E1 cells on the as‐sputtered films after a period of 24 h. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the assputtered films were hydrothermally recrystallized at 110DGC. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the assputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titaniumsubstrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h.
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at 110 degrees C. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the as-sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h.
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at 110 degrees C. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the as-sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h.Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at 110 degrees C. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the as-sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h.
Author Aoki, H.
Fukui, Y.
Ozeki, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Ozeki
  fullname: Ozeki, K.
  email: ozeki@frontier.dendai.ac.jp
  organization: Frontier Research and Development Center, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan
– sequence: 2
  givenname: H.
  surname: Aoki
  fullname: Aoki, H.
  organization: Frontier Research and Development Center, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan
– sequence: 3
  givenname: Y.
  surname: Fukui
  fullname: Fukui, Y.
  organization: Frontier Research and Development Center, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan
BackLink https://cir.nii.ac.jp/crid/1872835442954368896$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/16278871$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhSNURB-wYo-8QGxQhvgVO0taoAUNIBCPpeU4NxoPSRxsZ9rZ8svxTKZdIAQb27r-zrlX95xmR4MbIMse42KBi4K8WNf9Qi9owQW7l51gzknOqpIf7d6syimpyuPsNIR1gsuCkwfZMS6JkFLgk-zXKxuC66Zo3YBqWOmNdR7poUF2QBsbvUOw0d2k94BrURinGMFDg1bbxrubrR7TXwTU2q4PKEz1GkxE0SGNOneNIvQjeB0nD7MirsD3ukPRg449DPFhdr_VXYBHh_ss-_rm9ZeLq3z58fLtxctlbjhhLKe6kKXRXBKNZdNiIVjDDBhDCNBGS9LKNtVFbSouWtE0BalZRUVDCWtbg-lZ9mz2Hb37OUGIqrfBQNfpAdwUlCjKhFf_B0mFSZn6J_DJAZzqHho1ettrv1W3600AngHjXQgeWmVs3K8yem07hQu1i1ClCJVW-wiT5vkfmjvbv9KHDte2g-2_UPXu_P2t5umsGaxNA-1OLAWRlDNGKs5oKWVVJiyfMRsi3NxZa_9DlYIKrr5_uFSEfvp8vhTf1BX9DRIYydI
CitedBy_id crossref_primary_10_1007_s10856_007_3288_y
crossref_primary_10_3233_BME_151560
crossref_primary_10_3233_BME_230131
crossref_primary_10_1016_j_tsf_2011_04_090
crossref_primary_10_1007_s10856_011_4329_0
crossref_primary_10_1016_j_vacuum_2008_05_019
crossref_primary_10_1016_j_apsusc_2008_08_029
crossref_primary_10_1016_j_tsf_2014_07_058
crossref_primary_10_1002_jbm_b_33347
crossref_primary_10_1007_s12034_008_0140_z
crossref_primary_10_3390_jfb13030099
crossref_primary_10_1111_ijac_12145
crossref_primary_10_1177_0885328209340334
Cites_doi 10.1023/A:1014002732373
10.1016/0021-9797(82)90139-4
10.1016/0927-7757(93)80110-Z
10.1016/0003-2697(76)90527-3
10.1016/0142-9612(96)89656-6
10.1016/j.biomaterials.2004.02.029
10.1016/S0142-9612(00)00269-6
10.1016/j.biomaterials.2004.02.032
10.1002/(SICI)1097-4636(19980315)39:4<524::AID-JBM3>3.0.CO;2-L
10.1243/0954411981533917
10.1016/0142-9612(96)80751-4
10.1002/1097-4636(200110)57:1<41::AID-JBM1139>3.0.CO;2-9
10.1021/j100615a007
10.1016/S0142-9612(99)00181-7
10.1002/jbm.820291206
10.1002/jbm.820290218
10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H
10.1016/j.biomaterials.2003.08.003
10.1034/j.1600-0501.1993.040104.x
10.1016/S0142-9612(02)00430-1
10.1016/S0142-9612(01)00084-9
10.1021/ar50092a003
10.1016/S1389-0344(02)00027-8
10.1007/BF02012538
10.1016/0142-9612(90)90067-Z
10.1002/(SICI)1097-4636(19980305)39:3<364::AID-JBM4>3.0.CO;2-H
10.1016/S0142-9612(98)00254-3
10.1016/S0257-8972(02)00363-8
10.1083/jcb.96.1.191
10.1002/jbm.820270114
10.1016/0025-5408(74)90087-7
10.1016/0142-9612(90)90052-R
10.1016/S0142-9612(99)00264-1
10.1016/j.jcrysgro.2004.01.015
10.1007/BF02012795
10.1002/jbm.a.20021
10.1007/BF02012548
ContentType Journal Article
Copyright Copyright © 2005 Wiley Periodicals, Inc.
(c) 2005 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley Periodicals, Inc.
– notice: (c) 2005 Wiley Periodicals, Inc.
DBID BSCLL
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QQ
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
DOI 10.1002/jbm.a.30574
DatabaseName Istex
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ceramic Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 613
ExternalDocumentID 16278871
10_1002_jbm_a_30574
JBM30574
ark_67375_WNG_23QRBL7V_H
Genre article
Journal Article
Comparative Study
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEYWJ
AFWVQ
AGQPQ
AGYGG
ALVPJ
RYH
AAYXX
AGHNM
CITATION
EBD
EMOBN
HF~
RYL
SV3
CGR
CUY
CVF
ECM
EIF
NPM
7QQ
7SR
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c5244-3a086ca582a18df1774d4cecc22e3da82f8f8df7bc957f7dd02b4937d324ffc13
IEDL.DBID DR2
ISSN 1549-3296
IngestDate Fri Jul 11 13:29:15 EDT 2025
Fri Jul 11 14:56:01 EDT 2025
Wed Feb 19 01:43:24 EST 2025
Thu Apr 24 22:52:15 EDT 2025
Tue Jul 01 01:11:15 EDT 2025
Wed Jan 22 16:53:52 EST 2025
Thu Jun 26 21:40:36 EDT 2025
Wed Oct 30 09:47:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
(c) 2005 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5244-3a086ca582a18df1774d4cecc22e3da82f8f8df7bc957f7dd02b4937d324ffc13
Notes istex:AB17698F5A5A5159A4993224471ACD7C4B75B88F
ark:/67375/WNG-23QRBL7V-H
ArticleID:JBM30574
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 16278871
PQID 29126177
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_70693791
proquest_miscellaneous_29126177
pubmed_primary_16278871
crossref_citationtrail_10_1002_jbm_a_30574
crossref_primary_10_1002_jbm_a_30574
wiley_primary_10_1002_jbm_a_30574_JBM30574
nii_cinii_1872835442954368896
istex_primary_ark_67375_WNG_23QRBL7V_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 March 2006
PublicationDateYYYYMMDD 2006-03-01
PublicationDate_xml – month: 03
  year: 2006
  text: 1 March 2006
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of Biomedical Materials Research Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Lewis G. Hydroxyapatite-coated bioalloy surfaces: Current status and future challenges. BioMed Mat Eng 2000; 10: 157-188.
Kizuki T, Ohgaki M, Katsura M, Nakamura S, Hashimoto K, Toda Y, Ukegawa S, Yamashita K. Effect of bone-like layer from culture medium on adherence of osteoblast-like cells. Biomaterials 2003; 24: 941-947.
Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 1996; 17: 23-29.
Shu R, McMullen R, Baumann MJ, McCabe LR. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J Biomed Mater Res 2003; 67A: 1196-1204.
Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 1975; 8: 273-281.
Baganbisa FB, Joos U. Preliminary studies on the phenomenological behavior of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials 1990; 11: 50-56.
Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. A functionally graded titanium/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 2002; 13: 253-258.
Bre[caron]cević LJ, Füredi-Milhofer H. Precipitation of calcium phosphates from electrolyte solutions. Calcif Tissue Res 1972; 10: 82-90.
Aoki H. Marvelous Biomaterial Apatite. Tokyo: Ishiyaku Publishers; 1999. p 54-58.
Nancollas GH, Tomažič B. Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium. J Phys Chem 1974; 78: 2218-2225.
Ozeki K, Mishima A, Yuhta T, Fukui Y, Aoki H. Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment. BioMed Mater Eng 2003; 13: 451-463.
Wolke JGC, de Groot K, Jansen JA. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. J Biomed Mater Res 1998; 39: 524-530.
Ozeki K, Yuhta T, Fukui Y, Aoki H. Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol 2002; 160: 54-61.
Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condò SG. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: An in vitro study. Biomol Eng 2002; 19: 119-124.
Aoki H. Medical Applications of Hydroxyapatite. St. Louis: Ishiyaku EuroAmerica; 1994. p 307-326.
Kanazawa F. Inorganic Phosphate Materials. Tokyo: Elsevier; 1989. p 86-87.
van Dilk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 1996; 17: 405-410.
Yoshinari M, Hayakawa T, Wolke JGC, Nemoto K, Jansen JA. Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res 1997; 37: 60-67.
Paschalis EP, Zhao Q, Tucker BE, Mukhopadhayay S, Bearcroft JA, Beals NB, Spector M, Nancollas GH. Degradation potential of plasma-sprayed hydroxyapatite-coated titanium implants. J Biomed Mater Res 1995; 29: 1499-1505.
Klein CPAT, de Blieck-Hogervorst JMA, Wolke JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 1990; 11: 509-512.
Monma H, Goto M, Nakajima H, Hashimoto H. Preparation of tetracalcium phosphate. Gypsum Lime 1986; 202: 151-155.
Burke EM, Haman JD, Weimer JJ, Cheney AB, Rigsbee JM, Lucas LC. Influence of coating strain on calcium phosphate thin-film dissolution. J Biomed Mater Res 2001; 57: 41-47.
Ogiso M, Yamashita Y, Mastumoto T. Comparative push-out test of dense HA implants and HA-coated implants: Findings in a canine study. J Biomed Mater Res 1998; 39: 364-372.
Elliot JC. Structure and Chemistry of the Apatite and Other Calcium Orthophosphates. Amsterdam: Elsevier; 1994. p 54-55.
Chou L, Marek B, Wagner WR. Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials 1999; 20: 977-985.
Jansen JA, Wolke JGC, Swann S, van der Waerden JPCM, de Groot K. Application of magnetron sputtering for the producing ceramic coatings. Clin Oral Impl Res 1993; 4: 28-34.
Ramires PA, Romito A, Cosentino F, Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblast behaviour. Biomaterials 2001; 22: 1467-1474.
Verestiuc L, Morosanu C, Bercu M, Pasuk I, Mihailescu IN. Chemical growth of calcium phosphate layers on magnetron sputtered HA films. J Cryst Growth 2004; 264: 483-491.
Ducheyne P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20: 2287-2303.
Maxian SH, Zawadsky JP, Dunn MG. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J Biomed Mater Res 1993; 27: 111-117.
de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng Part H 1998; 212: 137-147.
Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Push-out strength of hydroxyapatite coated by sputtering technique in bone. BioMed Mater Eng 2001; 11: 63-68.
Posner AS, Betts F. An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull 1974; 9: 353-360.
van Dijk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with rf magnetron sputtering. J Biomed Mater Res 1995; 29: 268-276.
Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 2000; 21: 1121-1127.
Tachibana A, Kaneko S, Tanabe T, Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005; 26: 297-302.
Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. BioMed Mat Eng 2000; 10: 221-227.
Ozeki K, Yuhta T, Aoki H, Fukui Y. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings. BioMed Mat Eng 2003; 13: 271-279.
Eanes ED, Meyer JL. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 1997; 23: 259-269.
Di Silvio L, Dalby MJ, Bonfield W. Osteoblast behavior on HA/PE composite surfaces with different HA volumes. Biomaterials 2002; 23: 101-107.
Lucas LC, Lacefield WR, Ong JL, Whitehead RY. Calcium phosphate coatings for medical and dental implants. Colloids Surf A: Physiochem Eng Aspect 1993; 77: 141-147.
Yang Y, Kim Kyo-Han, Ong JL. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 2005; 26: 327-337.
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
Sudo H, Kodama H, Amagia Y, Yamamoto S, Kasia S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983; 96: 191-198.
Termine JD, Eanes ED. Comparative chemistry of amorphous and apatic calcium phosphate preparations. Calcif Tissue Res 1971; 10: 171-197.
Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nomota Y, Tatehara S, Nagayama M. Effects of apatite cements on proliferation and differentiation of human osteoblast in vitro. Biomaterials 2004; 25: 1159-1166.
Meyer JL, Weatherall CC. Amorphous to crystalline calcium phosphate phase transformation at elevated pH. J Colloid Interface Sci 1982; 89: 257-267.
2004; 264
1990; 11
1974; 78
1996; 17
1993; 27
2002; 19
2004; 25
2000; 21
2002; 13
2003; 67A
1997; 23
2003; 13
1983; 96
1994
1999; 20
2005; 26
2001; 22
1998; 212
1974; 9
1993; 4
1999
1982; 89
1998; 39
1971; 10
2002; 160
1986; 202
2000; 10
1993; 77
1997; 37
1976; 72
2002; 23
2003; 24
1972; 10
1995; 29
2001; 11
1975; 8
2001; 57
1989
Aoki H (e_1_2_6_3_2) 1999
Ozeki K (e_1_2_6_21_2) 2003; 13
e_1_2_6_30_2
Aoki H (e_1_2_6_2_2) 1994
Ozeki K (e_1_2_6_16_2) 2001; 11
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
Kanazawa F (e_1_2_6_32_2) 1989
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
Ozeki K (e_1_2_6_10_2) 2000; 10
Lewis G (e_1_2_6_4_2) 2000; 10
e_1_2_6_8_2
e_1_2_6_7_2
Monma H (e_1_2_6_33_2) 1986; 202
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_22_2
Elliot JC (e_1_2_6_31_2) 1994
Ozeki K (e_1_2_6_13_2) 2003; 13
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Push-out strength of hydroxyapatite coated by sputtering technique in bone. BioMed Mater Eng 2001; 11: 63-68.
– reference: Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 2000; 21: 1121-1127.
– reference: Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. BioMed Mat Eng 2000; 10: 221-227.
– reference: Maxian SH, Zawadsky JP, Dunn MG. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J Biomed Mater Res 1993; 27: 111-117.
– reference: Di Silvio L, Dalby MJ, Bonfield W. Osteoblast behavior on HA/PE composite surfaces with different HA volumes. Biomaterials 2002; 23: 101-107.
– reference: Ozeki K, Mishima A, Yuhta T, Fukui Y, Aoki H. Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment. BioMed Mater Eng 2003; 13: 451-463.
– reference: Baganbisa FB, Joos U. Preliminary studies on the phenomenological behavior of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials 1990; 11: 50-56.
– reference: Lewis G. Hydroxyapatite-coated bioalloy surfaces: Current status and future challenges. BioMed Mat Eng 2000; 10: 157-188.
– reference: Eanes ED, Meyer JL. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 1997; 23: 259-269.
– reference: Chou L, Marek B, Wagner WR. Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials 1999; 20: 977-985.
– reference: Posner AS, Betts F. An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull 1974; 9: 353-360.
– reference: Ramires PA, Romito A, Cosentino F, Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblast behaviour. Biomaterials 2001; 22: 1467-1474.
– reference: Ducheyne P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20: 2287-2303.
– reference: Meyer JL, Weatherall CC. Amorphous to crystalline calcium phosphate phase transformation at elevated pH. J Colloid Interface Sci 1982; 89: 257-267.
– reference: Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 1996; 17: 23-29.
– reference: Klein CPAT, de Blieck-Hogervorst JMA, Wolke JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 1990; 11: 509-512.
– reference: Verestiuc L, Morosanu C, Bercu M, Pasuk I, Mihailescu IN. Chemical growth of calcium phosphate layers on magnetron sputtered HA films. J Cryst Growth 2004; 264: 483-491.
– reference: van Dijk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with rf magnetron sputtering. J Biomed Mater Res 1995; 29: 268-276.
– reference: Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
– reference: Jansen JA, Wolke JGC, Swann S, van der Waerden JPCM, de Groot K. Application of magnetron sputtering for the producing ceramic coatings. Clin Oral Impl Res 1993; 4: 28-34.
– reference: Yoshinari M, Hayakawa T, Wolke JGC, Nemoto K, Jansen JA. Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res 1997; 37: 60-67.
– reference: Sudo H, Kodama H, Amagia Y, Yamamoto S, Kasia S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983; 96: 191-198.
– reference: Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nomota Y, Tatehara S, Nagayama M. Effects of apatite cements on proliferation and differentiation of human osteoblast in vitro. Biomaterials 2004; 25: 1159-1166.
– reference: de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng Part H 1998; 212: 137-147.
– reference: Bre[caron]cević LJ, Füredi-Milhofer H. Precipitation of calcium phosphates from electrolyte solutions. Calcif Tissue Res 1972; 10: 82-90.
– reference: Tachibana A, Kaneko S, Tanabe T, Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005; 26: 297-302.
– reference: Monma H, Goto M, Nakajima H, Hashimoto H. Preparation of tetracalcium phosphate. Gypsum Lime 1986; 202: 151-155.
– reference: Elliot JC. Structure and Chemistry of the Apatite and Other Calcium Orthophosphates. Amsterdam: Elsevier; 1994. p 54-55.
– reference: Aoki H. Medical Applications of Hydroxyapatite. St. Louis: Ishiyaku EuroAmerica; 1994. p 307-326.
– reference: Paschalis EP, Zhao Q, Tucker BE, Mukhopadhayay S, Bearcroft JA, Beals NB, Spector M, Nancollas GH. Degradation potential of plasma-sprayed hydroxyapatite-coated titanium implants. J Biomed Mater Res 1995; 29: 1499-1505.
– reference: Nancollas GH, Tomažič B. Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium. J Phys Chem 1974; 78: 2218-2225.
– reference: van Dilk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 1996; 17: 405-410.
– reference: Shu R, McMullen R, Baumann MJ, McCabe LR. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J Biomed Mater Res 2003; 67A: 1196-1204.
– reference: Yang Y, Kim Kyo-Han, Ong JL. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 2005; 26: 327-337.
– reference: Burke EM, Haman JD, Weimer JJ, Cheney AB, Rigsbee JM, Lucas LC. Influence of coating strain on calcium phosphate thin-film dissolution. J Biomed Mater Res 2001; 57: 41-47.
– reference: Kizuki T, Ohgaki M, Katsura M, Nakamura S, Hashimoto K, Toda Y, Ukegawa S, Yamashita K. Effect of bone-like layer from culture medium on adherence of osteoblast-like cells. Biomaterials 2003; 24: 941-947.
– reference: Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. A functionally graded titanium/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 2002; 13: 253-258.
– reference: Kanazawa F. Inorganic Phosphate Materials. Tokyo: Elsevier; 1989. p 86-87.
– reference: Ozeki K, Yuhta T, Aoki H, Fukui Y. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings. BioMed Mat Eng 2003; 13: 271-279.
– reference: Aoki H. Marvelous Biomaterial Apatite. Tokyo: Ishiyaku Publishers; 1999. p 54-58.
– reference: Ogiso M, Yamashita Y, Mastumoto T. Comparative push-out test of dense HA implants and HA-coated implants: Findings in a canine study. J Biomed Mater Res 1998; 39: 364-372.
– reference: Ozeki K, Yuhta T, Fukui Y, Aoki H. Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol 2002; 160: 54-61.
– reference: Lucas LC, Lacefield WR, Ong JL, Whitehead RY. Calcium phosphate coatings for medical and dental implants. Colloids Surf A: Physiochem Eng Aspect 1993; 77: 141-147.
– reference: Termine JD, Eanes ED. Comparative chemistry of amorphous and apatic calcium phosphate preparations. Calcif Tissue Res 1971; 10: 171-197.
– reference: Wolke JGC, de Groot K, Jansen JA. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. J Biomed Mater Res 1998; 39: 524-530.
– reference: Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condò SG. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: An in vitro study. Biomol Eng 2002; 19: 119-124.
– reference: Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 1975; 8: 273-281.
– volume: 20
  start-page: 2287
  year: 1999
  end-page: 2303
  article-title: Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function
  publication-title: Biomaterials
– volume: 10
  start-page: 157
  year: 2000
  end-page: 188
  article-title: Hydroxyapatite‐coated bioalloy surfaces: Current status and future challenges
  publication-title: BioMed Mat Eng
– volume: 20
  start-page: 977
  year: 1999
  end-page: 985
  article-title: Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro
  publication-title: Biomaterials
– volume: 13
  start-page: 253
  year: 2002
  end-page: 258
  article-title: A functionally graded titanium/hydroxyapatite film obtained by sputtering
  publication-title: J Mater Sci Mater Med
– volume: 77
  start-page: 141
  year: 1993
  end-page: 147
  article-title: Calcium phosphate coatings for medical and dental implants
  publication-title: Colloids Surf A: Physiochem Eng Aspect
– volume: 10
  start-page: 171
  year: 1971
  end-page: 197
  article-title: Comparative chemistry of amorphous and apatic calcium phosphate preparations
  publication-title: Calcif Tissue Res
– volume: 26
  start-page: 297
  year: 2005
  end-page: 302
  article-title: Rapid fabrication of keratin‐hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation
  publication-title: Biomaterials
– volume: 202
  start-page: 151
  year: 1986
  end-page: 155
  article-title: Preparation of tetracalcium phosphate
  publication-title: Gypsum Lime
– volume: 24
  start-page: 941
  year: 2003
  end-page: 947
  article-title: Effect of bone‐like layer from culture medium on adherence of osteoblast‐like cells
  publication-title: Biomaterials
– volume: 26
  start-page: 327
  year: 2005
  end-page: 337
  article-title: A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying
  publication-title: Biomaterials
– volume: 8
  start-page: 273
  year: 1975
  end-page: 281
  article-title: Synthetic amorphous calcium phosphate and its relation to bone mineral structure
  publication-title: Acc Chem Res
– start-page: 54
  year: 1999
  end-page: 58
– volume: 13
  start-page: 451
  year: 2003
  end-page: 463
  article-title: Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment
  publication-title: BioMed Mater Eng
– volume: 22
  start-page: 1467
  year: 2001
  end-page: 1474
  article-title: The influence of titania/hydroxyapatite composite coatings on in vitro osteoblast behaviour
  publication-title: Biomaterials
– volume: 17
  start-page: 23
  year: 1996
  end-page: 29
  article-title: Evaluation of implant materials (hydroxyapatite, glass‐ceramics, titanium) in rat bone marrow stromal cell culture
  publication-title: Biomaterials
– volume: 89
  start-page: 257
  year: 1982
  end-page: 267
  article-title: Amorphous to crystalline calcium phosphate phase transformation at elevated pH
  publication-title: J Colloid Interface Sci
– volume: 17
  start-page: 405
  year: 1996
  end-page: 410
  article-title: Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings
  publication-title: Biomaterials
– volume: 96
  start-page: 191
  year: 1983
  end-page: 198
  article-title: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria
  publication-title: J Cell Biol
– volume: 264
  start-page: 483
  year: 2004
  end-page: 491
  article-title: Chemical growth of calcium phosphate layers on magnetron sputtered HA films
  publication-title: J Cryst Growth
– volume: 10
  start-page: 82
  year: 1972
  end-page: 90
  article-title: Precipitation of calcium phosphates from electrolyte solutions
  publication-title: Calcif Tissue Res
– volume: 11
  start-page: 50
  year: 1990
  end-page: 56
  article-title: Preliminary studies on the phenomenological behavior of osteoblasts cultured on hydroxyapatite ceramics
  publication-title: Biomaterials
– volume: 78
  start-page: 2218
  year: 1974
  end-page: 2225
  article-title: Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium
  publication-title: J Phys Chem
– volume: 29
  start-page: 1499
  year: 1995
  end-page: 1505
  article-title: Degradation potential of plasma‐sprayed hydroxyapatite‐coated titanium implants
  publication-title: J Biomed Mater Res
– volume: 29
  start-page: 268
  year: 1995
  end-page: 276
  article-title: Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with rf magnetron sputtering
  publication-title: J Biomed Mater Res
– volume: 10
  start-page: 221
  year: 2000
  end-page: 227
  article-title: Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique
  publication-title: BioMed Mat Eng
– start-page: 307
  year: 1994
  end-page: 326
– volume: 27
  start-page: 111
  year: 1993
  end-page: 117
  article-title: In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants
  publication-title: J Biomed Mater Res
– volume: 23
  start-page: 101
  year: 2002
  end-page: 107
  article-title: Osteoblast behavior on HA/PE composite surfaces with different HA volumes
  publication-title: Biomaterials
– volume: 11
  start-page: 63
  year: 2001
  end-page: 68
  article-title: Push‐out strength of hydroxyapatite coated by sputtering technique in bone
  publication-title: BioMed Mater Eng
– volume: 39
  start-page: 524
  year: 1998
  end-page: 530
  article-title: In vivo dissolution behavior of various RF magnetron sputtered Ca‐P coatings
  publication-title: J Biomed Mater Res
– volume: 67A
  start-page: 1196
  year: 2003
  end-page: 1204
  article-title: Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3–E1 osteoblasts
  publication-title: J Biomed Mater Res
– volume: 19
  start-page: 119
  year: 2002
  end-page: 124
  article-title: Growth of osteoblast‐like cells on porous hydroxyapatite ceramics: An in vitro study
  publication-title: Biomol Eng
– volume: 23
  start-page: 259
  year: 1997
  end-page: 269
  article-title: The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH
  publication-title: Calcif Tissue Res
– volume: 160
  start-page: 54
  year: 2002
  end-page: 61
  article-title: Phase composition of sputtered films from a hydroxyapatite target
  publication-title: Surf Coat Technol
– volume: 37
  start-page: 60
  year: 1997
  end-page: 67
  article-title: Influence of rapid heating with infrared radiation on RF magnetron‐sputtered calcium phosphate coatings
  publication-title: J Biomed Mater Res
– volume: 39
  start-page: 364
  year: 1998
  end-page: 372
  article-title: Comparative push‐out test of dense HA implants and HA‐coated implants: Findings in a canine study
  publication-title: J Biomed Mater Res
– start-page: 54
  year: 1994
  end-page: 55
– volume: 4
  start-page: 28
  year: 1993
  end-page: 34
  article-title: Application of magnetron sputtering for the producing ceramic coatings
  publication-title: Clin Oral Impl Res
– volume: 13
  start-page: 271
  year: 2003
  end-page: 279
  article-title: Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings
  publication-title: BioMed Mat Eng
– volume: 11
  start-page: 509
  year: 1990
  end-page: 512
  article-title: Studies of the solubility of different calcium phosphate ceramic particles in vitro
  publication-title: Biomaterials
– volume: 212
  start-page: 137
  year: 1998
  end-page: 147
  article-title: Calcium phosphate coatings for medical implants
  publication-title: Proc Inst Mech Eng Part H
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– start-page: 86
  year: 1989
  end-page: 87
– volume: 21
  start-page: 1121
  year: 2000
  end-page: 1127
  article-title: Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium
  publication-title: Biomaterials
– volume: 57
  start-page: 41
  year: 2001
  end-page: 47
  article-title: Influence of coating strain on calcium phosphate thin‐film dissolution
  publication-title: J Biomed Mater Res
– volume: 25
  start-page: 1159
  year: 2004
  end-page: 1166
  article-title: Effects of apatite cements on proliferation and differentiation of human osteoblast in vitro
  publication-title: Biomaterials
– volume: 9
  start-page: 353
  year: 1974
  end-page: 360
  article-title: An X‐ray radial distribution study of amorphous calcium phosphate
  publication-title: Mater Res Bull
– start-page: 307
  volume-title: Medical Applications of Hydroxyapatite
  year: 1994
  ident: e_1_2_6_2_2
– ident: e_1_2_6_14_2
  doi: 10.1023/A:1014002732373
– ident: e_1_2_6_37_2
  doi: 10.1016/0021-9797(82)90139-4
– ident: e_1_2_6_19_2
  doi: 10.1016/0927-7757(93)80110-Z
– ident: e_1_2_6_28_2
  doi: 10.1016/0003-2697(76)90527-3
– start-page: 54
  volume-title: Structure and Chemistry of the Apatite and Other Calcium Orthophosphates
  year: 1994
  ident: e_1_2_6_31_2
– ident: e_1_2_6_18_2
  doi: 10.1016/0142-9612(96)89656-6
– ident: e_1_2_6_12_2
  doi: 10.1016/j.biomaterials.2004.02.029
– ident: e_1_2_6_23_2
  doi: 10.1016/S0142-9612(00)00269-6
– ident: e_1_2_6_24_2
  doi: 10.1016/j.biomaterials.2004.02.032
– volume: 11
  start-page: 63
  year: 2001
  ident: e_1_2_6_16_2
  article-title: Push‐out strength of hydroxyapatite coated by sputtering technique in bone
  publication-title: BioMed Mater Eng
– ident: e_1_2_6_17_2
  doi: 10.1002/(SICI)1097-4636(19980315)39:4<524::AID-JBM3>3.0.CO;2-L
– ident: e_1_2_6_8_2
  doi: 10.1243/0954411981533917
– ident: e_1_2_6_42_2
  doi: 10.1016/0142-9612(96)80751-4
– volume: 10
  start-page: 221
  year: 2000
  ident: e_1_2_6_10_2
  article-title: Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique
  publication-title: BioMed Mat Eng
– ident: e_1_2_6_15_2
  doi: 10.1002/1097-4636(200110)57:1<41::AID-JBM1139>3.0.CO;2-9
– ident: e_1_2_6_35_2
  doi: 10.1021/j100615a007
– start-page: 54
  volume-title: Marvelous Biomaterial Apatite
  year: 1999
  ident: e_1_2_6_3_2
– ident: e_1_2_6_47_2
  doi: 10.1016/S0142-9612(99)00181-7
– ident: e_1_2_6_6_2
  doi: 10.1002/jbm.820291206
– ident: e_1_2_6_34_2
  doi: 10.1002/jbm.820290218
– ident: e_1_2_6_20_2
  doi: 10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H
– ident: e_1_2_6_44_2
  doi: 10.1016/j.biomaterials.2003.08.003
– start-page: 86
  volume-title: Inorganic Phosphate Materials
  year: 1989
  ident: e_1_2_6_32_2
– volume: 13
  start-page: 451
  year: 2003
  ident: e_1_2_6_21_2
  article-title: Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment
  publication-title: BioMed Mater Eng
– ident: e_1_2_6_9_2
  doi: 10.1034/j.1600-0501.1993.040104.x
– ident: e_1_2_6_25_2
  doi: 10.1016/S0142-9612(02)00430-1
– ident: e_1_2_6_45_2
  doi: 10.1016/S0142-9612(01)00084-9
– ident: e_1_2_6_29_2
  doi: 10.1021/ar50092a003
– ident: e_1_2_6_22_2
  doi: 10.1016/S1389-0344(02)00027-8
– volume: 202
  start-page: 151
  year: 1986
  ident: e_1_2_6_33_2
  article-title: Preparation of tetracalcium phosphate
  publication-title: Gypsum Lime
– ident: e_1_2_6_39_2
  doi: 10.1007/BF02012538
– ident: e_1_2_6_27_2
  doi: 10.1016/0142-9612(90)90067-Z
– ident: e_1_2_6_7_2
  doi: 10.1002/(SICI)1097-4636(19980305)39:3<364::AID-JBM4>3.0.CO;2-H
– volume: 10
  start-page: 157
  year: 2000
  ident: e_1_2_6_4_2
  article-title: Hydroxyapatite‐coated bioalloy surfaces: Current status and future challenges
  publication-title: BioMed Mat Eng
– ident: e_1_2_6_41_2
  doi: 10.1016/S0142-9612(98)00254-3
– ident: e_1_2_6_11_2
  doi: 10.1016/S0257-8972(02)00363-8
– ident: e_1_2_6_26_2
  doi: 10.1083/jcb.96.1.191
– ident: e_1_2_6_5_2
  doi: 10.1002/jbm.820270114
– ident: e_1_2_6_30_2
  doi: 10.1016/0025-5408(74)90087-7
– ident: e_1_2_6_46_2
  doi: 10.1016/0142-9612(90)90052-R
– ident: e_1_2_6_48_2
  doi: 10.1016/S0142-9612(99)00264-1
– ident: e_1_2_6_40_2
  doi: 10.1016/j.jcrysgro.2004.01.015
– volume: 13
  start-page: 271
  year: 2003
  ident: e_1_2_6_13_2
  article-title: Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings
  publication-title: BioMed Mat Eng
– ident: e_1_2_6_36_2
  doi: 10.1007/BF02012795
– ident: e_1_2_6_43_2
  doi: 10.1002/jbm.a.20021
– ident: e_1_2_6_38_2
  doi: 10.1007/BF02012548
SSID ssj0026052
ssib024095186
ssib002513968
ssib053834815
Score 1.8817472
Snippet Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at...
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at...
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the assputtered films were hydrothermally recrystallized at...
SourceID proquest
pubmed
crossref
wiley
nii
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 605
SubjectTerms Animals
cell culture
Cell Proliferation
Coated Materials, Biocompatible
Crystallization
Crystallization - methods
Durapatite
Hot Temperature
hydroxyapatite
Materials Testing
Materials Testing - methods
Mice
Microscopy, Electron, Scanning
Microscopy, Electron, Scanning - methods
Osteoblasts
Osteoblasts - physiology
Osteoblasts - ultrastructure
Prostheses and Implants
solubility
sputtering
Surface Properties
Titanium
Title Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment
URI https://api.istex.fr/ark:/67375/WNG-23QRBL7V-H/fulltext.pdf
https://cir.nii.ac.jp/crid/1872835442954368896
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.30574
https://www.ncbi.nlm.nih.gov/pubmed/16278871
https://www.proquest.com/docview/29126177
https://www.proquest.com/docview/70693791
Volume 76A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCB92OBgg8Vh0rZbhw7To4UKKuKVqKi0JvlRyxCd5Nqk-V15Jcz42SzLSpIcImieJLYzjfxZ3v8mZAtDU1uLJyOvDEu4kzrKDM6jWIppciL1PkwpntwmE6P-f6JOOljc3AtTKcPMQy4oWeE_zU6uDbNzlo09LOZj_UY4CpRDRSjtZASHQ3iUUjUw1wn9ICihOVpvzoPUnbO3XuhPbqKVfsNmpmqLC-jnBcZbGiC9m52-6w2QbkQI09Ox8vWjO2P33Qd_7t0t8iNnpzSFx2abpMrRXWHXD8nWXiX_HxVDnClqzX-VFeOlhX9UraLmq4FxGntaXMWtsIuHP303WHONcZwtwX15Wze0GZpcCSItjXVdFZ_paiV1Qs9d3cgQ51DroaQ-HvkeO_1-5fTqN_HIbIC2EOUaOg3WS0ypuPMeYABd9wCdhgrEqcz5jMP16WxuZBeOjdhhgNtckD2vLdxcp9sVHVVPCSUW-9ZCg-IreQTbo20IhdOuDwXPkvciGyvvqayvcg57rUxU508M1NQsUqrULEjsjUYn3XaHpebPQ-wGGz04hTD4aRQHw_fKJa8O9p9Kz-o6YhsAm7gvXiMM4lSdpzjRGqSZlmejsizFaIUODHOzOiqqJeNAn9BZXz5Zws5SaFG8nhEHnRQXOc4ZRgRCinbAVB_K4ra3z0IJ4_-xfgxudYNPGHk3ROy0S6WxSZQsdY8DR73C3wnL8U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPQAH3o8FSn2oOFTKduPYcXKkQFnKbiWqFnqzHDsWobtJtZvldeSXM-Nksy0qSHCJomSSOM438efx-DMhWxqa3FBYHbgsswFnWgdJpuMglFKKNI-t8zHd8UE8POb7J-KkDbjhXJhGH6ILuKFn-P81OjgGpHdWqqGfs2lf9wGvkl8l67imt-9SHXbyUUjV_Wgn9IGCiKVxOz8Pzuycu_hCi7SOlfsNGpqyKC4jnRc5rG-E9m4RtSx-k3ty2l_UWd_8-E3Z8f_f7za52fJT-qIB1B1yJS_vkhvnVAvvkZ-vig6xdDnNn-rS0qKkX4p6VtGVhjitHJ2f-dWwc0s_fbdYdI1p3HVOXTGZzul8kWEwiNYV1XRSfaUol9VqPTdXIEmdQqm6rPj75Hjv9dHLYdAu5RAYAQQiiDR0nYwWCdNhYh0ggVtuAD6M5ZHVCXOJg-MyM6mQTlo7YBkH5mSB7zlnwugBWSurMn9EKDfOsRhuEBrJB9xk0ohUWGHTVLgksj2yvfycyrQ657jcxkQ1Cs1MQcUqrXzF9shWZ3zWyHtcbvbc46Kz0bNTzIiTQn08eKNY9P5wdyQ_qGGPbABw4Lm4DROJanac41hqFCdJGvfI5hJSCvwYB2d0mVeLuQKXQXF8-WcLOYihRtKwRx42WFyVOGaYFApntj2i_vYqan937Hce_4vxJrk2PBqP1Ojtwbsn5HoTh8JEvKdkrZ4t8g1gZnX2zLvfL1QQM-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgkxAc-D0IMObDxGFSusax4-TIKKWMrYKJwW6WY8datjapmpRfR_5ynp003dBAgksUxS-J7Xwv_mw_f0ZoW0KTGzAtfZOm2qdESj9OZeQHnHOWZJE2bkz3cByNjun-CTtpY3PsWphGH6IbcLOe4f7X1sFn2uyuREPP0mlP9gCunF5H6zTqxxbUg6NOPcoydTfZCV0gPyRJ1C7Pg5TdCzdfapDWbd1-g3amyPOrOOdlCuvaoOGdZqPVykkX2tCT896iTnvqx2_Cjv9dvLvodstO8csGTvfQtay4j25d0Cx8gH4O8g6veLnIH8tC47zAX_J6XuKVgjguDa5mbi_sTOPT79rmXNog7jrDJp9MK1wtUjsUhOsSSzwpv2IrltUqPTd3WIo6hVx1MfEP0fHw9cdXI7_dyMFXDOiDH0roOCnJYiKDWBvAAdVUAXgIyUItY2JiA9d5qhLGDde6T1IKvEkD2zNGBeEGWivKInuMMFXGkAgeEChO-1SlXLGEaaaThJk41B7aWX5NoVqVc7vZxkQ0-sxEQMUKKVzFemi7M5414h5Xm71wsOhs5PzcxsNxJj6P3wgSfjjaO-CfxMhDm4AbeK89BjG3WnaU2pnUMIrjJPLQ1hJRArzYTs3IIisXlQCHsdL4_M8WvB9BjSSBhx41UFzlOCI2JBRSdhyg_lYUsb936E6e_IvxFrrxfjAUB2_H756im80glI3Ce4bW6vki2wRaVqfPnfP9ArV9Mpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissolution+behavior+and+in+vitro+evaluation+of+sputtered+hydroxyapatite+films+subject+to+a+low+temperature+hydrothermal+treatment&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Ozeki%2C+K.&rft.au=Aoki%2C+H.&rft.au=Fukui%2C+Y.&rft.date=2006-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=76A&rft.issue=3&rft.spage=605&rft.epage=613&rft_id=info:doi/10.1002%2Fjbm.a.30574&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_23QRBL7V_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon