Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at 110°C. In immersion tests, the as‐sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermal...
Saved in:
Published in | Journal of Biomedical Materials Research Part A Vol. 76A; no. 3; pp. 605 - 613 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2006
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1549-3296 1552-4965 |
DOI | 10.1002/jbm.a.30574 |
Cover
Loading…
Abstract | Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at 110°C. In immersion tests, the as‐sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3‐E1 osteoblast‐like cells on the as‐sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3‐E1 cells on the as‐sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as‐sputtered film. After a 96‐h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as‐sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3‐E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3‐E1 cells on the as‐sputtered films after a period of 24 h. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 |
---|---|
AbstractList | Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at 110°C. In immersion tests, the as‐sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3‐E1 osteoblast‐like cells on the as‐sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3‐E1 cells on the as‐sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as‐sputtered film. After a 96‐h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as‐sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3‐E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3‐E1 cells on the as‐sputtered films after a period of 24 h. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the assputtered films were hydrothermally recrystallized at 110DGC. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the assputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titaniumsubstrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h. Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at 110 degrees C. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the as-sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h. Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at 110 degrees C. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the as-sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h.Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at 110 degrees C. In immersion tests, the as-sputtered film completely dissolved after 2 days in a culture medium, whereas the thickness of hydrothermally treated films increased with an increase in immersion period, reaching a thickness of 127% after a period of 4 weeks. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblast-like cells on the as-sputtered and hydrothermally treated films were investigated, and the cell morphology was also observed using scanning electron microscopy. The proliferation of MC3T3-E1 cells on the as-sputtered films was suppressed, whereas proliferation on the hydrothermally treated films was comparable to that on control and titanium substrate. The suppression of cell proliferation is associated with an increase in pH of the culture medium caused by dissolution of the as-sputtered film. After a 96-h culture time, the ALP activity of the cells on the hydrothermally treated film was higher than that on the control, titanium substrate, and as-sputtered film samples. From scanning electron microscopic observations, it was found that the MC3T3-E1 cells on the hydrothermally treated films were elongated and had established more intricate filopodia networks with each other, which were also observed for MC3T3-E1 cells on the as-sputtered films after a period of 24 h. |
Author | Aoki, H. Fukui, Y. Ozeki, K. |
Author_xml | – sequence: 1 givenname: K. surname: Ozeki fullname: Ozeki, K. email: ozeki@frontier.dendai.ac.jp organization: Frontier Research and Development Center, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan – sequence: 2 givenname: H. surname: Aoki fullname: Aoki, H. organization: Frontier Research and Development Center, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan – sequence: 3 givenname: Y. surname: Fukui fullname: Fukui, Y. organization: Frontier Research and Development Center, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama, 350-0394, Japan |
BackLink | https://cir.nii.ac.jp/crid/1872835442954368896$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/16278871$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhSNURB-wYo-8QGxQhvgVO0taoAUNIBCPpeU4NxoPSRxsZ9rZ8svxTKZdIAQb27r-zrlX95xmR4MbIMse42KBi4K8WNf9Qi9owQW7l51gzknOqpIf7d6syimpyuPsNIR1gsuCkwfZMS6JkFLgk-zXKxuC66Zo3YBqWOmNdR7poUF2QBsbvUOw0d2k94BrURinGMFDg1bbxrubrR7TXwTU2q4PKEz1GkxE0SGNOneNIvQjeB0nD7MirsD3ukPRg449DPFhdr_VXYBHh_ss-_rm9ZeLq3z58fLtxctlbjhhLKe6kKXRXBKNZdNiIVjDDBhDCNBGS9LKNtVFbSouWtE0BalZRUVDCWtbg-lZ9mz2Hb37OUGIqrfBQNfpAdwUlCjKhFf_B0mFSZn6J_DJAZzqHho1ettrv1W3600AngHjXQgeWmVs3K8yem07hQu1i1ClCJVW-wiT5vkfmjvbv9KHDte2g-2_UPXu_P2t5umsGaxNA-1OLAWRlDNGKs5oKWVVJiyfMRsi3NxZa_9DlYIKrr5_uFSEfvp8vhTf1BX9DRIYydI |
CitedBy_id | crossref_primary_10_1007_s10856_007_3288_y crossref_primary_10_3233_BME_151560 crossref_primary_10_3233_BME_230131 crossref_primary_10_1016_j_tsf_2011_04_090 crossref_primary_10_1007_s10856_011_4329_0 crossref_primary_10_1016_j_vacuum_2008_05_019 crossref_primary_10_1016_j_apsusc_2008_08_029 crossref_primary_10_1016_j_tsf_2014_07_058 crossref_primary_10_1002_jbm_b_33347 crossref_primary_10_1007_s12034_008_0140_z crossref_primary_10_3390_jfb13030099 crossref_primary_10_1111_ijac_12145 crossref_primary_10_1177_0885328209340334 |
Cites_doi | 10.1023/A:1014002732373 10.1016/0021-9797(82)90139-4 10.1016/0927-7757(93)80110-Z 10.1016/0003-2697(76)90527-3 10.1016/0142-9612(96)89656-6 10.1016/j.biomaterials.2004.02.029 10.1016/S0142-9612(00)00269-6 10.1016/j.biomaterials.2004.02.032 10.1002/(SICI)1097-4636(19980315)39:4<524::AID-JBM3>3.0.CO;2-L 10.1243/0954411981533917 10.1016/0142-9612(96)80751-4 10.1002/1097-4636(200110)57:1<41::AID-JBM1139>3.0.CO;2-9 10.1021/j100615a007 10.1016/S0142-9612(99)00181-7 10.1002/jbm.820291206 10.1002/jbm.820290218 10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H 10.1016/j.biomaterials.2003.08.003 10.1034/j.1600-0501.1993.040104.x 10.1016/S0142-9612(02)00430-1 10.1016/S0142-9612(01)00084-9 10.1021/ar50092a003 10.1016/S1389-0344(02)00027-8 10.1007/BF02012538 10.1016/0142-9612(90)90067-Z 10.1002/(SICI)1097-4636(19980305)39:3<364::AID-JBM4>3.0.CO;2-H 10.1016/S0142-9612(98)00254-3 10.1016/S0257-8972(02)00363-8 10.1083/jcb.96.1.191 10.1002/jbm.820270114 10.1016/0025-5408(74)90087-7 10.1016/0142-9612(90)90052-R 10.1016/S0142-9612(99)00264-1 10.1016/j.jcrysgro.2004.01.015 10.1007/BF02012795 10.1002/jbm.a.20021 10.1007/BF02012548 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley Periodicals, Inc. (c) 2005 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2005 Wiley Periodicals, Inc. – notice: (c) 2005 Wiley Periodicals, Inc. |
DBID | BSCLL RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QQ 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 |
DOI | 10.1002/jbm.a.30574 |
DatabaseName | Istex CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ceramic Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 613 |
ExternalDocumentID | 16278871 10_1002_jbm_a_30574 JBM30574 ark_67375_WNG_23QRBL7V_H |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI SUPJJ UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEYWJ AFWVQ AGQPQ AGYGG ALVPJ RYH AAYXX AGHNM CITATION EBD EMOBN HF~ RYL SV3 CGR CUY CVF ECM EIF NPM 7QQ 7SR 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c5244-3a086ca582a18df1774d4cecc22e3da82f8f8df7bc957f7dd02b4937d324ffc13 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 |
IngestDate | Fri Jul 11 13:29:15 EDT 2025 Fri Jul 11 14:56:01 EDT 2025 Wed Feb 19 01:43:24 EST 2025 Thu Apr 24 22:52:15 EDT 2025 Tue Jul 01 01:11:15 EDT 2025 Wed Jan 22 16:53:52 EST 2025 Thu Jun 26 21:40:36 EDT 2025 Wed Oct 30 09:47:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor (c) 2005 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5244-3a086ca582a18df1774d4cecc22e3da82f8f8df7bc957f7dd02b4937d324ffc13 |
Notes | istex:AB17698F5A5A5159A4993224471ACD7C4B75B88F ark:/67375/WNG-23QRBL7V-H ArticleID:JBM30574 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 16278871 |
PQID | 29126177 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_70693791 proquest_miscellaneous_29126177 pubmed_primary_16278871 crossref_citationtrail_10_1002_jbm_a_30574 crossref_primary_10_1002_jbm_a_30574 wiley_primary_10_1002_jbm_a_30574_JBM30574 nii_cinii_1872835442954368896 istex_primary_ark_67375_WNG_23QRBL7V_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 March 2006 |
PublicationDateYYYYMMDD | 2006-03-01 |
PublicationDate_xml | – month: 03 year: 2006 text: 1 March 2006 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of Biomedical Materials Research Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Lewis G. Hydroxyapatite-coated bioalloy surfaces: Current status and future challenges. BioMed Mat Eng 2000; 10: 157-188. Kizuki T, Ohgaki M, Katsura M, Nakamura S, Hashimoto K, Toda Y, Ukegawa S, Yamashita K. Effect of bone-like layer from culture medium on adherence of osteoblast-like cells. Biomaterials 2003; 24: 941-947. Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 1996; 17: 23-29. Shu R, McMullen R, Baumann MJ, McCabe LR. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J Biomed Mater Res 2003; 67A: 1196-1204. Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 1975; 8: 273-281. Baganbisa FB, Joos U. Preliminary studies on the phenomenological behavior of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials 1990; 11: 50-56. Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. A functionally graded titanium/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 2002; 13: 253-258. Bre[caron]cević LJ, Füredi-Milhofer H. Precipitation of calcium phosphates from electrolyte solutions. Calcif Tissue Res 1972; 10: 82-90. Aoki H. Marvelous Biomaterial Apatite. Tokyo: Ishiyaku Publishers; 1999. p 54-58. Nancollas GH, Tomažič B. Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium. J Phys Chem 1974; 78: 2218-2225. Ozeki K, Mishima A, Yuhta T, Fukui Y, Aoki H. Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment. BioMed Mater Eng 2003; 13: 451-463. Wolke JGC, de Groot K, Jansen JA. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. J Biomed Mater Res 1998; 39: 524-530. Ozeki K, Yuhta T, Fukui Y, Aoki H. Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol 2002; 160: 54-61. Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condò SG. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: An in vitro study. Biomol Eng 2002; 19: 119-124. Aoki H. Medical Applications of Hydroxyapatite. St. Louis: Ishiyaku EuroAmerica; 1994. p 307-326. Kanazawa F. Inorganic Phosphate Materials. Tokyo: Elsevier; 1989. p 86-87. van Dilk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 1996; 17: 405-410. Yoshinari M, Hayakawa T, Wolke JGC, Nemoto K, Jansen JA. Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res 1997; 37: 60-67. Paschalis EP, Zhao Q, Tucker BE, Mukhopadhayay S, Bearcroft JA, Beals NB, Spector M, Nancollas GH. Degradation potential of plasma-sprayed hydroxyapatite-coated titanium implants. J Biomed Mater Res 1995; 29: 1499-1505. Klein CPAT, de Blieck-Hogervorst JMA, Wolke JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 1990; 11: 509-512. Monma H, Goto M, Nakajima H, Hashimoto H. Preparation of tetracalcium phosphate. Gypsum Lime 1986; 202: 151-155. Burke EM, Haman JD, Weimer JJ, Cheney AB, Rigsbee JM, Lucas LC. Influence of coating strain on calcium phosphate thin-film dissolution. J Biomed Mater Res 2001; 57: 41-47. Ogiso M, Yamashita Y, Mastumoto T. Comparative push-out test of dense HA implants and HA-coated implants: Findings in a canine study. J Biomed Mater Res 1998; 39: 364-372. Elliot JC. Structure and Chemistry of the Apatite and Other Calcium Orthophosphates. Amsterdam: Elsevier; 1994. p 54-55. Chou L, Marek B, Wagner WR. Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials 1999; 20: 977-985. Jansen JA, Wolke JGC, Swann S, van der Waerden JPCM, de Groot K. Application of magnetron sputtering for the producing ceramic coatings. Clin Oral Impl Res 1993; 4: 28-34. Ramires PA, Romito A, Cosentino F, Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblast behaviour. Biomaterials 2001; 22: 1467-1474. Verestiuc L, Morosanu C, Bercu M, Pasuk I, Mihailescu IN. Chemical growth of calcium phosphate layers on magnetron sputtered HA films. J Cryst Growth 2004; 264: 483-491. Ducheyne P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20: 2287-2303. Maxian SH, Zawadsky JP, Dunn MG. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J Biomed Mater Res 1993; 27: 111-117. de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng Part H 1998; 212: 137-147. Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Push-out strength of hydroxyapatite coated by sputtering technique in bone. BioMed Mater Eng 2001; 11: 63-68. Posner AS, Betts F. An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull 1974; 9: 353-360. van Dijk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with rf magnetron sputtering. J Biomed Mater Res 1995; 29: 268-276. Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 2000; 21: 1121-1127. Tachibana A, Kaneko S, Tanabe T, Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005; 26: 297-302. Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. BioMed Mat Eng 2000; 10: 221-227. Ozeki K, Yuhta T, Aoki H, Fukui Y. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings. BioMed Mat Eng 2003; 13: 271-279. Eanes ED, Meyer JL. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 1997; 23: 259-269. Di Silvio L, Dalby MJ, Bonfield W. Osteoblast behavior on HA/PE composite surfaces with different HA volumes. Biomaterials 2002; 23: 101-107. Lucas LC, Lacefield WR, Ong JL, Whitehead RY. Calcium phosphate coatings for medical and dental implants. Colloids Surf A: Physiochem Eng Aspect 1993; 77: 141-147. Yang Y, Kim Kyo-Han, Ong JL. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 2005; 26: 327-337. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254. Sudo H, Kodama H, Amagia Y, Yamamoto S, Kasia S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983; 96: 191-198. Termine JD, Eanes ED. Comparative chemistry of amorphous and apatic calcium phosphate preparations. Calcif Tissue Res 1971; 10: 171-197. Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nomota Y, Tatehara S, Nagayama M. Effects of apatite cements on proliferation and differentiation of human osteoblast in vitro. Biomaterials 2004; 25: 1159-1166. Meyer JL, Weatherall CC. Amorphous to crystalline calcium phosphate phase transformation at elevated pH. J Colloid Interface Sci 1982; 89: 257-267. 2004; 264 1990; 11 1974; 78 1996; 17 1993; 27 2002; 19 2004; 25 2000; 21 2002; 13 2003; 67A 1997; 23 2003; 13 1983; 96 1994 1999; 20 2005; 26 2001; 22 1998; 212 1974; 9 1993; 4 1999 1982; 89 1998; 39 1971; 10 2002; 160 1986; 202 2000; 10 1993; 77 1997; 37 1976; 72 2002; 23 2003; 24 1972; 10 1995; 29 2001; 11 1975; 8 2001; 57 1989 Aoki H (e_1_2_6_3_2) 1999 Ozeki K (e_1_2_6_21_2) 2003; 13 e_1_2_6_30_2 Aoki H (e_1_2_6_2_2) 1994 Ozeki K (e_1_2_6_16_2) 2001; 11 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 Kanazawa F (e_1_2_6_32_2) 1989 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 Ozeki K (e_1_2_6_10_2) 2000; 10 Lewis G (e_1_2_6_4_2) 2000; 10 e_1_2_6_8_2 e_1_2_6_7_2 Monma H (e_1_2_6_33_2) 1986; 202 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_22_2 Elliot JC (e_1_2_6_31_2) 1994 Ozeki K (e_1_2_6_13_2) 2003; 13 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Push-out strength of hydroxyapatite coated by sputtering technique in bone. BioMed Mater Eng 2001; 11: 63-68. – reference: Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 2000; 21: 1121-1127. – reference: Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. BioMed Mat Eng 2000; 10: 221-227. – reference: Maxian SH, Zawadsky JP, Dunn MG. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J Biomed Mater Res 1993; 27: 111-117. – reference: Di Silvio L, Dalby MJ, Bonfield W. Osteoblast behavior on HA/PE composite surfaces with different HA volumes. Biomaterials 2002; 23: 101-107. – reference: Ozeki K, Mishima A, Yuhta T, Fukui Y, Aoki H. Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment. BioMed Mater Eng 2003; 13: 451-463. – reference: Baganbisa FB, Joos U. Preliminary studies on the phenomenological behavior of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials 1990; 11: 50-56. – reference: Lewis G. Hydroxyapatite-coated bioalloy surfaces: Current status and future challenges. BioMed Mat Eng 2000; 10: 157-188. – reference: Eanes ED, Meyer JL. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 1997; 23: 259-269. – reference: Chou L, Marek B, Wagner WR. Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials 1999; 20: 977-985. – reference: Posner AS, Betts F. An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull 1974; 9: 353-360. – reference: Ramires PA, Romito A, Cosentino F, Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblast behaviour. Biomaterials 2001; 22: 1467-1474. – reference: Ducheyne P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20: 2287-2303. – reference: Meyer JL, Weatherall CC. Amorphous to crystalline calcium phosphate phase transformation at elevated pH. J Colloid Interface Sci 1982; 89: 257-267. – reference: Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 1996; 17: 23-29. – reference: Klein CPAT, de Blieck-Hogervorst JMA, Wolke JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 1990; 11: 509-512. – reference: Verestiuc L, Morosanu C, Bercu M, Pasuk I, Mihailescu IN. Chemical growth of calcium phosphate layers on magnetron sputtered HA films. J Cryst Growth 2004; 264: 483-491. – reference: van Dijk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with rf magnetron sputtering. J Biomed Mater Res 1995; 29: 268-276. – reference: Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254. – reference: Jansen JA, Wolke JGC, Swann S, van der Waerden JPCM, de Groot K. Application of magnetron sputtering for the producing ceramic coatings. Clin Oral Impl Res 1993; 4: 28-34. – reference: Yoshinari M, Hayakawa T, Wolke JGC, Nemoto K, Jansen JA. Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res 1997; 37: 60-67. – reference: Sudo H, Kodama H, Amagia Y, Yamamoto S, Kasia S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983; 96: 191-198. – reference: Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nomota Y, Tatehara S, Nagayama M. Effects of apatite cements on proliferation and differentiation of human osteoblast in vitro. Biomaterials 2004; 25: 1159-1166. – reference: de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng Part H 1998; 212: 137-147. – reference: Bre[caron]cević LJ, Füredi-Milhofer H. Precipitation of calcium phosphates from electrolyte solutions. Calcif Tissue Res 1972; 10: 82-90. – reference: Tachibana A, Kaneko S, Tanabe T, Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005; 26: 297-302. – reference: Monma H, Goto M, Nakajima H, Hashimoto H. Preparation of tetracalcium phosphate. Gypsum Lime 1986; 202: 151-155. – reference: Elliot JC. Structure and Chemistry of the Apatite and Other Calcium Orthophosphates. Amsterdam: Elsevier; 1994. p 54-55. – reference: Aoki H. Medical Applications of Hydroxyapatite. St. Louis: Ishiyaku EuroAmerica; 1994. p 307-326. – reference: Paschalis EP, Zhao Q, Tucker BE, Mukhopadhayay S, Bearcroft JA, Beals NB, Spector M, Nancollas GH. Degradation potential of plasma-sprayed hydroxyapatite-coated titanium implants. J Biomed Mater Res 1995; 29: 1499-1505. – reference: Nancollas GH, Tomažič B. Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium. J Phys Chem 1974; 78: 2218-2225. – reference: van Dilk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 1996; 17: 405-410. – reference: Shu R, McMullen R, Baumann MJ, McCabe LR. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J Biomed Mater Res 2003; 67A: 1196-1204. – reference: Yang Y, Kim Kyo-Han, Ong JL. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 2005; 26: 327-337. – reference: Burke EM, Haman JD, Weimer JJ, Cheney AB, Rigsbee JM, Lucas LC. Influence of coating strain on calcium phosphate thin-film dissolution. J Biomed Mater Res 2001; 57: 41-47. – reference: Kizuki T, Ohgaki M, Katsura M, Nakamura S, Hashimoto K, Toda Y, Ukegawa S, Yamashita K. Effect of bone-like layer from culture medium on adherence of osteoblast-like cells. Biomaterials 2003; 24: 941-947. – reference: Ozeki K, Yuhta T, Aoki H, Nishimura I, Fukui Y. A functionally graded titanium/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 2002; 13: 253-258. – reference: Kanazawa F. Inorganic Phosphate Materials. Tokyo: Elsevier; 1989. p 86-87. – reference: Ozeki K, Yuhta T, Aoki H, Fukui Y. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings. BioMed Mat Eng 2003; 13: 271-279. – reference: Aoki H. Marvelous Biomaterial Apatite. Tokyo: Ishiyaku Publishers; 1999. p 54-58. – reference: Ogiso M, Yamashita Y, Mastumoto T. Comparative push-out test of dense HA implants and HA-coated implants: Findings in a canine study. J Biomed Mater Res 1998; 39: 364-372. – reference: Ozeki K, Yuhta T, Fukui Y, Aoki H. Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol 2002; 160: 54-61. – reference: Lucas LC, Lacefield WR, Ong JL, Whitehead RY. Calcium phosphate coatings for medical and dental implants. Colloids Surf A: Physiochem Eng Aspect 1993; 77: 141-147. – reference: Termine JD, Eanes ED. Comparative chemistry of amorphous and apatic calcium phosphate preparations. Calcif Tissue Res 1971; 10: 171-197. – reference: Wolke JGC, de Groot K, Jansen JA. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. J Biomed Mater Res 1998; 39: 524-530. – reference: Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condò SG. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: An in vitro study. Biomol Eng 2002; 19: 119-124. – reference: Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 1975; 8: 273-281. – volume: 20 start-page: 2287 year: 1999 end-page: 2303 article-title: Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function publication-title: Biomaterials – volume: 10 start-page: 157 year: 2000 end-page: 188 article-title: Hydroxyapatite‐coated bioalloy surfaces: Current status and future challenges publication-title: BioMed Mat Eng – volume: 20 start-page: 977 year: 1999 end-page: 985 article-title: Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro publication-title: Biomaterials – volume: 13 start-page: 253 year: 2002 end-page: 258 article-title: A functionally graded titanium/hydroxyapatite film obtained by sputtering publication-title: J Mater Sci Mater Med – volume: 77 start-page: 141 year: 1993 end-page: 147 article-title: Calcium phosphate coatings for medical and dental implants publication-title: Colloids Surf A: Physiochem Eng Aspect – volume: 10 start-page: 171 year: 1971 end-page: 197 article-title: Comparative chemistry of amorphous and apatic calcium phosphate preparations publication-title: Calcif Tissue Res – volume: 26 start-page: 297 year: 2005 end-page: 302 article-title: Rapid fabrication of keratin‐hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation publication-title: Biomaterials – volume: 202 start-page: 151 year: 1986 end-page: 155 article-title: Preparation of tetracalcium phosphate publication-title: Gypsum Lime – volume: 24 start-page: 941 year: 2003 end-page: 947 article-title: Effect of bone‐like layer from culture medium on adherence of osteoblast‐like cells publication-title: Biomaterials – volume: 26 start-page: 327 year: 2005 end-page: 337 article-title: A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying publication-title: Biomaterials – volume: 8 start-page: 273 year: 1975 end-page: 281 article-title: Synthetic amorphous calcium phosphate and its relation to bone mineral structure publication-title: Acc Chem Res – start-page: 54 year: 1999 end-page: 58 – volume: 13 start-page: 451 year: 2003 end-page: 463 article-title: Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment publication-title: BioMed Mater Eng – volume: 22 start-page: 1467 year: 2001 end-page: 1474 article-title: The influence of titania/hydroxyapatite composite coatings on in vitro osteoblast behaviour publication-title: Biomaterials – volume: 17 start-page: 23 year: 1996 end-page: 29 article-title: Evaluation of implant materials (hydroxyapatite, glass‐ceramics, titanium) in rat bone marrow stromal cell culture publication-title: Biomaterials – volume: 89 start-page: 257 year: 1982 end-page: 267 article-title: Amorphous to crystalline calcium phosphate phase transformation at elevated pH publication-title: J Colloid Interface Sci – volume: 17 start-page: 405 year: 1996 end-page: 410 article-title: Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings publication-title: Biomaterials – volume: 96 start-page: 191 year: 1983 end-page: 198 article-title: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria publication-title: J Cell Biol – volume: 264 start-page: 483 year: 2004 end-page: 491 article-title: Chemical growth of calcium phosphate layers on magnetron sputtered HA films publication-title: J Cryst Growth – volume: 10 start-page: 82 year: 1972 end-page: 90 article-title: Precipitation of calcium phosphates from electrolyte solutions publication-title: Calcif Tissue Res – volume: 11 start-page: 50 year: 1990 end-page: 56 article-title: Preliminary studies on the phenomenological behavior of osteoblasts cultured on hydroxyapatite ceramics publication-title: Biomaterials – volume: 78 start-page: 2218 year: 1974 end-page: 2225 article-title: Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium publication-title: J Phys Chem – volume: 29 start-page: 1499 year: 1995 end-page: 1505 article-title: Degradation potential of plasma‐sprayed hydroxyapatite‐coated titanium implants publication-title: J Biomed Mater Res – volume: 29 start-page: 268 year: 1995 end-page: 276 article-title: Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with rf magnetron sputtering publication-title: J Biomed Mater Res – volume: 10 start-page: 221 year: 2000 end-page: 227 article-title: Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique publication-title: BioMed Mat Eng – start-page: 307 year: 1994 end-page: 326 – volume: 27 start-page: 111 year: 1993 end-page: 117 article-title: In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants publication-title: J Biomed Mater Res – volume: 23 start-page: 101 year: 2002 end-page: 107 article-title: Osteoblast behavior on HA/PE composite surfaces with different HA volumes publication-title: Biomaterials – volume: 11 start-page: 63 year: 2001 end-page: 68 article-title: Push‐out strength of hydroxyapatite coated by sputtering technique in bone publication-title: BioMed Mater Eng – volume: 39 start-page: 524 year: 1998 end-page: 530 article-title: In vivo dissolution behavior of various RF magnetron sputtered Ca‐P coatings publication-title: J Biomed Mater Res – volume: 67A start-page: 1196 year: 2003 end-page: 1204 article-title: Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3–E1 osteoblasts publication-title: J Biomed Mater Res – volume: 19 start-page: 119 year: 2002 end-page: 124 article-title: Growth of osteoblast‐like cells on porous hydroxyapatite ceramics: An in vitro study publication-title: Biomol Eng – volume: 23 start-page: 259 year: 1997 end-page: 269 article-title: The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH publication-title: Calcif Tissue Res – volume: 160 start-page: 54 year: 2002 end-page: 61 article-title: Phase composition of sputtered films from a hydroxyapatite target publication-title: Surf Coat Technol – volume: 37 start-page: 60 year: 1997 end-page: 67 article-title: Influence of rapid heating with infrared radiation on RF magnetron‐sputtered calcium phosphate coatings publication-title: J Biomed Mater Res – volume: 39 start-page: 364 year: 1998 end-page: 372 article-title: Comparative push‐out test of dense HA implants and HA‐coated implants: Findings in a canine study publication-title: J Biomed Mater Res – start-page: 54 year: 1994 end-page: 55 – volume: 4 start-page: 28 year: 1993 end-page: 34 article-title: Application of magnetron sputtering for the producing ceramic coatings publication-title: Clin Oral Impl Res – volume: 13 start-page: 271 year: 2003 end-page: 279 article-title: Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings publication-title: BioMed Mat Eng – volume: 11 start-page: 509 year: 1990 end-page: 512 article-title: Studies of the solubility of different calcium phosphate ceramic particles in vitro publication-title: Biomaterials – volume: 212 start-page: 137 year: 1998 end-page: 147 article-title: Calcium phosphate coatings for medical implants publication-title: Proc Inst Mech Eng Part H – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – start-page: 86 year: 1989 end-page: 87 – volume: 21 start-page: 1121 year: 2000 end-page: 1127 article-title: Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium publication-title: Biomaterials – volume: 57 start-page: 41 year: 2001 end-page: 47 article-title: Influence of coating strain on calcium phosphate thin‐film dissolution publication-title: J Biomed Mater Res – volume: 25 start-page: 1159 year: 2004 end-page: 1166 article-title: Effects of apatite cements on proliferation and differentiation of human osteoblast in vitro publication-title: Biomaterials – volume: 9 start-page: 353 year: 1974 end-page: 360 article-title: An X‐ray radial distribution study of amorphous calcium phosphate publication-title: Mater Res Bull – start-page: 307 volume-title: Medical Applications of Hydroxyapatite year: 1994 ident: e_1_2_6_2_2 – ident: e_1_2_6_14_2 doi: 10.1023/A:1014002732373 – ident: e_1_2_6_37_2 doi: 10.1016/0021-9797(82)90139-4 – ident: e_1_2_6_19_2 doi: 10.1016/0927-7757(93)80110-Z – ident: e_1_2_6_28_2 doi: 10.1016/0003-2697(76)90527-3 – start-page: 54 volume-title: Structure and Chemistry of the Apatite and Other Calcium Orthophosphates year: 1994 ident: e_1_2_6_31_2 – ident: e_1_2_6_18_2 doi: 10.1016/0142-9612(96)89656-6 – ident: e_1_2_6_12_2 doi: 10.1016/j.biomaterials.2004.02.029 – ident: e_1_2_6_23_2 doi: 10.1016/S0142-9612(00)00269-6 – ident: e_1_2_6_24_2 doi: 10.1016/j.biomaterials.2004.02.032 – volume: 11 start-page: 63 year: 2001 ident: e_1_2_6_16_2 article-title: Push‐out strength of hydroxyapatite coated by sputtering technique in bone publication-title: BioMed Mater Eng – ident: e_1_2_6_17_2 doi: 10.1002/(SICI)1097-4636(19980315)39:4<524::AID-JBM3>3.0.CO;2-L – ident: e_1_2_6_8_2 doi: 10.1243/0954411981533917 – ident: e_1_2_6_42_2 doi: 10.1016/0142-9612(96)80751-4 – volume: 10 start-page: 221 year: 2000 ident: e_1_2_6_10_2 article-title: Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique publication-title: BioMed Mat Eng – ident: e_1_2_6_15_2 doi: 10.1002/1097-4636(200110)57:1<41::AID-JBM1139>3.0.CO;2-9 – ident: e_1_2_6_35_2 doi: 10.1021/j100615a007 – start-page: 54 volume-title: Marvelous Biomaterial Apatite year: 1999 ident: e_1_2_6_3_2 – ident: e_1_2_6_47_2 doi: 10.1016/S0142-9612(99)00181-7 – ident: e_1_2_6_6_2 doi: 10.1002/jbm.820291206 – ident: e_1_2_6_34_2 doi: 10.1002/jbm.820290218 – ident: e_1_2_6_20_2 doi: 10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-H – ident: e_1_2_6_44_2 doi: 10.1016/j.biomaterials.2003.08.003 – start-page: 86 volume-title: Inorganic Phosphate Materials year: 1989 ident: e_1_2_6_32_2 – volume: 13 start-page: 451 year: 2003 ident: e_1_2_6_21_2 article-title: Bone bonding strength of sputtered films subjected to a low temperature hydrothermal treatment publication-title: BioMed Mater Eng – ident: e_1_2_6_9_2 doi: 10.1034/j.1600-0501.1993.040104.x – ident: e_1_2_6_25_2 doi: 10.1016/S0142-9612(02)00430-1 – ident: e_1_2_6_45_2 doi: 10.1016/S0142-9612(01)00084-9 – ident: e_1_2_6_29_2 doi: 10.1021/ar50092a003 – ident: e_1_2_6_22_2 doi: 10.1016/S1389-0344(02)00027-8 – volume: 202 start-page: 151 year: 1986 ident: e_1_2_6_33_2 article-title: Preparation of tetracalcium phosphate publication-title: Gypsum Lime – ident: e_1_2_6_39_2 doi: 10.1007/BF02012538 – ident: e_1_2_6_27_2 doi: 10.1016/0142-9612(90)90067-Z – ident: e_1_2_6_7_2 doi: 10.1002/(SICI)1097-4636(19980305)39:3<364::AID-JBM4>3.0.CO;2-H – volume: 10 start-page: 157 year: 2000 ident: e_1_2_6_4_2 article-title: Hydroxyapatite‐coated bioalloy surfaces: Current status and future challenges publication-title: BioMed Mat Eng – ident: e_1_2_6_41_2 doi: 10.1016/S0142-9612(98)00254-3 – ident: e_1_2_6_11_2 doi: 10.1016/S0257-8972(02)00363-8 – ident: e_1_2_6_26_2 doi: 10.1083/jcb.96.1.191 – ident: e_1_2_6_5_2 doi: 10.1002/jbm.820270114 – ident: e_1_2_6_30_2 doi: 10.1016/0025-5408(74)90087-7 – ident: e_1_2_6_46_2 doi: 10.1016/0142-9612(90)90052-R – ident: e_1_2_6_48_2 doi: 10.1016/S0142-9612(99)00264-1 – ident: e_1_2_6_40_2 doi: 10.1016/j.jcrysgro.2004.01.015 – volume: 13 start-page: 271 year: 2003 ident: e_1_2_6_13_2 article-title: Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings publication-title: BioMed Mat Eng – ident: e_1_2_6_36_2 doi: 10.1007/BF02012795 – ident: e_1_2_6_43_2 doi: 10.1002/jbm.a.20021 – ident: e_1_2_6_38_2 doi: 10.1007/BF02012548 |
SSID | ssj0026052 ssib024095186 ssib002513968 ssib053834815 |
Score | 1.8817472 |
Snippet | Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as‐sputtered films were hydrothermally recrystallized at... Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the as-sputtered films were hydrothermally recrystallized at... Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering. Some of the assputtered films were hydrothermally recrystallized at... |
SourceID | proquest pubmed crossref wiley nii istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 605 |
SubjectTerms | Animals cell culture Cell Proliferation Coated Materials, Biocompatible Crystallization Crystallization - methods Durapatite Hot Temperature hydroxyapatite Materials Testing Materials Testing - methods Mice Microscopy, Electron, Scanning Microscopy, Electron, Scanning - methods Osteoblasts Osteoblasts - physiology Osteoblasts - ultrastructure Prostheses and Implants solubility sputtering Surface Properties Titanium |
Title | Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment |
URI | https://api.istex.fr/ark:/67375/WNG-23QRBL7V-H/fulltext.pdf https://cir.nii.ac.jp/crid/1872835442954368896 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.30574 https://www.ncbi.nlm.nih.gov/pubmed/16278871 https://www.proquest.com/docview/29126177 https://www.proquest.com/docview/70693791 |
Volume | 76A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCB92OBgg8Vh0rZbhw7To4UKKuKVqKi0JvlRyxCd5Nqk-V15Jcz42SzLSpIcImieJLYzjfxZ3v8mZAtDU1uLJyOvDEu4kzrKDM6jWIppciL1PkwpntwmE6P-f6JOOljc3AtTKcPMQy4oWeE_zU6uDbNzlo09LOZj_UY4CpRDRSjtZASHQ3iUUjUw1wn9ICihOVpvzoPUnbO3XuhPbqKVfsNmpmqLC-jnBcZbGiC9m52-6w2QbkQI09Ox8vWjO2P33Qd_7t0t8iNnpzSFx2abpMrRXWHXD8nWXiX_HxVDnClqzX-VFeOlhX9UraLmq4FxGntaXMWtsIuHP303WHONcZwtwX15Wze0GZpcCSItjXVdFZ_paiV1Qs9d3cgQ51DroaQ-HvkeO_1-5fTqN_HIbIC2EOUaOg3WS0ypuPMeYABd9wCdhgrEqcz5jMP16WxuZBeOjdhhgNtckD2vLdxcp9sVHVVPCSUW-9ZCg-IreQTbo20IhdOuDwXPkvciGyvvqayvcg57rUxU508M1NQsUqrULEjsjUYn3XaHpebPQ-wGGz04hTD4aRQHw_fKJa8O9p9Kz-o6YhsAm7gvXiMM4lSdpzjRGqSZlmejsizFaIUODHOzOiqqJeNAn9BZXz5Zws5SaFG8nhEHnRQXOc4ZRgRCinbAVB_K4ra3z0IJ4_-xfgxudYNPGHk3ROy0S6WxSZQsdY8DR73C3wnL8U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPQAH3o8FSn2oOFTKduPYcXKkQFnKbiWqFnqzHDsWobtJtZvldeSXM-Nksy0qSHCJomSSOM438efx-DMhWxqa3FBYHbgsswFnWgdJpuMglFKKNI-t8zHd8UE8POb7J-KkDbjhXJhGH6ILuKFn-P81OjgGpHdWqqGfs2lf9wGvkl8l67imt-9SHXbyUUjV_Wgn9IGCiKVxOz8Pzuycu_hCi7SOlfsNGpqyKC4jnRc5rG-E9m4RtSx-k3ty2l_UWd_8-E3Z8f_f7za52fJT-qIB1B1yJS_vkhvnVAvvkZ-vig6xdDnNn-rS0qKkX4p6VtGVhjitHJ2f-dWwc0s_fbdYdI1p3HVOXTGZzul8kWEwiNYV1XRSfaUol9VqPTdXIEmdQqm6rPj75Hjv9dHLYdAu5RAYAQQiiDR0nYwWCdNhYh0ggVtuAD6M5ZHVCXOJg-MyM6mQTlo7YBkH5mSB7zlnwugBWSurMn9EKDfOsRhuEBrJB9xk0ohUWGHTVLgksj2yvfycyrQ657jcxkQ1Cs1MQcUqrXzF9shWZ3zWyHtcbvbc46Kz0bNTzIiTQn08eKNY9P5wdyQ_qGGPbABw4Lm4DROJanac41hqFCdJGvfI5hJSCvwYB2d0mVeLuQKXQXF8-WcLOYihRtKwRx42WFyVOGaYFApntj2i_vYqan937Hce_4vxJrk2PBqP1Ojtwbsn5HoTh8JEvKdkrZ4t8g1gZnX2zLvfL1QQM-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgkxAc-D0IMObDxGFSusax4-TIKKWMrYKJwW6WY8datjapmpRfR_5ynp003dBAgksUxS-J7Xwv_mw_f0ZoW0KTGzAtfZOm2qdESj9OZeQHnHOWZJE2bkz3cByNjun-CTtpY3PsWphGH6IbcLOe4f7X1sFn2uyuREPP0mlP9gCunF5H6zTqxxbUg6NOPcoydTfZCV0gPyRJ1C7Pg5TdCzdfapDWbd1-g3amyPOrOOdlCuvaoOGdZqPVykkX2tCT896iTnvqx2_Cjv9dvLvodstO8csGTvfQtay4j25d0Cx8gH4O8g6veLnIH8tC47zAX_J6XuKVgjguDa5mbi_sTOPT79rmXNog7jrDJp9MK1wtUjsUhOsSSzwpv2IrltUqPTd3WIo6hVx1MfEP0fHw9cdXI7_dyMFXDOiDH0roOCnJYiKDWBvAAdVUAXgIyUItY2JiA9d5qhLGDde6T1IKvEkD2zNGBeEGWivKInuMMFXGkAgeEChO-1SlXLGEaaaThJk41B7aWX5NoVqVc7vZxkQ0-sxEQMUKKVzFemi7M5414h5Xm71wsOhs5PzcxsNxJj6P3wgSfjjaO-CfxMhDm4AbeK89BjG3WnaU2pnUMIrjJPLQ1hJRArzYTs3IIisXlQCHsdL4_M8WvB9BjSSBhx41UFzlOCI2JBRSdhyg_lYUsb936E6e_IvxFrrxfjAUB2_H756im80glI3Ce4bW6vki2wRaVqfPnfP9ArV9Mpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissolution+behavior+and+in+vitro+evaluation+of+sputtered+hydroxyapatite+films+subject+to+a+low+temperature+hydrothermal+treatment&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Ozeki%2C+K.&rft.au=Aoki%2C+H.&rft.au=Fukui%2C+Y.&rft.date=2006-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=76A&rft.issue=3&rft.spage=605&rft.epage=613&rft_id=info:doi/10.1002%2Fjbm.a.30574&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_23QRBL7V_H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |