Mechanisms of large actuation strain in dielectric elastomers

Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-str...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 49; no. 7; pp. 504 - 515
Main Authors Koh, Soo Jin Adrian, Li, Tiefeng, Zhou, Jinxiong, Zhao, Xuanhe, Hong, Wei, Zhu, Jian, Suo, Zhigang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2011
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance.
AbstractList Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage‐induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage‐stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011
Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage‐induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage‐stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Subject to a voltage, an actuator mechanically deforms. Piezo‐based electromechanical actuators exhibit small actuation strains below 1%, while polymer‐based actuators exhibit actuation strains of up to 30%. If an elastomeric polymer is prestretched, actuation strain of more than 100% is possible. Still, this strain magnitude is about 10 times smaller than its mechanical strain capacity of 1000%. Theoretical predictions identify the limiting mechanism as electromechanical instability, and how this limit may be overcome.
Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-stretch response of DEs may be modified by prestretch, or by using polymers with 'short' chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. [copy 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011
Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance.
Author Suo, Zhigang
Li, Tiefeng
Koh, Soo Jin Adrian
Zhou, Jinxiong
Zhao, Xuanhe
Hong, Wei
Zhu, Jian
Author_xml – sequence: 1
  fullname: Koh, Soo Jin Adrian
– sequence: 2
  fullname: Li, Tiefeng
– sequence: 3
  fullname: Zhou, Jinxiong
– sequence: 4
  fullname: Zhao, Xuanhe
– sequence: 5
  fullname: Hong, Wei
– sequence: 6
  fullname: Zhu, Jian
– sequence: 7
  fullname: Suo, Zhigang
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23951745$$DView record in Pascal Francis
BookMark eNp90V1rFDEUBuAgFdxWb_wDDogowtR8TL4ueqFFq7C2C1p6GTKZk5qanazJLNp_b7ZTe1GkIZCLPG_IOWcf7Y1pBISeE3xIMKbvNin2h7Qu9ggtCNa6xZ1Se2iBlZKtoEI8QfulXGFc77heoKOv4H7YMZR1aZJvos2X0Fg3be0U0tiUKdswNnUPASK4KQfXQLRlSmvI5Sl67G0s8Oz2PEDnnz5-P_7cLs9Ovhy_X7aO0461TmmGO0akx947UX8KvQZFRTfYAbi0XpIBNFXcW8566CkmwHTvOFMDdz07QK_ndzc5_dpCmcw6FAcx2hHSthiNiZCYaVLlmwclrZVjhmsjKn15j16lbR5rHYYKyTXTnKiqXt0qW5yNPtvRhWI2OaxtvjZ0p2THq3s7O5dTKRn8HSHY7GZjdrMxN7OpGN_DLkw3Hd_1O_4_QubI7xDh-oHHzeps-eFfpp0zoUzw5y5j808jJJPcXJyemAt1ulJLpc2q-hez9zYZe5lrneff6iwYJrqTVCj2Fy-fuhU
CODEN JPLPAY
CitedBy_id crossref_primary_10_1007_s11431_017_9140_0
crossref_primary_10_1016_j_jmps_2018_07_012
crossref_primary_10_1002_adfm_202103097
crossref_primary_10_1063_5_0043959
crossref_primary_10_1007_s00289_015_1389_1
crossref_primary_10_1007_s00707_017_2103_1
crossref_primary_10_1088_0022_3727_49_26_265401
crossref_primary_10_1016_j_eml_2019_01_001
crossref_primary_10_1039_C5SM00036J
crossref_primary_10_1089_soro_2017_0078
crossref_primary_10_1088_0964_1726_24_3_035006
crossref_primary_10_1115_1_4028456
crossref_primary_10_1016_j_ijnonlinmec_2013_08_001
crossref_primary_10_1088_1361_665X_aabb6c
crossref_primary_10_1088_1748_3190_12_1_011003
crossref_primary_10_1002_admt_202200041
crossref_primary_10_1002_app_45850
crossref_primary_10_1039_c2sm26034d
crossref_primary_10_1063_1_5005982
crossref_primary_10_1515_epoly_2013_0040
crossref_primary_10_1063_1_4989464
crossref_primary_10_1016_j_jmps_2025_106071
crossref_primary_10_1115_1_4042996
crossref_primary_10_1002_pi_3176
crossref_primary_10_1016_j_jmps_2018_07_001
crossref_primary_10_1016_j_snb_2013_08_028
crossref_primary_10_1088_0964_1726_23_9_095010
crossref_primary_10_1038_s41598_018_27915_y
crossref_primary_10_1016_j_eml_2024_102204
crossref_primary_10_1016_j_ijnonlinmec_2023_104481
crossref_primary_10_1115_1_4064205
crossref_primary_10_1088_1361_6463_ab0795
crossref_primary_10_1016_j_eml_2016_03_017
crossref_primary_10_1016_j_polymertesting_2019_106038
crossref_primary_10_1088_0256_307X_30_6_066103
crossref_primary_10_1088_0964_1726_23_4_045028
crossref_primary_10_1021_acsomega_0c00785
crossref_primary_10_1063_1_4748114
crossref_primary_10_1063_1_4821028
crossref_primary_10_1007_s40820_019_0331_8
crossref_primary_10_1016_j_jmps_2015_09_010
crossref_primary_10_1142_S1758825119500984
crossref_primary_10_1063_1_4998999
crossref_primary_10_1063_1_4869666
crossref_primary_10_1088_1361_665X_aab393
crossref_primary_10_1088_1361_665X_ab675b
crossref_primary_10_1142_S1758825116400056
crossref_primary_10_1002_advs_201903391
crossref_primary_10_1088_1361_665X_aba5e3
crossref_primary_10_1093_nsr_nwz164
crossref_primary_10_1088_0964_1726_24_9_094003
crossref_primary_10_1115_1_4030075
crossref_primary_10_1007_s10409_012_0091_x
crossref_primary_10_1016_j_cej_2019_123037
crossref_primary_10_1007_s00339_015_9001_y
crossref_primary_10_1115_1_4043145
crossref_primary_10_1115_1_4030889
crossref_primary_10_1039_C6LC00903D
crossref_primary_10_1098_rsta_2018_0077
crossref_primary_10_3390_act5030020
crossref_primary_10_1007_s11431_011_4645_0
crossref_primary_10_1016_j_ijleo_2018_10_057
crossref_primary_10_1088_1361_665X_aa87d8
crossref_primary_10_1007_s00339_016_9858_4
crossref_primary_10_1016_j_jcp_2018_06_070
crossref_primary_10_3390_biomimetics9080505
crossref_primary_10_1002_adfm_201802632
crossref_primary_10_1115_1_4030850
crossref_primary_10_1103_PhysRevE_85_051801
crossref_primary_10_1109_TMECH_2020_3043883
crossref_primary_10_3390_molecules29153462
crossref_primary_10_1007_s10853_015_9357_6
crossref_primary_10_1016_j_ijsolstr_2020_04_033
crossref_primary_10_3390_polym16243612
crossref_primary_10_1016_j_mechrescom_2019_103420
crossref_primary_10_1063_1_4975145
crossref_primary_10_1088_1361_665X_ac3433
crossref_primary_10_1088_0960_1317_23_6_067001
crossref_primary_10_1115_1_4005885
crossref_primary_10_1016_j_aiepr_2023_05_001
crossref_primary_10_1088_0964_1726_25_2_025005
crossref_primary_10_1088_1361_665X_aaeaa5
crossref_primary_10_1080_19475411_2013_846281
crossref_primary_10_1109_TMECH_2018_2875522
crossref_primary_10_1063_1_4963164
crossref_primary_10_1088_2631_8695_ad8a18
crossref_primary_10_1016_j_ijengsci_2021_103474
crossref_primary_10_3390_polym12020489
crossref_primary_10_1177_1045389X19880022
crossref_primary_10_1016_j_eml_2016_07_002
crossref_primary_10_1016_j_ijsolstr_2025_113345
crossref_primary_10_1002_adma_201703678
crossref_primary_10_1016_j_ijsolstr_2012_08_006
crossref_primary_10_1016_j_ijmecsci_2023_108758
crossref_primary_10_1016_j_ijnonlinmec_2019_03_008
crossref_primary_10_1039_C5RA13936H
crossref_primary_10_1088_1361_665X_aaedea
crossref_primary_10_1016_j_mechmat_2012_07_009
crossref_primary_10_1209_0295_5075_106_67009
crossref_primary_10_1126_sciadv_aap9957
crossref_primary_10_1063_1_4720181
crossref_primary_10_1063_1_4862325
crossref_primary_10_1209_0295_5075_95_37006
crossref_primary_10_1088_1361_665X_ab3a77
crossref_primary_10_1039_C7SM00198C
crossref_primary_10_1007_s10999_020_09499_6
crossref_primary_10_1088_2053_1591_abbe42
crossref_primary_10_1063_1_3680591
crossref_primary_10_1016_j_ijsolstr_2012_04_031
crossref_primary_10_1016_j_sna_2024_115712
crossref_primary_10_1016_j_euromechsol_2023_105087
crossref_primary_10_1016_j_ijnonlinmec_2022_104235
crossref_primary_10_1002_app_38361
crossref_primary_10_1039_c2sm25692d
crossref_primary_10_1007_s11012_015_0206_0
crossref_primary_10_1016_j_mechatronics_2018_10_005
crossref_primary_10_1016_j_sna_2017_10_010
crossref_primary_10_1038_s41598_017_12899_y
crossref_primary_10_1002_aisy_202000008
crossref_primary_10_1016_j_eml_2020_100881
crossref_primary_10_1016_j_jallcom_2015_06_267
crossref_primary_10_1039_C1SM05847A
crossref_primary_10_1016_j_ijmecsci_2017_01_019
crossref_primary_10_1088_1361_665X_ad1d08
crossref_primary_10_1088_0964_1726_22_10_104013
crossref_primary_10_1088_1361_665X_acf53a
crossref_primary_10_1016_j_ijmecsci_2024_109524
crossref_primary_10_1088_1748_3190_11_6_065003
crossref_primary_10_1016_j_jmps_2021_104603
crossref_primary_10_1016_j_eml_2018_05_004
crossref_primary_10_1177_1045389X19888796
crossref_primary_10_1016_j_eml_2020_100752
crossref_primary_10_1088_0964_1726_24_10_105025
crossref_primary_10_1109_TRO_2021_3053647
crossref_primary_10_1177_1045389X211048220
crossref_primary_10_1016_j_medengphy_2018_07_012
crossref_primary_10_1016_j_ijnonlinmec_2020_103499
crossref_primary_10_1142_S1758825124501035
crossref_primary_10_1016_j_matdes_2015_07_075
crossref_primary_10_1016_j_sna_2019_02_017
crossref_primary_10_1038_s41598_023_41755_5
crossref_primary_10_1002_marc_201500576
crossref_primary_10_1038_s41586_020_03153_z
crossref_primary_10_1063_1_4806976
crossref_primary_10_1364_OE_392015
crossref_primary_10_1016_j_sna_2012_01_030
crossref_primary_10_3390_act7040075
crossref_primary_10_1021_acsabm_9b01199
crossref_primary_10_1088_1361_665X_ab5276
crossref_primary_10_1109_TDEI_2024_3486271
crossref_primary_10_1088_2631_6331_ab0f48
crossref_primary_10_1080_15583724_2016_1268156
crossref_primary_10_31857_S0572329922600232
crossref_primary_10_1016_j_ijsolstr_2020_10_006
crossref_primary_10_1016_j_jmps_2012_09_006
crossref_primary_10_1063_1_4903059
crossref_primary_10_1002_adfm_201901908
crossref_primary_10_1088_0964_1726_23_10_105017
crossref_primary_10_1109_LRA_2019_2898710
crossref_primary_10_1016_j_jmps_2017_04_015
crossref_primary_10_1063_1_4793420
crossref_primary_10_1016_j_jmps_2015_11_009
crossref_primary_10_1063_1_4745023
crossref_primary_10_1002_polb_23529
crossref_primary_10_1142_S1758825115500696
crossref_primary_10_1088_1757_899X_639_1_012008
crossref_primary_10_3390_act9020025
crossref_primary_10_1109_TMECH_2018_2860789
crossref_primary_10_1007_s10338_019_00112_8
crossref_primary_10_1002_pola_26891
crossref_primary_10_1063_1_5129352
crossref_primary_10_1088_2053_1591_aac6fe
crossref_primary_10_1177_1045389X221077449
crossref_primary_10_1002_polb_23197
crossref_primary_10_1063_1_4865200
crossref_primary_10_1080_19475411_2023_2299411
crossref_primary_10_1038_s41598_019_56505_9
crossref_primary_10_1002_adom_202001414
crossref_primary_10_1088_1742_6596_2856_1_012013
crossref_primary_10_1089_soro_2018_0046
crossref_primary_10_1016_S0894_9166_12_60048_2
crossref_primary_10_1089_soro_2017_0146
crossref_primary_10_1063_1_4863816
crossref_primary_10_1063_1_4871696
crossref_primary_10_1002_pi_4343
crossref_primary_10_1007_s42558_019_0005_1
crossref_primary_10_1088_0960_1317_22_4_045020
crossref_primary_10_1088_1361_665X_aa723f
crossref_primary_10_1115_1_4039289
crossref_primary_10_2140_jomms_2023_18_751
crossref_primary_10_1088_0964_1726_22_5_055022
crossref_primary_10_1631_jzus_A1500125
crossref_primary_10_1088_0964_1726_20_7_075004
crossref_primary_10_1088_1361_665X_ac7f0b
crossref_primary_10_1088_2053_1591_aac673
crossref_primary_10_1039_D4SM00596A
crossref_primary_10_1209_0295_5075_119_26003
crossref_primary_10_1063_1_4928712
crossref_primary_10_1016_j_jmps_2019_103703
crossref_primary_10_3390_en16217424
crossref_primary_10_1016_j_polymertesting_2019_02_030
crossref_primary_10_1002_smm2_1203
crossref_primary_10_1063_1_4745049
crossref_primary_10_1002_adem_202101017
crossref_primary_10_1063_1_3680878
crossref_primary_10_1016_j_ijnonlinmec_2016_10_004
crossref_primary_10_1002_adom_201800792
crossref_primary_10_1007_s12204_017_1840_6
crossref_primary_10_1039_c2ra22380e
crossref_primary_10_3390_polym15193908
crossref_primary_10_3103_S0025654422600775
crossref_primary_10_1039_C7SM02322G
crossref_primary_10_1002_app_50991
crossref_primary_10_1007_s11431_022_2395_y
crossref_primary_10_1007_s10404_012_1055_y
crossref_primary_10_1016_j_scib_2020_12_033
crossref_primary_10_1063_1_5000078
crossref_primary_10_1039_C7TC02778H
crossref_primary_10_3390_app10020640
crossref_primary_10_1039_C9TC05072H
crossref_primary_10_1080_19475411_2015_1130974
crossref_primary_10_3390_mi15010125
crossref_primary_10_1039_C8SM01664J
crossref_primary_10_1088_2631_8695_abaec5
crossref_primary_10_1115_1_4025416
crossref_primary_10_1002_admt_202100016
crossref_primary_10_3390_act13070232
crossref_primary_10_1142_S0219876213501089
crossref_primary_10_3389_fnins_2022_994251
crossref_primary_10_1039_C3SM51768C
crossref_primary_10_1088_1748_3190_12_1_016001
crossref_primary_10_1177_1045389X13483025
crossref_primary_10_1115_1_4025530
crossref_primary_10_1016_j_snb_2018_01_145
crossref_primary_10_1049_nde2_12035
Cites_doi 10.1109/TMECH.2010.2089635
10.1115/1.2047597
10.1063/1.3272685
10.1088/0022-3727/41/21/215405
10.1016/0032-3861(86)90231-4
10.1073/pnas.0913461107
10.1126/science.287.5454.836
10.1002/pi.2744
10.1016/j.jmps.2007.05.021
10.1063/1.1536251
10.1177/104538903039260
10.1002/marc.200900425
10.1038/1761225a0
10.1016/j.sna.2009.08.027
10.1016/j.sna.2006.05.024
10.1002/polb.1994.090321618
10.1063/1.365983
10.1016/0022-5096(93)90013-6
10.1016/j.ijsolstr.2006.03.026
10.1016/S0924-4247(97)01657-9
10.1063/1.3000440
10.1002/adma.200602644
10.1002/adma.200502437
10.1007/s00340-006-2434-4
10.1007/BF01793684
10.1088/0964-1726/14/6/014
10.1016/j.sna.2006.08.006
10.1103/PhysRevLett.104.178302
10.1088/0964-1726/19/5/055025
10.1063/1.2768641
10.1098/rspa.1972.0026
10.1063/1.3031483
10.1007/s00339-006-3680-3
10.1063/1.2929383
10.1088/0964-1726/14/6/032
10.1016/S0894-9166(11)60004-9
10.1063/1.3253322
10.1103/PhysRevB.76.134113
10.1016/B978-0-08-047488-5.00006-X
10.1063/1.3167773
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright Wiley Subscription Services, Inc. Apr 2011
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright Wiley Subscription Services, Inc. Apr 2011
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
DOI 10.1002/polb.22223
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Materials Research Database
Materials Research Database
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Applied Sciences
EISSN 1099-0488
EndPage 515
ExternalDocumentID 23951745
10_1002_polb_22223
POLB22223
ark_67375_WNG_W8NP8L89_P
US201301947268
Genre article
GroupedDBID -~X
.GA
.Y3
05W
10A
1L6
1OB
1OC
1ZS
31~
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
6TJ
7PT
8-1
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADDAD
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZFZN
BDRZF
BFHJK
BRXPI
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
FBQ
FEDTE
G-S
GNP
GODZA
GYXMG
HBH
HF~
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
M6T
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
P2P
P2W
P4D
QB0
QRW
RIWAO
RNS
ROL
RWB
RWI
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
ADMLS
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c5243-c89304317f0ffc6100eb9e8264dade57af71de9285fa53beb201e39bc538d5cb3
IEDL.DBID DR2
ISSN 0887-6266
1099-0488
IngestDate Fri Jul 11 14:58:51 EDT 2025
Fri Jul 11 08:47:10 EDT 2025
Fri Jul 25 12:05:27 EDT 2025
Mon Jul 21 09:17:08 EDT 2025
Tue Jul 01 01:14:10 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Wed Jan 22 16:23:37 EST 2025
Wed Oct 30 09:49:06 EDT 2024
Wed Dec 27 19:19:05 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords strain
stimuli-sensitive polymers
High strain
tension
Dielectric materials
Elastomer
dielectric properties
Theoretical study
thermodynamics
Electromechanical effects
Modeling
Mechanism
elastomers
high performance polymers
Electric field effect
theory
Actuator
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5243-c89304317f0ffc6100eb9e8264dade57af71de9285fa53beb201e39bc538d5cb3
Notes http://dx.doi.org/10.1002/polb.22223
istex:57A0A24BE9555B5106AC4FD58EDCE556DE6FD319
ark:/67375/WNG-W8NP8L89-P
ArticleID:POLB22223
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 2675939518
PQPubID 1016371
PageCount 12
ParticipantIDs proquest_miscellaneous_901670391
proquest_miscellaneous_2000030266
proquest_journals_2675939518
pascalfrancis_primary_23951745
crossref_primary_10_1002_polb_22223
crossref_citationtrail_10_1002_polb_22223
wiley_primary_10_1002_polb_22223_POLB22223
istex_primary_ark_67375_WNG_W8NP8L89_P
fao_agris_US201301947268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 1 April 2011
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationTitleAlternate J. Polym. Sci. B Polym. Phys
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R. J. Intell. Mater. Syst. Struct. 2003, 14, 787-793.
Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. USA 2010, 107, 4505-4510.
Wissler, M.; Mazza, E. Smart. Mater. Struct. 2005, 14, 1396-1402.
Zhenyi, M.; Scheinbeim, J. I.; Lee, J. W.; Newman, B. A. J. Polym. Sci. Part B: Polym. Phys. 1994, 32, 2721-2731.
Galler, N.; Ditlbacher, H.; Steinberger, B.; Hohenau, A.; Dansachmuller, M.; Camacho-Gonzales, F.; Bauer, S.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R. Appl. Phys. B 2006, 85, 7-10.
Zhao, X.; Suo, Z. Phys. Rev. Lett. 2010, 104, 178302.
Suo, Z. Acta Mechanica Solida Sinica 2010, 23, 549-578.
He, T.; Zhao, X.; Suo, Z. J. Appl. Phys. 2009, 106, 083522.
Kofod, G. J. Phys. D 2008, 41, 215405.
Ogden, R. W. Proc. Roy. Soc. Lond. A 1972, 326, 565-584.
Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P. Sens. Actuators A 1998, 64, 77-85.
Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902.
Shankar, R.; Ghosh, T. K.; Spontak, R. J. Adv. Mater. 2007, 19, 2218-2223.
Goulbourne, N.; Mockenstrum, E.; Frecker, M. J. Appl. Mech. 2005, 72, 899-906.
Suo, Z.; Zhao, X.; Greene, W. H. J. Mech. Phys. Solids 2008, 56, 467-486.
Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. 2010, 107, 4505-4510.
Suo, Z.; Zhu, J. Appl. Phys. Lett. 2009, 95, 232909.
Kuhn, W.; Grün, F. Kolloidzschr 1942, 101, 248-271.
Arruda, E. M.; Boyce, M. J. Mech. Phys. Solids 1992, 41, 389-412.
Kofod, G.; Paajanen, M.; Bauer, S. Appl. Phys. A 2006, 85, 141-143.
Moscardo, M.; Zhao, X.; Suo, Z.; Lapusta, Y. J. Appl. Phys. 2008, 104, 093503.
Edwards, S. F.; Vilgis, T. Polymer 1985, 27, 483-492.
Zhao, X.; Suo, Z. J. Appl. Phys. 2008, 104, 123530.
Planté, J. S.; Dubowsky, S. Int. J. Solids Struct. 2006, 43, 7727-7751.
Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R. Adv. Mater. 2006, 18, 887-891.
Kovacs, G.; During, L.; Michel, S.; Terrasi, G. Sens. Actuators A 2009, 155, 299-307.
Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Appl. Phys. Lett. 2008, 92, 192903.
Carpi, F.; Migliore, A.; Serra, G.; De Rossi, D. Smart. Mater. Struct. 2005, 14, 1-7.
Koh, S. J. A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. IEEE/ASME Trans. Mech. 2011, 16, 33-41.
Park, S. E.; Shrout, T. R. J. Appl. Phys. 1997, 82, 1804-1811.
Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. Science 2000, 287, 836-839.
Zhao, X.; Suo, Z. Appl. Phys. Lett. 2007, 91, 061921.
Brochu, P.; Pei, Q. Macromol. Rapid. Commun. 2010, 31, 10-36.
Carpi, F.; Frediani, G.; Tarantino, S.; De Rossi, D. Polym. Int. 2010, 59, 407-414.
McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Smart Mater. Struct. 2010, 19, 055025.
Bochobza-Degani, O.; Elata, D.; Nemirovsky, Y. Appl. Phys. Lett. 2003, 82, 302-304.
Carpi, F.; DeRossi, D.; Kornbluh, R.; Pelrine, R.; Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers; Elsevier: Amsterdam, 2008.
Zhao, X.; Hong, W.; Suo, Z. Phys. Rev. B 2007, 76, 134113.
Stark, K. H.; Garton, C. G. Nature 1955, 176, 1225-1226.
Wissler, M.; Mazza, E. Sens. Actuators A 2007, 134, 494-504.
Patrick, L.; Gabor, K.; Silvain, M. Sens. Actuators A 2007, 135, 748-757.
2007; 19
2010; 31
2010; 59
1955; 176
1997; 82
1942; 101
2010; 107
2010; 19
2010; 104
2009; 155
2008
1975
2003; 14
2006; 18
2007; 91
2008; 56
2008; 104
2004
2007; 76
2011; 16
2008; 92
1998; 64
1985; 27
2010; 23
2007; 134
2007; 135
2006; 85
2009; 95
2001
2006; 43
2009; 94
2000; 287
2008; 41
2005; 72
2003; 82
1972; 326
1994; 32
2009; 106
2005; 14
1992; 41
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Treloar L. R. G. (e_1_2_8_34_2) 1975
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – reference: Zhao, X.; Suo, Z. Phys. Rev. Lett. 2010, 104, 178302.
– reference: Kofod, G. J. Phys. D 2008, 41, 215405.
– reference: Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P. Sens. Actuators A 1998, 64, 77-85.
– reference: Stark, K. H.; Garton, C. G. Nature 1955, 176, 1225-1226.
– reference: Wissler, M.; Mazza, E. Sens. Actuators A 2007, 134, 494-504.
– reference: Kuhn, W.; Grün, F. Kolloidzschr 1942, 101, 248-271.
– reference: Ogden, R. W. Proc. Roy. Soc. Lond. A 1972, 326, 565-584.
– reference: Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R. Adv. Mater. 2006, 18, 887-891.
– reference: Moscardo, M.; Zhao, X.; Suo, Z.; Lapusta, Y. J. Appl. Phys. 2008, 104, 093503.
– reference: Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902.
– reference: Goulbourne, N.; Mockenstrum, E.; Frecker, M. J. Appl. Mech. 2005, 72, 899-906.
– reference: Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. USA 2010, 107, 4505-4510.
– reference: Planté, J. S.; Dubowsky, S. Int. J. Solids Struct. 2006, 43, 7727-7751.
– reference: Park, S. E.; Shrout, T. R. J. Appl. Phys. 1997, 82, 1804-1811.
– reference: Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. 2010, 107, 4505-4510.
– reference: Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. Science 2000, 287, 836-839.
– reference: Kofod, G.; Paajanen, M.; Bauer, S. Appl. Phys. A 2006, 85, 141-143.
– reference: Arruda, E. M.; Boyce, M. J. Mech. Phys. Solids 1992, 41, 389-412.
– reference: Shankar, R.; Ghosh, T. K.; Spontak, R. J. Adv. Mater. 2007, 19, 2218-2223.
– reference: Patrick, L.; Gabor, K.; Silvain, M. Sens. Actuators A 2007, 135, 748-757.
– reference: He, T.; Zhao, X.; Suo, Z. J. Appl. Phys. 2009, 106, 083522.
– reference: Zhao, X.; Suo, Z. J. Appl. Phys. 2008, 104, 123530.
– reference: Suo, Z. Acta Mechanica Solida Sinica 2010, 23, 549-578.
– reference: Zhao, X.; Hong, W.; Suo, Z. Phys. Rev. B 2007, 76, 134113.
– reference: Carpi, F.; Frediani, G.; Tarantino, S.; De Rossi, D. Polym. Int. 2010, 59, 407-414.
– reference: Carpi, F.; DeRossi, D.; Kornbluh, R.; Pelrine, R.; Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers; Elsevier: Amsterdam, 2008.
– reference: McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Smart Mater. Struct. 2010, 19, 055025.
– reference: Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R. J. Intell. Mater. Syst. Struct. 2003, 14, 787-793.
– reference: Edwards, S. F.; Vilgis, T. Polymer 1985, 27, 483-492.
– reference: Suo, Z.; Zhu, J. Appl. Phys. Lett. 2009, 95, 232909.
– reference: Bochobza-Degani, O.; Elata, D.; Nemirovsky, Y. Appl. Phys. Lett. 2003, 82, 302-304.
– reference: Wissler, M.; Mazza, E. Smart. Mater. Struct. 2005, 14, 1396-1402.
– reference: Zhenyi, M.; Scheinbeim, J. I.; Lee, J. W.; Newman, B. A. J. Polym. Sci. Part B: Polym. Phys. 1994, 32, 2721-2731.
– reference: Koh, S. J. A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. IEEE/ASME Trans. Mech. 2011, 16, 33-41.
– reference: Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Appl. Phys. Lett. 2008, 92, 192903.
– reference: Carpi, F.; Migliore, A.; Serra, G.; De Rossi, D. Smart. Mater. Struct. 2005, 14, 1-7.
– reference: Suo, Z.; Zhao, X.; Greene, W. H. J. Mech. Phys. Solids 2008, 56, 467-486.
– reference: Galler, N.; Ditlbacher, H.; Steinberger, B.; Hohenau, A.; Dansachmuller, M.; Camacho-Gonzales, F.; Bauer, S.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R. Appl. Phys. B 2006, 85, 7-10.
– reference: Kovacs, G.; During, L.; Michel, S.; Terrasi, G. Sens. Actuators A 2009, 155, 299-307.
– reference: Brochu, P.; Pei, Q. Macromol. Rapid. Commun. 2010, 31, 10-36.
– reference: Zhao, X.; Suo, Z. Appl. Phys. Lett. 2007, 91, 061921.
– volume: 101
  start-page: 248
  year: 1942
  end-page: 271
  publication-title: Kolloidzschr
– start-page: 81
  year: 1975
  end-page: 100
– volume: 135
  start-page: 748
  year: 2007
  end-page: 757
  publication-title: Sens. Actuators A
– volume: 16
  start-page: 33
  year: 2011
  end-page: 41
  publication-title: IEEE/ASME Trans. Mech.
– volume: 134
  start-page: 494
  year: 2007
  end-page: 504
  publication-title: Sens. Actuators A
– volume: 41
  start-page: 389
  year: 1992
  end-page: 412
  publication-title: J. Mech. Phys. Solids
– volume: 107
  start-page: 4505
  year: 2010
  end-page: 4510
  publication-title: Proc. Natl. Acad. Sci.
– year: 2001
– volume: 43
  start-page: 7727
  year: 2006
  end-page: 7751
  publication-title: Int. J. Solids Struct.
– volume: 155
  start-page: 299
  year: 2009
  end-page: 307
  publication-title: Sens. Actuators A
– volume: 14
  start-page: 1396
  year: 2005
  end-page: 1402
  publication-title: Smart. Mater. Struct.
– volume: 64
  start-page: 77
  year: 1998
  end-page: 85
  publication-title: Sens. Actuators A
– volume: 72
  start-page: 899
  year: 2005
  end-page: 906
  publication-title: J. Appl. Mech.
– volume: 41
  start-page: 215405
  year: 2008
  publication-title: J. Phys. D
– volume: 92
  start-page: 192903
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 2218
  year: 2007
  end-page: 2223
  publication-title: Adv. Mater.
– volume: 104
  start-page: 093503
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 287
  start-page: 836
  year: 2000
  end-page: 839
  publication-title: Science
– volume: 176
  start-page: 1225
  year: 1955
  end-page: 1226
  publication-title: Nature
– volume: 14
  start-page: 1
  year: 2005
  end-page: 7
  publication-title: Smart. Mater. Struct.
– volume: 76
  start-page: 134113
  year: 2007
  publication-title: Phys. Rev. B
– volume: 91
  start-page: 061921
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 106
  start-page: 083522
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 59
  start-page: 407
  year: 2010
  end-page: 414
  publication-title: Polym. Int.
– volume: 19
  start-page: 055025
  year: 2010
  publication-title: Smart Mater. Struct.
– volume: 56
  start-page: 467
  year: 2008
  end-page: 486
  publication-title: J. Mech. Phys. Solids
– volume: 27
  start-page: 483
  year: 1985
  end-page: 492
  publication-title: Polymer
– volume: 95
  start-page: 232909
  year: 2009
  publication-title: Appl. Phys. Lett.
– year: 2008
– volume: 94
  start-page: 262902
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 104
  start-page: 178302
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 141
  year: 2006
  end-page: 143
  publication-title: Appl. Phys. A
– volume: 107
  start-page: 4505
  year: 2010
  end-page: 4510
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2004
– volume: 32
  start-page: 2721
  year: 1994
  end-page: 2731
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 82
  start-page: 302
  year: 2003
  end-page: 304
  publication-title: Appl. Phys. Lett.
– volume: 104
  start-page: 123530
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 1804
  year: 1997
  end-page: 1811
  publication-title: J. Appl. Phys.
– volume: 14
  start-page: 787
  year: 2003
  end-page: 793
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 23
  start-page: 549
  year: 2010
  end-page: 578
  publication-title: Acta Mechanica Solida Sinica
– volume: 326
  start-page: 565
  year: 1972
  end-page: 584
  publication-title: Proc. Roy. Soc. Lond. A
– volume: 85
  start-page: 7
  year: 2006
  end-page: 10
  publication-title: Appl. Phys. B
– volume: 18
  start-page: 887
  year: 2006
  end-page: 891
  publication-title: Adv. Mater.
– volume: 31
  start-page: 10
  year: 2010
  end-page: 36
  publication-title: Macromol. Rapid. Commun.
– ident: e_1_2_8_32_2
  doi: 10.1109/TMECH.2010.2089635
– ident: e_1_2_8_35_2
  doi: 10.1115/1.2047597
– ident: e_1_2_8_19_2
  doi: 10.1063/1.3272685
– ident: e_1_2_8_26_2
  doi: 10.1088/0022-3727/41/21/215405
– ident: e_1_2_8_42_2
  doi: 10.1016/0032-3861(86)90231-4
– ident: e_1_2_8_22_2
  doi: 10.1073/pnas.0913461107
– ident: e_1_2_8_9_2
  doi: 10.1126/science.287.5454.836
– ident: e_1_2_8_24_2
– ident: e_1_2_8_5_2
  doi: 10.1002/pi.2744
– ident: e_1_2_8_37_2
  doi: 10.1016/j.jmps.2007.05.021
– ident: e_1_2_8_21_2
  doi: 10.1063/1.1536251
– ident: e_1_2_8_38_2
  doi: 10.1177/104538903039260
– ident: e_1_2_8_25_2
  doi: 10.1002/marc.200900425
– ident: e_1_2_8_27_2
  doi: 10.1038/1761225a0
– ident: e_1_2_8_4_2
  doi: 10.1016/j.sna.2009.08.027
– ident: e_1_2_8_44_2
  doi: 10.1016/j.sna.2006.05.024
– ident: e_1_2_8_15_2
  doi: 10.1002/polb.1994.090321618
– ident: e_1_2_8_33_2
  doi: 10.1063/1.365983
– ident: e_1_2_8_40_2
  doi: 10.1016/0022-5096(93)90013-6
– ident: e_1_2_8_11_2
  doi: 10.1016/j.ijsolstr.2006.03.026
– ident: e_1_2_8_16_2
  doi: 10.1016/S0924-4247(97)01657-9
– ident: e_1_2_8_12_2
  doi: 10.1063/1.3000440
– ident: e_1_2_8_23_2
  doi: 10.1002/adma.200602644
– ident: e_1_2_8_10_2
  doi: 10.1002/adma.200502437
– ident: e_1_2_8_2_2
  doi: 10.1007/s00340-006-2434-4
– ident: e_1_2_8_39_2
  doi: 10.1007/BF01793684
– ident: e_1_2_8_43_2
  doi: 10.1088/0964-1726/14/6/014
– ident: e_1_2_8_17_2
  doi: 10.1016/j.sna.2006.08.006
– ident: e_1_2_8_20_2
  doi: 10.1103/PhysRevLett.104.178302
– ident: e_1_2_8_7_2
  doi: 10.1088/0964-1726/19/5/055025
– ident: e_1_2_8_30_2
  doi: 10.1063/1.2768641
– ident: e_1_2_8_31_2
– ident: e_1_2_8_41_2
  doi: 10.1098/rspa.1972.0026
– ident: e_1_2_8_6_2
  doi: 10.1073/pnas.0913461107
– ident: e_1_2_8_45_2
  doi: 10.1063/1.3031483
– ident: e_1_2_8_3_2
  doi: 10.1007/s00339-006-3680-3
– start-page: 81
  volume-title: Physics of Rubber Elasticity
  year: 1975
  ident: e_1_2_8_34_2
– ident: e_1_2_8_18_2
  doi: 10.1063/1.2929383
– ident: e_1_2_8_36_2
  doi: 10.1088/0964-1726/14/6/032
– ident: e_1_2_8_28_2
  doi: 10.1016/S0894-9166(11)60004-9
– ident: e_1_2_8_14_2
  doi: 10.1063/1.3253322
– ident: e_1_2_8_29_2
  doi: 10.1103/PhysRevB.76.134113
– ident: e_1_2_8_8_2
  doi: 10.1016/B978-0-08-047488-5.00006-X
– ident: e_1_2_8_13_2
  doi: 10.1063/1.3167773
SSID ssj0009959
Score 2.4741504
Snippet Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of...
Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage‐induced strains of above 100% have been observed when DEs are prestretched, and for DEs of...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 504
SubjectTerms Actuation
Applied sciences
Deformation mechanisms
dielectric properties
Dielectrics
Elastomers
Electric potential
Exact sciences and technology
high performance polymers
Mechanical properties
Organic polymers
Physicochemistry of polymers
physics
polymers
prediction
Properties and characterization
Reproduction
stimuli-sensitive polymers
Strain
tension
theory
thermodynamics
Voltage
Title Mechanisms of large actuation strain in dielectric elastomers
URI https://api.istex.fr/ark:/67375/WNG-W8NP8L89-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.22223
https://www.proquest.com/docview/2675939518
https://www.proquest.com/docview/2000030266
https://www.proquest.com/docview/901670391
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxNBEB5qQfTFH1Xp2VpOFEHh0tzebu4W9EGLtUgbgxraF1l293YlNM2VXgLiX-_MXu5iRAWFPBxklmR3Zme_2Zv5BuApY9LbIqOKZZ4nPNVpotO-Trjnwqbcp1bThf7JcHA05u_PxNkGvGxrYRp-iO7CjXZG8Ne0wbWp91ekoZfV1PQYHW_ogClZixDRxxV3FBFptTSfiNoHHTcp218NXTuNrnldIUal5f1GOZK6xmXyTX-LNQD6M4wN59DhbfjSzqBJPznvLeamZ7__Qu74v1O8A7eWADV-3VjUXdhwsy24cdD2hduC6yFp1Nb34NWJo7rhSX1Rx5WPp5RUHmuqSCFtx3VoPxHjp5w03XYmNnaI1ucVXZbfh_Hh288HR8myHUNiBeNZYhHaEBVP7vveW4RdfWekw_CEl7p0Itc-T0snWSG8FpnBkL2fukwaiz61FNZkD2BzVs3cNsSZ5NpaIYUrDEfbwCBQY2yERmJ1ZtggguetWpRdcpXTf56qhmWZKVoaFZYmgied7GXD0PFbqW3UrtJf0XWq8SdGL2xTyXM2KCJ4FlTejdZX55Tulgt1OnynTovhqDgupBpFsLdmE90Alkki_BYR7LZGopauoFYMQzJJAvhDj7uvUWf0ZkbPXLWoqRcoeVu00gjiP8hIKhghPv8IXgSj-cts1ejD8Zvw9PBfhHfgZnNlTolJu7A5v1q4R4i55mYv7K0fCBMjrw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xITRe-BigBcYIAiGBlK5x7CZ-4AEmRoG2VLBqe7Mcx0bVSjMtrYT467lz0pQiQAIpD5FyVmLf-Xx3ufsdwFPGpDNZQhXLPI14rONIx10dcceFibmLjaaA_nDU60_4-zNx1uTmUC1MjQ_RBtxoZ3h9TRucAtKHa9TQi3KWdxidb1twlVp6e4_q0xo9iqC0VkCfaLf3WnRSdrgeu3EebTldopVKC_yNsiR1hQvl6g4XGyboz4asP4mOb9btVisPYEgJKOed5SLvmO-_wDv-9yRvwY3GRg1f1UJ1G67Y-S7sHK1aw-3CNZ83aqo78HJoqXR4Wn2twtKFM8orDzUVpRDDw8p3oAjxKqZ1w52pCS0a7IuS4uV3YXL85uSoHzUdGSIjGE8ig9YNofGkruucQcura3Np0UPhhS6sSLVL48JKlgmnRZKj196NbSJzg2q1ECZP7sH2vJzbPQgTybUxQgqb5RzFA_1Aje4RyonRSc56ATxf8UWZBq6cvnmmaqBlpmhplF-aAJ60tBc1SMdvqfaQvUp_Qe2pJp8Z_bONJU9ZLwvgmed5O1pfnlPGWyrU6eitOs1G42yQSTUO4GBDKNoBLJGE-S0C2F9JiWq0QaUYemWSCPBFj9vHyDP6OaPntlxW1A6UFC6KaQDhH2gk1YwQpH8AL7zU_GW2avxx8Nrf3f8X4kew0z8ZDtTg3ejDA7heR9ApT2kftheXS_sQTbBFfuA32g8xISfK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ3y88DFAC4wRBEICKV3i2E0swQNslAFdqYBqe0GW49ioWmmqpZUQfz13SZNSBEgg9SFSz2rtO59_59z9DuARY9KZNKaKZZ4EPNJRoKNQB9xxYSLuIqPpQv940D0a8ben4nQDnjW1MDU_RHvhRjuj8te0wWe521-Rhs6KSdZhdLxtwgXeDVOy6cMPK_IoYtJqeD4RtndbclK2vxq7dhxtOl0gSKX1_UZJkrrEdXJ1g4s1BPozjq0Oot41-NxMoc4_Oess5lnHfP-F3fF_53gdri4Rqv-iNqkbsGGn23D5oGkMtw0Xq6xRU96E58eWCofH5dfSL5w_oaxyX1NJCqnbL6v-Ez5-8nHdbmdsfItwfV7QbfktGPVefTo4Cpb9GAIjGI8Dg9iGuHgSFzpnEHeFNpMW4xOe69yKRLskyq1kqXBaxBnG7GFkY5kZdKq5MFl8G7amxdTugB9Lro0RUtg042gcGAVqDI7QSoyOM9b14EmjFmWWZOX0nyeqpllmipZGVUvjwcNWdlZTdPxWage1q_QX9J1q9JHRG9tI8oR1Uw8eVypvR-vzM8p3S4Q6GbxWJ-lgmPZTqYYe7K3ZRDuAxZIYv4UHu42RqKUvKBXDmEySAP7Qg_Zr1Bm9mtFTWyxKagZK7hat1AP_DzKSKkaI0N-Dp5XR_GW2avi-_7J6uvMvwvfh0vCwp_pvBu_uwpX6-pySlHZha36-sPcQf82zvWqb_QC1cCaC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+large+actuation+strain+in+dielectric+elastomers&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Koh%2C+Soo+Jin+Adrian&rft.au=Li%2C+Tiefeng&rft.au=Zhou%2C+Jinxiong&rft.au=Zhao%2C+Xuanhe&rft.date=2011-04-01&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=49&rft.issue=7&rft.spage=504&rft.epage=515&rft_id=info:doi/10.1002%2Fpolb.22223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_polb_22223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon