Mechanisms of large actuation strain in dielectric elastomers
Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-str...
Saved in:
Published in | Journal of polymer science. Part B, Polymer physics Vol. 49; no. 7; pp. 504 - 515 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2011
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. |
---|---|
AbstractList | Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage‐induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage‐stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage‐induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage‐stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Subject to a voltage, an actuator mechanically deforms. Piezo‐based electromechanical actuators exhibit small actuation strains below 1%, while polymer‐based actuators exhibit actuation strains of up to 30%. If an elastomeric polymer is prestretched, actuation strain of more than 100% is possible. Still, this strain magnitude is about 10 times smaller than its mechanical strain capacity of 1000%. Theoretical predictions identify the limiting mechanism as electromechanical instability, and how this limit may be overcome. Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-stretch response of DEs may be modified by prestretch, or by using polymers with 'short' chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. [copy 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage-stretch response of DEs may be modified by prestretch, or by using polymers with “short” chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. |
Author | Suo, Zhigang Li, Tiefeng Koh, Soo Jin Adrian Zhou, Jinxiong Zhao, Xuanhe Hong, Wei Zhu, Jian |
Author_xml | – sequence: 1 fullname: Koh, Soo Jin Adrian – sequence: 2 fullname: Li, Tiefeng – sequence: 3 fullname: Zhou, Jinxiong – sequence: 4 fullname: Zhao, Xuanhe – sequence: 5 fullname: Hong, Wei – sequence: 6 fullname: Zhu, Jian – sequence: 7 fullname: Suo, Zhigang |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23951745$$DView record in Pascal Francis |
BookMark | eNp90V1rFDEUBuAgFdxWb_wDDogowtR8TL4ueqFFq7C2C1p6GTKZk5qanazJLNp_b7ZTe1GkIZCLPG_IOWcf7Y1pBISeE3xIMKbvNin2h7Qu9ggtCNa6xZ1Se2iBlZKtoEI8QfulXGFc77heoKOv4H7YMZR1aZJvos2X0Fg3be0U0tiUKdswNnUPASK4KQfXQLRlSmvI5Sl67G0s8Oz2PEDnnz5-P_7cLs9Ovhy_X7aO0461TmmGO0akx947UX8KvQZFRTfYAbi0XpIBNFXcW8566CkmwHTvOFMDdz07QK_ndzc5_dpCmcw6FAcx2hHSthiNiZCYaVLlmwclrZVjhmsjKn15j16lbR5rHYYKyTXTnKiqXt0qW5yNPtvRhWI2OaxtvjZ0p2THq3s7O5dTKRn8HSHY7GZjdrMxN7OpGN_DLkw3Hd_1O_4_QubI7xDh-oHHzeps-eFfpp0zoUzw5y5j808jJJPcXJyemAt1ulJLpc2q-hez9zYZe5lrneff6iwYJrqTVCj2Fy-fuhU |
CODEN | JPLPAY |
CitedBy_id | crossref_primary_10_1007_s11431_017_9140_0 crossref_primary_10_1016_j_jmps_2018_07_012 crossref_primary_10_1002_adfm_202103097 crossref_primary_10_1063_5_0043959 crossref_primary_10_1007_s00289_015_1389_1 crossref_primary_10_1007_s00707_017_2103_1 crossref_primary_10_1088_0022_3727_49_26_265401 crossref_primary_10_1016_j_eml_2019_01_001 crossref_primary_10_1039_C5SM00036J crossref_primary_10_1089_soro_2017_0078 crossref_primary_10_1088_0964_1726_24_3_035006 crossref_primary_10_1115_1_4028456 crossref_primary_10_1016_j_ijnonlinmec_2013_08_001 crossref_primary_10_1088_1361_665X_aabb6c crossref_primary_10_1088_1748_3190_12_1_011003 crossref_primary_10_1002_admt_202200041 crossref_primary_10_1002_app_45850 crossref_primary_10_1039_c2sm26034d crossref_primary_10_1063_1_5005982 crossref_primary_10_1515_epoly_2013_0040 crossref_primary_10_1063_1_4989464 crossref_primary_10_1016_j_jmps_2025_106071 crossref_primary_10_1115_1_4042996 crossref_primary_10_1002_pi_3176 crossref_primary_10_1016_j_jmps_2018_07_001 crossref_primary_10_1016_j_snb_2013_08_028 crossref_primary_10_1088_0964_1726_23_9_095010 crossref_primary_10_1038_s41598_018_27915_y crossref_primary_10_1016_j_eml_2024_102204 crossref_primary_10_1016_j_ijnonlinmec_2023_104481 crossref_primary_10_1115_1_4064205 crossref_primary_10_1088_1361_6463_ab0795 crossref_primary_10_1016_j_eml_2016_03_017 crossref_primary_10_1016_j_polymertesting_2019_106038 crossref_primary_10_1088_0256_307X_30_6_066103 crossref_primary_10_1088_0964_1726_23_4_045028 crossref_primary_10_1021_acsomega_0c00785 crossref_primary_10_1063_1_4748114 crossref_primary_10_1063_1_4821028 crossref_primary_10_1007_s40820_019_0331_8 crossref_primary_10_1016_j_jmps_2015_09_010 crossref_primary_10_1142_S1758825119500984 crossref_primary_10_1063_1_4998999 crossref_primary_10_1063_1_4869666 crossref_primary_10_1088_1361_665X_aab393 crossref_primary_10_1088_1361_665X_ab675b crossref_primary_10_1142_S1758825116400056 crossref_primary_10_1002_advs_201903391 crossref_primary_10_1088_1361_665X_aba5e3 crossref_primary_10_1093_nsr_nwz164 crossref_primary_10_1088_0964_1726_24_9_094003 crossref_primary_10_1115_1_4030075 crossref_primary_10_1007_s10409_012_0091_x crossref_primary_10_1016_j_cej_2019_123037 crossref_primary_10_1007_s00339_015_9001_y crossref_primary_10_1115_1_4043145 crossref_primary_10_1115_1_4030889 crossref_primary_10_1039_C6LC00903D crossref_primary_10_1098_rsta_2018_0077 crossref_primary_10_3390_act5030020 crossref_primary_10_1007_s11431_011_4645_0 crossref_primary_10_1016_j_ijleo_2018_10_057 crossref_primary_10_1088_1361_665X_aa87d8 crossref_primary_10_1007_s00339_016_9858_4 crossref_primary_10_1016_j_jcp_2018_06_070 crossref_primary_10_3390_biomimetics9080505 crossref_primary_10_1002_adfm_201802632 crossref_primary_10_1115_1_4030850 crossref_primary_10_1103_PhysRevE_85_051801 crossref_primary_10_1109_TMECH_2020_3043883 crossref_primary_10_3390_molecules29153462 crossref_primary_10_1007_s10853_015_9357_6 crossref_primary_10_1016_j_ijsolstr_2020_04_033 crossref_primary_10_3390_polym16243612 crossref_primary_10_1016_j_mechrescom_2019_103420 crossref_primary_10_1063_1_4975145 crossref_primary_10_1088_1361_665X_ac3433 crossref_primary_10_1088_0960_1317_23_6_067001 crossref_primary_10_1115_1_4005885 crossref_primary_10_1016_j_aiepr_2023_05_001 crossref_primary_10_1088_0964_1726_25_2_025005 crossref_primary_10_1088_1361_665X_aaeaa5 crossref_primary_10_1080_19475411_2013_846281 crossref_primary_10_1109_TMECH_2018_2875522 crossref_primary_10_1063_1_4963164 crossref_primary_10_1088_2631_8695_ad8a18 crossref_primary_10_1016_j_ijengsci_2021_103474 crossref_primary_10_3390_polym12020489 crossref_primary_10_1177_1045389X19880022 crossref_primary_10_1016_j_eml_2016_07_002 crossref_primary_10_1016_j_ijsolstr_2025_113345 crossref_primary_10_1002_adma_201703678 crossref_primary_10_1016_j_ijsolstr_2012_08_006 crossref_primary_10_1016_j_ijmecsci_2023_108758 crossref_primary_10_1016_j_ijnonlinmec_2019_03_008 crossref_primary_10_1039_C5RA13936H crossref_primary_10_1088_1361_665X_aaedea crossref_primary_10_1016_j_mechmat_2012_07_009 crossref_primary_10_1209_0295_5075_106_67009 crossref_primary_10_1126_sciadv_aap9957 crossref_primary_10_1063_1_4720181 crossref_primary_10_1063_1_4862325 crossref_primary_10_1209_0295_5075_95_37006 crossref_primary_10_1088_1361_665X_ab3a77 crossref_primary_10_1039_C7SM00198C crossref_primary_10_1007_s10999_020_09499_6 crossref_primary_10_1088_2053_1591_abbe42 crossref_primary_10_1063_1_3680591 crossref_primary_10_1016_j_ijsolstr_2012_04_031 crossref_primary_10_1016_j_sna_2024_115712 crossref_primary_10_1016_j_euromechsol_2023_105087 crossref_primary_10_1016_j_ijnonlinmec_2022_104235 crossref_primary_10_1002_app_38361 crossref_primary_10_1039_c2sm25692d crossref_primary_10_1007_s11012_015_0206_0 crossref_primary_10_1016_j_mechatronics_2018_10_005 crossref_primary_10_1016_j_sna_2017_10_010 crossref_primary_10_1038_s41598_017_12899_y crossref_primary_10_1002_aisy_202000008 crossref_primary_10_1016_j_eml_2020_100881 crossref_primary_10_1016_j_jallcom_2015_06_267 crossref_primary_10_1039_C1SM05847A crossref_primary_10_1016_j_ijmecsci_2017_01_019 crossref_primary_10_1088_1361_665X_ad1d08 crossref_primary_10_1088_0964_1726_22_10_104013 crossref_primary_10_1088_1361_665X_acf53a crossref_primary_10_1016_j_ijmecsci_2024_109524 crossref_primary_10_1088_1748_3190_11_6_065003 crossref_primary_10_1016_j_jmps_2021_104603 crossref_primary_10_1016_j_eml_2018_05_004 crossref_primary_10_1177_1045389X19888796 crossref_primary_10_1016_j_eml_2020_100752 crossref_primary_10_1088_0964_1726_24_10_105025 crossref_primary_10_1109_TRO_2021_3053647 crossref_primary_10_1177_1045389X211048220 crossref_primary_10_1016_j_medengphy_2018_07_012 crossref_primary_10_1016_j_ijnonlinmec_2020_103499 crossref_primary_10_1142_S1758825124501035 crossref_primary_10_1016_j_matdes_2015_07_075 crossref_primary_10_1016_j_sna_2019_02_017 crossref_primary_10_1038_s41598_023_41755_5 crossref_primary_10_1002_marc_201500576 crossref_primary_10_1038_s41586_020_03153_z crossref_primary_10_1063_1_4806976 crossref_primary_10_1364_OE_392015 crossref_primary_10_1016_j_sna_2012_01_030 crossref_primary_10_3390_act7040075 crossref_primary_10_1021_acsabm_9b01199 crossref_primary_10_1088_1361_665X_ab5276 crossref_primary_10_1109_TDEI_2024_3486271 crossref_primary_10_1088_2631_6331_ab0f48 crossref_primary_10_1080_15583724_2016_1268156 crossref_primary_10_31857_S0572329922600232 crossref_primary_10_1016_j_ijsolstr_2020_10_006 crossref_primary_10_1016_j_jmps_2012_09_006 crossref_primary_10_1063_1_4903059 crossref_primary_10_1002_adfm_201901908 crossref_primary_10_1088_0964_1726_23_10_105017 crossref_primary_10_1109_LRA_2019_2898710 crossref_primary_10_1016_j_jmps_2017_04_015 crossref_primary_10_1063_1_4793420 crossref_primary_10_1016_j_jmps_2015_11_009 crossref_primary_10_1063_1_4745023 crossref_primary_10_1002_polb_23529 crossref_primary_10_1142_S1758825115500696 crossref_primary_10_1088_1757_899X_639_1_012008 crossref_primary_10_3390_act9020025 crossref_primary_10_1109_TMECH_2018_2860789 crossref_primary_10_1007_s10338_019_00112_8 crossref_primary_10_1002_pola_26891 crossref_primary_10_1063_1_5129352 crossref_primary_10_1088_2053_1591_aac6fe crossref_primary_10_1177_1045389X221077449 crossref_primary_10_1002_polb_23197 crossref_primary_10_1063_1_4865200 crossref_primary_10_1080_19475411_2023_2299411 crossref_primary_10_1038_s41598_019_56505_9 crossref_primary_10_1002_adom_202001414 crossref_primary_10_1088_1742_6596_2856_1_012013 crossref_primary_10_1089_soro_2018_0046 crossref_primary_10_1016_S0894_9166_12_60048_2 crossref_primary_10_1089_soro_2017_0146 crossref_primary_10_1063_1_4863816 crossref_primary_10_1063_1_4871696 crossref_primary_10_1002_pi_4343 crossref_primary_10_1007_s42558_019_0005_1 crossref_primary_10_1088_0960_1317_22_4_045020 crossref_primary_10_1088_1361_665X_aa723f crossref_primary_10_1115_1_4039289 crossref_primary_10_2140_jomms_2023_18_751 crossref_primary_10_1088_0964_1726_22_5_055022 crossref_primary_10_1631_jzus_A1500125 crossref_primary_10_1088_0964_1726_20_7_075004 crossref_primary_10_1088_1361_665X_ac7f0b crossref_primary_10_1088_2053_1591_aac673 crossref_primary_10_1039_D4SM00596A crossref_primary_10_1209_0295_5075_119_26003 crossref_primary_10_1063_1_4928712 crossref_primary_10_1016_j_jmps_2019_103703 crossref_primary_10_3390_en16217424 crossref_primary_10_1016_j_polymertesting_2019_02_030 crossref_primary_10_1002_smm2_1203 crossref_primary_10_1063_1_4745049 crossref_primary_10_1002_adem_202101017 crossref_primary_10_1063_1_3680878 crossref_primary_10_1016_j_ijnonlinmec_2016_10_004 crossref_primary_10_1002_adom_201800792 crossref_primary_10_1007_s12204_017_1840_6 crossref_primary_10_1039_c2ra22380e crossref_primary_10_3390_polym15193908 crossref_primary_10_3103_S0025654422600775 crossref_primary_10_1039_C7SM02322G crossref_primary_10_1002_app_50991 crossref_primary_10_1007_s11431_022_2395_y crossref_primary_10_1007_s10404_012_1055_y crossref_primary_10_1016_j_scib_2020_12_033 crossref_primary_10_1063_1_5000078 crossref_primary_10_1039_C7TC02778H crossref_primary_10_3390_app10020640 crossref_primary_10_1039_C9TC05072H crossref_primary_10_1080_19475411_2015_1130974 crossref_primary_10_3390_mi15010125 crossref_primary_10_1039_C8SM01664J crossref_primary_10_1088_2631_8695_abaec5 crossref_primary_10_1115_1_4025416 crossref_primary_10_1002_admt_202100016 crossref_primary_10_3390_act13070232 crossref_primary_10_1142_S0219876213501089 crossref_primary_10_3389_fnins_2022_994251 crossref_primary_10_1039_C3SM51768C crossref_primary_10_1088_1748_3190_12_1_016001 crossref_primary_10_1177_1045389X13483025 crossref_primary_10_1115_1_4025530 crossref_primary_10_1016_j_snb_2018_01_145 crossref_primary_10_1049_nde2_12035 |
Cites_doi | 10.1109/TMECH.2010.2089635 10.1115/1.2047597 10.1063/1.3272685 10.1088/0022-3727/41/21/215405 10.1016/0032-3861(86)90231-4 10.1073/pnas.0913461107 10.1126/science.287.5454.836 10.1002/pi.2744 10.1016/j.jmps.2007.05.021 10.1063/1.1536251 10.1177/104538903039260 10.1002/marc.200900425 10.1038/1761225a0 10.1016/j.sna.2009.08.027 10.1016/j.sna.2006.05.024 10.1002/polb.1994.090321618 10.1063/1.365983 10.1016/0022-5096(93)90013-6 10.1016/j.ijsolstr.2006.03.026 10.1016/S0924-4247(97)01657-9 10.1063/1.3000440 10.1002/adma.200602644 10.1002/adma.200502437 10.1007/s00340-006-2434-4 10.1007/BF01793684 10.1088/0964-1726/14/6/014 10.1016/j.sna.2006.08.006 10.1103/PhysRevLett.104.178302 10.1088/0964-1726/19/5/055025 10.1063/1.2768641 10.1098/rspa.1972.0026 10.1063/1.3031483 10.1007/s00339-006-3680-3 10.1063/1.2929383 10.1088/0964-1726/14/6/032 10.1016/S0894-9166(11)60004-9 10.1063/1.3253322 10.1103/PhysRevB.76.134113 10.1016/B978-0-08-047488-5.00006-X 10.1063/1.3167773 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS Copyright Wiley Subscription Services, Inc. Apr 2011 |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS – notice: Copyright Wiley Subscription Services, Inc. Apr 2011 |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1002/polb.22223 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Applied Sciences |
EISSN | 1099-0488 |
EndPage | 515 |
ExternalDocumentID | 23951745 10_1002_polb_22223 POLB22223 ark_67375_WNG_W8NP8L89_P US201301947268 |
Genre | article |
GroupedDBID | -~X .GA .Y3 05W 10A 1L6 1OB 1OC 1ZS 31~ 4.4 4ZD 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 6TJ 7PT 8-1 8UM 930 A03 AAEVG AAHHS AANLZ AAXRX AAZKR ABCQN ABCUV ABHUG ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXME ACXQS ADAWD ADDAD ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AI. AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZFZN BDRZF BFHJK BRXPI BY8 CS3 DCZOG DR2 DRFUL DRSTM EBS EJD F00 F5P FBQ FEDTE G-S GNP GODZA GYXMG HBH HF~ HHY HHZ HVGLF IX1 KQQ LATKE LAW LEEKS LH4 LOXES LP6 LP7 LUTES LYRES M6T MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM P2P P2W P4D QB0 QRW RIWAO RNS ROL RWB RWI RYL SAMSI SUPJJ TN5 UB1 UPT V2E VH1 W99 WH7 WIH WJL WOHZO WQJ WXSBR XG1 XPP XV2 YQT ZZTAW AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX ADMLS AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c5243-c89304317f0ffc6100eb9e8264dade57af71de9285fa53beb201e39bc538d5cb3 |
IEDL.DBID | DR2 |
ISSN | 0887-6266 1099-0488 |
IngestDate | Fri Jul 11 14:58:51 EDT 2025 Fri Jul 11 08:47:10 EDT 2025 Fri Jul 25 12:05:27 EDT 2025 Mon Jul 21 09:17:08 EDT 2025 Tue Jul 01 01:14:10 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Wed Jan 22 16:23:37 EST 2025 Wed Oct 30 09:49:06 EDT 2024 Wed Dec 27 19:19:05 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | strain stimuli-sensitive polymers High strain tension Dielectric materials Elastomer dielectric properties Theoretical study thermodynamics Electromechanical effects Modeling Mechanism elastomers high performance polymers Electric field effect theory Actuator |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5243-c89304317f0ffc6100eb9e8264dade57af71de9285fa53beb201e39bc538d5cb3 |
Notes | http://dx.doi.org/10.1002/polb.22223 istex:57A0A24BE9555B5106AC4FD58EDCE556DE6FD319 ark:/67375/WNG-W8NP8L89-P ArticleID:POLB22223 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 2675939518 |
PQPubID | 1016371 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_901670391 proquest_miscellaneous_2000030266 proquest_journals_2675939518 pascalfrancis_primary_23951745 crossref_primary_10_1002_polb_22223 crossref_citationtrail_10_1002_polb_22223 wiley_primary_10_1002_polb_22223_POLB22223 istex_primary_ark_67375_WNG_W8NP8L89_P fao_agris_US201301947268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 April 2011 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 1 April 2011 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ |
PublicationTitle | Journal of polymer science. Part B, Polymer physics |
PublicationTitleAlternate | J. Polym. Sci. B Polym. Phys |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R. J. Intell. Mater. Syst. Struct. 2003, 14, 787-793. Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. USA 2010, 107, 4505-4510. Wissler, M.; Mazza, E. Smart. Mater. Struct. 2005, 14, 1396-1402. Zhenyi, M.; Scheinbeim, J. I.; Lee, J. W.; Newman, B. A. J. Polym. Sci. Part B: Polym. Phys. 1994, 32, 2721-2731. Galler, N.; Ditlbacher, H.; Steinberger, B.; Hohenau, A.; Dansachmuller, M.; Camacho-Gonzales, F.; Bauer, S.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R. Appl. Phys. B 2006, 85, 7-10. Zhao, X.; Suo, Z. Phys. Rev. Lett. 2010, 104, 178302. Suo, Z. Acta Mechanica Solida Sinica 2010, 23, 549-578. He, T.; Zhao, X.; Suo, Z. J. Appl. Phys. 2009, 106, 083522. Kofod, G. J. Phys. D 2008, 41, 215405. Ogden, R. W. Proc. Roy. Soc. Lond. A 1972, 326, 565-584. Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P. Sens. Actuators A 1998, 64, 77-85. Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902. Shankar, R.; Ghosh, T. K.; Spontak, R. J. Adv. Mater. 2007, 19, 2218-2223. Goulbourne, N.; Mockenstrum, E.; Frecker, M. J. Appl. Mech. 2005, 72, 899-906. Suo, Z.; Zhao, X.; Greene, W. H. J. Mech. Phys. Solids 2008, 56, 467-486. Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. 2010, 107, 4505-4510. Suo, Z.; Zhu, J. Appl. Phys. Lett. 2009, 95, 232909. Kuhn, W.; Grün, F. Kolloidzschr 1942, 101, 248-271. Arruda, E. M.; Boyce, M. J. Mech. Phys. Solids 1992, 41, 389-412. Kofod, G.; Paajanen, M.; Bauer, S. Appl. Phys. A 2006, 85, 141-143. Moscardo, M.; Zhao, X.; Suo, Z.; Lapusta, Y. J. Appl. Phys. 2008, 104, 093503. Edwards, S. F.; Vilgis, T. Polymer 1985, 27, 483-492. Zhao, X.; Suo, Z. J. Appl. Phys. 2008, 104, 123530. Planté, J. S.; Dubowsky, S. Int. J. Solids Struct. 2006, 43, 7727-7751. Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R. Adv. Mater. 2006, 18, 887-891. Kovacs, G.; During, L.; Michel, S.; Terrasi, G. Sens. Actuators A 2009, 155, 299-307. Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Appl. Phys. Lett. 2008, 92, 192903. Carpi, F.; Migliore, A.; Serra, G.; De Rossi, D. Smart. Mater. Struct. 2005, 14, 1-7. Koh, S. J. A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. IEEE/ASME Trans. Mech. 2011, 16, 33-41. Park, S. E.; Shrout, T. R. J. Appl. Phys. 1997, 82, 1804-1811. Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. Science 2000, 287, 836-839. Zhao, X.; Suo, Z. Appl. Phys. Lett. 2007, 91, 061921. Brochu, P.; Pei, Q. Macromol. Rapid. Commun. 2010, 31, 10-36. Carpi, F.; Frediani, G.; Tarantino, S.; De Rossi, D. Polym. Int. 2010, 59, 407-414. McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Smart Mater. Struct. 2010, 19, 055025. Bochobza-Degani, O.; Elata, D.; Nemirovsky, Y. Appl. Phys. Lett. 2003, 82, 302-304. Carpi, F.; DeRossi, D.; Kornbluh, R.; Pelrine, R.; Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers; Elsevier: Amsterdam, 2008. Zhao, X.; Hong, W.; Suo, Z. Phys. Rev. B 2007, 76, 134113. Stark, K. H.; Garton, C. G. Nature 1955, 176, 1225-1226. Wissler, M.; Mazza, E. Sens. Actuators A 2007, 134, 494-504. Patrick, L.; Gabor, K.; Silvain, M. Sens. Actuators A 2007, 135, 748-757. 2007; 19 2010; 31 2010; 59 1955; 176 1997; 82 1942; 101 2010; 107 2010; 19 2010; 104 2009; 155 2008 1975 2003; 14 2006; 18 2007; 91 2008; 56 2008; 104 2004 2007; 76 2011; 16 2008; 92 1998; 64 1985; 27 2010; 23 2007; 134 2007; 135 2006; 85 2009; 95 2001 2006; 43 2009; 94 2000; 287 2008; 41 2005; 72 2003; 82 1972; 326 1994; 32 2009; 106 2005; 14 1992; 41 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 Treloar L. R. G. (e_1_2_8_34_2) 1975 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 |
References_xml | – reference: Zhao, X.; Suo, Z. Phys. Rev. Lett. 2010, 104, 178302. – reference: Kofod, G. J. Phys. D 2008, 41, 215405. – reference: Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P. Sens. Actuators A 1998, 64, 77-85. – reference: Stark, K. H.; Garton, C. G. Nature 1955, 176, 1225-1226. – reference: Wissler, M.; Mazza, E. Sens. Actuators A 2007, 134, 494-504. – reference: Kuhn, W.; Grün, F. Kolloidzschr 1942, 101, 248-271. – reference: Ogden, R. W. Proc. Roy. Soc. Lond. A 1972, 326, 565-584. – reference: Ha, S. M.; Yuan, W.; Pei, Q. B.; Pelrine, R. Adv. Mater. 2006, 18, 887-891. – reference: Moscardo, M.; Zhao, X.; Suo, Z.; Lapusta, Y. J. Appl. Phys. 2008, 104, 093503. – reference: Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902. – reference: Goulbourne, N.; Mockenstrum, E.; Frecker, M. J. Appl. Mech. 2005, 72, 899-906. – reference: Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. USA 2010, 107, 4505-4510. – reference: Planté, J. S.; Dubowsky, S. Int. J. Solids Struct. 2006, 43, 7727-7751. – reference: Park, S. E.; Shrout, T. R. J. Appl. Phys. 1997, 82, 1804-1811. – reference: Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Proc. Natl. Acad. Sci. 2010, 107, 4505-4510. – reference: Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. Science 2000, 287, 836-839. – reference: Kofod, G.; Paajanen, M.; Bauer, S. Appl. Phys. A 2006, 85, 141-143. – reference: Arruda, E. M.; Boyce, M. J. Mech. Phys. Solids 1992, 41, 389-412. – reference: Shankar, R.; Ghosh, T. K.; Spontak, R. J. Adv. Mater. 2007, 19, 2218-2223. – reference: Patrick, L.; Gabor, K.; Silvain, M. Sens. Actuators A 2007, 135, 748-757. – reference: He, T.; Zhao, X.; Suo, Z. J. Appl. Phys. 2009, 106, 083522. – reference: Zhao, X.; Suo, Z. J. Appl. Phys. 2008, 104, 123530. – reference: Suo, Z. Acta Mechanica Solida Sinica 2010, 23, 549-578. – reference: Zhao, X.; Hong, W.; Suo, Z. Phys. Rev. B 2007, 76, 134113. – reference: Carpi, F.; Frediani, G.; Tarantino, S.; De Rossi, D. Polym. Int. 2010, 59, 407-414. – reference: Carpi, F.; DeRossi, D.; Kornbluh, R.; Pelrine, R.; Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers; Elsevier: Amsterdam, 2008. – reference: McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Smart Mater. Struct. 2010, 19, 055025. – reference: Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R. J. Intell. Mater. Syst. Struct. 2003, 14, 787-793. – reference: Edwards, S. F.; Vilgis, T. Polymer 1985, 27, 483-492. – reference: Suo, Z.; Zhu, J. Appl. Phys. Lett. 2009, 95, 232909. – reference: Bochobza-Degani, O.; Elata, D.; Nemirovsky, Y. Appl. Phys. Lett. 2003, 82, 302-304. – reference: Wissler, M.; Mazza, E. Smart. Mater. Struct. 2005, 14, 1396-1402. – reference: Zhenyi, M.; Scheinbeim, J. I.; Lee, J. W.; Newman, B. A. J. Polym. Sci. Part B: Polym. Phys. 1994, 32, 2721-2731. – reference: Koh, S. J. A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. IEEE/ASME Trans. Mech. 2011, 16, 33-41. – reference: Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Appl. Phys. Lett. 2008, 92, 192903. – reference: Carpi, F.; Migliore, A.; Serra, G.; De Rossi, D. Smart. Mater. Struct. 2005, 14, 1-7. – reference: Suo, Z.; Zhao, X.; Greene, W. H. J. Mech. Phys. Solids 2008, 56, 467-486. – reference: Galler, N.; Ditlbacher, H.; Steinberger, B.; Hohenau, A.; Dansachmuller, M.; Camacho-Gonzales, F.; Bauer, S.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R. Appl. Phys. B 2006, 85, 7-10. – reference: Kovacs, G.; During, L.; Michel, S.; Terrasi, G. Sens. Actuators A 2009, 155, 299-307. – reference: Brochu, P.; Pei, Q. Macromol. Rapid. Commun. 2010, 31, 10-36. – reference: Zhao, X.; Suo, Z. Appl. Phys. Lett. 2007, 91, 061921. – volume: 101 start-page: 248 year: 1942 end-page: 271 publication-title: Kolloidzschr – start-page: 81 year: 1975 end-page: 100 – volume: 135 start-page: 748 year: 2007 end-page: 757 publication-title: Sens. Actuators A – volume: 16 start-page: 33 year: 2011 end-page: 41 publication-title: IEEE/ASME Trans. Mech. – volume: 134 start-page: 494 year: 2007 end-page: 504 publication-title: Sens. Actuators A – volume: 41 start-page: 389 year: 1992 end-page: 412 publication-title: J. Mech. Phys. Solids – volume: 107 start-page: 4505 year: 2010 end-page: 4510 publication-title: Proc. Natl. Acad. Sci. – year: 2001 – volume: 43 start-page: 7727 year: 2006 end-page: 7751 publication-title: Int. J. Solids Struct. – volume: 155 start-page: 299 year: 2009 end-page: 307 publication-title: Sens. Actuators A – volume: 14 start-page: 1396 year: 2005 end-page: 1402 publication-title: Smart. Mater. Struct. – volume: 64 start-page: 77 year: 1998 end-page: 85 publication-title: Sens. Actuators A – volume: 72 start-page: 899 year: 2005 end-page: 906 publication-title: J. Appl. Mech. – volume: 41 start-page: 215405 year: 2008 publication-title: J. Phys. D – volume: 92 start-page: 192903 year: 2008 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 2218 year: 2007 end-page: 2223 publication-title: Adv. Mater. – volume: 104 start-page: 093503 year: 2008 publication-title: J. Appl. Phys. – volume: 287 start-page: 836 year: 2000 end-page: 839 publication-title: Science – volume: 176 start-page: 1225 year: 1955 end-page: 1226 publication-title: Nature – volume: 14 start-page: 1 year: 2005 end-page: 7 publication-title: Smart. Mater. Struct. – volume: 76 start-page: 134113 year: 2007 publication-title: Phys. Rev. B – volume: 91 start-page: 061921 year: 2007 publication-title: Appl. Phys. Lett. – volume: 106 start-page: 083522 year: 2009 publication-title: J. Appl. Phys. – volume: 59 start-page: 407 year: 2010 end-page: 414 publication-title: Polym. Int. – volume: 19 start-page: 055025 year: 2010 publication-title: Smart Mater. Struct. – volume: 56 start-page: 467 year: 2008 end-page: 486 publication-title: J. Mech. Phys. Solids – volume: 27 start-page: 483 year: 1985 end-page: 492 publication-title: Polymer – volume: 95 start-page: 232909 year: 2009 publication-title: Appl. Phys. Lett. – year: 2008 – volume: 94 start-page: 262902 year: 2009 publication-title: Appl. Phys. Lett. – volume: 104 start-page: 178302 year: 2010 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 141 year: 2006 end-page: 143 publication-title: Appl. Phys. A – volume: 107 start-page: 4505 year: 2010 end-page: 4510 publication-title: Proc. Natl. Acad. Sci. USA – year: 2004 – volume: 32 start-page: 2721 year: 1994 end-page: 2731 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 82 start-page: 302 year: 2003 end-page: 304 publication-title: Appl. Phys. Lett. – volume: 104 start-page: 123530 year: 2008 publication-title: J. Appl. Phys. – volume: 82 start-page: 1804 year: 1997 end-page: 1811 publication-title: J. Appl. Phys. – volume: 14 start-page: 787 year: 2003 end-page: 793 publication-title: J. Intell. Mater. Syst. Struct. – volume: 23 start-page: 549 year: 2010 end-page: 578 publication-title: Acta Mechanica Solida Sinica – volume: 326 start-page: 565 year: 1972 end-page: 584 publication-title: Proc. Roy. Soc. Lond. A – volume: 85 start-page: 7 year: 2006 end-page: 10 publication-title: Appl. Phys. B – volume: 18 start-page: 887 year: 2006 end-page: 891 publication-title: Adv. Mater. – volume: 31 start-page: 10 year: 2010 end-page: 36 publication-title: Macromol. Rapid. Commun. – ident: e_1_2_8_32_2 doi: 10.1109/TMECH.2010.2089635 – ident: e_1_2_8_35_2 doi: 10.1115/1.2047597 – ident: e_1_2_8_19_2 doi: 10.1063/1.3272685 – ident: e_1_2_8_26_2 doi: 10.1088/0022-3727/41/21/215405 – ident: e_1_2_8_42_2 doi: 10.1016/0032-3861(86)90231-4 – ident: e_1_2_8_22_2 doi: 10.1073/pnas.0913461107 – ident: e_1_2_8_9_2 doi: 10.1126/science.287.5454.836 – ident: e_1_2_8_24_2 – ident: e_1_2_8_5_2 doi: 10.1002/pi.2744 – ident: e_1_2_8_37_2 doi: 10.1016/j.jmps.2007.05.021 – ident: e_1_2_8_21_2 doi: 10.1063/1.1536251 – ident: e_1_2_8_38_2 doi: 10.1177/104538903039260 – ident: e_1_2_8_25_2 doi: 10.1002/marc.200900425 – ident: e_1_2_8_27_2 doi: 10.1038/1761225a0 – ident: e_1_2_8_4_2 doi: 10.1016/j.sna.2009.08.027 – ident: e_1_2_8_44_2 doi: 10.1016/j.sna.2006.05.024 – ident: e_1_2_8_15_2 doi: 10.1002/polb.1994.090321618 – ident: e_1_2_8_33_2 doi: 10.1063/1.365983 – ident: e_1_2_8_40_2 doi: 10.1016/0022-5096(93)90013-6 – ident: e_1_2_8_11_2 doi: 10.1016/j.ijsolstr.2006.03.026 – ident: e_1_2_8_16_2 doi: 10.1016/S0924-4247(97)01657-9 – ident: e_1_2_8_12_2 doi: 10.1063/1.3000440 – ident: e_1_2_8_23_2 doi: 10.1002/adma.200602644 – ident: e_1_2_8_10_2 doi: 10.1002/adma.200502437 – ident: e_1_2_8_2_2 doi: 10.1007/s00340-006-2434-4 – ident: e_1_2_8_39_2 doi: 10.1007/BF01793684 – ident: e_1_2_8_43_2 doi: 10.1088/0964-1726/14/6/014 – ident: e_1_2_8_17_2 doi: 10.1016/j.sna.2006.08.006 – ident: e_1_2_8_20_2 doi: 10.1103/PhysRevLett.104.178302 – ident: e_1_2_8_7_2 doi: 10.1088/0964-1726/19/5/055025 – ident: e_1_2_8_30_2 doi: 10.1063/1.2768641 – ident: e_1_2_8_31_2 – ident: e_1_2_8_41_2 doi: 10.1098/rspa.1972.0026 – ident: e_1_2_8_6_2 doi: 10.1073/pnas.0913461107 – ident: e_1_2_8_45_2 doi: 10.1063/1.3031483 – ident: e_1_2_8_3_2 doi: 10.1007/s00339-006-3680-3 – start-page: 81 volume-title: Physics of Rubber Elasticity year: 1975 ident: e_1_2_8_34_2 – ident: e_1_2_8_18_2 doi: 10.1063/1.2929383 – ident: e_1_2_8_36_2 doi: 10.1088/0964-1726/14/6/032 – ident: e_1_2_8_28_2 doi: 10.1016/S0894-9166(11)60004-9 – ident: e_1_2_8_14_2 doi: 10.1063/1.3253322 – ident: e_1_2_8_29_2 doi: 10.1103/PhysRevB.76.134113 – ident: e_1_2_8_8_2 doi: 10.1016/B978-0-08-047488-5.00006-X – ident: e_1_2_8_13_2 doi: 10.1063/1.3167773 |
SSID | ssj0009959 |
Score | 2.4741504 |
Snippet | Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of... Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage‐induced strains of above 100% have been observed when DEs are prestretched, and for DEs of... |
SourceID | proquest pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 504 |
SubjectTerms | Actuation Applied sciences Deformation mechanisms dielectric properties Dielectrics Elastomers Electric potential Exact sciences and technology high performance polymers Mechanical properties Organic polymers Physicochemistry of polymers physics polymers prediction Properties and characterization Reproduction stimuli-sensitive polymers Strain tension theory thermodynamics Voltage |
Title | Mechanisms of large actuation strain in dielectric elastomers |
URI | https://api.istex.fr/ark:/67375/WNG-W8NP8L89-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.22223 https://www.proquest.com/docview/2675939518 https://www.proquest.com/docview/2000030266 https://www.proquest.com/docview/901670391 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxNBEB5qQfTFH1Xp2VpOFEHh0tzebu4W9EGLtUgbgxraF1l293YlNM2VXgLiX-_MXu5iRAWFPBxklmR3Zme_2Zv5BuApY9LbIqOKZZ4nPNVpotO-Trjnwqbcp1bThf7JcHA05u_PxNkGvGxrYRp-iO7CjXZG8Ne0wbWp91ekoZfV1PQYHW_ogClZixDRxxV3FBFptTSfiNoHHTcp218NXTuNrnldIUal5f1GOZK6xmXyTX-LNQD6M4wN59DhbfjSzqBJPznvLeamZ7__Qu74v1O8A7eWADV-3VjUXdhwsy24cdD2hduC6yFp1Nb34NWJo7rhSX1Rx5WPp5RUHmuqSCFtx3VoPxHjp5w03XYmNnaI1ucVXZbfh_Hh288HR8myHUNiBeNZYhHaEBVP7vveW4RdfWekw_CEl7p0Itc-T0snWSG8FpnBkL2fukwaiz61FNZkD2BzVs3cNsSZ5NpaIYUrDEfbwCBQY2yERmJ1ZtggguetWpRdcpXTf56qhmWZKVoaFZYmgied7GXD0PFbqW3UrtJf0XWq8SdGL2xTyXM2KCJ4FlTejdZX55Tulgt1OnynTovhqDgupBpFsLdmE90Alkki_BYR7LZGopauoFYMQzJJAvhDj7uvUWf0ZkbPXLWoqRcoeVu00gjiP8hIKhghPv8IXgSj-cts1ejD8Zvw9PBfhHfgZnNlTolJu7A5v1q4R4i55mYv7K0fCBMjrw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xITRe-BigBcYIAiGBlK5x7CZ-4AEmRoG2VLBqe7Mcx0bVSjMtrYT467lz0pQiQAIpD5FyVmLf-Xx3ufsdwFPGpDNZQhXLPI14rONIx10dcceFibmLjaaA_nDU60_4-zNx1uTmUC1MjQ_RBtxoZ3h9TRucAtKHa9TQi3KWdxidb1twlVp6e4_q0xo9iqC0VkCfaLf3WnRSdrgeu3EebTldopVKC_yNsiR1hQvl6g4XGyboz4asP4mOb9btVisPYEgJKOed5SLvmO-_wDv-9yRvwY3GRg1f1UJ1G67Y-S7sHK1aw-3CNZ83aqo78HJoqXR4Wn2twtKFM8orDzUVpRDDw8p3oAjxKqZ1w52pCS0a7IuS4uV3YXL85uSoHzUdGSIjGE8ig9YNofGkruucQcura3Np0UPhhS6sSLVL48JKlgmnRZKj196NbSJzg2q1ECZP7sH2vJzbPQgTybUxQgqb5RzFA_1Aje4RyonRSc56ATxf8UWZBq6cvnmmaqBlpmhplF-aAJ60tBc1SMdvqfaQvUp_Qe2pJp8Z_bONJU9ZLwvgmed5O1pfnlPGWyrU6eitOs1G42yQSTUO4GBDKNoBLJGE-S0C2F9JiWq0QaUYemWSCPBFj9vHyDP6OaPntlxW1A6UFC6KaQDhH2gk1YwQpH8AL7zU_GW2avxx8Nrf3f8X4kew0z8ZDtTg3ejDA7heR9ApT2kftheXS_sQTbBFfuA32g8xISfK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ3y88DFAC4wRBEICKV3i2E0swQNslAFdqYBqe0GW49ioWmmqpZUQfz13SZNSBEgg9SFSz2rtO59_59z9DuARY9KZNKaKZZ4EPNJRoKNQB9xxYSLuIqPpQv940D0a8ben4nQDnjW1MDU_RHvhRjuj8te0wWe521-Rhs6KSdZhdLxtwgXeDVOy6cMPK_IoYtJqeD4RtndbclK2vxq7dhxtOl0gSKX1_UZJkrrEdXJ1g4s1BPozjq0Oot41-NxMoc4_Oess5lnHfP-F3fF_53gdri4Rqv-iNqkbsGGn23D5oGkMtw0Xq6xRU96E58eWCofH5dfSL5w_oaxyX1NJCqnbL6v-Ez5-8nHdbmdsfItwfV7QbfktGPVefTo4Cpb9GAIjGI8Dg9iGuHgSFzpnEHeFNpMW4xOe69yKRLskyq1kqXBaxBnG7GFkY5kZdKq5MFl8G7amxdTugB9Lro0RUtg042gcGAVqDI7QSoyOM9b14EmjFmWWZOX0nyeqpllmipZGVUvjwcNWdlZTdPxWage1q_QX9J1q9JHRG9tI8oR1Uw8eVypvR-vzM8p3S4Q6GbxWJ-lgmPZTqYYe7K3ZRDuAxZIYv4UHu42RqKUvKBXDmEySAP7Qg_Zr1Bm9mtFTWyxKagZK7hat1AP_DzKSKkaI0N-Dp5XR_GW2avi-_7J6uvMvwvfh0vCwp_pvBu_uwpX6-pySlHZha36-sPcQf82zvWqb_QC1cCaC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+large+actuation+strain+in+dielectric+elastomers&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Koh%2C+Soo+Jin+Adrian&rft.au=Li%2C+Tiefeng&rft.au=Zhou%2C+Jinxiong&rft.au=Zhao%2C+Xuanhe&rft.date=2011-04-01&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=49&rft.issue=7&rft.spage=504&rft.epage=515&rft_id=info:doi/10.1002%2Fpolb.22223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_polb_22223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon |