Global patterns of mainland and insular pollination networks
Aim: Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the structure of pollination networks from islands (of oceanic and continental origin) and mainlands. For oceanic islands, we further evaluated the effe...
Saved in:
Published in | Global ecology and biogeography Vol. 25; no. 7; pp. 880 - 890 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.07.2016
John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the structure of pollination networks from islands (of oceanic and continental origin) and mainlands. For oceanic islands, we further evaluated the effects of key island traits on network structural parameters. Location: Fifty-two quantitative plant-pollinator networks from continental islands (n = 23), oceanic islands (n = 18) and mainlands (n = 11) located world-wide. Methods: The effect of geographical origin upon network structure was explored by means of generalized mixed models, accounting for biogeographical region, sampling intensity, latitude and network size. For oceanic island networks, the influence of area, age, elevation and isolation was also evaluated. Results: The structure of pollination networks was fairly consistent between mainland and continental islands and only a few differences were noted. Oceanic island networks, however, were smaller and topologically simplified, showing a lower interaction diversity, and higher plant niche overlap than mainland and continental island networks. Isolation and elevational range of oceanic islands influenced the total number of species and interactions. Networks from higherelevation oceanic islands were less nested and those located towards the equator exhibited higher interaction richness. Island area showed no significant effect on any of the network metrics studied here. Main conclusions: Pollination networks appear structurally similar regardless of their geographical origin. However, networks from continental islands are more similar to their mainland counterparts than to those from oceanic islands, probably due to the geological nature of continental islands, which are fragments of the mainland to which they were once connected. Oceanic island networks are the least species- and link-rich, and exhibit the lowest interaction diversity and the highest plant niche overlap, possibly due to lower pollinator richness. The most isolated and low-elevation islands show the simplest networks, and are thus probably the most vulnerable to pollination disruptions. |
---|---|
AbstractList | Aim Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the structure of pollination networks from islands (of oceanic and continental origin) and mainlands. For oceanic islands, we further evaluated the effects of key island traits on network structural parameters. Location Fifty-two quantitative plant-pollinator networks from continental islands (n=23), oceanic islands (n=18) and mainlands (n=11) located world-wide. Methods The effect of geographical origin upon network structure was explored by means of generalized mixed models, accounting for biogeographical region, sampling intensity, latitude and network size. For oceanic island networks, the influence of area, age, elevation and isolation was also evaluated. Results The structure of pollination networks was fairly consistent between mainland and continental islands and only a few differences were noted. Oceanic island networks, however, were smaller and topologically simplified, showing a lower interaction diversity, and higher plant niche overlap than mainland and continental island networks. Isolation and elevational range of oceanic islands influenced the total number of species and interactions. Networks from higher-elevation oceanic islands were less nested and those located towards the equator exhibited higher interaction richness. Island area showed no significant effect on any of the network metrics studied here. Main conclusions Pollination networks appear structurally similar regardless of their geographical origin. However, networks from continental islands are more similar to their mainland counterparts than to those from oceanic islands, probably due to the geological nature of continental islands, which are fragments of the mainland to which they were once connected. Oceanic island networks are the least species- and link-rich, and exhibit the lowest interaction diversity and the highest plant niche overlap, possibly due to lower pollinator richness. The most isolated and low-elevation islands show the simplest networks, and are thus probably the most vulnerable to pollination disruptions. Aim Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the structure of pollination networks from islands (of oceanic and continental origin) and mainlands. For oceanic islands, we further evaluated the effects of key island traits on network structural parameters. Location Fifty‐two quantitative plant–pollinator networks from continental islands (n = 23), oceanic islands (n = 18) and mainlands (n = 11) located world‐wide. Methods The effect of geographical origin upon network structure was explored by means of generalized mixed models, accounting for biogeographical region, sampling intensity, latitude and network size. For oceanic island networks, the influence of area, age, elevation and isolation was also evaluated. Results The structure of pollination networks was fairly consistent between mainland and continental islands and only a few differences were noted. Oceanic island networks, however, were smaller and topologically simplified, showing a lower interaction diversity, and higher plant niche overlap than mainland and continental island networks. Isolation and elevational range of oceanic islands influenced the total number of species and interactions. Networks from higher‐elevation oceanic islands were less nested and those located towards the equator exhibited higher interaction richness. Island area showed no significant effect on any of the network metrics studied here. Main conclusions Pollination networks appear structurally similar regardless of their geographical origin. However, networks from continental islands are more similar to their mainland counterparts than to those from oceanic islands, probably due to the geological nature of continental islands, which are fragments of the mainland to which they were once connected. Oceanic island networks are the least species‐ and link‐rich, and exhibit the lowest interaction diversity and the highest plant niche overlap, possibly due to lower pollinator richness. The most isolated and low‐elevation islands show the simplest networks, and are thus probably the most vulnerable to pollination disruptions. Aim: Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the structure of pollination networks from islands (of oceanic and continental origin) and mainlands. For oceanic islands, we further evaluated the effects of key island traits on network structural parameters. Location: Fifty-two quantitative plant-pollinator networks from continental islands (n = 23), oceanic islands (n = 18) and mainlands (n = 11) located world-wide. Methods: The effect of geographical origin upon network structure was explored by means of generalized mixed models, accounting for biogeographical region, sampling intensity, latitude and network size. For oceanic island networks, the influence of area, age, elevation and isolation was also evaluated. Results: The structure of pollination networks was fairly consistent between mainland and continental islands and only a few differences were noted. Oceanic island networks, however, were smaller and topologically simplified, showing a lower interaction diversity, and higher plant niche overlap than mainland and continental island networks. Isolation and elevational range of oceanic islands influenced the total number of species and interactions. Networks from higherelevation oceanic islands were less nested and those located towards the equator exhibited higher interaction richness. Island area showed no significant effect on any of the network metrics studied here. Main conclusions: Pollination networks appear structurally similar regardless of their geographical origin. However, networks from continental islands are more similar to their mainland counterparts than to those from oceanic islands, probably due to the geological nature of continental islands, which are fragments of the mainland to which they were once connected. Oceanic island networks are the least species- and link-rich, and exhibit the lowest interaction diversity and the highest plant niche overlap, possibly due to lower pollinator richness. The most isolated and low-elevation islands show the simplest networks, and are thus probably the most vulnerable to pollination disruptions. |
Author | Trøjelsgaard, Kristian Olesen, Jens M. Heleno, Ruben Traveset, Anna Tur, Cristina Castro-Urgal, Rocío |
Author_xml | – sequence: 1 givenname: Anna surname: Traveset fullname: Traveset, Anna email: Correspondence: Anna Traveset, Laboratorio Internacional de Cambio Global (LINC-Global), Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Terrestrial Ecology Group, C/ Miquel Marqués 21, 07190-Esporles, Mallorca, Balearic Islands, Spain., atraveset@imedea.csic-uib.es organization: Laboratorio Internacional de Cambio Global (LINC-Global), Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Terrestrial Ecology Group, C/ Miquel Marqués 21, 07190-Esporles, Balearic Islands, Mallorca, Spain – sequence: 2 givenname: Cristina surname: Tur fullname: Tur, Cristina organization: Laboratorio Internacional de Cambio Global (LINC-Global), Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Terrestrial Ecology Group, C/ Miquel Marqués 21, 07190-Esporles, Balearic Islands, Mallorca, Spain – sequence: 3 givenname: Kristian surname: Trøjelsgaard fullname: Trøjelsgaard, Kristian organization: Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark – sequence: 4 givenname: Ruben surname: Heleno fullname: Heleno, Ruben organization: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal – sequence: 5 givenname: Rocío surname: Castro-Urgal fullname: Castro-Urgal, Rocío organization: Laboratorio Internacional de Cambio Global (LINC-Global), Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Terrestrial Ecology Group, C/ Miquel Marqués 21, 07190-Esporles, Balearic Islands, Mallorca, Spain – sequence: 6 givenname: Jens M. surname: Olesen fullname: Olesen, Jens M. organization: Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark |
BookMark | eNqNkEtLAzEUhYMo-Fz4A4QBN7qYmsfkMeDGio6KqKCiu5COGUlNk5qkaP-9qdUuRMFAyIXzncPNWQfLzjsNwDaCPZTPwbMe9BAmDC-BNVQxVgpMxPJixo-rYD3GIYSQVpStgcPG-oGyxVilpIOLhe-KkTLOKvdUzK5xcWJVKMbeWuNUMt4VTqc3H17iJljplI166-vdAPenJ3fHZ-XldXN-fHRZthRXuGxxTVvUDioNMa26uutEjQaCcII5hEIxzEhNFa61JipLmSdCs67l_KkSDJINsDfPHQf_OtExyZGJrbZ5Se0nUSKBuMACcvIPFApGSW4oo7s_0KGfBJc_IhGv82akQrPAgznVBh9j0J1sTfqsIQVlrERQzoqXuXj5WXx27P9wjIMZqTD9lf1KfzNWT_8GZXPS_3bszB3DmHxYOCoiOGKcZr2c6yYm_b7QVXiRjBNO5cNVIxsibq7Yxa3skw9Xr6oo |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_1111_aec_13040 crossref_primary_10_1098_rspb_2024_2787 crossref_primary_10_1111_ele_13910 crossref_primary_10_1016_j_agee_2024_109437 crossref_primary_10_1111_nph_19325 crossref_primary_10_1111_1365_2745_12935 crossref_primary_10_1111_ecog_03514 crossref_primary_10_1111_mec_16683 crossref_primary_10_1007_s12229_023_09296_8 crossref_primary_10_1002_ajb2_1122 crossref_primary_10_1002_ecy_2357 crossref_primary_10_1111_1749_4877_12745 crossref_primary_10_1111_ele_70061 crossref_primary_10_1139_cjps_2021_0216 crossref_primary_10_1111_jbi_14751 crossref_primary_10_1111_1749_4877_12868 crossref_primary_10_1111_geb_13310 crossref_primary_10_1007_s10980_018_0740_y crossref_primary_10_2984_72_4_8 crossref_primary_10_1111_1365_2435_12710 crossref_primary_10_1038_s41598_018_32143_5 crossref_primary_10_1016_j_ecocom_2024_101105 crossref_primary_10_1080_23818107_2023_2204134 crossref_primary_10_1111_geb_12776 crossref_primary_10_1098_rspb_2016_2218 crossref_primary_10_3389_fevo_2020_556744 crossref_primary_10_1016_j_actao_2025_104074 crossref_primary_10_1111_jbi_12915 crossref_primary_10_2984_70_4_2 crossref_primary_10_1111_plb_12636 crossref_primary_10_1038_ncomms13965 crossref_primary_10_1002_ajb2_1270 crossref_primary_10_1093_jpe_rtaa054 crossref_primary_10_1111_oik_06053 crossref_primary_10_1371_journal_pone_0219493 crossref_primary_10_1007_s11829_024_10056_7 crossref_primary_10_1111_geb_70000 crossref_primary_10_1146_annurev_ecolsys_110218_024942 crossref_primary_10_3390_insects11120881 crossref_primary_10_1007_s11252_020_01089_w crossref_primary_10_1017_S0266467421000055 crossref_primary_10_1371_journal_pone_0295377 crossref_primary_10_1111_1365_2656_14174 crossref_primary_10_1111_oik_10301 crossref_primary_10_1111_jbi_12986 crossref_primary_10_3389_fevo_2022_912628 crossref_primary_10_1002_ajb2_1499 crossref_primary_10_1111_plb_12602 crossref_primary_10_1007_s00468_021_02195_8 crossref_primary_10_1086_699218 crossref_primary_10_1146_annurev_ecolsys_110316_022821 crossref_primary_10_1111_gcb_15474 crossref_primary_10_1038_s41598_017_17592_8 crossref_primary_10_56178_eh_v36i1_383 crossref_primary_10_1016_j_envexpbot_2024_105660 crossref_primary_10_1093_aobpla_plv068 crossref_primary_10_1111_plb_12926 crossref_primary_10_3390_d17020113 crossref_primary_10_1111_1365_2664_70017 crossref_primary_10_1038_s41598_020_70954_7 crossref_primary_10_3897_BDJ_9_e60315 crossref_primary_10_1002_ecs2_4916 crossref_primary_10_1111_mec_16537 crossref_primary_10_1111_1365_2435_14527 crossref_primary_10_1111_geb_12833 crossref_primary_10_1111_jzo_12783 crossref_primary_10_1093_aobpla_plae010 crossref_primary_10_1111_geb_12477 crossref_primary_10_1111_geb_13643 crossref_primary_10_1017_S0376892917000315 crossref_primary_10_1111_jbi_14757 crossref_primary_10_1002_ece3_11123 crossref_primary_10_1007_s00442_018_4281_5 crossref_primary_10_1111_jbi_14759 crossref_primary_10_1111_btp_70027 crossref_primary_10_1111_icad_12216 crossref_primary_10_1111_jbi_14568 crossref_primary_10_1111_oik_09947 crossref_primary_10_1371_journal_pone_0270032 crossref_primary_10_1111_oik_05262 crossref_primary_10_1371_journal_pone_0225266 crossref_primary_10_3390_insects11060351 crossref_primary_10_1111_nph_19938 |
Cites_doi | 10.1098/rspb.2009.2086 10.1111/j.1600-0587.2013.00201.x 10.1111/j.1365-2699.2012.02693.x 10.1007/978-0-387-87458-6 10.1371/journal.pone.0006275 10.1038/nature11214 10.1111/j.1461-0248.2005.00810.x 10.2174/1874213000902010007 10.1126/science.1123412 10.1371/journal.pone.0081694 10.1890/09-1626.1 10.1111/boj.12134 10.1890/12-1213.1 10.1016/j.ppees.2009.10.002 10.1111/geb.12134 10.1146/annurev.ecolsys.38.091206.095818 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 10.1017/CBO9780511618710 10.1111/geb.12270 10.1111/j.0906-7590.2007.05323.x 10.1098/rspb.2012.3040 10.1016/S0022-5193(03)00305-9 10.1098/rstb.1979.0019 10.1111/j.1365-2656.2011.01883.x 10.1111/j.1600-0706.2010.18927.x 10.1016/j.ppees.2009.04.001 10.1016/B978-0-12-396992-7.00002-2 10.1016/j.cub.2012.08.015 10.1046/j.1472-4642.2002.00148.x 10.1038/nature03288 10.1034/j.1600-0587.2003.03443.x 10.1111/j.1600-0587.2012.00223.x 10.1111/j.1365-2656.2010.01688.x 10.1016/j.envsoft.2010.08.003 10.1111/jbi.12165 10.1126/science.1215320 10.1098/rspb.2012.2112 10.1016/j.ppees.2009.06.002 10.1111/1365-2656.12158 10.1007/BF02858097 10.1016/j.baae.2010.01.001 10.1111/j.1466-8238.2012.00777.x 10.1073/pnas.0706375104 10.1890/11-1803.1 10.1016/j.tree.2006.01.006 10.1016/j.tree.2008.10.008 10.1016/j.cub.2006.12.039 10.1146/annurev.ento.47.091201.145244 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons Ltd. 2015 John Wiley & Sons Ltd Copyright © 2016 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons Ltd. – notice: 2015 John Wiley & Sons Ltd – notice: Copyright © 2016 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.12362 |
DatabaseName | Istex CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 890 |
ExternalDocumentID | 4089922161 10_1111_geb_12362 GEB12362 43871675 ark_67375_WNG_G38PN6JS_B |
Genre | article |
GrantInformation_xml | – fundername: Spanish Government funderid: CGL2010‐18759/BOS; CGL2013‐44386‐P |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAHQN AAMMB AAMNL AAYCA ABSQW ACHIC ACYXJ AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AANHP ACRPL ADNMO AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c5242-c295c1cb4e0254f9ff891b837327008a626395a29ee3a891c2938e6fc77d48603 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:38:43 EDT 2025 Fri Jul 11 00:26:45 EDT 2025 Fri Jul 25 04:18:14 EDT 2025 Tue Jul 01 01:46:05 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Wed Jan 22 16:15:09 EST 2025 Thu Jul 03 22:16:51 EDT 2025 Wed Oct 30 09:46:20 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5242-c295c1cb4e0254f9ff891b837327008a626395a29ee3a891c2938e6fc77d48603 |
Notes | istex:A55A5E91F7FB419B7E15E8CACDD43E4E85B6EA25 Table S1 Quantitative pollination networks used in this study, with information on sampling location and the type of data collected. Table S2 Island traits used as predictors of metrics describing the pollination network of oceanic islands. Table S3 Metrics describing of 52 pollination networks used in this study. Table S4 Summary of the models predicting the effect of different factors on metrics describing pollination network structure. Table S5 Effects of oceanic island traits on the structure of pollination networks. Table S6 Summary of the models predicting the effect of different factors on metrics describing pollination network structure, treating Jamaica as a continental island.Appendix 1 Definitions of the metrics used in this study to describe network structure. Appendix 2 List of databases consulted to gather information on the percentage of alien plant species in each network. Appendix 3 Caveats to be considered when comparing studies on mutualistic networks at the macroecological scale. Spanish Government - No. CGL2010-18759/BOS; No. CGL2013-44386-P ArticleID:GEB12362 ark:/67375/WNG-G38PN6JS-B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.12362 |
PQID | 1797003413 |
PQPubID | 1066347 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1817828073 proquest_miscellaneous_1808653236 proquest_journals_1797003413 crossref_citationtrail_10_1111_geb_12362 crossref_primary_10_1111_geb_12362 wiley_primary_10_1111_geb_12362_GEB12362 jstor_primary_43871675 istex_primary_ark_67375_WNG_G38PN6JS_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2016 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Global Ecology and Biogeography |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | Gillespie, R.G. & Roderick, G.K. (2002) Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology, 47, 595-632. Sabatino, M., Maceira, N. & Aizen, M.A. (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecological Applications, 20, 1491-1497. González-Castro, A., Traveset, A. & Nogales, M. (2012) Seed dispersal interactions in the Mediterranean region: contrasting patterns between islands and mainland. Journal of Biogeography, 39, 1938-1947. Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. (2012) Evaluating sampling completeness in a desert plant-pollinator network. Journal of Animal Ecology, 81, 190-200. Kaiser-Bunbury, C.N., Traveset, A. & Hansen, D.M. (2010) Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 12, 131-143. James, A., Pitchford, J.W. & Plank, M.J. (2012) Disentangling nestedness from models of ecological complexity. Nature, 487, 227-230. Rasmussen, C., Dupont, Y.L., Mosbacher, J.B., Trøjelsgaard, K. & Olesen, J.M. (2013) Strong impact of temporal resolution on an ecological network. PLoS ONE, 8, e81694. Plein, M., Längsfeld, L., Neuschulz, E.L., Schultheiß, C., Ingmann, L., Töpfer, T., Böhning-Gaese, K. & Schleuning, M. (2013) Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology, 94, 1296-1306. Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed effects models and extensions in ecology with R. Springer, New York. Guimerà, R. & Amaral, L.A.N. (2005) Functional cartography of complex metabolic networks. Nature, 433, 895-900. Padrón, B., Traveset, A., Biedenweg, T., Díaz, D., Olesen, J.M. & Nogales, M. (2009) Impact of invasive species in the pollination networks of two different archipelagos. PLoS ONE, 4, e6275. Bernardello, G., Anderson, G.J., Stuessy, T.F. & Crawford, D.J. (2001) A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). Botanical Review, 67, 255-308. Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B. (2009) Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. Linsley, E.G., Rick, C.M. & Stephens, S.G. (1966) Observations on the floral relationships of the Galápagos carpenter bee. Pan-Pacific Entomologist, 42, 1-18. Burnham, K.P. & Anderson, D.R. (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag, New York. Castro-Urgal, R. & Traveset, A. (2014) Differences in flower visitation networks between an oceanic and a continental island. Botanical Journal of the Linnean Society, 174, 477-488. Schleuning, M., Fründ, J., Klein, A.M. et al. (2012) Specialisation of networks decreases towards tropical latitudes. Current Biology, 22, 1925-1931. Heleno, R.H., Olesen, J.M., Nogales, M., Vargas, P. & Traveset, A. (2013) Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proceedings of the Royal Society B: Biological Sciences, 280, 20122112. Kaiser-Bunbury, C.N., Memmott, J. & Müller, C.B. (2009) Community structure of pollination webs of Mauritian heathland habitats. Perspectives in Plant Ecology, Evolution and Systematics, 11, 241-254. Olesen, J.M., Bascompte, J., Dupont, Y.L. & Jordano, P. (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences USA, 104, 19891-19896. Dupont, Y.L., Hansen, D.M. & Olesen, J.M. (2003) Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography, 26, 301-310. Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341-346. Trøjelsgaard, K., Báez, M., Espadaler, X., Nogales, M., Oromí, P., La Roche, F. & Olesen, J.M. (2013) Island biogeography of mutualistic interaction networks. Journal of Biogeography, 40, 2020-2031. Gibson, R.H., Knott, B., Eberlein, T. & Memmott, J. (2011) Sampling method influences the structure of plant-pollinator networks. Oikos, 120, 822-831. Schleuning, M., Katrin Böhning-Gaese, K., Dehling, D.M. & Burns, K.C. (2014) At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Global Ecology and Biogeography, 23, 385-394. Olesen, J.M. & Jordano, P. (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83, 2416-2424. Olesen, J.M., Eskildsen, L.I. & Venkatasamy, S. (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Diversity and Distributions, 8, 181-192. Banasek-Richter, C., Cattin, M.F. & Bersier, L.F. (2004) Sampling effects and the robustness of quantitative and qualitative food-web descriptors. Journal of Theoretical Biology, 226, 23-32. Thornton, I. (2007) Island colonization: the origin and development of island communities. Cambridge University Press, Cambridge. Dalsgaard, B., Trøjelsgaard, K., Martín González, A.M., Nogués-Bravo, D., Ollerton, J., Petanidou, T., Sandel, B., Schleuning, M., Wang, Z., Rahbek, C., Sutherland, W.J., Svenning, J.C. & Olesen, J.M. (2013) Historical climate change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J., Stevens, M.H.H. & White, J.S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127-135. Kueffer, C., Daehler, C.C., Torres-Santana, C.W. et al. (2010) A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 12, 145-161. Hagen, M., Kissling, W.D., Rasmussen, C. et al. (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research, 46, 89-210. Aizen, M.A., Sabatino, M. & Tylianakis, J.M. (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 335, 1486-1489. Carstensen, D.W., Dalsgaard, B., Svenning, J. et al. (2013) The functional biogeography of species: biogeographical species roles of birds in Wallacea and the West Indies. Ecography, 36, 1-9. Vázquez, D., Morris, W.F. & Jordano, P. (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 8, 1088-1094. Fortuna, M.A., Stouffer, D.B., Olesen, J.M., Jordano, P., Mouillot, D., Krasnov, B.R., Poulin, R. & Bascompte, J. (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology, 79, 811-817. Whittaker, R.J. & Fernández-Palacios, J.M. (2007) Island biogeography. Oxford University Press, Oxford. Sugiura, S. (2010) Species interactions-area relationships: biological invasions and network structure in relation to island area. Proceedings of the Royal Society B: Biological Sciences, 277, 1807-1815. Traveset, A. & Richardson, D.M. (2006) Biological invasions as disruptors of plant-animal reproductive mutualisms. Trends in Ecology and Evolution, 21, 208-216. Traveset, A., Heleno, R., Chamorro, S., Vargas, P., McMullen, C.K., Castro-Urgal, R., Nogales, M., Herrera, H.W. & Olesen, J.M. (2013) Invaders of pollination networks in the Galápagos Islands? Emergence of novel communities. Proceedings of the Royal Society B: Biological Sciences, 280, 20123040. Triantis, K.A., Mylonas, M. & Whittaker, R.J. (2008) Evolutionary species-area curves as revealed by single-island endemics: insights for the inter-provincial species-area relationship. Ecography, 31, 401-407. Trøjelsgaard, K. & Olesen, J.M. (2013) Macroecology of pollination networks. Global Ecology and Biogeography, 22, 149-162. Almeida-Neto, M. & Ulrich, W. (2011) A straightforward computational approach for quantifying nestedness using quantitative matrices. Environmental Modelling and Software, 26, 173-178. Blüthgen, N. (2010) Why network analysis is often disconnected from community ecology? A critique and an ecologist's guide. Basic and Applied Ecology, 11, 1-11. Rivera-Hutinel, A., Bustamante, R.O., Marín, V.H. & Medel, R. (2012) Effects of sampling completeness on the structure of plant-pollinator networks. Ecology, 93, 1593-1603. Sebastián-González, E., Dalsgaard, B., Sandel, B. & Guimarães, P.R., Jr (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Global Ecology and Biogeography, 24, 293-303. MacArthur, R.H. & Wilson, E.O. (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ. Bascompte, J. & Jordano, P. (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38, 567-593. Woodell, S.R.J. (1979) The role of unspecialized pollinators in the reproductive success of Aldabran plants. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 286, 99-108. Benadi, G., Hovestadt, T., Poethke, H. & Blüthgen, N. (2014) Specialization and phonological synchrony of plant-pollinator interactions along an altitudinal gradient. Journal of Animal Ecology, 83, 639-650. Takhtajan, A. (1986) Floristic regions of the world. University of California Press, Berkeley, CA. Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433. 2010; 12 2010; 11 2007; 104 2012; 487 2013; 22 2008; 31 2013; 280 2013; 8 2014; 174 2014; 23 2007; 38 2009; 11 2002; 47 2010; 20 2002; 83 2006; 21 2013; 94 2010; 277 1986 2011; 26 2012; 335 2012; 22 2011; 120 2007; 17 2012; 81 2009; 24 2004; 226 1979; 286 2010; 79 2005; 433 2013; 40 2002; 8 2009 2007 2012; 39 2002 2001; 67 2014; 83 2006; 312 2015; 24 2012; 93 2013; 36 2005; 8 2003; 26 2014 2009; 4 2009; 2 2012; 46 1966; 42 1967 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 MacArthur R.H. (e_1_2_6_31_1) 1967 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_50_1 Takhtajan A. (e_1_2_6_45_1) 1986 Whittaker R.J. (e_1_2_6_53_1) 2007 Burnham K.P. (e_1_2_6_12_1) 2002 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Linsley E.G. (e_1_2_6_30_1) 1966; 42 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Benadi, G., Hovestadt, T., Poethke, H. & Blüthgen, N. (2014) Specialization and phonological synchrony of plant-pollinator interactions along an altitudinal gradient. Journal of Animal Ecology, 83, 639-650. – reference: Bascompte, J. & Jordano, P. (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38, 567-593. – reference: Bernardello, G., Anderson, G.J., Stuessy, T.F. & Crawford, D.J. (2001) A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). Botanical Review, 67, 255-308. – reference: Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J., Stevens, M.H.H. & White, J.S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127-135. – reference: Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B. (2009) Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. – reference: Aizen, M.A., Sabatino, M. & Tylianakis, J.M. (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 335, 1486-1489. – reference: Olesen, J.M., Eskildsen, L.I. & Venkatasamy, S. (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Diversity and Distributions, 8, 181-192. – reference: Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341-346. – reference: Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433. – reference: Dalsgaard, B., Trøjelsgaard, K., Martín González, A.M., Nogués-Bravo, D., Ollerton, J., Petanidou, T., Sandel, B., Schleuning, M., Wang, Z., Rahbek, C., Sutherland, W.J., Svenning, J.C. & Olesen, J.M. (2013) Historical climate change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340. – reference: Burnham, K.P. & Anderson, D.R. (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag, New York. – reference: Kueffer, C., Daehler, C.C., Torres-Santana, C.W. et al. (2010) A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 12, 145-161. – reference: Rasmussen, C., Dupont, Y.L., Mosbacher, J.B., Trøjelsgaard, K. & Olesen, J.M. (2013) Strong impact of temporal resolution on an ecological network. PLoS ONE, 8, e81694. – reference: Hagen, M., Kissling, W.D., Rasmussen, C. et al. (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research, 46, 89-210. – reference: Rivera-Hutinel, A., Bustamante, R.O., Marín, V.H. & Medel, R. (2012) Effects of sampling completeness on the structure of plant-pollinator networks. Ecology, 93, 1593-1603. – reference: Sabatino, M., Maceira, N. & Aizen, M.A. (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecological Applications, 20, 1491-1497. – reference: Vázquez, D., Morris, W.F. & Jordano, P. (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 8, 1088-1094. – reference: González-Castro, A., Traveset, A. & Nogales, M. (2012) Seed dispersal interactions in the Mediterranean region: contrasting patterns between islands and mainland. Journal of Biogeography, 39, 1938-1947. – reference: Schleuning, M., Fründ, J., Klein, A.M. et al. (2012) Specialisation of networks decreases towards tropical latitudes. Current Biology, 22, 1925-1931. – reference: Traveset, A., Heleno, R., Chamorro, S., Vargas, P., McMullen, C.K., Castro-Urgal, R., Nogales, M., Herrera, H.W. & Olesen, J.M. (2013) Invaders of pollination networks in the Galápagos Islands? Emergence of novel communities. Proceedings of the Royal Society B: Biological Sciences, 280, 20123040. – reference: Padrón, B., Traveset, A., Biedenweg, T., Díaz, D., Olesen, J.M. & Nogales, M. (2009) Impact of invasive species in the pollination networks of two different archipelagos. PLoS ONE, 4, e6275. – reference: Schleuning, M., Katrin Böhning-Gaese, K., Dehling, D.M. & Burns, K.C. (2014) At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Global Ecology and Biogeography, 23, 385-394. – reference: Castro-Urgal, R. & Traveset, A. (2014) Differences in flower visitation networks between an oceanic and a continental island. Botanical Journal of the Linnean Society, 174, 477-488. – reference: Blüthgen, N. (2010) Why network analysis is often disconnected from community ecology? A critique and an ecologist's guide. Basic and Applied Ecology, 11, 1-11. – reference: Gillespie, R.G. & Roderick, G.K. (2002) Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology, 47, 595-632. – reference: Olesen, J.M., Bascompte, J., Dupont, Y.L. & Jordano, P. (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences USA, 104, 19891-19896. – reference: Trøjelsgaard, K., Báez, M., Espadaler, X., Nogales, M., Oromí, P., La Roche, F. & Olesen, J.M. (2013) Island biogeography of mutualistic interaction networks. Journal of Biogeography, 40, 2020-2031. – reference: Trøjelsgaard, K. & Olesen, J.M. (2013) Macroecology of pollination networks. Global Ecology and Biogeography, 22, 149-162. – reference: Sebastián-González, E., Dalsgaard, B., Sandel, B. & Guimarães, P.R., Jr (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Global Ecology and Biogeography, 24, 293-303. – reference: Linsley, E.G., Rick, C.M. & Stephens, S.G. (1966) Observations on the floral relationships of the Galápagos carpenter bee. Pan-Pacific Entomologist, 42, 1-18. – reference: Triantis, K.A., Mylonas, M. & Whittaker, R.J. (2008) Evolutionary species-area curves as revealed by single-island endemics: insights for the inter-provincial species-area relationship. Ecography, 31, 401-407. – reference: Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. (2012) Evaluating sampling completeness in a desert plant-pollinator network. Journal of Animal Ecology, 81, 190-200. – reference: Woodell, S.R.J. (1979) The role of unspecialized pollinators in the reproductive success of Aldabran plants. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 286, 99-108. – reference: James, A., Pitchford, J.W. & Plank, M.J. (2012) Disentangling nestedness from models of ecological complexity. Nature, 487, 227-230. – reference: Dupont, Y.L., Hansen, D.M. & Olesen, J.M. (2003) Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography, 26, 301-310. – reference: Kaiser-Bunbury, C.N., Memmott, J. & Müller, C.B. (2009) Community structure of pollination webs of Mauritian heathland habitats. Perspectives in Plant Ecology, Evolution and Systematics, 11, 241-254. – reference: Takhtajan, A. (1986) Floristic regions of the world. University of California Press, Berkeley, CA. – reference: Almeida-Neto, M. & Ulrich, W. (2011) A straightforward computational approach for quantifying nestedness using quantitative matrices. Environmental Modelling and Software, 26, 173-178. – reference: Banasek-Richter, C., Cattin, M.F. & Bersier, L.F. (2004) Sampling effects and the robustness of quantitative and qualitative food-web descriptors. Journal of Theoretical Biology, 226, 23-32. – reference: Sugiura, S. (2010) Species interactions-area relationships: biological invasions and network structure in relation to island area. Proceedings of the Royal Society B: Biological Sciences, 277, 1807-1815. – reference: Whittaker, R.J. & Fernández-Palacios, J.M. (2007) Island biogeography. Oxford University Press, Oxford. – reference: Carstensen, D.W., Dalsgaard, B., Svenning, J. et al. (2013) The functional biogeography of species: biogeographical species roles of birds in Wallacea and the West Indies. Ecography, 36, 1-9. – reference: MacArthur, R.H. & Wilson, E.O. (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ. – reference: Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed effects models and extensions in ecology with R. Springer, New York. – reference: Heleno, R.H., Olesen, J.M., Nogales, M., Vargas, P. & Traveset, A. (2013) Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proceedings of the Royal Society B: Biological Sciences, 280, 20122112. – reference: Olesen, J.M. & Jordano, P. (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83, 2416-2424. – reference: Traveset, A. & Richardson, D.M. (2006) Biological invasions as disruptors of plant-animal reproductive mutualisms. Trends in Ecology and Evolution, 21, 208-216. – reference: Gibson, R.H., Knott, B., Eberlein, T. & Memmott, J. (2011) Sampling method influences the structure of plant-pollinator networks. Oikos, 120, 822-831. – reference: Fortuna, M.A., Stouffer, D.B., Olesen, J.M., Jordano, P., Mouillot, D., Krasnov, B.R., Poulin, R. & Bascompte, J. (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology, 79, 811-817. – reference: Kaiser-Bunbury, C.N., Traveset, A. & Hansen, D.M. (2010) Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 12, 131-143. – reference: Guimerà, R. & Amaral, L.A.N. (2005) Functional cartography of complex metabolic networks. Nature, 433, 895-900. – reference: Plein, M., Längsfeld, L., Neuschulz, E.L., Schultheiß, C., Ingmann, L., Töpfer, T., Böhning-Gaese, K. & Schleuning, M. (2013) Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology, 94, 1296-1306. – reference: Thornton, I. (2007) Island colonization: the origin and development of island communities. Cambridge University Press, Cambridge. – volume: 79 start-page: 811 year: 2010 end-page: 817 article-title: Nestedness versus modularity in ecological networks: two sides of the same coin? publication-title: Journal of Animal Ecology – volume: 12 start-page: 145 year: 2010 end-page: 161 article-title: A global comparison of plant invasions on oceanic islands publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 47 start-page: 595 year: 2002 end-page: 632 article-title: Arthropods on islands: colonization, speciation, and conservation publication-title: Annual Review of Entomology – volume: 42 start-page: 1 year: 1966 end-page: 18 article-title: Observations on the floral relationships of the Galápagos carpenter bee publication-title: Pan‐Pacific Entomologist – year: 2009 – volume: 26 start-page: 301 year: 2003 end-page: 310 article-title: Structure of a plant–flower‐visitor network in the high‐altitude sub‐alpine desert of Tenerife, Canary Islands publication-title: Ecography – volume: 36 start-page: 1 year: 2013 end-page: 9 article-title: The functional biogeography of species: biogeographical species roles of birds in Wallacea and the West Indies publication-title: Ecography – volume: 277 start-page: 1807 year: 2010 end-page: 1815 article-title: Species interactions–area relationships: biological invasions and network structure in relation to island area publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 17 start-page: 341 year: 2007 end-page: 346 article-title: Specialization, constraints, and conflicting interests in mutualistic networks publication-title: Current Biology – volume: 104 start-page: 19891 year: 2007 end-page: 19896 article-title: The modularity of pollination networks publication-title: Proceedings of the National Academy of Sciences USA – volume: 11 start-page: 241 year: 2009 end-page: 254 article-title: Community structure of pollination webs of Mauritian heathland habitats publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 83 start-page: 2416 year: 2002 end-page: 2424 article-title: Geographic patterns in plant–pollinator mutualistic networks publication-title: Ecology – volume: 280 start-page: 20122112 year: 2013 article-title: Seed dispersal networks in the Galápagos and the consequences of alien plant invasions publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2014 – year: 1986 – volume: 280 start-page: 20123040 year: 2013 article-title: Invaders of pollination networks in the Galápagos Islands? Emergence of novel communities publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 2 start-page: 7 year: 2009 end-page: 24 article-title: Indices, graphs and null models: analyzing bipartite ecological networks publication-title: The Open Ecology Journal – volume: 335 start-page: 1486 year: 2012 end-page: 1489 article-title: Specialization and rarity predict nonrandom loss of interactions from mutualist networks publication-title: Science – volume: 487 start-page: 227 year: 2012 end-page: 230 article-title: Disentangling nestedness from models of ecological complexity publication-title: Nature – volume: 11 start-page: 1 year: 2010 end-page: 11 article-title: Why network analysis is often disconnected from community ecology? A critique and an ecologist's guide publication-title: Basic and Applied Ecology – volume: 8 start-page: 1088 year: 2005 end-page: 1094 article-title: Interaction frequency as a surrogate for the total effect of animal mutualists on plants publication-title: Ecology Letters – volume: 40 start-page: 2020 year: 2013 end-page: 2031 article-title: Island biogeography of mutualistic interaction networks publication-title: Journal of Biogeography – volume: 120 start-page: 822 year: 2011 end-page: 831 article-title: Sampling method influences the structure of plant–pollinator networks publication-title: Oikos – volume: 39 start-page: 1938 year: 2012 end-page: 1947 article-title: Seed dispersal interactions in the Mediterranean region: contrasting patterns between islands and mainland publication-title: Journal of Biogeography – volume: 8 start-page: 181 year: 2002 end-page: 192 article-title: Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists publication-title: Diversity and Distributions – volume: 286 start-page: 99 year: 1979 end-page: 108 article-title: The role of unspecialized pollinators in the reproductive success of Aldabran plants publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences – volume: 433 start-page: 895 year: 2005 end-page: 900 article-title: Functional cartography of complex metabolic networks publication-title: Nature – volume: 83 start-page: 639 year: 2014 end-page: 650 article-title: Specialization and phonological synchrony of plant–pollinator interactions along an altitudinal gradient publication-title: Journal of Animal Ecology – volume: 312 start-page: 431 year: 2006 end-page: 433 article-title: Asymmetric coevolutionary networks facilitate biodiversity maintenance publication-title: Science – volume: 36 start-page: 1331 year: 2013 end-page: 1340 article-title: Historical climate change influences modularity and nestedness of pollination networks publication-title: Ecography – volume: 93 start-page: 1593 year: 2012 end-page: 1603 article-title: Effects of sampling completeness on the structure of plant–pollinator networks publication-title: Ecology – volume: 38 start-page: 567 year: 2007 end-page: 593 article-title: Plant–animal mutualistic networks: the architecture of biodiversity publication-title: Annual Review of Ecology, Evolution, and Systematics – year: 2007 – volume: 226 start-page: 23 year: 2004 end-page: 32 article-title: Sampling effects and the robustness of quantitative and qualitative food‐web descriptors publication-title: Journal of Theoretical Biology – volume: 12 start-page: 131 year: 2010 end-page: 143 article-title: Conservation and restoration of plant–animal mutualisms on oceanic islands publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 24 start-page: 293 year: 2015 end-page: 303 article-title: Macroecological trends in nestedness and modularity of seed‐dispersal networks: human impact matters publication-title: Global Ecology and Biogeography – volume: 31 start-page: 401 year: 2008 end-page: 407 article-title: Evolutionary species–area curves as revealed by single‐island endemics: insights for the inter‐provincial species–area relationship publication-title: Ecography – volume: 22 start-page: 149 year: 2013 end-page: 162 article-title: Macroecology of pollination networks publication-title: Global Ecology and Biogeography – volume: 21 start-page: 208 year: 2006 end-page: 216 article-title: Biological invasions as disruptors of plant–animal reproductive mutualisms publication-title: Trends in Ecology and Evolution – volume: 67 start-page: 255 year: 2001 end-page: 308 article-title: A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile) publication-title: Botanical Review – year: 1967 – volume: 26 start-page: 173 year: 2011 end-page: 178 article-title: A straightforward computational approach for quantifying nestedness using quantitative matrices publication-title: Environmental Modelling and Software – year: 2002 – volume: 20 start-page: 1491 year: 2010 end-page: 1497 article-title: Direct effects of habitat area on interaction diversity in pollination webs publication-title: Ecological Applications – volume: 24 start-page: 127 year: 2009 end-page: 135 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology and Evolution – volume: 81 start-page: 190 year: 2012 end-page: 200 article-title: Evaluating sampling completeness in a desert plant–pollinator network publication-title: Journal of Animal Ecology – volume: 94 start-page: 1296 year: 2013 end-page: 1306 article-title: Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time publication-title: Ecology – volume: 46 start-page: 89 year: 2012 end-page: 210 article-title: Biodiversity, species interactions and ecological networks in a fragmented world publication-title: Advances in Ecological Research – volume: 22 start-page: 1925 year: 2012 end-page: 1931 article-title: Specialisation of networks decreases towards tropical latitudes publication-title: Current Biology – volume: 8 start-page: e81694 year: 2013 article-title: Strong impact of temporal resolution on an ecological network publication-title: PLoS ONE – volume: 23 start-page: 385 year: 2014 end-page: 394 article-title: At a loss for birds: insularity increases asymmetry in seed‐dispersal networks publication-title: Global Ecology and Biogeography – volume: 4 start-page: e6275 year: 2009 article-title: Impact of invasive species in the pollination networks of two different archipelagos publication-title: PLoS ONE – volume: 174 start-page: 477 year: 2014 end-page: 488 article-title: Differences in flower visitation networks between an oceanic and a continental island publication-title: Botanical Journal of the Linnean Society – ident: e_1_2_6_44_1 doi: 10.1098/rspb.2009.2086 – ident: e_1_2_6_16_1 doi: 10.1111/j.1600-0587.2013.00201.x – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2699.2012.02693.x – ident: e_1_2_6_55_1 doi: 10.1007/978-0-387-87458-6 – ident: e_1_2_6_35_1 doi: 10.1371/journal.pone.0006275 – ident: e_1_2_6_37_1 – ident: e_1_2_6_26_1 doi: 10.1038/nature11214 – volume-title: The theory of island biogeography year: 1967 ident: e_1_2_6_31_1 – ident: e_1_2_6_52_1 doi: 10.1111/j.1461-0248.2005.00810.x – ident: e_1_2_6_17_1 doi: 10.2174/1874213000902010007 – ident: e_1_2_6_6_1 doi: 10.1126/science.1123412 – ident: e_1_2_6_38_1 doi: 10.1371/journal.pone.0081694 – ident: e_1_2_6_40_1 doi: 10.1890/09-1626.1 – volume-title: Model selection and multimodel inference: a practical information‐theoretic approach year: 2002 ident: e_1_2_6_12_1 – ident: e_1_2_6_14_1 doi: 10.1111/boj.12134 – ident: e_1_2_6_36_1 doi: 10.1890/12-1213.1 – ident: e_1_2_6_28_1 doi: 10.1016/j.ppees.2009.10.002 – ident: e_1_2_6_42_1 doi: 10.1111/geb.12134 – ident: e_1_2_6_5_1 doi: 10.1146/annurev.ecolsys.38.091206.095818 – volume-title: Floristic regions of the world year: 1986 ident: e_1_2_6_45_1 – ident: e_1_2_6_32_1 doi: 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 – ident: e_1_2_6_46_1 doi: 10.1017/CBO9780511618710 – ident: e_1_2_6_43_1 doi: 10.1111/geb.12270 – ident: e_1_2_6_49_1 doi: 10.1111/j.0906-7590.2007.05323.x – ident: e_1_2_6_48_1 doi: 10.1098/rspb.2012.3040 – ident: e_1_2_6_4_1 doi: 10.1016/S0022-5193(03)00305-9 – ident: e_1_2_6_54_1 doi: 10.1098/rstb.1979.0019 – ident: e_1_2_6_15_1 doi: 10.1111/j.1365-2656.2011.01883.x – ident: e_1_2_6_20_1 doi: 10.1111/j.1600-0706.2010.18927.x – ident: e_1_2_6_27_1 doi: 10.1016/j.ppees.2009.04.001 – ident: e_1_2_6_24_1 doi: 10.1016/B978-0-12-396992-7.00002-2 – ident: e_1_2_6_41_1 doi: 10.1016/j.cub.2012.08.015 – ident: e_1_2_6_33_1 doi: 10.1046/j.1472-4642.2002.00148.x – volume: 42 start-page: 1 year: 1966 ident: e_1_2_6_30_1 article-title: Observations on the floral relationships of the Galápagos carpenter bee publication-title: Pan‐Pacific Entomologist – ident: e_1_2_6_23_1 doi: 10.1038/nature03288 – ident: e_1_2_6_18_1 doi: 10.1034/j.1600-0587.2003.03443.x – ident: e_1_2_6_13_1 doi: 10.1111/j.1600-0587.2012.00223.x – ident: e_1_2_6_19_1 doi: 10.1111/j.1365-2656.2010.01688.x – ident: e_1_2_6_3_1 doi: 10.1016/j.envsoft.2010.08.003 – ident: e_1_2_6_51_1 doi: 10.1111/jbi.12165 – ident: e_1_2_6_2_1 doi: 10.1126/science.1215320 – ident: e_1_2_6_25_1 doi: 10.1098/rspb.2012.2112 – ident: e_1_2_6_29_1 doi: 10.1016/j.ppees.2009.06.002 – volume-title: Island biogeography year: 2007 ident: e_1_2_6_53_1 – ident: e_1_2_6_7_1 doi: 10.1111/1365-2656.12158 – ident: e_1_2_6_8_1 doi: 10.1007/BF02858097 – ident: e_1_2_6_9_1 doi: 10.1016/j.baae.2010.01.001 – ident: e_1_2_6_50_1 doi: 10.1111/j.1466-8238.2012.00777.x – ident: e_1_2_6_34_1 doi: 10.1073/pnas.0706375104 – ident: e_1_2_6_39_1 doi: 10.1890/11-1803.1 – ident: e_1_2_6_47_1 doi: 10.1016/j.tree.2006.01.006 – ident: e_1_2_6_11_1 doi: 10.1016/j.tree.2008.10.008 – ident: e_1_2_6_10_1 doi: 10.1016/j.cub.2006.12.039 – ident: e_1_2_6_21_1 doi: 10.1146/annurev.ento.47.091201.145244 |
SSID | ssj0005456 |
Score | 2.4667838 |
Snippet | Aim: Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the... Aim Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the... Aim Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the... AIM: Interaction networks are being increasingly used to evaluate macroecological patterns. We explored a global dataset to identify differences in the... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 880 |
SubjectTerms | Continental islands data collection ecological networks Islands latitude macroecology Magma mutualistic networks oceanic islands Plant reproduction plant-insect interactions pollination pollinators provenance sampling effort |
Title | Global patterns of mainland and insular pollination networks |
URI | https://api.istex.fr/ark:/67375/WNG-G38PN6JS-B/fulltext.pdf https://www.jstor.org/stable/43871675 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12362 https://www.proquest.com/docview/1797003413 https://www.proquest.com/docview/1808653236 https://www.proquest.com/docview/1817828073 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxtBFD6IIvSlrdrQtSprEenLhu7OXmawL0ZiRGgotdI8FIaZyawU6yZkE6j--p4zezFKW8SHQGC_hZ3Lue1-5xuAg1CrmAvNgkyP0yDWWgXcRjrAWBJpm2JFYujVwOdhenYZn4-S0QocNb0wlT5E-8KNLMP5azJwpcslI7-yukvSIeR_iatFCdHXe-koygyqzqI0wCA4qlWFiMXT3vkgFq3RtP5uaIkPEs7ltNXFndNX8KN54opuct1dzHXX3D0Sc3zmkF7Dyzof9Y-rDbQBK7bYhPW-07K-3YRO_74RDmG1Jyi34FN1WIA_dfqcRelPcv9G_SyIKOnTz5Hc1cyfOtVvt_5-UXHOyzdwedr_dnIW1CcxBCbBGB6YSCQmNDq21DyfizznItRY2zL6bs0VSdqIREXCWqbwEuIZt9RGlI3plCvWgdViUti34Odj8xFrmJCNExWbTAjDRaZSoSKFzoVbDz40ayJNLVNOp2X8kk25grMk3Sx58L6FTittjr-BDt3Ctgg1uyYyW5bI78OBHDD-ZZieX8ieBx238i0wZlRMZokHO81WkLWBlxL9WEbaPiHzYL-9jKZJ31tUYScLxHCsFxOGT_E_TIg5GkdHiwN3e-PfQ5GDfs_92X469B28wBQvrQjGO7A6ny3sLqZRc73n7OUPX9kVFw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IIu1LW61L01pNS5G-ZGkyucyAL7Wsu1pdilXclzLMzE6KaLPLXqD113vO5OIFFelDIJAvkLmc2-Sc7wB8CrWKudAsyPQwDWKtVcBtpAO0JZG2KUYkho4GDvtp7yTeHySDBdiua2FKfojmwI0kw-lrEnA6kL4h5b-tbhN3CCrgJero7QKqo2vyKPINytqiNEAzOKh4hSiPp3n1ljVaoon9Wycm3nI5bzquzvLsvoRf9TeXCSfn7flMt83lHTrH_x3UK3hRuaT-13IPrcCCLVZhuePorP-tQqtzXQuHsEoZTF_DdtkvwB87is5i6o9y_486KyhX0qfL5bmriT92xN9uC_hFmXY-XYOT3c7xt15QNWMITIJmPDCRSExodGypfj4Xec5FqDG8ZfTrmititRGJioS1TOEjxDNuqZIoG1KjK9aCxWJU2Dfg50PzBcOYkA0TFZtMCMNFplKhIoX6hVsPPteLIk3FVE4NMy5kHbHgLEk3Sx58bKDjkp7jPtCWW9kGoSbnlM-WJfK035Vdxn_00_2fcseDllv6BhgziiezxIP1ei_ISsanElVZRvQ-IfPgQ_MYpZN-uajCjuaI4RgyJgy_4jFMiG4aR12LA3eb4-GhyG5nx928fTp0E571jg8P5MFe__s7eI4eX1rmG6_D4mwyt-_Rq5rpDSc8V6gBGTI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6Uloov1VaXRquNIuJLliaTywztS2t3t1Zdilrch8IwM5mIVLPLXsD21_ecyaUXVMSHQCBfIDNzrpNzvgF4FWoVc6FZkOk8DWKtVcBtpAP0JZG2KWYkhrYGPg7To9P4eJSMlmC36YWp-CHaDTfSDGevScEneXFDyb9Z3SXqELS_K3G6w0mkDz9dc0dRaFC1FqUBesFRTStEZTztq7ec0QrN66-mLvFWxHkzbnWOp_8AzppPrupNzruLue6ayztsjv85poewVgek_n4lQeuwZMsNWO05MuuLDej0rjvhEFabgtkj2KtOC_AnjqCznPnjwv-pvpdUKenT5arc1dSfONpvJwB-WRWdzx7Dab_35e1RUB_FEJgEnXhgIpGY0OjYUvd8IYqCi1BjcsvoxzVXxGkjEhUJa5nCR4hn3FIfUZbTMVesA8vluLSb4Be52cEkJmR5omKTCWG4yFQqVKTQunDrwZtmTaSpecrpuIwfsslXcJakmyUPXrbQSUXO8TvQa7ewLUJNz6maLUvk1-FADhg_GabHn-WBBx238i0wZpRNZokHW40oyFrDZxINWUbkPiHz4EX7GHWTfrio0o4XiOGYMCYMv-JvmBCDNI6WFgfuZOPPQ5GD3oG7efLv0G24d3LYlx_eDd8_hfsY7qVVsfEWLM-nC_sMQ6q5fu5U5wpg5Rfq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+of+mainland+and+insular+pollination+networks&rft.jtitle=Global+ecology+and+biogeography&rft.au=Traveset%2C+Anna&rft.au=Tur%2C+Cristina&rft.au=Tr%C3%B8jelsgaard%2C+Kristian&rft.au=Heleno%2C+Ruben&rft.date=2016-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=25&rft.issue=7&rft.spage=880&rft.epage=890&rft_id=info:doi/10.1111%2Fgeb.12362&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_G38PN6JS_B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |