Biophysical contrast sources for magnetic susceptibility and R2 mapping: A combined 7 Tesla, mass spectrometry and electron paramagnetic resonance study
•R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be the main contributors for the overall R2* and QSM contrast.•Analysis individualized by ROI showed different contributions of iron and ferriti...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 302; p. 120892 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2024
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be the main contributors for the overall R2* and QSM contrast.•Analysis individualized by ROI showed different contributions of iron and ferritin to R2* and QSM, resulting in three groups of structures according to the correlation of iron/ferritin to R2* and QSM.•Iron-rich structures displayed strong correlation to iron/ferritin, low-iron structures displayed no correlation to iron/ferritin, and the substantia nigra displayed partial correlation to iron and no correlation to ferritin.
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. |
---|---|
AbstractList | Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R
* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R
* and QSM were calculated. We found that R
* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R
*. This study demonstrated the quantitative correlations between R
*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R₂* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R₂* and QSM were calculated. We found that R₂* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R₂*. This study demonstrated the quantitative correlations between R₂*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. •R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be the main contributors for the overall R2* and QSM contrast.•Analysis individualized by ROI showed different contributions of iron and ferritin to R2* and QSM, resulting in three groups of structures according to the correlation of iron/ferritin to R2* and QSM.•Iron-rich structures displayed strong correlation to iron/ferritin, low-iron structures displayed no correlation to iron/ferritin, and the substantia nigra displayed partial correlation to iron and no correlation to ferritin. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R 2 * mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R 2 * and QSM were calculated. We found that R 2 * and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R 2 > 0.7) and ferritin (R 2 > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R 2 > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R 2 * . This study demonstrated the quantitative correlations between R 2 * , QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R 2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R 2* and QSM were calculated. We found that R 2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R 2*. This study demonstrated the quantitative correlations between R 2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation. |
ArticleNumber | 120892 |
Author | Otsuka, Fábio Seiji Langkammer, Christian Rodriguez, Roberta Diehl Barbosa, Jeam Haroldo Oliveira Salmon, Carlos Ernesto Garrido Otaduy, Maria Concepción Garcia |
AuthorAffiliation | d Setor de Radioterapia, Santa Casa de Misericórdia de Lavras, Minas Gerais, Brazil e Departamento de Imagens Médicas, Hematologia e Oncologia Clínica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de Sãoo Paulo, Ribeirão Preto, Brazil c Department of Neurology, Medical University of Graz, Graz, Austria a InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil b LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil |
AuthorAffiliation_xml | – name: b LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil – name: a InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil – name: e Departamento de Imagens Médicas, Hematologia e Oncologia Clínica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de Sãoo Paulo, Ribeirão Preto, Brazil – name: c Department of Neurology, Medical University of Graz, Graz, Austria – name: d Setor de Radioterapia, Santa Casa de Misericórdia de Lavras, Minas Gerais, Brazil |
Author_xml | – sequence: 1 givenname: Fábio Seiji orcidid: 0000-0001-6987-3270 surname: Otsuka fullname: Otsuka, Fábio Seiji email: fabio.otsuka@alumni.usp.br organization: InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil – sequence: 2 givenname: Maria Concepción Garcia surname: Otaduy fullname: Otaduy, Maria Concepción Garcia organization: LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil – sequence: 3 givenname: Roberta Diehl surname: Rodriguez fullname: Rodriguez, Roberta Diehl organization: LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil – sequence: 4 givenname: Christian orcidid: 0000-0002-7097-9707 surname: Langkammer fullname: Langkammer, Christian organization: Department of Neurology, Medical University of Graz, Graz, Austria – sequence: 5 givenname: Jeam Haroldo Oliveira surname: Barbosa fullname: Barbosa, Jeam Haroldo Oliveira organization: InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil – sequence: 6 givenname: Carlos Ernesto Garrido orcidid: 0000-0003-1441-1524 surname: Salmon fullname: Salmon, Carlos Ernesto Garrido email: garrido@ffclrp.usp.br organization: InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39433113$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1DAUjVARfcAvIEtsWDCDrx0nMRv6EI9KlZBQWVuOfTP1kLGDnVSaP-FzcTploF115cc999yjc89xceCDx6IgQJdAoXq_XnqcYnAbvcIlo6xcAqONZM-KI6BSLKSo2cF8F3zRAMjD4jilNaVUQtm8KA65LDkH4EfF73MXhpttckb3xAQ_Rp1GksIUDSbShUjyDI-jMyRNyeAwutb1btwS7S35znJ5GJxffSBnuX3TOo-W1OQaU6_f5WJKJA1oxhg2OMZdF_Z3H54MOuo9fcQUvPYGSRonu31ZPO90n_DV_XlS_Pj86fri6-Lq25fLi7OrhRGsZAtdMVlJU1LGrdWC0cog0hrK_KBdzSvZcdZJJnnN28YI2gC3grZ1J20lsOEnxeWO1wa9VkPMnsatCtqpu48QV0rHrK9HhdaCbTsAJqAE3rR5ItZlHsxES4XIXB93XMPUbtAanO3sH5A-rHh3o1bhVgFUTcnErObtPUMMvyZMo9q47Hrfa49hSoqDKKFhkrEnQEGCpHVdZeibR9B1XrDPtmYUq0WdfaMZ9fp_9XvZf8OSAc0OYGJIKWK3hwBVcy7VWv3LpZpzqXa5zK3nu1bMq7x1GFUyDvOyrYs5DNlr9xSS00ckpnd-Tu5P3D6N4g91ngfp |
Cites_doi | 10.1111/j.1749-6632.1992.tb49617.x 10.1002/hbm.10062 10.1002/hbm.22928 10.1039/D3CP01358H 10.1016/j.neuroimage.2012.05.049 10.1007/s10534-010-9359-4 10.1002/mrm.1910320610 10.1002/mrm.25236 10.11606/T.59.2017.tde-24042017-213315 10.1111/j.1471-4159.1958.tb12607.x 10.1016/j.neuroimage.2020.117080 10.1148/radiol.10100495 10.1016/j.neuroimage.2020.117358 10.1016/0167-4838(85)90311-5 10.1016/j.neuroimage.2012.09.055 10.1002/jmri.22752 10.1016/j.neuroimage.2018.06.007 10.1007/s13538-022-01098-4 10.3390/ijms17010100 10.1093/brain/aww278 10.1021/acschemneuro.8b00194 10.3174/ajnr.A5150 10.1038/srep38916 10.1016/j.bbagen.2008.08.005 10.3389/fchem.2019.00115 10.3233/JAD-151037 10.1016/j.neuroimage.2006.01.015 10.1016/j.neuroimage.2013.04.022 10.1002/mrm.24932 10.1002/mrm.25137 10.1002/mrm.26830 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2014.11.010 10.1016/j.mri.2015.02.021 10.1002/mrm.28754 10.1148/radiol.212696 10.1148/radiol.12120707 10.1371/journal.pone.0081093 10.1016/0005-2728(96)00022-9 10.3174/ajnr.A4825 10.1002/mrm.24772 10.1016/j.aca.2009.05.022 10.1002/mrm.25358 10.1002/jmri.25130 10.1016/j.jmr.2005.08.013 10.1016/j.nicl.2017.08.019 10.1007/s00775-007-0304-0 10.1148/radiol.13130353 10.1016/j.jtemb.2013.09.006 10.1371/journal.pone.0162460 10.1186/s12868-019-0505-9 10.1002/nbm.1670 10.1016/j.mri.2007.02.014 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024. The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024. The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.neuroimage.2024.120892 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Psychology Database Biological Sciences Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 120892 |
ExternalDocumentID | oai_doaj_org_article_edd1dbf112514138bddae743dd25b055 PMC11684258 39433113 10_1016_j_neuroimage_2024_120892 S1053811924003896 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG070826 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AFKWA AJOXV ALIPV AMFUW C45 HMQ NCXOZ 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SNS WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5242-a62969c4023dda5206cee0714da50f7369f32f929373b8c50813d50b7f9d65e83 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:25:08 EDT 2025 Thu Aug 21 18:34:47 EDT 2025 Fri Jul 11 16:35:53 EDT 2025 Fri Jul 11 11:47:52 EDT 2025 Wed Aug 13 04:43:19 EDT 2025 Wed Feb 19 02:00:27 EST 2025 Tue Jul 01 03:02:30 EDT 2025 Sat Feb 08 15:51:06 EST 2025 Tue Aug 26 17:21:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | R2 Quantitative susceptibility mapping Iron Ferritin Magnetic susceptibility R |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5242-a62969c4023dda5206cee0714da50f7369f32f929373b8c50813d50b7f9d65e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6987-3270 0000-0003-1441-1524 0000-0002-7097-9707 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811924003896 |
PMID | 39433113 |
PQID | 3127575200 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_edd1dbf112514138bddae743dd25b055 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11684258 proquest_miscellaneous_3154182922 proquest_miscellaneous_3119190776 proquest_journals_3127575200 pubmed_primary_39433113 crossref_primary_10_1016_j_neuroimage_2024_120892 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120892 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-15 |
PublicationDateYYYYMMDD | 2024-11-15 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Grochowski, Blicharska, Krukow, Jonak, Maciejewski, Szczepanek, Jonak, Flieger, Maciejewski (bib0019) 2019; 7 Smith (bib0048) 2002; 17 Zhang, Gauthier, Gupta, Chen, Comunale, Chiang, Zhou, Askin, Zhu, Pitt, Wang (bib0057) 2016 Cammack, Cooper (bib0013) 1993; 17 Harrison, Arosio (bib0022) 1996; 1275 Otsuka, Otaduy, Azevedo, Chaim, Salmon (bib0040) 2023; 14–15 Liu, Liu, De Rochefort, Ledoux, Khalidov, Chen, Tsiouris, Wisnieff, Spincemaille, Prince, Wang (bib0034) 2012 Batista, Grotto, Rodrigues, de Oliveira Souza, Barbosa (bib0005) 2009; 646 Kumar, Bulk, Webb, Van Der Weerd, Oosterkamp, Huber, Bossoni (bib0027) 2016; 6 Chen, Chen, Zhang, Wang, Yu, Zhang, Jiang, Luo (bib0015) 2019 Rua, Clarke, Driver, Mougin, Morgan, Clare, Francis, Muir, Wise, Carpenter, Williams, Rowe, Bowtell, Rodgers (bib0046) 2020; 223 Yablonskiy, Haacke (bib0055) 1994; 32 Langkammer, Krebs, Goessler, Scheurer, Ebner, Yen, Fazekas, Ropele (bib0028) 2010; 257 Hallgren, Sourander (bib0020) 1958; 3 Stüber, Pitt, Wang (bib0051) 2016 Weir, Peters, Gibson (bib0054) 1985 Hametner, Endmayr, Deistung, Palmrich, Prihoda, Haimburger, Menard, Feng, Haider, Leisser, Köck, Kaider, Höftberger, Robinson, Reichenbach, Lassmann, Traxler, Trattnig, Grabner (bib0021) 2018 Jenkinson, Bannister, Brady, Smith (bib0024) 2002; 17 Liu, Wisnieff, Lou, Chen, Spincemaille, Wang (bib0037) 2013 . Liu, Liu, Ghassaban, Zheng, Dicicco, Miao, Habib, Jazmati, Haacke (bib0035) 2016; 44 Snyder, Connor (bib0049) 2009; 1790 Otsuka, Otaduy, Nascimento, Salmon (bib0041) 2022; 52 Birkl, Birkl-Toeglhofer, Kames, Goessler, Haybaeck, Fazekas, Ropele, Rauscher (bib0007) 2020; 220 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0056) 2006; 31 Barbosa, J.H.O., 2017. Conteúdo de íons paramagnéticos no cérebro e sua correlação com mapas quantitativos de ressonância magnética. Doctoral Thesis. Universidade de São Paulo, Ribeirão Preto. Brammerloh, Kirilina, Alkemade, Bazin, Jantzen, Jäger, Herrler, Pine, Gowland, Morawski, Forstmann, Weiskopf (bib0012) 2022; 305 Kim, Park, Rhee, Lee, Ryu, Rhee, Lee, Wang, Jahng (bib0025) 2017 Krebs, Langkammer, Goessler, Ropele, Fazekas, Yen, Scheurer (bib0026) 2014; 28 Langkammer, Pirpamer, Seiler, Deistung, Schweser, Franthal, Homayoon, Katschnig-Winter, Koegl-Wallner, Pendl, Stoegerer, Wenzel, Fazekas, Ropele, Reichenbach, Schmidt, Schwingenschuh (bib0030) 2016 Acosta-Cabronero, Cardenas-Blanco, Betts, Butryn, Valdes-Herrera, Galazky, Nestor (bib0001) 2017 Zheng, Nichol, Liu, Cheng, Haacke (bib0058) 2013; 78 Schenck (bib0047) 1992; 649 He, Ling, Ding, Huang, Zhang, Zhang, Liu, Chen, Yan (bib0023) 2015 Chen, Gauthier, Gupta, Comunale, Liu, Wang, Pei, Pitt, Wang (bib0016) 2014 Wang, Liu (bib0053) 2015 Deistung, Schäfer, Schweser, Biedermann, Turner, Reichenbach (bib0017) 2013 Langkammer, Schweser, Shmueli, Kames, Li, Guo, Milovic, Kim, Wei, Bredies, Buch, Guo, Liu, Meineke, Rauscher, Marques, Bilgic (bib0032) 2018 Ropele, Wattjes, Langkammer, Kilsdonk, de Graaf, Frederiksen, Fuglø, Yiannakas, Wheeler-Kingshott, Enzinger, Rocca, Sprenger, Amman, Kappos, Filippi, Rovira, Ciccarelli, Barkhof, Fazekas (bib0045) 2014; 71 Sun, Walsh, Lebel, Blevins, Catz, Lu, Johnson, Emery, Warren, Wilman (bib0052) 2015 Langkammer, Liu, Khalil, Enzinger, Jehna, Fuchs, Fazekas, Wang, Ropele (bib0029) 2013 Li, Harrison, Liu, Jones, Oh, Calabresi, Van Zijl (bib0033) 2016 Bilgic, Langkammer, Marques, Meineke, Milovic, Schweser (bib0006) 2021; 86 Du, Zhao, Cui, Zhu, Zhang, Liu, Shi, Fu, Han, Gao, Song, Xie, Wang, Sun, Guo, Ma (bib0018) 2018 Parker, Payne, Todd, Hadley (bib0042) 2014; 72 Acosta-Cabronero, Williams, Cardenas-Blanco, Arnold, Lupson, Nestor (bib0002) 2013 Bossoni, Labra-Muñoz, van der Zant, Čaluković, Lefering, Egli, Huber (bib0010) 2023; 25 Boas, Troup (bib0009) 1971; 229 Lotfipour, Wharton, Schwarz, Gontu, Schäfer, Peters, Bowtell, Auer, Gowland, Bajaj (bib0038) 2012 Birkl, Langkammer, Krenn, Goessler, Ernst, Haybaeck, Stollberger, Fazekas, Ropele (bib0008) 2015 Castellaro, Magliozzi, Palombit, Pitteri, Silvestri, Camera, Montemezzi, Pizzini, Bertoldo, Reynolds, Monaco, Calabrese (bib0014) 2017 Barbosa, Santos, Tumas, Liu, Zheng, Haacke, Salmon (bib0004) 2015; 33 Bou-Abdallah, Chasteen (bib0011) 2008; 13 Liu, Khalidov, de Rochefort, Spincemaille, Liu, Tsiouris, Wang (bib0036) 2011; 24 Moon, Han, Moon (bib0039) 2016 Pei, Nguyen, Thimmappa, Salustri, Dong, Cooper, Li, Prince, Wang (bib0043) 2015; 73 Peters, Brookes, Hoogenraad, Gowland, Francis, Morris, Bowtell (bib0044) 2007; 25 Langkammer, Schweser, Krebs, Deistung, Goessler, Scheurer, Sommer, Reishofer, Yen, Fazekas, Ropele, Reichenbach (bib0031) 2012 Stoll, Schweiger (bib0050) 2006; 178 Schrag, Dickson, Jiffry, Kirsch, Vinters, Kirsch (bib59) 2010; 23 Krebs (10.1016/j.neuroimage.2024.120892_bib0026) 2014; 28 Bossoni (10.1016/j.neuroimage.2024.120892_bib0010) 2023; 25 Kumar (10.1016/j.neuroimage.2024.120892_bib0027) 2016; 6 Brammerloh (10.1016/j.neuroimage.2024.120892_bib0012) 2022; 305 Zhang (10.1016/j.neuroimage.2024.120892_bib0057) 2016 Moon (10.1016/j.neuroimage.2024.120892_bib0039) 2016 Liu (10.1016/j.neuroimage.2024.120892_bib0034) 2012 Liu (10.1016/j.neuroimage.2024.120892_bib0037) 2013 Wang (10.1016/j.neuroimage.2024.120892_bib0053) 2015 He (10.1016/j.neuroimage.2024.120892_bib0023) 2015 Zheng (10.1016/j.neuroimage.2024.120892_bib0058) 2013; 78 Hametner (10.1016/j.neuroimage.2024.120892_bib0021) 2018 Sun (10.1016/j.neuroimage.2024.120892_bib0052) 2015 Schrag (10.1016/j.neuroimage.2024.120892_bib59) 2010; 23 Birkl (10.1016/j.neuroimage.2024.120892_bib0008) 2015 Lotfipour (10.1016/j.neuroimage.2024.120892_bib0038) 2012 Langkammer (10.1016/j.neuroimage.2024.120892_bib0029) 2013 Langkammer (10.1016/j.neuroimage.2024.120892_bib0030) 2016 Yushkevich (10.1016/j.neuroimage.2024.120892_bib0056) 2006; 31 Stüber (10.1016/j.neuroimage.2024.120892_bib0051) 2016 Jenkinson (10.1016/j.neuroimage.2024.120892_bib0024) 2002; 17 Smith (10.1016/j.neuroimage.2024.120892_bib0048) 2002; 17 Boas (10.1016/j.neuroimage.2024.120892_bib0009) 1971; 229 Liu (10.1016/j.neuroimage.2024.120892_bib0035) 2016; 44 Hallgren (10.1016/j.neuroimage.2024.120892_bib0020) 1958; 3 Deistung (10.1016/j.neuroimage.2024.120892_bib0017) 2013 Li (10.1016/j.neuroimage.2024.120892_bib0033) 2016 Snyder (10.1016/j.neuroimage.2024.120892_bib0049) 2009; 1790 Du (10.1016/j.neuroimage.2024.120892_bib0018) 2018 Birkl (10.1016/j.neuroimage.2024.120892_bib0007) 2020; 220 Rua (10.1016/j.neuroimage.2024.120892_bib0046) 2020; 223 Peters (10.1016/j.neuroimage.2024.120892_bib0044) 2007; 25 Grochowski (10.1016/j.neuroimage.2024.120892_bib0019) 2019; 7 Langkammer (10.1016/j.neuroimage.2024.120892_bib0031) 2012 Batista (10.1016/j.neuroimage.2024.120892_bib0005) 2009; 646 Weir (10.1016/j.neuroimage.2024.120892_bib0054) 1985 Yablonskiy (10.1016/j.neuroimage.2024.120892_bib0055) 1994; 32 Liu (10.1016/j.neuroimage.2024.120892_bib0036) 2011; 24 Acosta-Cabronero (10.1016/j.neuroimage.2024.120892_bib0001) 2017 Cammack (10.1016/j.neuroimage.2024.120892_bib0013) 1993; 17 Chen (10.1016/j.neuroimage.2024.120892_bib0015) 2019 Parker (10.1016/j.neuroimage.2024.120892_bib0042) 2014; 72 Castellaro (10.1016/j.neuroimage.2024.120892_bib0014) 2017 Langkammer (10.1016/j.neuroimage.2024.120892_bib0032) 2018 Bou-Abdallah (10.1016/j.neuroimage.2024.120892_bib0011) 2008; 13 Otsuka (10.1016/j.neuroimage.2024.120892_bib0041) 2022; 52 Otsuka (10.1016/j.neuroimage.2024.120892_bib0040) 2023; 14–15 Ropele (10.1016/j.neuroimage.2024.120892_bib0045) 2014; 71 Bilgic (10.1016/j.neuroimage.2024.120892_bib0006) 2021; 86 Acosta-Cabronero (10.1016/j.neuroimage.2024.120892_bib0002) 2013 Barbosa (10.1016/j.neuroimage.2024.120892_bib0004) 2015; 33 Stoll (10.1016/j.neuroimage.2024.120892_bib0050) 2006; 178 Chen (10.1016/j.neuroimage.2024.120892_bib0016) 2014 Schenck (10.1016/j.neuroimage.2024.120892_bib0047) 1992; 649 Harrison (10.1016/j.neuroimage.2024.120892_bib0022) 1996; 1275 10.1016/j.neuroimage.2024.120892_bib0003 Langkammer (10.1016/j.neuroimage.2024.120892_bib0028) 2010; 257 Kim (10.1016/j.neuroimage.2024.120892_bib0025) 2017 Pei (10.1016/j.neuroimage.2024.120892_bib0043) 2015; 73 |
References_xml | – volume: 86 start-page: 1241 year: 2021 end-page: 1255 ident: bib0006 article-title: QSM reconstruction challenge 2.0: design and report of results publication-title: Magn. Reson. Med. – year: 2015 ident: bib0053 article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker publication-title: Magn. Reson. Med. – volume: 78 start-page: 68 year: 2013 end-page: 74 ident: bib0058 article-title: Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging publication-title: Neuroimage – year: 2018 ident: bib0021 article-title: The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study publication-title: Neuroimage – volume: 52 year: 2022 ident: bib0041 article-title: Quantification of paramagnetic ions in human brain tissue using EPR publication-title: Braz. J. Phys. – year: 2017 ident: bib0025 article-title: Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease publication-title: Neuroimage Clin. – year: 2013 ident: bib0017 article-title: Toward publication-title: Neuroimage – volume: 223 year: 2020 ident: bib0046 article-title: Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: results from the UK7T study publication-title: Neuroimage – year: 2013 ident: bib0037 article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping publication-title: Magn. Reson. Med. – volume: 305 start-page: 674 year: 2022 end-page: 677 ident: bib0012 article-title: Swallow tail sign: revisited publication-title: Radiology – volume: 6 year: 2016 ident: bib0027 article-title: A novel approach to quantify different iron forms in ex-vivo human brain tissue publication-title: Sci. Rep. – volume: 14–15 year: 2023 ident: bib0040 article-title: Evaluation of multi-channel phase reconstruction methods for quantitative susceptibility mapping on postmortem human brain publication-title: J. Magn. Reson. Open – year: 2019 ident: bib0015 article-title: Iron deposition in Parkinson's disease by quantitative susceptibility mapping publication-title: BMC Neurosci. – volume: 649 start-page: 285 year: 1992 end-page: 301 ident: bib0047 article-title: Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI publication-title: Ann. N. Y. Acad. Sci. – year: 2016 ident: bib0030 article-title: Quantitative susceptibility mapping in Parkinson's disease publication-title: PLoS One – volume: 24 start-page: 1129 year: 2011 end-page: 1136 ident: bib0036 article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF) publication-title: NMR Biomed. – volume: 72 start-page: 563 year: 2014 end-page: 569 ident: bib0042 article-title: Phase reconstruction from multiple coil data using a virtual reference coil publication-title: Magn. Reson. Med. – volume: 257 start-page: 455 year: 2010 end-page: 462 ident: bib0028 article-title: Quantitative MR imaging of brain iron: a postmortem validation study publication-title: Radiology – year: 1985 ident: bib0054 article-title: Electron spin resonance studies of splenic ferritin and haemosiderin publication-title: Biochim. Biophys. Acta – year: 2013 ident: bib0029 article-title: Quantitative susceptibility mapping in multiple sclerosis publication-title: Radiology – volume: 178 start-page: 42 year: 2006 end-page: 55 ident: bib0050 article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR publication-title: J. Magn. Reson. – year: 2012 ident: bib0034 article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map publication-title: Neuroimage – volume: 1275 start-page: 161 year: 1996 end-page: 203 ident: bib0022 article-title: The ferritins: molecular properties, iron storage function and cellular regulation publication-title: Biochim. Biophys. Acta BBA Bioenerg. – year: 2018 ident: bib0032 article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge publication-title: Magn. Reson. Med. – year: 2015 ident: bib0052 article-title: Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter publication-title: Neuroimage – volume: 28 start-page: 1 year: 2014 end-page: 7 ident: bib0026 article-title: Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry publication-title: J. Trace Elem. Med. Biol. – year: 2014 ident: bib0016 article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages publication-title: Radiology – volume: 1790 start-page: 606 year: 2009 end-page: 614 ident: bib0049 article-title: Iron, the substantia nigra and related neurological disorders publication-title: Biochim. Biophys. Acta BBA Gen. Subj. – year: 2017 ident: bib0001 article-title: The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease publication-title: Brain – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bib0048 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 25 start-page: 748 year: 2007 end-page: 753 ident: bib0044 article-title: T2* measurements in human brain at 1.5, 3 and 7 T publication-title: Magn. Reson. Imaging – volume: 33 start-page: 559 year: 2015 end-page: 565 ident: bib0004 article-title: Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2* publication-title: Magn. Reson. Imaging – volume: 32 start-page: 749 year: 1994 end-page: 763 ident: bib0055 article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime publication-title: Magn. Reson. Med. – year: 2015 ident: bib0023 article-title: Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping publication-title: Hum. Brain Mapp. – volume: 25 start-page: 27694 year: 2023 end-page: 27717 ident: bib0010 article-title: In-depth magnetometry and EPR analysis of the spin structure of human-liver ferritin: from DC to 9 GHz publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 41 year: 1958 end-page: 51 ident: bib0020 article-title: The effect of age on the non-haemin iron in the human brain publication-title: J. Neurochem. – year: 2012 ident: bib0031 article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study publication-title: Neuroimage – year: 2018 ident: bib0018 article-title: Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's Disease publication-title: ACS Chem. Neurosci. – volume: 44 start-page: 59 year: 2016 end-page: 71 ident: bib0035 article-title: Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping publication-title: J. Magn. Reson. Imaging – volume: 71 start-page: 1103 year: 2014 end-page: 1107 ident: bib0045 article-title: Multicenter mapping in the healthy brain publication-title: Magn. Reson. Med. – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bib0056 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – year: 2015 ident: bib0008 article-title: Iron mapping using the temperature dependency of the magnetic susceptibility publication-title: Magn. Reson. Med. – volume: 17 start-page: 327 year: 1993 ident: bib0013 publication-title: Spectroscopic Methods and Analyses. Methods in Molecular Biology – year: 2012 ident: bib0038 article-title: High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease publication-title: J. Magn. Reson. Imaging – volume: 7 year: 2019 ident: bib0019 article-title: Analysis of trace elements in human brain: its aim, methods, and concentration levels publication-title: Front. Chem. – volume: 229 year: 1971 ident: bib0009 article-title: Electron spin resonance and Mössbauer effect studies of ferritin publication-title: Biochim. Biophys. Acta BBA – year: 2016 ident: bib0039 article-title: Patterns of brain iron accumulation in vascular dementia and alzheimer's dementia using quantitative susceptibility mapping imaging publication-title: J. Alzheimer's Dis. – volume: 13 start-page: 15 year: 2008 end-page: 24 ident: bib0011 article-title: Spin concentration measurements of high-spin (g′ = 4.3) rhombic iron(III) ions in biological samples: theory and application publication-title: J. Biol. Inorg. Chem. – reference: Barbosa, J.H.O., 2017. Conteúdo de íons paramagnéticos no cérebro e sua correlação com mapas quantitativos de ressonância magnética. Doctoral Thesis. Universidade de São Paulo, Ribeirão Preto. – volume: 23 year: 2010 ident: bib59 article-title: The effect of formalin fixation on the levels of brain transition metals in archived samples publication-title: BioMetals – reference: . – year: 2017 ident: bib0014 article-title: Heterogeneity of cortical lesion susceptibility mapping in multiple sclerosis publication-title: Am. J. Neuroradiol. – volume: 73 start-page: 843 year: 2015 end-page: 850 ident: bib0043 article-title: Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data publication-title: Magn. Reson. Med. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0024 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 646 start-page: 23 year: 2009 end-page: 29 ident: bib0005 article-title: Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature publication-title: Anal. Chim. Acta – year: 2016 ident: bib0051 article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping publication-title: Int. J. Mol. Sci. – year: 2013 ident: bib0002 article-title: quantitative susceptibility mapping (QSM) in Alzheimer's disease publication-title: PLoS One – volume: 220 year: 2020 ident: bib0007 article-title: The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain publication-title: Neuroimage – year: 2016 ident: bib0033 article-title: Magnetic susceptibility contrast variations in multiple sclerosis lesions publication-title: J. Magn. Reson. Imaging – year: 2016 ident: bib0057 article-title: Quantitative susceptibility mapping and R2∗ measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation publication-title: Am. J. Neuroradiol. – volume: 649 start-page: 285 year: 1992 ident: 10.1016/j.neuroimage.2024.120892_bib0047 article-title: Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1992.tb49617.x – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2024.120892_bib0048 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – year: 2015 ident: 10.1016/j.neuroimage.2024.120892_bib0023 article-title: Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22928 – volume: 25 start-page: 27694 year: 2023 ident: 10.1016/j.neuroimage.2024.120892_bib0010 article-title: In-depth magnetometry and EPR analysis of the spin structure of human-liver ferritin: from DC to 9 GHz publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP01358H – year: 2012 ident: 10.1016/j.neuroimage.2024.120892_bib0031 article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.049 – volume: 23 year: 2010 ident: 10.1016/j.neuroimage.2024.120892_bib59 article-title: The effect of formalin fixation on the levels of brain transition metals in archived samples publication-title: BioMetals doi: 10.1007/s10534-010-9359-4 – volume: 32 start-page: 749 year: 1994 ident: 10.1016/j.neuroimage.2024.120892_bib0055 article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910320610 – year: 2015 ident: 10.1016/j.neuroimage.2024.120892_bib0008 article-title: Iron mapping using the temperature dependency of the magnetic susceptibility publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25236 – year: 2012 ident: 10.1016/j.neuroimage.2024.120892_bib0034 article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map publication-title: Neuroimage – ident: 10.1016/j.neuroimage.2024.120892_bib0003 doi: 10.11606/T.59.2017.tde-24042017-213315 – volume: 3 start-page: 41 year: 1958 ident: 10.1016/j.neuroimage.2024.120892_bib0020 article-title: The effect of age on the non-haemin iron in the human brain publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1958.tb12607.x – volume: 220 year: 2020 ident: 10.1016/j.neuroimage.2024.120892_bib0007 article-title: The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117080 – year: 2013 ident: 10.1016/j.neuroimage.2024.120892_bib0037 article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping publication-title: Magn. Reson. Med. – volume: 257 start-page: 455 year: 2010 ident: 10.1016/j.neuroimage.2024.120892_bib0028 article-title: Quantitative MR imaging of brain iron: a postmortem validation study publication-title: Radiology doi: 10.1148/radiol.10100495 – volume: 223 year: 2020 ident: 10.1016/j.neuroimage.2024.120892_bib0046 article-title: Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: results from the UK7T study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117358 – year: 1985 ident: 10.1016/j.neuroimage.2024.120892_bib0054 article-title: Electron spin resonance studies of splenic ferritin and haemosiderin publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(85)90311-5 – year: 2013 ident: 10.1016/j.neuroimage.2024.120892_bib0017 article-title: Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.055 – year: 2012 ident: 10.1016/j.neuroimage.2024.120892_bib0038 article-title: High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22752 – year: 2018 ident: 10.1016/j.neuroimage.2024.120892_bib0021 article-title: The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.06.007 – volume: 52 year: 2022 ident: 10.1016/j.neuroimage.2024.120892_bib0041 article-title: Quantification of paramagnetic ions in human brain tissue using EPR publication-title: Braz. J. Phys. doi: 10.1007/s13538-022-01098-4 – year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0051 article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17010100 – year: 2017 ident: 10.1016/j.neuroimage.2024.120892_bib0001 article-title: The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease publication-title: Brain doi: 10.1093/brain/aww278 – volume: 17 start-page: 327 year: 1993 ident: 10.1016/j.neuroimage.2024.120892_bib0013 – year: 2018 ident: 10.1016/j.neuroimage.2024.120892_bib0018 article-title: Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's Disease publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.8b00194 – year: 2017 ident: 10.1016/j.neuroimage.2024.120892_bib0014 article-title: Heterogeneity of cortical lesion susceptibility mapping in multiple sclerosis publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5150 – volume: 14–15 year: 2023 ident: 10.1016/j.neuroimage.2024.120892_bib0040 article-title: Evaluation of multi-channel phase reconstruction methods for quantitative susceptibility mapping on postmortem human brain publication-title: J. Magn. Reson. Open – volume: 6 year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0027 article-title: A novel approach to quantify different iron forms in ex-vivo human brain tissue publication-title: Sci. Rep. doi: 10.1038/srep38916 – volume: 1790 start-page: 606 year: 2009 ident: 10.1016/j.neuroimage.2024.120892_bib0049 article-title: Iron, the substantia nigra and related neurological disorders publication-title: Biochim. Biophys. Acta BBA Gen. Subj. doi: 10.1016/j.bbagen.2008.08.005 – volume: 7 year: 2019 ident: 10.1016/j.neuroimage.2024.120892_bib0019 article-title: Analysis of trace elements in human brain: its aim, methods, and concentration levels publication-title: Front. Chem. doi: 10.3389/fchem.2019.00115 – year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0039 article-title: Patterns of brain iron accumulation in vascular dementia and alzheimer's dementia using quantitative susceptibility mapping imaging publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-151037 – volume: 31 start-page: 1116 year: 2006 ident: 10.1016/j.neuroimage.2024.120892_bib0056 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 78 start-page: 68 year: 2013 ident: 10.1016/j.neuroimage.2024.120892_bib0058 article-title: Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.022 – volume: 72 start-page: 563 year: 2014 ident: 10.1016/j.neuroimage.2024.120892_bib0042 article-title: Phase reconstruction from multiple coil data using a virtual reference coil publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24932 – volume: 73 start-page: 843 year: 2015 ident: 10.1016/j.neuroimage.2024.120892_bib0043 article-title: Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25137 – year: 2018 ident: 10.1016/j.neuroimage.2024.120892_bib0032 article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26830 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2024.120892_bib0024 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – year: 2015 ident: 10.1016/j.neuroimage.2024.120892_bib0052 article-title: Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.010 – year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0033 article-title: Magnetic susceptibility contrast variations in multiple sclerosis lesions publication-title: J. Magn. Reson. Imaging – volume: 33 start-page: 559 year: 2015 ident: 10.1016/j.neuroimage.2024.120892_bib0004 article-title: Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2* publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2015.02.021 – volume: 86 start-page: 1241 year: 2021 ident: 10.1016/j.neuroimage.2024.120892_bib0006 article-title: QSM reconstruction challenge 2.0: design and report of results publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28754 – volume: 305 start-page: 674 year: 2022 ident: 10.1016/j.neuroimage.2024.120892_bib0012 article-title: Swallow tail sign: revisited publication-title: Radiology doi: 10.1148/radiol.212696 – year: 2013 ident: 10.1016/j.neuroimage.2024.120892_bib0029 article-title: Quantitative susceptibility mapping in multiple sclerosis publication-title: Radiology doi: 10.1148/radiol.12120707 – year: 2013 ident: 10.1016/j.neuroimage.2024.120892_bib0002 article-title: In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0081093 – volume: 1275 start-page: 161 year: 1996 ident: 10.1016/j.neuroimage.2024.120892_bib0022 article-title: The ferritins: molecular properties, iron storage function and cellular regulation publication-title: Biochim. Biophys. Acta BBA Bioenerg. doi: 10.1016/0005-2728(96)00022-9 – year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0057 article-title: Quantitative susceptibility mapping and R2∗ measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A4825 – volume: 71 start-page: 1103 year: 2014 ident: 10.1016/j.neuroimage.2024.120892_bib0045 article-title: Multicenter mapping in the healthy brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24772 – volume: 646 start-page: 23 year: 2009 ident: 10.1016/j.neuroimage.2024.120892_bib0005 article-title: Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.05.022 – year: 2015 ident: 10.1016/j.neuroimage.2024.120892_bib0053 article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25358 – volume: 44 start-page: 59 year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0035 article-title: Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25130 – volume: 178 start-page: 42 year: 2006 ident: 10.1016/j.neuroimage.2024.120892_bib0050 article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2005.08.013 – year: 2017 ident: 10.1016/j.neuroimage.2024.120892_bib0025 article-title: Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.08.019 – volume: 13 start-page: 15 year: 2008 ident: 10.1016/j.neuroimage.2024.120892_bib0011 article-title: Spin concentration measurements of high-spin (g′ = 4.3) rhombic iron(III) ions in biological samples: theory and application publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-007-0304-0 – volume: 229 year: 1971 ident: 10.1016/j.neuroimage.2024.120892_bib0009 article-title: Electron spin resonance and Mössbauer effect studies of ferritin publication-title: Biochim. Biophys. Acta BBA – year: 2014 ident: 10.1016/j.neuroimage.2024.120892_bib0016 article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages publication-title: Radiology doi: 10.1148/radiol.13130353 – volume: 28 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2024.120892_bib0026 article-title: Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2013.09.006 – year: 2016 ident: 10.1016/j.neuroimage.2024.120892_bib0030 article-title: Quantitative susceptibility mapping in Parkinson's disease publication-title: PLoS One doi: 10.1371/journal.pone.0162460 – year: 2019 ident: 10.1016/j.neuroimage.2024.120892_bib0015 article-title: Iron deposition in Parkinson's disease by quantitative susceptibility mapping publication-title: BMC Neurosci. doi: 10.1186/s12868-019-0505-9 – volume: 24 start-page: 1129 year: 2011 ident: 10.1016/j.neuroimage.2024.120892_bib0036 article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF) publication-title: NMR Biomed. doi: 10.1002/nbm.1670 – volume: 25 start-page: 748 year: 2007 ident: 10.1016/j.neuroimage.2024.120892_bib0044 article-title: T2* measurements in human brain at 1.5, 3 and 7 T publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.02.014 |
SSID | ssj0009148 |
Score | 2.4640396 |
Snippet | •R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be... Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 120892 |
SubjectTerms | Adult Aged Aged, 80 and over Algorithms atomic absorption spectrometry Basal ganglia Brain Brain - diagnostic imaging Brain - metabolism Brain mapping death electron paramagnetic resonance spectroscopy Electron spin resonance Electron Spin Resonance Spectroscopy - methods Female Ferritin Ferritins - analysis Ferritins - metabolism Gray Matter - diagnostic imaging Gray Matter - metabolism hippocampus Humans Iron Iron - analysis Iron - metabolism Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic susceptibility Male Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Middle Aged Neurological diseases paramagnetism postmortem changes Quantitative susceptibility mapping Red nucleus Scientific imaging Software Substantia grisea Substantia nigra |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQDxUXBOUrpSAjcSQQ2-skLqcWUVVIcECt1JtlZxxYpGarZvfQf9Kf2xk7CQ1I0APHrO3Emhl73qxnnhl7IzziZCo_M4XzGKCAzn1jyhxA1bgnN3TjNmVbfC2PTxefz_TZrau-KCcs0QMnwb0PAAJ8K8gR44ZbewAX0O0BSO0LHdlL0eeNwdRIt4sof8jbSdlckR1yeY5rFGNCuXgnZFEbOXNGkbN_5pP-xJy_p07e8kVHD9mDAUTygzT5R-xe6HbY9pfhmPwxuz5cri4GBfCYjO76NU__0_ccYSrHKXZUvsj7TR8TW2KO7BV3HfBvEpuJtuH7Pj_A4ecYPAfgFT8JaD9vsbHveazQJKqD9WUaNd6nw4lMfHo9BvMrovQIPPLYPmGnR59OPh7nwxUMeaPReeeulKY0DQaZKHCnZVGiAqnmCR-KtlKlaZVsEWKpSvm6QbQnFOjCV62BUodaPWVb3aoLzxkHLdAKAMrKlQvA7k430OpYOVsJ4TMmRl3Yi8S0YccUtJ_2l_4s6c8m_WXskJQ29Seu7PgDWpAdLMj-y4IyZkaV27EcFTdQfNHyDhP4MI0dIEuCInccvTdamB22jt4qotyviA0rY6-nZlz0dJLjurDaUB8Msw0xMf2tj15g8GgkfuZZMtpJTspQoZxQGatn5jwT5LylW_6I5ONCxJPbevd_iP4Fu0_ioNpOoffY1vpyE14iyFv7V3E93wBmalTy priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIgL4puUgozEkUAcx0kMB9QiqgoJDqiV9mbFGaddpCbLZvfQf8LPZcZxsgSkqsfEduJkxuM39swzY2-ERZxM6Wc6qSw6KKBiW-s8BpAl2uSaTtymaIvv-clZ9nWhFmHBrQ9hlaNN9IYauprWyN9LYiIviCTo0-pXTKdG0e5qOELjNrtD1GUU0lUsih3prsiGVDgl4xIrhEieIb7L80UuL3HUopeYZu9EmpQ6nU1PnsV_Nkv9j0L_Dab8a3Y6fsDuB1jJDwc9eMhuufYRu_stbJw_Zr-Plt0qiIT78PSq3_Bh5b7nCFw5drGlhEbeb3sf6uKjZq941QL_kWIxETmcf-CH2PwS3WkHvOCnDjXqLRb2Pfc5m0R-sFkPrcYTdjjRi0-PR_e-I5IPxz2z7RN2dvzl9PNJHA5liGuF03lc5anOdY1upwSoUB45ipSyoPAiaQqZ60amDYIuWUhb1oj_hASV2KLRkCtXyqdsr-1a95xxUAL1AiAvqjwDrF6pGhrlc2kLIWzExCgLsxq4N8wYlPbT7ORnSH5mkF_EjkhoU31iz_Y3uvW5CYPROAABthEE7nASLy1-iUMoBZAqmygVMT2K3IwJqmhS8UHLG3Tg49Q2gJgBnNyw9cGoYSYYk97sVD9ir6diNAO0t1O1rttSHXS8NXEzXVdHZehO6hRf82xQ2uk_SU2pc0JGrJyp8-xHzkva5YWnIxfC7-WW-9f3_QW7Rx9KeZxCHbC9zXrrXiKg29hXftT-AdaSTYs priority: 102 providerName: ProQuest |
Title | Biophysical contrast sources for magnetic susceptibility and R2 mapping: A combined 7 Tesla, mass spectrometry and electron paramagnetic resonance study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924003896 https://dx.doi.org/10.1016/j.neuroimage.2024.120892 https://www.ncbi.nlm.nih.gov/pubmed/39433113 https://www.proquest.com/docview/3127575200 https://www.proquest.com/docview/3119190776 https://www.proquest.com/docview/3154182922 https://pubmed.ncbi.nlm.nih.gov/PMC11684258 https://doaj.org/article/edd1dbf112514138bddae743dd25b055 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuiDeBsjISR9KN4ziO6Wm3arWAWKHSSnuL4thpg9Rktdk9cOF38HM74zxKQEKVuOwq8ThxPJN5xDOfCXnHNPjJWH6mgkxDgGKEr3MV-8bwBHRyjjtuY7bFMl5cRJ9WYrVHjvtaGEyr7HR_q9Odtu7OTLvZnK7LcvoNPAMwNxhA4PKWQtjtKJIo5Yc_b9M8FIvacjjBfaTusnnaHC-HGVlew5sLkWIYHbIwSFQ4MlEOyX9kqf72RP9MqPzNQp0-Ig8715LO2tE_Jnu2ekLuf-kWz5-SX_OyXndsoS5FPWu2tP1631BwXikMscKiRtrsGpfu4jJnf9CsMvQshGYEc7j8QGfQ_RpCamuopOcWpOo9NDYNdXWbCICw3bS9-l12KEKMD5eHEL9GoA9LHbrtM3JxenJ-vPC7jRn8XIBJ97M4VLHKIfTkxmQiDGJgK1ZCwUFQSB6rgocFOF5ccp3k4AMybkSgZaFMLGzCn5P9qq7sS0KNYCAbxsQyiyMD5JnITSFcPa1kTHuE9bxI1y3-Rtonpn1Pb_mXIv_Sln8emSPTBnpE0HYn6s1l2olQao1hRhcMHTww5ImGJ7HgThkTCh0I4RHVszzti1RBrcKFyjsM4GjoOxLmO_Y-6CUs7RRKk3IE4peIkeWRt0MzqAJc38kqW--QBoJvhfhM_6IREYSUKoTbvGiFdpgnrrB8jnGPJCNxHk3kuKUqrxwkOWNuPTd59V9P_po8wCMs9WTigOxvNzv7Bny-rZ64lxp-5UpOyL3Zx8-LJfzPT5ZfzybuO8oN7qdd4g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgJeEP8pDDASvBEWx3ESgxBaYVPHtgpNnbQ3k8TO1klLS9MK7ZvwKfiM3DlJS0Ga9rLH1n_q5M7n39V3vwN4zTPEyZR-pvw0QwfFSC_LVeQZIxK0yTlV3KZoi0HUPwq_HsvjNfjd5sJQWGVrE52hNuOc_iPfFMREHhNJ0KfJD4-qRtHtaltCo1aLPXvxE1226uPuF5TvmyDY2R5-7ntNVQEvl3geeWkUqEjl6DcJY1KcMMI1URoPfvCLWESqEEGBqEHEIktyBDBcGOlncaFMJG0icN4bsB4KdGU6sN7bHnw7XNL88rBOvpPCSzhXTexQHVHmGCpH52gn0C8Nwnc88BMVrByIrm7Ayrn4P-79N3zzr_Nw5y7caYAs26o17x6s2fI-3DxoruofwK_eaDxplIC5gPi0mrH6rqBiCJUZLrGkFEpWzSsXXOPidC9YWhp2GGAzUUecvGdbOPwcHXhrWMyGFnX4LTZWFXNZokS3MJvWo9qaPowIzRfTTy25G6jczHHpPoSjaxHYI-iU49I-AWYkR000JorTKDTYPZW5KaTL3o05z7rAW1noSc32odswuDO9lJ8m-elafl3okdAW_Ymv230xnp7oZvtraww3WcEJTiJsSDJ8EovgzZhAZr6UXVCtyHWbEotGHCcaXWEBHxZjG9hUw6Erjt5oNUw35qvSy83WhVeLZjQ8dJuUlnY8pz7o6itig7qsjwzRgVUB_szjWmkX70koStbjogvJijqvvMjVlnJ06gjQOXe3x8nTy9f-Em71hwf7en93sPcMbtNDUxYplxvQmU3n9jnCyVn2otnDDL5ft9n4A7O-iaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkCZeEP8JDDASvBEW23ESgxDaGNXGYEJok_pmktgZRVpSmlZo34TPwqfjzk5SCtK0lz22_lMndz7_rr77HSHPWAE4GdPPVJQX4KAYGRalSkJjRAY2ucSK2xhtcZjsHccfxnK8Rn73uTAYVtnbRGeoTVPif-RbApnIUyQJ2qq6sIjPu6O30x8hVpDCm9a-nIZXkQN79hPct_bN_i7I-jnno_dH7_bCrsJAWEo4m8I84SpRJfhQwpgcJk9gfZjSAx-iKhWJqgSvAEGIVBRZCWCGCSOjIq2USaTNBMx7hVxNhWS4x9JxuiT8ZbFPw5MizBhTXRSRjy1zXJWTU7AY4KHy-CXjUab4ytHoKgisnJD_I-B_Azn_OhlHN8j1DtLSba-DN8marW-RjU_dpf1t8mtn0kw7daAuND5v59TfGrQUQDOFJdaYTEnbRevCbFzE7hnNa0O_cGhGEomTV3Qbhp-CK28NTemRBW1-AY1tS12-KBIvzGd-VF_dhyK1-TD9zKLjAWpOHavuHXJ8KeK6S9brprb3CTWSgU4ak6R5EhvonsvSVNLl8aaMFQFhvSz01PN-6D4g7rteyk-j_LSXX0B2UGhDf2Tudl80sxPdGQJtjWGmqBgCSwAQWQFPYgHGGcNlEUkZENWLXPfJsWDOYaLJBRbwehjbASgPjC44erPXMN0ZslYvt11Ang7NYILwXimvbbPAPuD0K-SFOq-PjMGVVRx-5p5X2uE9CYVpe0wEJFtR55UXudpST745KnTG3D1y9uD8tT8hG2As9Mf9w4OH5Bo-M6aTMrlJ1uezhX0EuHJePHYbmJKvl20x_gB1H4x0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+contrast+sources+for+magnetic+susceptibility+and+R2+mapping%3A+A+combined+7+Tesla%2C+mass+spectrometry+and+electron+paramagnetic+resonance+study&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Otsuka%2C+F%C3%A1bio+Seiji&rft.au=Otaduy%2C+Maria+Concepci%C3%B3n+Garcia&rft.au=Rodriguez%2C+Roberta+Diehl&rft.au=Langkammer%2C+Christian&rft.date=2024-11-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=302&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120892&rft.externalDocID=S1053811924003896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |