Biophysical contrast sources for magnetic susceptibility and R2 mapping: A combined 7 Tesla, mass spectrometry and electron paramagnetic resonance study

•R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be the main contributors for the overall R2* and QSM contrast.•Analysis individualized by ROI showed different contributions of iron and ferriti...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 302; p. 120892
Main Authors Otsuka, Fábio Seiji, Otaduy, Maria Concepción Garcia, Rodriguez, Roberta Diehl, Langkammer, Christian, Barbosa, Jeam Haroldo Oliveira, Salmon, Carlos Ernesto Garrido
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2024
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be the main contributors for the overall R2* and QSM contrast.•Analysis individualized by ROI showed different contributions of iron and ferritin to R2* and QSM, resulting in three groups of structures according to the correlation of iron/ferritin to R2* and QSM.•Iron-rich structures displayed strong correlation to iron/ferritin, low-iron structures displayed no correlation to iron/ferritin, and the substantia nigra displayed partial correlation to iron and no correlation to ferritin. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
AbstractList Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R * mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R * and QSM were calculated. We found that R * and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R *. This study demonstrated the quantitative correlations between R *, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R₂* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R₂* and QSM were calculated. We found that R₂* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R₂*. This study demonstrated the quantitative correlations between R₂*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
•R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be the main contributors for the overall R2* and QSM contrast.•Analysis individualized by ROI showed different contributions of iron and ferritin to R2* and QSM, resulting in three groups of structures according to the correlation of iron/ferritin to R2* and QSM.•Iron-rich structures displayed strong correlation to iron/ferritin, low-iron structures displayed no correlation to iron/ferritin, and the substantia nigra displayed partial correlation to iron and no correlation to ferritin. Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R 2 * mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R 2 * and QSM were calculated. We found that R 2 * and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R 2 > 0.7) and ferritin (R 2 > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R 2 > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R 2 * . This study demonstrated the quantitative correlations between R 2 * , QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R 2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26–91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R 2* and QSM were calculated. We found that R 2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R 2*. This study demonstrated the quantitative correlations between R 2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.
ArticleNumber 120892
Author Otsuka, Fábio Seiji
Langkammer, Christian
Rodriguez, Roberta Diehl
Barbosa, Jeam Haroldo Oliveira
Salmon, Carlos Ernesto Garrido
Otaduy, Maria Concepción Garcia
AuthorAffiliation d Setor de Radioterapia, Santa Casa de Misericórdia de Lavras, Minas Gerais, Brazil
e Departamento de Imagens Médicas, Hematologia e Oncologia Clínica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de Sãoo Paulo, Ribeirão Preto, Brazil
c Department of Neurology, Medical University of Graz, Graz, Austria
a InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil
b LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil
AuthorAffiliation_xml – name: b LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil
– name: a InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil
– name: e Departamento de Imagens Médicas, Hematologia e Oncologia Clínica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de Sãoo Paulo, Ribeirão Preto, Brazil
– name: c Department of Neurology, Medical University of Graz, Graz, Austria
– name: d Setor de Radioterapia, Santa Casa de Misericórdia de Lavras, Minas Gerais, Brazil
Author_xml – sequence: 1
  givenname: Fábio Seiji
  orcidid: 0000-0001-6987-3270
  surname: Otsuka
  fullname: Otsuka, Fábio Seiji
  email: fabio.otsuka@alumni.usp.br
  organization: InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil
– sequence: 2
  givenname: Maria Concepción Garcia
  surname: Otaduy
  fullname: Otaduy, Maria Concepción Garcia
  organization: LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil
– sequence: 3
  givenname: Roberta Diehl
  surname: Rodriguez
  fullname: Rodriguez, Roberta Diehl
  organization: LIM44, Instituto de Radiologia (InRad), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, São Paulo, Brazil
– sequence: 4
  givenname: Christian
  orcidid: 0000-0002-7097-9707
  surname: Langkammer
  fullname: Langkammer, Christian
  organization: Department of Neurology, Medical University of Graz, Graz, Austria
– sequence: 5
  givenname: Jeam Haroldo Oliveira
  surname: Barbosa
  fullname: Barbosa, Jeam Haroldo Oliveira
  organization: InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil
– sequence: 6
  givenname: Carlos Ernesto Garrido
  orcidid: 0000-0003-1441-1524
  surname: Salmon
  fullname: Salmon, Carlos Ernesto Garrido
  email: garrido@ffclrp.usp.br
  organization: InBrain, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo USP, Avenida Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-901, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39433113$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARfcAvIEtsWDCDrx0nMRv6EI9KlZBQWVuOfTP1kLGDnVSaP-FzcTploF115cc999yjc89xceCDx6IgQJdAoXq_XnqcYnAbvcIlo6xcAqONZM-KI6BSLKSo2cF8F3zRAMjD4jilNaVUQtm8KA65LDkH4EfF73MXhpttckb3xAQ_Rp1GksIUDSbShUjyDI-jMyRNyeAwutb1btwS7S35znJ5GJxffSBnuX3TOo-W1OQaU6_f5WJKJA1oxhg2OMZdF_Z3H54MOuo9fcQUvPYGSRonu31ZPO90n_DV_XlS_Pj86fri6-Lq25fLi7OrhRGsZAtdMVlJU1LGrdWC0cog0hrK_KBdzSvZcdZJJnnN28YI2gC3grZ1J20lsOEnxeWO1wa9VkPMnsatCtqpu48QV0rHrK9HhdaCbTsAJqAE3rR5ItZlHsxES4XIXB93XMPUbtAanO3sH5A-rHh3o1bhVgFUTcnErObtPUMMvyZMo9q47Hrfa49hSoqDKKFhkrEnQEGCpHVdZeibR9B1XrDPtmYUq0WdfaMZ9fp_9XvZf8OSAc0OYGJIKWK3hwBVcy7VWv3LpZpzqXa5zK3nu1bMq7x1GFUyDvOyrYs5DNlr9xSS00ckpnd-Tu5P3D6N4g91ngfp
Cites_doi 10.1111/j.1749-6632.1992.tb49617.x
10.1002/hbm.10062
10.1002/hbm.22928
10.1039/D3CP01358H
10.1016/j.neuroimage.2012.05.049
10.1007/s10534-010-9359-4
10.1002/mrm.1910320610
10.1002/mrm.25236
10.11606/T.59.2017.tde-24042017-213315
10.1111/j.1471-4159.1958.tb12607.x
10.1016/j.neuroimage.2020.117080
10.1148/radiol.10100495
10.1016/j.neuroimage.2020.117358
10.1016/0167-4838(85)90311-5
10.1016/j.neuroimage.2012.09.055
10.1002/jmri.22752
10.1016/j.neuroimage.2018.06.007
10.1007/s13538-022-01098-4
10.3390/ijms17010100
10.1093/brain/aww278
10.1021/acschemneuro.8b00194
10.3174/ajnr.A5150
10.1038/srep38916
10.1016/j.bbagen.2008.08.005
10.3389/fchem.2019.00115
10.3233/JAD-151037
10.1016/j.neuroimage.2006.01.015
10.1016/j.neuroimage.2013.04.022
10.1002/mrm.24932
10.1002/mrm.25137
10.1002/mrm.26830
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2014.11.010
10.1016/j.mri.2015.02.021
10.1002/mrm.28754
10.1148/radiol.212696
10.1148/radiol.12120707
10.1371/journal.pone.0081093
10.1016/0005-2728(96)00022-9
10.3174/ajnr.A4825
10.1002/mrm.24772
10.1016/j.aca.2009.05.022
10.1002/mrm.25358
10.1002/jmri.25130
10.1016/j.jmr.2005.08.013
10.1016/j.nicl.2017.08.019
10.1007/s00775-007-0304-0
10.1148/radiol.13130353
10.1016/j.jtemb.2013.09.006
10.1371/journal.pone.0162460
10.1186/s12868-019-0505-9
10.1002/nbm.1670
10.1016/j.mri.2007.02.014
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024. The Author(s)
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.neuroimage.2024.120892
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest Psychology Database
Biological Sciences
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA



MEDLINE - Academic

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 120892
ExternalDocumentID oai_doaj_org_article_edd1dbf112514138bddae743dd25b055
PMC11684258
39433113
10_1016_j_neuroimage_2024_120892
S1053811924003896
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG070826
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SNS
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5242-a62969c4023dda5206cee0714da50f7369f32f929373b8c50813d50b7f9d65e83
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:25:08 EDT 2025
Thu Aug 21 18:34:47 EDT 2025
Fri Jul 11 16:35:53 EDT 2025
Fri Jul 11 11:47:52 EDT 2025
Wed Aug 13 04:43:19 EDT 2025
Wed Feb 19 02:00:27 EST 2025
Tue Jul 01 03:02:30 EDT 2025
Sat Feb 08 15:51:06 EST 2025
Tue Aug 26 17:21:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords R2
Quantitative susceptibility mapping
Iron
Ferritin
Magnetic susceptibility
R
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5242-a62969c4023dda5206cee0714da50f7369f32f929373b8c50813d50b7f9d65e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6987-3270
0000-0003-1441-1524
0000-0002-7097-9707
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811924003896
PMID 39433113
PQID 3127575200
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_edd1dbf112514138bddae743dd25b055
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11684258
proquest_miscellaneous_3154182922
proquest_miscellaneous_3119190776
proquest_journals_3127575200
pubmed_primary_39433113
crossref_primary_10_1016_j_neuroimage_2024_120892
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120892
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Grochowski, Blicharska, Krukow, Jonak, Maciejewski, Szczepanek, Jonak, Flieger, Maciejewski (bib0019) 2019; 7
Smith (bib0048) 2002; 17
Zhang, Gauthier, Gupta, Chen, Comunale, Chiang, Zhou, Askin, Zhu, Pitt, Wang (bib0057) 2016
Cammack, Cooper (bib0013) 1993; 17
Harrison, Arosio (bib0022) 1996; 1275
Otsuka, Otaduy, Azevedo, Chaim, Salmon (bib0040) 2023; 14–15
Liu, Liu, De Rochefort, Ledoux, Khalidov, Chen, Tsiouris, Wisnieff, Spincemaille, Prince, Wang (bib0034) 2012
Batista, Grotto, Rodrigues, de Oliveira Souza, Barbosa (bib0005) 2009; 646
Kumar, Bulk, Webb, Van Der Weerd, Oosterkamp, Huber, Bossoni (bib0027) 2016; 6
Chen, Chen, Zhang, Wang, Yu, Zhang, Jiang, Luo (bib0015) 2019
Rua, Clarke, Driver, Mougin, Morgan, Clare, Francis, Muir, Wise, Carpenter, Williams, Rowe, Bowtell, Rodgers (bib0046) 2020; 223
Yablonskiy, Haacke (bib0055) 1994; 32
Langkammer, Krebs, Goessler, Scheurer, Ebner, Yen, Fazekas, Ropele (bib0028) 2010; 257
Hallgren, Sourander (bib0020) 1958; 3
Stüber, Pitt, Wang (bib0051) 2016
Weir, Peters, Gibson (bib0054) 1985
Hametner, Endmayr, Deistung, Palmrich, Prihoda, Haimburger, Menard, Feng, Haider, Leisser, Köck, Kaider, Höftberger, Robinson, Reichenbach, Lassmann, Traxler, Trattnig, Grabner (bib0021) 2018
Jenkinson, Bannister, Brady, Smith (bib0024) 2002; 17
Liu, Wisnieff, Lou, Chen, Spincemaille, Wang (bib0037) 2013
.
Liu, Liu, Ghassaban, Zheng, Dicicco, Miao, Habib, Jazmati, Haacke (bib0035) 2016; 44
Snyder, Connor (bib0049) 2009; 1790
Otsuka, Otaduy, Nascimento, Salmon (bib0041) 2022; 52
Birkl, Birkl-Toeglhofer, Kames, Goessler, Haybaeck, Fazekas, Ropele, Rauscher (bib0007) 2020; 220
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0056) 2006; 31
Barbosa, J.H.O., 2017. Conteúdo de íons paramagnéticos no cérebro e sua correlação com mapas quantitativos de ressonância magnética. Doctoral Thesis. Universidade de São Paulo, Ribeirão Preto.
Brammerloh, Kirilina, Alkemade, Bazin, Jantzen, Jäger, Herrler, Pine, Gowland, Morawski, Forstmann, Weiskopf (bib0012) 2022; 305
Kim, Park, Rhee, Lee, Ryu, Rhee, Lee, Wang, Jahng (bib0025) 2017
Krebs, Langkammer, Goessler, Ropele, Fazekas, Yen, Scheurer (bib0026) 2014; 28
Langkammer, Pirpamer, Seiler, Deistung, Schweser, Franthal, Homayoon, Katschnig-Winter, Koegl-Wallner, Pendl, Stoegerer, Wenzel, Fazekas, Ropele, Reichenbach, Schmidt, Schwingenschuh (bib0030) 2016
Acosta-Cabronero, Cardenas-Blanco, Betts, Butryn, Valdes-Herrera, Galazky, Nestor (bib0001) 2017
Zheng, Nichol, Liu, Cheng, Haacke (bib0058) 2013; 78
Schenck (bib0047) 1992; 649
He, Ling, Ding, Huang, Zhang, Zhang, Liu, Chen, Yan (bib0023) 2015
Chen, Gauthier, Gupta, Comunale, Liu, Wang, Pei, Pitt, Wang (bib0016) 2014
Wang, Liu (bib0053) 2015
Deistung, Schäfer, Schweser, Biedermann, Turner, Reichenbach (bib0017) 2013
Langkammer, Schweser, Shmueli, Kames, Li, Guo, Milovic, Kim, Wei, Bredies, Buch, Guo, Liu, Meineke, Rauscher, Marques, Bilgic (bib0032) 2018
Ropele, Wattjes, Langkammer, Kilsdonk, de Graaf, Frederiksen, Fuglø, Yiannakas, Wheeler-Kingshott, Enzinger, Rocca, Sprenger, Amman, Kappos, Filippi, Rovira, Ciccarelli, Barkhof, Fazekas (bib0045) 2014; 71
Sun, Walsh, Lebel, Blevins, Catz, Lu, Johnson, Emery, Warren, Wilman (bib0052) 2015
Langkammer, Liu, Khalil, Enzinger, Jehna, Fuchs, Fazekas, Wang, Ropele (bib0029) 2013
Li, Harrison, Liu, Jones, Oh, Calabresi, Van Zijl (bib0033) 2016
Bilgic, Langkammer, Marques, Meineke, Milovic, Schweser (bib0006) 2021; 86
Du, Zhao, Cui, Zhu, Zhang, Liu, Shi, Fu, Han, Gao, Song, Xie, Wang, Sun, Guo, Ma (bib0018) 2018
Parker, Payne, Todd, Hadley (bib0042) 2014; 72
Acosta-Cabronero, Williams, Cardenas-Blanco, Arnold, Lupson, Nestor (bib0002) 2013
Bossoni, Labra-Muñoz, van der Zant, Čaluković, Lefering, Egli, Huber (bib0010) 2023; 25
Boas, Troup (bib0009) 1971; 229
Lotfipour, Wharton, Schwarz, Gontu, Schäfer, Peters, Bowtell, Auer, Gowland, Bajaj (bib0038) 2012
Birkl, Langkammer, Krenn, Goessler, Ernst, Haybaeck, Stollberger, Fazekas, Ropele (bib0008) 2015
Castellaro, Magliozzi, Palombit, Pitteri, Silvestri, Camera, Montemezzi, Pizzini, Bertoldo, Reynolds, Monaco, Calabrese (bib0014) 2017
Barbosa, Santos, Tumas, Liu, Zheng, Haacke, Salmon (bib0004) 2015; 33
Bou-Abdallah, Chasteen (bib0011) 2008; 13
Liu, Khalidov, de Rochefort, Spincemaille, Liu, Tsiouris, Wang (bib0036) 2011; 24
Moon, Han, Moon (bib0039) 2016
Pei, Nguyen, Thimmappa, Salustri, Dong, Cooper, Li, Prince, Wang (bib0043) 2015; 73
Peters, Brookes, Hoogenraad, Gowland, Francis, Morris, Bowtell (bib0044) 2007; 25
Langkammer, Schweser, Krebs, Deistung, Goessler, Scheurer, Sommer, Reishofer, Yen, Fazekas, Ropele, Reichenbach (bib0031) 2012
Stoll, Schweiger (bib0050) 2006; 178
Schrag, Dickson, Jiffry, Kirsch, Vinters, Kirsch (bib59) 2010; 23
Krebs (10.1016/j.neuroimage.2024.120892_bib0026) 2014; 28
Bossoni (10.1016/j.neuroimage.2024.120892_bib0010) 2023; 25
Kumar (10.1016/j.neuroimage.2024.120892_bib0027) 2016; 6
Brammerloh (10.1016/j.neuroimage.2024.120892_bib0012) 2022; 305
Zhang (10.1016/j.neuroimage.2024.120892_bib0057) 2016
Moon (10.1016/j.neuroimage.2024.120892_bib0039) 2016
Liu (10.1016/j.neuroimage.2024.120892_bib0034) 2012
Liu (10.1016/j.neuroimage.2024.120892_bib0037) 2013
Wang (10.1016/j.neuroimage.2024.120892_bib0053) 2015
He (10.1016/j.neuroimage.2024.120892_bib0023) 2015
Zheng (10.1016/j.neuroimage.2024.120892_bib0058) 2013; 78
Hametner (10.1016/j.neuroimage.2024.120892_bib0021) 2018
Sun (10.1016/j.neuroimage.2024.120892_bib0052) 2015
Schrag (10.1016/j.neuroimage.2024.120892_bib59) 2010; 23
Birkl (10.1016/j.neuroimage.2024.120892_bib0008) 2015
Lotfipour (10.1016/j.neuroimage.2024.120892_bib0038) 2012
Langkammer (10.1016/j.neuroimage.2024.120892_bib0029) 2013
Langkammer (10.1016/j.neuroimage.2024.120892_bib0030) 2016
Yushkevich (10.1016/j.neuroimage.2024.120892_bib0056) 2006; 31
Stüber (10.1016/j.neuroimage.2024.120892_bib0051) 2016
Jenkinson (10.1016/j.neuroimage.2024.120892_bib0024) 2002; 17
Smith (10.1016/j.neuroimage.2024.120892_bib0048) 2002; 17
Boas (10.1016/j.neuroimage.2024.120892_bib0009) 1971; 229
Liu (10.1016/j.neuroimage.2024.120892_bib0035) 2016; 44
Hallgren (10.1016/j.neuroimage.2024.120892_bib0020) 1958; 3
Deistung (10.1016/j.neuroimage.2024.120892_bib0017) 2013
Li (10.1016/j.neuroimage.2024.120892_bib0033) 2016
Snyder (10.1016/j.neuroimage.2024.120892_bib0049) 2009; 1790
Du (10.1016/j.neuroimage.2024.120892_bib0018) 2018
Birkl (10.1016/j.neuroimage.2024.120892_bib0007) 2020; 220
Rua (10.1016/j.neuroimage.2024.120892_bib0046) 2020; 223
Peters (10.1016/j.neuroimage.2024.120892_bib0044) 2007; 25
Grochowski (10.1016/j.neuroimage.2024.120892_bib0019) 2019; 7
Langkammer (10.1016/j.neuroimage.2024.120892_bib0031) 2012
Batista (10.1016/j.neuroimage.2024.120892_bib0005) 2009; 646
Weir (10.1016/j.neuroimage.2024.120892_bib0054) 1985
Yablonskiy (10.1016/j.neuroimage.2024.120892_bib0055) 1994; 32
Liu (10.1016/j.neuroimage.2024.120892_bib0036) 2011; 24
Acosta-Cabronero (10.1016/j.neuroimage.2024.120892_bib0001) 2017
Cammack (10.1016/j.neuroimage.2024.120892_bib0013) 1993; 17
Chen (10.1016/j.neuroimage.2024.120892_bib0015) 2019
Parker (10.1016/j.neuroimage.2024.120892_bib0042) 2014; 72
Castellaro (10.1016/j.neuroimage.2024.120892_bib0014) 2017
Langkammer (10.1016/j.neuroimage.2024.120892_bib0032) 2018
Bou-Abdallah (10.1016/j.neuroimage.2024.120892_bib0011) 2008; 13
Otsuka (10.1016/j.neuroimage.2024.120892_bib0041) 2022; 52
Otsuka (10.1016/j.neuroimage.2024.120892_bib0040) 2023; 14–15
Ropele (10.1016/j.neuroimage.2024.120892_bib0045) 2014; 71
Bilgic (10.1016/j.neuroimage.2024.120892_bib0006) 2021; 86
Acosta-Cabronero (10.1016/j.neuroimage.2024.120892_bib0002) 2013
Barbosa (10.1016/j.neuroimage.2024.120892_bib0004) 2015; 33
Stoll (10.1016/j.neuroimage.2024.120892_bib0050) 2006; 178
Chen (10.1016/j.neuroimage.2024.120892_bib0016) 2014
Schenck (10.1016/j.neuroimage.2024.120892_bib0047) 1992; 649
Harrison (10.1016/j.neuroimage.2024.120892_bib0022) 1996; 1275
10.1016/j.neuroimage.2024.120892_bib0003
Langkammer (10.1016/j.neuroimage.2024.120892_bib0028) 2010; 257
Kim (10.1016/j.neuroimage.2024.120892_bib0025) 2017
Pei (10.1016/j.neuroimage.2024.120892_bib0043) 2015; 73
References_xml – volume: 86
  start-page: 1241
  year: 2021
  end-page: 1255
  ident: bib0006
  article-title: QSM reconstruction challenge 2.0: design and report of results
  publication-title: Magn. Reson. Med.
– year: 2015
  ident: bib0053
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
– volume: 78
  start-page: 68
  year: 2013
  end-page: 74
  ident: bib0058
  article-title: Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging
  publication-title: Neuroimage
– year: 2018
  ident: bib0021
  article-title: The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study
  publication-title: Neuroimage
– volume: 52
  year: 2022
  ident: bib0041
  article-title: Quantification of paramagnetic ions in human brain tissue using EPR
  publication-title: Braz. J. Phys.
– year: 2017
  ident: bib0025
  article-title: Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease
  publication-title: Neuroimage Clin.
– year: 2013
  ident: bib0017
  article-title: Toward
  publication-title: Neuroimage
– volume: 223
  year: 2020
  ident: bib0046
  article-title: Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: results from the UK7T study
  publication-title: Neuroimage
– year: 2013
  ident: bib0037
  article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping
  publication-title: Magn. Reson. Med.
– volume: 305
  start-page: 674
  year: 2022
  end-page: 677
  ident: bib0012
  article-title: Swallow tail sign: revisited
  publication-title: Radiology
– volume: 6
  year: 2016
  ident: bib0027
  article-title: A novel approach to quantify different iron forms in ex-vivo human brain tissue
  publication-title: Sci. Rep.
– volume: 14–15
  year: 2023
  ident: bib0040
  article-title: Evaluation of multi-channel phase reconstruction methods for quantitative susceptibility mapping on postmortem human brain
  publication-title: J. Magn. Reson. Open
– year: 2019
  ident: bib0015
  article-title: Iron deposition in Parkinson's disease by quantitative susceptibility mapping
  publication-title: BMC Neurosci.
– volume: 649
  start-page: 285
  year: 1992
  end-page: 301
  ident: bib0047
  article-title: Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI
  publication-title: Ann. N. Y. Acad. Sci.
– year: 2016
  ident: bib0030
  article-title: Quantitative susceptibility mapping in Parkinson's disease
  publication-title: PLoS One
– volume: 24
  start-page: 1129
  year: 2011
  end-page: 1136
  ident: bib0036
  article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF)
  publication-title: NMR Biomed.
– volume: 72
  start-page: 563
  year: 2014
  end-page: 569
  ident: bib0042
  article-title: Phase reconstruction from multiple coil data using a virtual reference coil
  publication-title: Magn. Reson. Med.
– volume: 257
  start-page: 455
  year: 2010
  end-page: 462
  ident: bib0028
  article-title: Quantitative MR imaging of brain iron: a postmortem validation study
  publication-title: Radiology
– year: 1985
  ident: bib0054
  article-title: Electron spin resonance studies of splenic ferritin and haemosiderin
  publication-title: Biochim. Biophys. Acta
– year: 2013
  ident: bib0029
  article-title: Quantitative susceptibility mapping in multiple sclerosis
  publication-title: Radiology
– volume: 178
  start-page: 42
  year: 2006
  end-page: 55
  ident: bib0050
  article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR
  publication-title: J. Magn. Reson.
– year: 2012
  ident: bib0034
  article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
  publication-title: Neuroimage
– volume: 1275
  start-page: 161
  year: 1996
  end-page: 203
  ident: bib0022
  article-title: The ferritins: molecular properties, iron storage function and cellular regulation
  publication-title: Biochim. Biophys. Acta BBA Bioenerg.
– year: 2018
  ident: bib0032
  article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge
  publication-title: Magn. Reson. Med.
– year: 2015
  ident: bib0052
  article-title: Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter
  publication-title: Neuroimage
– volume: 28
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib0026
  article-title: Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry
  publication-title: J. Trace Elem. Med. Biol.
– year: 2014
  ident: bib0016
  article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages
  publication-title: Radiology
– volume: 1790
  start-page: 606
  year: 2009
  end-page: 614
  ident: bib0049
  article-title: Iron, the substantia nigra and related neurological disorders
  publication-title: Biochim. Biophys. Acta BBA Gen. Subj.
– year: 2017
  ident: bib0001
  article-title: The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease
  publication-title: Brain
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0048
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 748
  year: 2007
  end-page: 753
  ident: bib0044
  article-title: T2* measurements in human brain at 1.5, 3 and 7 T
  publication-title: Magn. Reson. Imaging
– volume: 33
  start-page: 559
  year: 2015
  end-page: 565
  ident: bib0004
  article-title: Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2*
  publication-title: Magn. Reson. Imaging
– volume: 32
  start-page: 749
  year: 1994
  end-page: 763
  ident: bib0055
  article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime
  publication-title: Magn. Reson. Med.
– year: 2015
  ident: bib0023
  article-title: Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 27694
  year: 2023
  end-page: 27717
  ident: bib0010
  article-title: In-depth magnetometry and EPR analysis of the spin structure of human-liver ferritin: from DC to 9 GHz
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 41
  year: 1958
  end-page: 51
  ident: bib0020
  article-title: The effect of age on the non-haemin iron in the human brain
  publication-title: J. Neurochem.
– year: 2012
  ident: bib0031
  article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study
  publication-title: Neuroimage
– year: 2018
  ident: bib0018
  article-title: Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's Disease
  publication-title: ACS Chem. Neurosci.
– volume: 44
  start-page: 59
  year: 2016
  end-page: 71
  ident: bib0035
  article-title: Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping
  publication-title: J. Magn. Reson. Imaging
– volume: 71
  start-page: 1103
  year: 2014
  end-page: 1107
  ident: bib0045
  article-title: Multicenter mapping in the healthy brain
  publication-title: Magn. Reson. Med.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0056
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– year: 2015
  ident: bib0008
  article-title: Iron mapping using the temperature dependency of the magnetic susceptibility
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 327
  year: 1993
  ident: bib0013
  publication-title: Spectroscopic Methods and Analyses. Methods in Molecular Biology
– year: 2012
  ident: bib0038
  article-title: High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease
  publication-title: J. Magn. Reson. Imaging
– volume: 7
  year: 2019
  ident: bib0019
  article-title: Analysis of trace elements in human brain: its aim, methods, and concentration levels
  publication-title: Front. Chem.
– volume: 229
  year: 1971
  ident: bib0009
  article-title: Electron spin resonance and Mössbauer effect studies of ferritin
  publication-title: Biochim. Biophys. Acta BBA
– year: 2016
  ident: bib0039
  article-title: Patterns of brain iron accumulation in vascular dementia and alzheimer's dementia using quantitative susceptibility mapping imaging
  publication-title: J. Alzheimer's Dis.
– volume: 13
  start-page: 15
  year: 2008
  end-page: 24
  ident: bib0011
  article-title: Spin concentration measurements of high-spin (g′ = 4.3) rhombic iron(III) ions in biological samples: theory and application
  publication-title: J. Biol. Inorg. Chem.
– reference: Barbosa, J.H.O., 2017. Conteúdo de íons paramagnéticos no cérebro e sua correlação com mapas quantitativos de ressonância magnética. Doctoral Thesis. Universidade de São Paulo, Ribeirão Preto.
– volume: 23
  year: 2010
  ident: bib59
  article-title: The effect of formalin fixation on the levels of brain transition metals in archived samples
  publication-title: BioMetals
– reference: .
– year: 2017
  ident: bib0014
  article-title: Heterogeneity of cortical lesion susceptibility mapping in multiple sclerosis
  publication-title: Am. J. Neuroradiol.
– volume: 73
  start-page: 843
  year: 2015
  end-page: 850
  ident: bib0043
  article-title: Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0024
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 646
  start-page: 23
  year: 2009
  end-page: 29
  ident: bib0005
  article-title: Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature
  publication-title: Anal. Chim. Acta
– year: 2016
  ident: bib0051
  article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping
  publication-title: Int. J. Mol. Sci.
– year: 2013
  ident: bib0002
  article-title: quantitative susceptibility mapping (QSM) in Alzheimer's disease
  publication-title: PLoS One
– volume: 220
  year: 2020
  ident: bib0007
  article-title: The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain
  publication-title: Neuroimage
– year: 2016
  ident: bib0033
  article-title: Magnetic susceptibility contrast variations in multiple sclerosis lesions
  publication-title: J. Magn. Reson. Imaging
– year: 2016
  ident: bib0057
  article-title: Quantitative susceptibility mapping and R2∗ measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation
  publication-title: Am. J. Neuroradiol.
– volume: 649
  start-page: 285
  year: 1992
  ident: 10.1016/j.neuroimage.2024.120892_bib0047
  article-title: Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1992.tb49617.x
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neuroimage.2024.120892_bib0048
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– year: 2015
  ident: 10.1016/j.neuroimage.2024.120892_bib0023
  article-title: Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22928
– volume: 25
  start-page: 27694
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120892_bib0010
  article-title: In-depth magnetometry and EPR analysis of the spin structure of human-liver ferritin: from DC to 9 GHz
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP01358H
– year: 2012
  ident: 10.1016/j.neuroimage.2024.120892_bib0031
  article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.049
– volume: 23
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120892_bib59
  article-title: The effect of formalin fixation on the levels of brain transition metals in archived samples
  publication-title: BioMetals
  doi: 10.1007/s10534-010-9359-4
– volume: 32
  start-page: 749
  year: 1994
  ident: 10.1016/j.neuroimage.2024.120892_bib0055
  article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910320610
– year: 2015
  ident: 10.1016/j.neuroimage.2024.120892_bib0008
  article-title: Iron mapping using the temperature dependency of the magnetic susceptibility
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25236
– year: 2012
  ident: 10.1016/j.neuroimage.2024.120892_bib0034
  article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
  publication-title: Neuroimage
– ident: 10.1016/j.neuroimage.2024.120892_bib0003
  doi: 10.11606/T.59.2017.tde-24042017-213315
– volume: 3
  start-page: 41
  year: 1958
  ident: 10.1016/j.neuroimage.2024.120892_bib0020
  article-title: The effect of age on the non-haemin iron in the human brain
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1958.tb12607.x
– volume: 220
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120892_bib0007
  article-title: The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117080
– year: 2013
  ident: 10.1016/j.neuroimage.2024.120892_bib0037
  article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping
  publication-title: Magn. Reson. Med.
– volume: 257
  start-page: 455
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120892_bib0028
  article-title: Quantitative MR imaging of brain iron: a postmortem validation study
  publication-title: Radiology
  doi: 10.1148/radiol.10100495
– volume: 223
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120892_bib0046
  article-title: Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: results from the UK7T study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117358
– year: 1985
  ident: 10.1016/j.neuroimage.2024.120892_bib0054
  article-title: Electron spin resonance studies of splenic ferritin and haemosiderin
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(85)90311-5
– year: 2013
  ident: 10.1016/j.neuroimage.2024.120892_bib0017
  article-title: Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.055
– year: 2012
  ident: 10.1016/j.neuroimage.2024.120892_bib0038
  article-title: High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22752
– year: 2018
  ident: 10.1016/j.neuroimage.2024.120892_bib0021
  article-title: The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.007
– volume: 52
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120892_bib0041
  article-title: Quantification of paramagnetic ions in human brain tissue using EPR
  publication-title: Braz. J. Phys.
  doi: 10.1007/s13538-022-01098-4
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0051
  article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17010100
– year: 2017
  ident: 10.1016/j.neuroimage.2024.120892_bib0001
  article-title: The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/aww278
– volume: 17
  start-page: 327
  year: 1993
  ident: 10.1016/j.neuroimage.2024.120892_bib0013
– year: 2018
  ident: 10.1016/j.neuroimage.2024.120892_bib0018
  article-title: Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's Disease
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.8b00194
– year: 2017
  ident: 10.1016/j.neuroimage.2024.120892_bib0014
  article-title: Heterogeneity of cortical lesion susceptibility mapping in multiple sclerosis
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5150
– volume: 14–15
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120892_bib0040
  article-title: Evaluation of multi-channel phase reconstruction methods for quantitative susceptibility mapping on postmortem human brain
  publication-title: J. Magn. Reson. Open
– volume: 6
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0027
  article-title: A novel approach to quantify different iron forms in ex-vivo human brain tissue
  publication-title: Sci. Rep.
  doi: 10.1038/srep38916
– volume: 1790
  start-page: 606
  year: 2009
  ident: 10.1016/j.neuroimage.2024.120892_bib0049
  article-title: Iron, the substantia nigra and related neurological disorders
  publication-title: Biochim. Biophys. Acta BBA Gen. Subj.
  doi: 10.1016/j.bbagen.2008.08.005
– volume: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120892_bib0019
  article-title: Analysis of trace elements in human brain: its aim, methods, and concentration levels
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00115
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0039
  article-title: Patterns of brain iron accumulation in vascular dementia and alzheimer's dementia using quantitative susceptibility mapping imaging
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-151037
– volume: 31
  start-page: 1116
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120892_bib0056
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 78
  start-page: 68
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120892_bib0058
  article-title: Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.022
– volume: 72
  start-page: 563
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120892_bib0042
  article-title: Phase reconstruction from multiple coil data using a virtual reference coil
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24932
– volume: 73
  start-page: 843
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120892_bib0043
  article-title: Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25137
– year: 2018
  ident: 10.1016/j.neuroimage.2024.120892_bib0032
  article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26830
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2024.120892_bib0024
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– year: 2015
  ident: 10.1016/j.neuroimage.2024.120892_bib0052
  article-title: Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.010
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0033
  article-title: Magnetic susceptibility contrast variations in multiple sclerosis lesions
  publication-title: J. Magn. Reson. Imaging
– volume: 33
  start-page: 559
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120892_bib0004
  article-title: Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2*
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2015.02.021
– volume: 86
  start-page: 1241
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120892_bib0006
  article-title: QSM reconstruction challenge 2.0: design and report of results
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28754
– volume: 305
  start-page: 674
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120892_bib0012
  article-title: Swallow tail sign: revisited
  publication-title: Radiology
  doi: 10.1148/radiol.212696
– year: 2013
  ident: 10.1016/j.neuroimage.2024.120892_bib0029
  article-title: Quantitative susceptibility mapping in multiple sclerosis
  publication-title: Radiology
  doi: 10.1148/radiol.12120707
– year: 2013
  ident: 10.1016/j.neuroimage.2024.120892_bib0002
  article-title: In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081093
– volume: 1275
  start-page: 161
  year: 1996
  ident: 10.1016/j.neuroimage.2024.120892_bib0022
  article-title: The ferritins: molecular properties, iron storage function and cellular regulation
  publication-title: Biochim. Biophys. Acta BBA Bioenerg.
  doi: 10.1016/0005-2728(96)00022-9
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0057
  article-title: Quantitative susceptibility mapping and R2∗ measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4825
– volume: 71
  start-page: 1103
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120892_bib0045
  article-title: Multicenter mapping in the healthy brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24772
– volume: 646
  start-page: 23
  year: 2009
  ident: 10.1016/j.neuroimage.2024.120892_bib0005
  article-title: Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.05.022
– year: 2015
  ident: 10.1016/j.neuroimage.2024.120892_bib0053
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25358
– volume: 44
  start-page: 59
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0035
  article-title: Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25130
– volume: 178
  start-page: 42
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120892_bib0050
  article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2005.08.013
– year: 2017
  ident: 10.1016/j.neuroimage.2024.120892_bib0025
  article-title: Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.08.019
– volume: 13
  start-page: 15
  year: 2008
  ident: 10.1016/j.neuroimage.2024.120892_bib0011
  article-title: Spin concentration measurements of high-spin (g′ = 4.3) rhombic iron(III) ions in biological samples: theory and application
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-007-0304-0
– volume: 229
  year: 1971
  ident: 10.1016/j.neuroimage.2024.120892_bib0009
  article-title: Electron spin resonance and Mössbauer effect studies of ferritin
  publication-title: Biochim. Biophys. Acta BBA
– year: 2014
  ident: 10.1016/j.neuroimage.2024.120892_bib0016
  article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages
  publication-title: Radiology
  doi: 10.1148/radiol.13130353
– volume: 28
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120892_bib0026
  article-title: Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2013.09.006
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120892_bib0030
  article-title: Quantitative susceptibility mapping in Parkinson's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162460
– year: 2019
  ident: 10.1016/j.neuroimage.2024.120892_bib0015
  article-title: Iron deposition in Parkinson's disease by quantitative susceptibility mapping
  publication-title: BMC Neurosci.
  doi: 10.1186/s12868-019-0505-9
– volume: 24
  start-page: 1129
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120892_bib0036
  article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF)
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1670
– volume: 25
  start-page: 748
  year: 2007
  ident: 10.1016/j.neuroimage.2024.120892_bib0044
  article-title: T2* measurements in human brain at 1.5, 3 and 7 T
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.02.014
SSID ssj0009148
Score 2.4640396
Snippet •R2* and QSM show variable regional contrast patterns. With similar contrast in iron-rich structures.•Iron and its molecular form as ferritin were shown to be...
Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 120892
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
atomic absorption spectrometry
Basal ganglia
Brain
Brain - diagnostic imaging
Brain - metabolism
Brain mapping
death
electron paramagnetic resonance spectroscopy
Electron spin resonance
Electron Spin Resonance Spectroscopy - methods
Female
Ferritin
Ferritins - analysis
Ferritins - metabolism
Gray Matter - diagnostic imaging
Gray Matter - metabolism
hippocampus
Humans
Iron
Iron - analysis
Iron - metabolism
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic susceptibility
Male
Mass spectrometry
Mass Spectrometry - methods
Mass spectroscopy
Middle Aged
Neurological diseases
paramagnetism
postmortem changes
Quantitative susceptibility mapping
Red nucleus
Scientific imaging
Software
Substantia grisea
Substantia nigra
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQDxUXBOUrpSAjcSQQ2-skLqcWUVVIcECt1JtlZxxYpGarZvfQf9Kf2xk7CQ1I0APHrO3Emhl73qxnnhl7IzziZCo_M4XzGKCAzn1jyhxA1bgnN3TjNmVbfC2PTxefz_TZrau-KCcs0QMnwb0PAAJ8K8gR44ZbewAX0O0BSO0LHdlL0eeNwdRIt4sof8jbSdlckR1yeY5rFGNCuXgnZFEbOXNGkbN_5pP-xJy_p07e8kVHD9mDAUTygzT5R-xe6HbY9pfhmPwxuz5cri4GBfCYjO76NU__0_ccYSrHKXZUvsj7TR8TW2KO7BV3HfBvEpuJtuH7Pj_A4ecYPAfgFT8JaD9vsbHveazQJKqD9WUaNd6nw4lMfHo9BvMrovQIPPLYPmGnR59OPh7nwxUMeaPReeeulKY0DQaZKHCnZVGiAqnmCR-KtlKlaZVsEWKpSvm6QbQnFOjCV62BUodaPWVb3aoLzxkHLdAKAMrKlQvA7k430OpYOVsJ4TMmRl3Yi8S0YccUtJ_2l_4s6c8m_WXskJQ29Seu7PgDWpAdLMj-y4IyZkaV27EcFTdQfNHyDhP4MI0dIEuCInccvTdamB22jt4qotyviA0rY6-nZlz0dJLjurDaUB8Msw0xMf2tj15g8GgkfuZZMtpJTspQoZxQGatn5jwT5LylW_6I5ONCxJPbevd_iP4Fu0_ioNpOoffY1vpyE14iyFv7V3E93wBmalTy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIgL4puUgozEkUAcx0kMB9QiqgoJDqiV9mbFGaddpCbLZvfQf8LPZcZxsgSkqsfEduJkxuM39swzY2-ERZxM6Wc6qSw6KKBiW-s8BpAl2uSaTtymaIvv-clZ9nWhFmHBrQ9hlaNN9IYauprWyN9LYiIviCTo0-pXTKdG0e5qOELjNrtD1GUU0lUsih3prsiGVDgl4xIrhEieIb7L80UuL3HUopeYZu9EmpQ6nU1PnsV_Nkv9j0L_Dab8a3Y6fsDuB1jJDwc9eMhuufYRu_stbJw_Zr-Plt0qiIT78PSq3_Bh5b7nCFw5drGlhEbeb3sf6uKjZq941QL_kWIxETmcf-CH2PwS3WkHvOCnDjXqLRb2Pfc5m0R-sFkPrcYTdjjRi0-PR_e-I5IPxz2z7RN2dvzl9PNJHA5liGuF03lc5anOdY1upwSoUB45ipSyoPAiaQqZ60amDYIuWUhb1oj_hASV2KLRkCtXyqdsr-1a95xxUAL1AiAvqjwDrF6pGhrlc2kLIWzExCgLsxq4N8wYlPbT7ORnSH5mkF_EjkhoU31iz_Y3uvW5CYPROAABthEE7nASLy1-iUMoBZAqmygVMT2K3IwJqmhS8UHLG3Tg49Q2gJgBnNyw9cGoYSYYk97sVD9ir6diNAO0t1O1rttSHXS8NXEzXVdHZehO6hRf82xQ2uk_SU2pc0JGrJyp8-xHzkva5YWnIxfC7-WW-9f3_QW7Rx9KeZxCHbC9zXrrXiKg29hXftT-AdaSTYs
  priority: 102
  providerName: ProQuest
Title Biophysical contrast sources for magnetic susceptibility and R2 mapping: A combined 7 Tesla, mass spectrometry and electron paramagnetic resonance study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924003896
https://dx.doi.org/10.1016/j.neuroimage.2024.120892
https://www.ncbi.nlm.nih.gov/pubmed/39433113
https://www.proquest.com/docview/3127575200
https://www.proquest.com/docview/3119190776
https://www.proquest.com/docview/3154182922
https://pubmed.ncbi.nlm.nih.gov/PMC11684258
https://doaj.org/article/edd1dbf112514138bddae743dd25b055
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuiDeBsjISR9KN4ziO6Wm3arWAWKHSSnuL4thpg9Rktdk9cOF38HM74zxKQEKVuOwq8ThxPJN5xDOfCXnHNPjJWH6mgkxDgGKEr3MV-8bwBHRyjjtuY7bFMl5cRJ9WYrVHjvtaGEyr7HR_q9Odtu7OTLvZnK7LcvoNPAMwNxhA4PKWQtjtKJIo5Yc_b9M8FIvacjjBfaTusnnaHC-HGVlew5sLkWIYHbIwSFQ4MlEOyX9kqf72RP9MqPzNQp0-Ig8715LO2tE_Jnu2ekLuf-kWz5-SX_OyXndsoS5FPWu2tP1631BwXikMscKiRtrsGpfu4jJnf9CsMvQshGYEc7j8QGfQ_RpCamuopOcWpOo9NDYNdXWbCICw3bS9-l12KEKMD5eHEL9GoA9LHbrtM3JxenJ-vPC7jRn8XIBJ97M4VLHKIfTkxmQiDGJgK1ZCwUFQSB6rgocFOF5ccp3k4AMybkSgZaFMLGzCn5P9qq7sS0KNYCAbxsQyiyMD5JnITSFcPa1kTHuE9bxI1y3-Rtonpn1Pb_mXIv_Sln8emSPTBnpE0HYn6s1l2olQao1hRhcMHTww5ImGJ7HgThkTCh0I4RHVszzti1RBrcKFyjsM4GjoOxLmO_Y-6CUs7RRKk3IE4peIkeWRt0MzqAJc38kqW--QBoJvhfhM_6IREYSUKoTbvGiFdpgnrrB8jnGPJCNxHk3kuKUqrxwkOWNuPTd59V9P_po8wCMs9WTigOxvNzv7Bny-rZ64lxp-5UpOyL3Zx8-LJfzPT5ZfzybuO8oN7qdd4g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgJeEP8pDDASvBEWx3ESgxBaYVPHtgpNnbQ3k8TO1klLS9MK7ZvwKfiM3DlJS0Ga9rLH1n_q5M7n39V3vwN4zTPEyZR-pvw0QwfFSC_LVeQZIxK0yTlV3KZoi0HUPwq_HsvjNfjd5sJQWGVrE52hNuOc_iPfFMREHhNJ0KfJD4-qRtHtaltCo1aLPXvxE1226uPuF5TvmyDY2R5-7ntNVQEvl3geeWkUqEjl6DcJY1KcMMI1URoPfvCLWESqEEGBqEHEIktyBDBcGOlncaFMJG0icN4bsB4KdGU6sN7bHnw7XNL88rBOvpPCSzhXTexQHVHmGCpH52gn0C8Nwnc88BMVrByIrm7Ayrn4P-79N3zzr_Nw5y7caYAs26o17x6s2fI-3DxoruofwK_eaDxplIC5gPi0mrH6rqBiCJUZLrGkFEpWzSsXXOPidC9YWhp2GGAzUUecvGdbOPwcHXhrWMyGFnX4LTZWFXNZokS3MJvWo9qaPowIzRfTTy25G6jczHHpPoSjaxHYI-iU49I-AWYkR000JorTKDTYPZW5KaTL3o05z7rAW1noSc32odswuDO9lJ8m-elafl3okdAW_Ymv230xnp7oZvtraww3WcEJTiJsSDJ8EovgzZhAZr6UXVCtyHWbEotGHCcaXWEBHxZjG9hUw6Erjt5oNUw35qvSy83WhVeLZjQ8dJuUlnY8pz7o6itig7qsjwzRgVUB_szjWmkX70koStbjogvJijqvvMjVlnJ06gjQOXe3x8nTy9f-Em71hwf7en93sPcMbtNDUxYplxvQmU3n9jnCyVn2otnDDL5ft9n4A7O-iaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkCZeEP8JDDASvBEW23ESgxDaGNXGYEJok_pmktgZRVpSmlZo34TPwqfjzk5SCtK0lz22_lMndz7_rr77HSHPWAE4GdPPVJQX4KAYGRalSkJjRAY2ucSK2xhtcZjsHccfxnK8Rn73uTAYVtnbRGeoTVPif-RbApnIUyQJ2qq6sIjPu6O30x8hVpDCm9a-nIZXkQN79hPct_bN_i7I-jnno_dH7_bCrsJAWEo4m8I84SpRJfhQwpgcJk9gfZjSAx-iKhWJqgSvAEGIVBRZCWCGCSOjIq2USaTNBMx7hVxNhWS4x9JxuiT8ZbFPw5MizBhTXRSRjy1zXJWTU7AY4KHy-CXjUab4ytHoKgisnJD_I-B_Azn_OhlHN8j1DtLSba-DN8marW-RjU_dpf1t8mtn0kw7daAuND5v59TfGrQUQDOFJdaYTEnbRevCbFzE7hnNa0O_cGhGEomTV3Qbhp-CK28NTemRBW1-AY1tS12-KBIvzGd-VF_dhyK1-TD9zKLjAWpOHavuHXJ8KeK6S9brprb3CTWSgU4ak6R5EhvonsvSVNLl8aaMFQFhvSz01PN-6D4g7rteyk-j_LSXX0B2UGhDf2Tudl80sxPdGQJtjWGmqBgCSwAQWQFPYgHGGcNlEUkZENWLXPfJsWDOYaLJBRbwehjbASgPjC44erPXMN0ZslYvt11Ang7NYILwXimvbbPAPuD0K-SFOq-PjMGVVRx-5p5X2uE9CYVpe0wEJFtR55UXudpST745KnTG3D1y9uD8tT8hG2As9Mf9w4OH5Bo-M6aTMrlJ1uezhX0EuHJePHYbmJKvl20x_gB1H4x0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+contrast+sources+for+magnetic+susceptibility+and+R2+mapping%3A+A+combined+7+Tesla%2C+mass+spectrometry+and+electron+paramagnetic+resonance+study&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Otsuka%2C+F%C3%A1bio+Seiji&rft.au=Otaduy%2C+Maria+Concepci%C3%B3n+Garcia&rft.au=Rodriguez%2C+Roberta+Diehl&rft.au=Langkammer%2C+Christian&rft.date=2024-11-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=302&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120892&rft.externalDocID=S1053811924003896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon