Deciphering and Prediction of Transcriptome Dynamics under Fluctuating Field Conditions

Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 151; no. 6; pp. 1358 - 1369
Main Authors Nagano, Atsushi J., Sato, Yutaka, Mihara, Motohiro, Antonio, Baltazar A., Motoyama, Ritsuko, Itoh, Hironori, Nagamura, Yoshiaki, Izawa, Takeshi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.12.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms. [Display omitted] ► Deciphering rice leaf transcriptome dynamics under complex field conditions ► Field transcriptome is primarily influenced by ambient temperature and circadian clock ► Response thresholds to light were very low for many light-responsive genes ► Modeling transcriptome fluctuations in changing environments yields predictive data A massive integration of transcriptome and meteorological data organized by statistical modeling reveals the endogenous and environment factors that drive gene expression changes in rice plants in a paddy field. The model reveals insights into the dominant influences on specific pathways and enables predictions for how rising temperatures may affect plants at the transcriptional level.
AbstractList Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.
Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.
Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms. [Display omitted] ► Deciphering rice leaf transcriptome dynamics under complex field conditions ► Field transcriptome is primarily influenced by ambient temperature and circadian clock ► Response thresholds to light were very low for many light-responsive genes ► Modeling transcriptome fluctuations in changing environments yields predictive data A massive integration of transcriptome and meteorological data organized by statistical modeling reveals the endogenous and environment factors that drive gene expression changes in rice plants in a paddy field. The model reveals insights into the dominant influences on specific pathways and enables predictions for how rising temperatures may affect plants at the transcriptional level.
Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.
Author Nagamura, Yoshiaki
Izawa, Takeshi
Antonio, Baltazar A.
Nagano, Atsushi J.
Mihara, Motohiro
Sato, Yutaka
Motoyama, Ritsuko
Itoh, Hironori
Author_xml – sequence: 1
  givenname: Atsushi J.
  surname: Nagano
  fullname: Nagano, Atsushi J.
  organization: Photosynthesis and Photobiology Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 2
  givenname: Yutaka
  surname: Sato
  fullname: Sato, Yutaka
  organization: Genome Resource Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 3
  givenname: Motohiro
  surname: Mihara
  fullname: Mihara, Motohiro
  organization: Plant Genomics Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 4
  givenname: Baltazar A.
  surname: Antonio
  fullname: Antonio, Baltazar A.
  organization: Genome Resource Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 5
  givenname: Ritsuko
  surname: Motoyama
  fullname: Motoyama, Ritsuko
  organization: Genome Resource Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 6
  givenname: Hironori
  surname: Itoh
  fullname: Itoh, Hironori
  organization: Photosynthesis and Photobiology Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 7
  givenname: Yoshiaki
  surname: Nagamura
  fullname: Nagamura, Yoshiaki
  email: nagamura@affrc.go.jp
  organization: Genome Resource Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
– sequence: 8
  givenname: Takeshi
  surname: Izawa
  fullname: Izawa, Takeshi
  email: tizawa@nias.affrc.go.jp
  organization: Photosynthesis and Photobiology Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23217716$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFL8ABcuSSxX9jR-KCtl1AqkSltuJoeZ1x8SqxF9tB6revo20vHMpppNHvzei9d4ZOQgyA0HuC1wST7vN-bWEc1xQTWhdrzNUrtCK4ly0nkp6gFcY9bVUn-Sk6y3mPMVZCiDfolDJKpCTdCv26AOsPvyH5cN-YMDTXCQZvi4-hia65TSZkm_yhxAmai4dgJm9zM4cBUrMdZ1tmUxbp1sM4NJsYBr9o81v02pkxw7uneY7utpe3m-_t1c9vPzZfr1orKCut62UvmOwkc9AbSXvX7RTvuKKqE9w5J20vjVGSK0U4BSBUYifZzgnJneTsHH063j2k-GeGXPTk8xKLCRDnrGk1jXnPqPwvSiiTNTDBF_TDEzrvJhj0IfnJpAf9nFsF1BGwKeacwGnri1mcl2T8qAnWS0V6r5cHeqlo2dWKqpT-I32-_qLo41HkTNTmPvms724q0FV3VHSEVeLLkYCa9l8PSWfrIdjaZgJb9BD9Sw8eATdpsd8
CitedBy_id crossref_primary_10_1186_s12915_024_01951_9
crossref_primary_10_1111_mec_13055
crossref_primary_10_1007_s11103_021_01149_5
crossref_primary_10_3389_fpls_2016_00820
crossref_primary_10_1093_gigascience_giz009
crossref_primary_10_1016_j_pbi_2014_07_011
crossref_primary_10_1098_rstb_2023_0346
crossref_primary_10_1080_15592324_2017_1342026
crossref_primary_10_1146_annurev_phyto_080516_035623
crossref_primary_10_1371_journal_pone_0288818
crossref_primary_10_1111_nph_12853
crossref_primary_10_1016_j_stress_2024_100676
crossref_primary_10_1146_annurev_arplant_043014_115619
crossref_primary_10_1038_nrg3976
crossref_primary_10_1186_s12870_019_1705_2
crossref_primary_10_1186_1471_2229_14_101
crossref_primary_10_1186_s12864_024_10803_3
crossref_primary_10_1073_pnas_1418483111
crossref_primary_10_1186_s12864_016_3022_6
crossref_primary_10_3389_fpls_2015_00740
crossref_primary_10_1016_j_envexpbot_2024_106014
crossref_primary_10_1093_plphys_kiac107
crossref_primary_10_1093_plphys_kiad558
crossref_primary_10_1093_pcp_pcab088
crossref_primary_10_3390_ijms15046137
crossref_primary_10_1093_bioinformatics_btaa129
crossref_primary_10_1117_1_JBO_24_3_031007
crossref_primary_10_1186_s13007_019_0436_6
crossref_primary_10_1371_journal_pone_0098465
crossref_primary_10_1038_s41477_018_0338_z
crossref_primary_10_1146_annurev_arplant_060223_032108
crossref_primary_10_1111_pce_14439
crossref_primary_10_1016_j_pbi_2015_05_002
crossref_primary_10_1016_j_tplants_2013_05_003
crossref_primary_10_3390_plants12010166
crossref_primary_10_1098_rspb_2020_2568
crossref_primary_10_2525_ecb_56_67
crossref_primary_10_1002_1438_390X_1010
crossref_primary_10_3389_fpls_2016_01114
crossref_primary_10_1007_s00122_021_04001_y
crossref_primary_10_1111_pce_14280
crossref_primary_10_1016_j_pbi_2016_01_005
crossref_primary_10_1016_j_jtbi_2015_09_017
crossref_primary_10_1093_pcp_pcae001
crossref_primary_10_1371_journal_pone_0134099
crossref_primary_10_1038_s41598_018_34274_1
crossref_primary_10_1038_srep35946
crossref_primary_10_1111_nph_17289
crossref_primary_10_1038_s41477_018_0267_x
crossref_primary_10_1093_pcp_pcaa046
crossref_primary_10_1038_s41477_020_00808_7
crossref_primary_10_1111_mec_17079
crossref_primary_10_3389_fgene_2019_01239
crossref_primary_10_1016_j_cell_2012_11_031
crossref_primary_10_1002_pld3_99
crossref_primary_10_1016_j_agrformet_2020_107931
crossref_primary_10_1371_journal_pgen_1010947
crossref_primary_10_1007_s00425_023_04324_8
crossref_primary_10_1016_j_cosust_2018_03_005
crossref_primary_10_1007_s00438_015_1046_2
crossref_primary_10_3389_fpls_2022_903539
crossref_primary_10_1111_pce_15466
crossref_primary_10_15252_embj_2020105086
crossref_primary_10_1111_tpj_14167
crossref_primary_10_1093_pcp_pcx084
crossref_primary_10_1111_gcb_15471
crossref_primary_10_1073_pnas_2025899118
crossref_primary_10_1093_pcp_pct163
crossref_primary_10_1093_plcell_koac322
crossref_primary_10_3732_ajb_1600340
crossref_primary_10_1016_j_tplants_2022_01_008
crossref_primary_10_7554_eLife_08411
crossref_primary_10_1073_pnas_2402697121
crossref_primary_10_1038_srep07709
crossref_primary_10_1038_srep14476
crossref_primary_10_1111_tpj_13800
crossref_primary_10_1186_s12870_022_03979_x
crossref_primary_10_1186_s13007_022_00930_x
crossref_primary_10_1266_ggs_21_00040
crossref_primary_10_1111_tpj_14176
crossref_primary_10_3389_fpls_2016_00087
crossref_primary_10_1016_j_pbi_2015_01_004
crossref_primary_10_1016_j_semcdb_2013_02_007
crossref_primary_10_1080_1343943X_2020_1834867
crossref_primary_10_1093_treephys_tpab149
crossref_primary_10_1146_annurev_arplant_070522_065329
crossref_primary_10_2525_shita_31_189
crossref_primary_10_1016_j_jbiotec_2020_12_020
crossref_primary_10_1038_s44320_025_00086_5
crossref_primary_10_3390_plants10081647
crossref_primary_10_1093_femsec_fiw176
crossref_primary_10_1016_j_plaphy_2018_08_002
crossref_primary_10_1007_s11032_020_1101_5
crossref_primary_10_3390_biology8010014
crossref_primary_10_1016_j_cub_2021_03_046
crossref_primary_10_1038_s41598_019_39720_2
crossref_primary_10_7554_eLife_87202_3
crossref_primary_10_1266_ggs_15_00065
crossref_primary_10_1093_hr_uhad048
crossref_primary_10_1007_s11105_020_01215_0
crossref_primary_10_1111_pce_15160
crossref_primary_10_1111_nph_17650
crossref_primary_10_3389_fpls_2021_804468
crossref_primary_10_1038_s41598_020_63440_7
crossref_primary_10_1038_s41559_016_0024
crossref_primary_10_1071_FP21088
crossref_primary_10_1111_plb_12075
crossref_primary_10_3390_ijms231911585
crossref_primary_10_1111_pbi_12949
crossref_primary_10_1016_j_ecolmodel_2019_108805
crossref_primary_10_1038_s41598_021_90791_6
crossref_primary_10_1093_plcell_koac263
crossref_primary_10_1016_j_molp_2020_09_007
crossref_primary_10_1038_s41598_023_37038_8
crossref_primary_10_1111_pce_14367
crossref_primary_10_1016_j_cj_2022_06_011
crossref_primary_10_1016_j_ygeno_2021_07_024
crossref_primary_10_3390_biom11060852
crossref_primary_10_1038_s43016_021_00280_2
crossref_primary_10_1094_PHYTO_05_22_0179_R
crossref_primary_10_3389_fpls_2014_00207
crossref_primary_10_15252_msb_20209667
crossref_primary_10_1007_s11105_022_01335_9
crossref_primary_10_1038_srep11108
crossref_primary_10_3390_ijms18030475
crossref_primary_10_1111_nph_13733
crossref_primary_10_1270_jsbbs_20098
crossref_primary_10_1038_s41598_018_26735_4
crossref_primary_10_1093_pcp_pcu169
crossref_primary_10_1016_j_jia_2024_08_026
crossref_primary_10_3719_weed_68_41
crossref_primary_10_1016_j_envexpbot_2021_104724
crossref_primary_10_1111_jipb_12547
crossref_primary_10_1038_s41598_019_39608_1
crossref_primary_10_1186_s12284_016_0107_4
crossref_primary_10_1111_pbi_12559
crossref_primary_10_3389_fpls_2018_01880
crossref_primary_10_1186_s12870_023_04223_w
crossref_primary_10_7554_eLife_87202
crossref_primary_10_1093_jxb_ery276
crossref_primary_10_1007_s11284_018_1625_x
crossref_primary_10_1002_jev2_12049
crossref_primary_10_1007_s11104_018_3834_z
crossref_primary_10_1093_bioinformatics_btx049
crossref_primary_10_1093_plcell_koab275
crossref_primary_10_1111_ele_12338
crossref_primary_10_1016_j_pbi_2015_02_003
crossref_primary_10_1038_s41467_021_23766_w
crossref_primary_10_1093_nargab_lqad067
crossref_primary_10_1098_rstb_2021_0116
crossref_primary_10_1111_tpj_15226
crossref_primary_10_1002_arch_22137
crossref_primary_10_1038_s41477_020_00757_1
crossref_primary_10_1146_annurev_ecolsys_110316_022706
crossref_primary_10_1111_tpj_16716
crossref_primary_10_3389_fpls_2014_00193
crossref_primary_10_1038_ncomms3303
crossref_primary_10_1007_s00122_016_2691_5
crossref_primary_10_1038_s41598_018_37465_y
crossref_primary_10_1038_nbt_2479
crossref_primary_10_1111_pbi_12176
crossref_primary_10_1093_jxb_erw020
crossref_primary_10_1071_FP14018
crossref_primary_10_3389_fpls_2019_01614
Cites_doi 10.1016/B978-0-12-387690-4.00004-0
10.1093/nar/gkm978
10.1186/1471-2229-11-10
10.1016/j.cell.2009.11.029
10.1146/annurev-genet-102209-163432
10.1093/jxb/erp304
10.1093/comjnl/7.4.308
10.1111/j.1365-3040.2012.02555.x
10.1093/nar/gkq989
10.1371/journal.pgen.1002662
10.1093/nar/gkr1090
10.1093/nar/gkr988
10.1038/nature09670
10.1038/ng.606
10.1534/genetics.111.128553
10.1111/j.1365-313X.2008.03656.x
10.1073/pnas.93.15.8129
10.1038/nature03895
10.1105/tpc.111.083238
10.1371/journal.pone.0012887
10.1111/j.2517-6161.1995.tb02031.x
10.21273/HORTSCI.18.6.818
10.1186/gb-2002-3-9-research0048
10.1007/978-94-007-0632-3
10.1038/nature04785
10.1126/science.1196419
10.1104/pp.122.1.147
10.1073/pnas.0914293107
10.1126/science.290.5499.2110
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.cell.2012.10.048
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1369
ExternalDocumentID 23217716
10_1016_j_cell_2012_10_048
US201600025613
S0092867412013529
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
ZY4
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
AALRI
AAQXK
ABEFU
ABPTK
ADMUD
AEQTP
AETEA
AI.
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
XFK
YYP
ZGI
ZHY
ZKB
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c523t-f979537673fe9a729f6b8464828654fff7c97aa87488142ee1270f73bf574f743
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Jul 10 23:09:18 EDT 2025
Fri Jul 11 15:21:34 EDT 2025
Thu Jan 02 22:14:52 EST 2025
Tue Jul 01 03:52:05 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Dec 27 19:12:53 EST 2023
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-f979537673fe9a729f6b8464828654fff7c97aa87488142ee1270f73bf574f743
Notes http://dx.doi.org/10.1016/j.cell.2012.10.048
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867412013529
PMID 23217716
PQID 1237092547
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000049327
proquest_miscellaneous_1237092547
pubmed_primary_23217716
crossref_citationtrail_10_1016_j_cell_2012_10_048
crossref_primary_10_1016_j_cell_2012_10_048
fao_agris_US201600025613
elsevier_sciencedirect_doi_10_1016_j_cell_2012_10_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-07
PublicationDateYYYYMMDD 2012-12-07
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Franklin, Quail (bib2) 2010; 61
Morita (bib12) 2009; 52
Itoh, Nonoue, Yano, Izawa (bib8) 2010; 42
Richards, Rosas, Banta, Bhambhra, Purugganan (bib13) 2012; 8
(bib6) 2005; 436
(bib7) 2007
Shinomura, Uchida, Furuya (bib18) 2000; 122
Hoffmann, Sgrò (bib5) 2011; 470
Salazar, Saithong, Brown, Foreman, Locke, Halliday, Carré, Rand, Millar (bib15) 2009; 139
Izawa, Mihara, Suzuki, Gupta, Itoh, Nagano, Motoyama, Sawada, Yano, Hirai (bib10) 2011; 23
Shinomura, Nagatani, Hanzawa, Kubota, Watanabe, Furuya (bib17) 1996; 93
Harmer, Hogenesch, Straume, Chang, Han, Zhu, Wang, Kreps, Kay (bib3) 2000; 290
Levy, Kaniewska, Alon, Eisenberg, Karako-Lampert, Bay, Reef, Rodriguez-Lanetty, Miller, Hoegh-Guldberg (bib11) 2011; 331
Ronald (bib14) 2011; 188
Sato, Antonio, Namiki, Motoyama, Sugimoto, Takehisa, Minami, Kamatsuki, Kusaba, Hirochika, Nagamura (bib16) 2011; 11
Izawa (bib9) 2012; 35
Doherty, Kay (bib1) 2010; 44
Hayes, Beatty, Meng, Simmons, Habben, Danilevskaya (bib4) 2010; 5
Hayes (10.1016/j.cell.2012.10.048_bib4) 2010; 5
Shinomura (10.1016/j.cell.2012.10.048_bib18) 2000; 122
Shinomura (10.1016/j.cell.2012.10.048_bib17) 1996; 93
(10.1016/j.cell.2012.10.048_bib6) 2005; 436
10.1016/j.cell.2012.10.048_bib22
10.1016/j.cell.2012.10.048_bib23
10.1016/j.cell.2012.10.048_bib24
10.1016/j.cell.2012.10.048_bib25
Levy (10.1016/j.cell.2012.10.048_bib11) 2011; 331
10.1016/j.cell.2012.10.048_bib20
10.1016/j.cell.2012.10.048_bib21
10.1016/j.cell.2012.10.048_bib26
10.1016/j.cell.2012.10.048_bib27
10.1016/j.cell.2012.10.048_bib28
Hoffmann (10.1016/j.cell.2012.10.048_bib5) 2011; 470
10.1016/j.cell.2012.10.048_bib29
Harmer (10.1016/j.cell.2012.10.048_bib3) 2000; 290
Franklin (10.1016/j.cell.2012.10.048_bib2) 2010; 61
10.1016/j.cell.2012.10.048_bib33
Itoh (10.1016/j.cell.2012.10.048_bib8) 2010; 42
Ronald (10.1016/j.cell.2012.10.048_bib14) 2011; 188
Izawa (10.1016/j.cell.2012.10.048_bib9) 2012; 35
10.1016/j.cell.2012.10.048_bib30
Doherty (10.1016/j.cell.2012.10.048_bib1) 2010; 44
Sato (10.1016/j.cell.2012.10.048_bib16) 2011; 11
10.1016/j.cell.2012.10.048_bib31
10.1016/j.cell.2012.10.048_bib32
10.1016/j.cell.2012.10.048_bib19
(10.1016/j.cell.2012.10.048_bib7) 2007
Izawa (10.1016/j.cell.2012.10.048_bib10) 2011; 23
Richards (10.1016/j.cell.2012.10.048_bib13) 2012; 8
Salazar (10.1016/j.cell.2012.10.048_bib15) 2009; 139
Morita (10.1016/j.cell.2012.10.048_bib12) 2009; 52
23217702 - Cell. 2012 Dec 7;151(6):1161-2
References_xml – volume: 290
  start-page: 2110
  year: 2000
  end-page: 2113
  ident: bib3
  article-title: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
  publication-title: Science
– volume: 470
  start-page: 479
  year: 2011
  end-page: 485
  ident: bib5
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
– volume: 331
  start-page: 175
  year: 2011
  ident: bib11
  article-title: Complex diel cycles of gene expression in coral-algal symbiosis
  publication-title: Science
– volume: 35
  start-page: 1729
  year: 2012
  end-page: 1741
  ident: bib9
  article-title: Physiological significance of the plant circadian clock in natural field conditions
  publication-title: Plant Cell Environ.
– volume: 5
  start-page: e12887
  year: 2010
  ident: bib4
  article-title: Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator
  publication-title: PLoS ONE
– volume: 188
  start-page: 11
  year: 2011
  end-page: 20
  ident: bib14
  article-title: Plant genetics, sustainable agriculture and global food security
  publication-title: Genetics
– volume: 52
  start-page: 1
  year: 2009
  end-page: 78
  ident: bib12
  article-title: Eco-physiological analysis for high-temperature effects on rice-grain ripening
  publication-title: Bulletin of the National Agricultural Research Center for Kyushu Okinawa Region
– year: 2007
  ident: bib7
  article-title: Climate Change 2007: Impacts, Adaptation and Vulnerability
– volume: 42
  start-page: 635
  year: 2010
  end-page: 638
  ident: bib8
  article-title: A pair of floral regulators sets critical day length for Hd3a florigen expression in rice
  publication-title: Nat. Genet.
– volume: 61
  start-page: 11
  year: 2010
  end-page: 24
  ident: bib2
  article-title: Phytochrome functions in Arabidopsis development
  publication-title: J. Exp. Bot.
– volume: 8
  start-page: e1002662
  year: 2012
  ident: bib13
  article-title: Genome-wide patterns of Arabidopsis gene expression in nature
  publication-title: PLoS Genet.
– volume: 23
  start-page: 1741
  year: 2011
  end-page: 1755
  ident: bib10
  article-title: Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field
  publication-title: Plant Cell
– volume: 93
  start-page: 8129
  year: 1996
  end-page: 8133
  ident: bib17
  article-title: Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 436
  start-page: 793
  year: 2005
  end-page: 800
  ident: bib6
  article-title: The map-based sequence of the rice genome
  publication-title: Nature
– volume: 11
  start-page: 10
  year: 2011
  ident: bib16
  article-title: Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice
  publication-title: BMC Plant Biol.
– volume: 139
  start-page: 1170
  year: 2009
  end-page: 1179
  ident: bib15
  article-title: Prediction of photoperiodic regulators from quantitative gene circuit models
  publication-title: Cell
– volume: 122
  start-page: 147
  year: 2000
  end-page: 156
  ident: bib18
  article-title: Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis
  publication-title: Plant Physiol.
– volume: 44
  start-page: 419
  year: 2010
  end-page: 444
  ident: bib1
  article-title: Circadian control of global gene expression patterns
  publication-title: Annu. Rev. Genet.
– ident: 10.1016/j.cell.2012.10.048_bib22
– ident: 10.1016/j.cell.2012.10.048_bib24
  doi: 10.1016/B978-0-12-387690-4.00004-0
– ident: 10.1016/j.cell.2012.10.048_bib31
  doi: 10.1093/nar/gkm978
– volume: 11
  start-page: 10
  year: 2011
  ident: 10.1016/j.cell.2012.10.048_bib16
  article-title: Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-10
– volume: 139
  start-page: 1170
  year: 2009
  ident: 10.1016/j.cell.2012.10.048_bib15
  article-title: Prediction of photoperiodic regulators from quantitative gene circuit models
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.029
– volume: 44
  start-page: 419
  year: 2010
  ident: 10.1016/j.cell.2012.10.048_bib1
  article-title: Circadian control of global gene expression patterns
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102209-163432
– volume: 61
  start-page: 11
  year: 2010
  ident: 10.1016/j.cell.2012.10.048_bib2
  article-title: Phytochrome functions in Arabidopsis development
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp304
– ident: 10.1016/j.cell.2012.10.048_bib28
– ident: 10.1016/j.cell.2012.10.048_bib26
  doi: 10.1093/comjnl/7.4.308
– volume: 35
  start-page: 1729
  year: 2012
  ident: 10.1016/j.cell.2012.10.048_bib9
  article-title: Physiological significance of the plant circadian clock in natural field conditions
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2012.02555.x
– ident: 10.1016/j.cell.2012.10.048_bib29
  doi: 10.1093/nar/gkq989
– volume: 8
  start-page: e1002662
  year: 2012
  ident: 10.1016/j.cell.2012.10.048_bib13
  article-title: Genome-wide patterns of Arabidopsis gene expression in nature
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002662
– year: 2007
  ident: 10.1016/j.cell.2012.10.048_bib7
– ident: 10.1016/j.cell.2012.10.048_bib23
  doi: 10.1093/nar/gkr1090
– ident: 10.1016/j.cell.2012.10.048_bib21
  doi: 10.1093/nar/gkr988
– volume: 470
  start-page: 479
  year: 2011
  ident: 10.1016/j.cell.2012.10.048_bib5
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
  doi: 10.1038/nature09670
– volume: 42
  start-page: 635
  year: 2010
  ident: 10.1016/j.cell.2012.10.048_bib8
  article-title: A pair of floral regulators sets critical day length for Hd3a florigen expression in rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.606
– volume: 188
  start-page: 11
  year: 2011
  ident: 10.1016/j.cell.2012.10.048_bib14
  article-title: Plant genetics, sustainable agriculture and global food security
  publication-title: Genetics
  doi: 10.1534/genetics.111.128553
– ident: 10.1016/j.cell.2012.10.048_bib25
  doi: 10.1111/j.1365-313X.2008.03656.x
– volume: 93
  start-page: 8129
  year: 1996
  ident: 10.1016/j.cell.2012.10.048_bib17
  article-title: Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.15.8129
– volume: 436
  start-page: 793
  year: 2005
  ident: 10.1016/j.cell.2012.10.048_bib6
  article-title: The map-based sequence of the rice genome
  publication-title: Nature
  doi: 10.1038/nature03895
– volume: 23
  start-page: 1741
  year: 2011
  ident: 10.1016/j.cell.2012.10.048_bib10
  article-title: Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.083238
– volume: 5
  start-page: e12887
  year: 2010
  ident: 10.1016/j.cell.2012.10.048_bib4
  article-title: Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012887
– ident: 10.1016/j.cell.2012.10.048_bib20
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 10.1016/j.cell.2012.10.048_bib32
  doi: 10.21273/HORTSCI.18.6.818
– ident: 10.1016/j.cell.2012.10.048_bib33
  doi: 10.1186/gb-2002-3-9-research0048
– ident: 10.1016/j.cell.2012.10.048_bib30
  doi: 10.1007/978-94-007-0632-3
– ident: 10.1016/j.cell.2012.10.048_bib27
  doi: 10.1038/nature04785
– volume: 331
  start-page: 175
  year: 2011
  ident: 10.1016/j.cell.2012.10.048_bib11
  article-title: Complex diel cycles of gene expression in coral-algal symbiosis
  publication-title: Science
  doi: 10.1126/science.1196419
– volume: 122
  start-page: 147
  year: 2000
  ident: 10.1016/j.cell.2012.10.048_bib18
  article-title: Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.1.147
– ident: 10.1016/j.cell.2012.10.048_bib19
  doi: 10.1073/pnas.0914293107
– volume: 290
  start-page: 2110
  year: 2000
  ident: 10.1016/j.cell.2012.10.048_bib3
  article-title: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
  publication-title: Science
  doi: 10.1126/science.290.5499.2110
– volume: 52
  start-page: 1
  year: 2009
  ident: 10.1016/j.cell.2012.10.048_bib12
  article-title: Eco-physiological analysis for high-temperature effects on rice-grain ripening
  publication-title: Bulletin of the National Agricultural Research Center for Kyushu Okinawa Region
– reference: 23217702 - Cell. 2012 Dec 7;151(6):1161-2
SSID ssj0008555
Score 2.4907176
Snippet Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1358
SubjectTerms ambient temperature
Climate
Crops, Agricultural - genetics
Crops, Agricultural - physiology
diurnal rhythm
Environment
gene expression
gene expression regulation
Gene Expression Regulation, Plant
genes
Genes, Plant
leaves
Light
meteorological data
Models, Statistical
Oryza - genetics
Oryza - physiology
paddies
plant age
prediction
rice
solar radiation
statistical models
Transcriptome
Title Deciphering and Prediction of Transcriptome Dynamics under Fluctuating Field Conditions
URI https://dx.doi.org/10.1016/j.cell.2012.10.048
https://www.ncbi.nlm.nih.gov/pubmed/23217716
https://www.proquest.com/docview/1237092547
https://www.proquest.com/docview/2000049327
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4qCF7E91sieJNqmyZNe9TVxQeKoIt7C0lNZEXbZd09-O-dSdoFQT14bJlAOpnMfGnmmyHkEBB-bJLnLDJxYiKech0ZkZWRlQI8ssutjZGcfHuXXfb4dV_0Z0in5cJgWmXj-4NP9966eXPSaPNkOBggx7dgeQYREWIYwAgk8aU89yS-_tnUG-dChC4GBex8kG6IMyHHC3-OY3oXO8YML-wB9HNwmnW6_h2C-lDUXSKLDYakp2Gay2TGVitkPnSV_FwlT-e2HAw9r--F6uqZ3o_wNgZXgNaO-ujkfUX9bul56Ej_QZFMNqLdtwkySjAXmnYxuY12arzURuNcI73uxWPnMmr6J0QlHC_HkStk4au1pM4WGlC0ywzADY7MccGdc7IspNa5hE2ccGYt3kI7mRonJHcALdbJXFVXdpPQxGHRmEIzzbBeOyuMMCIubewAoFieb5GkVZwqm-Li2OPiTbVZZK8Kla1Q2fguxjFH0zHDUFrjT2nRrof6ZiAKfP-f4zZh8ZR-AZ-peg8MK-p5oJekW-SgXVEFmwpH6srWkw8F4VyCwQguf5dh4XiVMpDZCOYw_QyAqYmEk-j2Pye9QxbwyafNyF0yNx5N7B6An7HZB9h_dbPvbfwLrKT-cg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELeAaRovE9sYLR-bJ-1tCiSOHcePW1lVNkCTRrW-WXZqoyJIqtI-7L_nzk4qTRo88JrcSc7d-e7n-D4I-QwIP7XZtEhsmtmE59wkVhRV4qQAj-xL51IsTr64LEZj_mMiJhtk0NXCYFpl6_ujTw_eun1y0krzZD6bYY2vYmUBERFiGMAItUleABqQOL_hbPJt7Y5LIeIYAwVbH8jbypmY5IV_xzG_ix1jihcOAfp_dNr0pnkcg4ZYNNwhr1sQSb_Gdb4hG65-S17GsZJ_35E_p66azUNh3zU19ZT-WuB1DKqANp6G8BScRXPn6GkcSX9PsZpsQYe3KywpwWRoOsTsNjpo8FYbrXOXjIffrwajpB2gkFRwvlwmXkkV2rXk3ikDMNoXFvAGx9Jxwb33slLSmFLCLs44cw6vob3MrReSe8AW78lW3dSuR2jmsWuMMswwbNjOlBVWpJVLPSAUx8s-yTrB6artLo5DLm51l0Z2o1HYGoWNz1Lk-bLmmcfeGk9Si04f-h8L0eD8n-TrgfK0uQanqce_GbbUC0gvy_vkU6dRDbsKOU3tmtW9hnguwWAEl4_TsHi-yhnQ7EVzWH8G4NRMwlF0_5mL_kheja4uzvX52eXPA7KNb0IOjTwkW8vFyh0BElraD8HSHwB8sQCn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+and+Prediction+of+Transcriptome+Dynamics+under+Fluctuating+Field+Conditions&rft.jtitle=Cell&rft.au=Nagano%2C+Atsushi%C2%A0J&rft.au=Sato%2C+Yutaka&rft.au=Mihara%2C+Motohiro&rft.au=Antonio%2C+Baltazar%C2%A0A&rft.date=2012-12-07&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=151&rft.issue=6&rft.spage=1358&rft.epage=1369&rft_id=info:doi/10.1016%2Fj.cell.2012.10.048&rft.externalDocID=US201600025613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon