Recruited Alveolar Macrophages, in Response to Airway Epithelial–Derived Monocyte Chemoattractant Protein 1/CCL2, Regulate Airway Inflammation and Remodeling in Allergic Asthma
Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM pheno...
Saved in:
Published in | American journal of respiratory cell and molecular biology Vol. 52; no. 6; pp. 772 - 784 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. |
---|---|
AbstractList | Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells.Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. Although alveolar macrophages (AM) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. The authors observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. Thus, this study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. |
Author | Lee, Yong Gyu Deng, Jing Kelly, Elizabeth A. B. Park, Gye Young Jeong, Jong Jin Karpurapu, Manjula Ackerman, Steven J. Jarjour, Nizar N. Christman, John W. Nyenhuis, Sharmilee Natarajan, Viswanathan Qian, Feng Berdyshev, Evgeny Chung, Sangwoon Ranjan, Ravi |
Author_xml | – sequence: 1 givenname: Yong Gyu surname: Lee fullname: Lee, Yong Gyu organization: Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio – sequence: 2 givenname: Jong Jin surname: Jeong fullname: Jeong, Jong Jin organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and – sequence: 3 givenname: Sharmilee surname: Nyenhuis fullname: Nyenhuis, Sharmilee organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and – sequence: 4 givenname: Evgeny surname: Berdyshev fullname: Berdyshev, Evgeny organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and – sequence: 5 givenname: Sangwoon surname: Chung fullname: Chung, Sangwoon organization: Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio – sequence: 6 givenname: Ravi surname: Ranjan fullname: Ranjan, Ravi organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and – sequence: 7 givenname: Manjula surname: Karpurapu fullname: Karpurapu, Manjula organization: Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio – sequence: 8 givenname: Jing surname: Deng fullname: Deng, Jing organization: Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio – sequence: 9 givenname: Feng surname: Qian fullname: Qian, Feng organization: Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio – sequence: 10 givenname: Elizabeth A. B. surname: Kelly fullname: Kelly, Elizabeth A. B. organization: Allergy, Pulmonary and Critical Care Division, Department of Medicine, University of Wisconsin, Madison, Wisconsin – sequence: 11 givenname: Nizar N. surname: Jarjour fullname: Jarjour, Nizar N. organization: Allergy, Pulmonary and Critical Care Division, Department of Medicine, University of Wisconsin, Madison, Wisconsin – sequence: 12 givenname: Steven J. surname: Ackerman fullname: Ackerman, Steven J. organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and, Departments of Biochemistry and Molecular Genetics, and – sequence: 13 givenname: Viswanathan surname: Natarajan fullname: Natarajan, Viswanathan organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and, Pharmacology, University of Illinois, Chicago, Illinois – sequence: 14 givenname: John W. surname: Christman fullname: Christman, John W. organization: Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio – sequence: 15 givenname: Gye Young surname: Park fullname: Park, Gye Young organization: Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25360868$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAURiNURH9gzwpZYsOiae3YniQbpFEoUGmqogrWluPczLhy7MF2Bs2Od-ib9JF4EhxmqKASYmVLPvf42vc7zg6ss5BlLwk-I2TGz70a2rMCE5bjgvPr5kl2RDjlOaur-iDtMWM54aw-zI5DuMWYFBUhz7LDgtMZrmbVUXZ_A8qPOkKH5mYDzkiPrqTybr2SSwinSFt0A2HtbAAUHZpr_01u0cVaxxUYLc2P73fvwOtNElw569Q2AmpWMDgZo5cqShvRJ-8iJBE5b5pFcZqEy9HIBO5tl7Y3chhk1M4iabsEDK5Leruc7p8bA36pFZqHuBrk8-xpL02AF_v1JPvy_uJz8zFfXH-4bOaLXPGCxryvGYcaOtophllBu7bsaNFLpWjL6pLgFhPZMUyrmpRVyxjvq6qligCFrlM9Pcne7rzrsR2gU2DTg4xYez1IvxVOavH3idUrsXQbwVhNCCVJ8GYv8O7rCCGKQQcFxkgLbgyClGlyVVmUxf_RWcVLVvOiTOjrR-itG71NPzFRZUlSEibq1Z_NP3T9e_IJwDsgzToED_0DQrCYwiWmcIkpXGIXrlQye1SidPw1tPR8bf5d-BOxG9i0 |
CitedBy_id | crossref_primary_10_1016_j_jaci_2016_11_035 crossref_primary_10_3389_fimmu_2018_01906 crossref_primary_10_1371_journal_ppat_1011556 crossref_primary_10_1016_j_mucimm_2023_05_002 crossref_primary_10_1182_blood_2022016192 crossref_primary_10_1016_j_anai_2019_06_018 crossref_primary_10_1002_jcp_30422 crossref_primary_10_1007_s00432_022_04056_4 crossref_primary_10_1016_j_cyto_2022_156060 crossref_primary_10_1016_j_bcp_2018_07_003 crossref_primary_10_1111_cea_13054 crossref_primary_10_1016_j_immuni_2022_08_010 crossref_primary_10_1152_ajplung_00089_2015 crossref_primary_10_4049_jimmunol_1601975 crossref_primary_10_1038_s41420_023_01724_3 crossref_primary_10_2147_JIR_S301292 crossref_primary_10_4049_immunohorizons_2000096 crossref_primary_10_1111_all_14011 crossref_primary_10_1016_j_intimp_2019_105706 crossref_primary_10_1165_rcmb_2014_0111OC crossref_primary_10_1007_s11882_016_0631_8 crossref_primary_10_1186_s12967_020_02251_w crossref_primary_10_1007_s11882_017_0681_6 crossref_primary_10_1164_rccm_202211_2074ED crossref_primary_10_18632_oncotarget_8162 crossref_primary_10_1016_j_bbadis_2022_166531 crossref_primary_10_1016_j_alit_2023_06_004 crossref_primary_10_1186_s13223_019_0379_5 crossref_primary_10_1371_journal_ppat_1010608 crossref_primary_10_1016_j_vaccine_2019_09_095 crossref_primary_10_1242_jcs_234641 crossref_primary_10_14814_phy2_13677 crossref_primary_10_1038_aps_2017_147 crossref_primary_10_1038_s41598_017_17007_8 crossref_primary_10_3390_medsci6010004 crossref_primary_10_1016_j_matt_2024_09_016 crossref_primary_10_3389_fimmu_2021_722170 crossref_primary_10_1016_j_freeradbiomed_2015_08_010 crossref_primary_10_1038_s41392_024_01745_z crossref_primary_10_1152_ajplung_00102_2015 crossref_primary_10_1177_15593258221117349 crossref_primary_10_1016_j_omtn_2019_10_049 crossref_primary_10_1165_rcmb_2016_0188ED crossref_primary_10_3389_fimmu_2015_00568 crossref_primary_10_3390_cells12070994 crossref_primary_10_3390_ijms252413699 crossref_primary_10_3389_fmed_2020_00326 crossref_primary_10_1016_j_jconrel_2021_08_024 crossref_primary_10_1016_j_intimp_2021_108009 crossref_primary_10_1016_j_alit_2016_06_010 crossref_primary_10_2139_ssrn_4096591 crossref_primary_10_1111_cei_13253 crossref_primary_10_7717_peerj_17106 crossref_primary_10_1016_j_trsl_2017_09_002 crossref_primary_10_1016_j_ijbiomac_2023_128856 crossref_primary_10_3389_fimmu_2023_1279677 crossref_primary_10_1093_jmcb_mjz054 crossref_primary_10_3389_fimmu_2019_00364 crossref_primary_10_1111_all_13626 crossref_primary_10_3390_antiox12040922 crossref_primary_10_3389_fimmu_2021_663726 crossref_primary_10_1016_j_jff_2020_103991 crossref_primary_10_3389_fimmu_2021_772004 crossref_primary_10_3389_fcell_2023_1164544 crossref_primary_10_1007_s00011_021_01475_w crossref_primary_10_2174_1871523020666210920100707 crossref_primary_10_1128_IAI_00142_15 crossref_primary_10_1016_j_heliyon_2023_e22932 crossref_primary_10_1007_s00018_021_04044_w crossref_primary_10_3389_fimmu_2022_1025348 crossref_primary_10_1165_rcmb_2015_0295OC crossref_primary_10_1096_fj_201903089R crossref_primary_10_3389_fimmu_2025_1512053 crossref_primary_10_1016_j_taap_2022_116341 crossref_primary_10_2147_COPD_S419828 crossref_primary_10_1111_all_14727 crossref_primary_10_3390_ijms22073308 crossref_primary_10_1172_jci_insight_126832 crossref_primary_10_1038_s41419_024_06777_5 crossref_primary_10_1038_s41598_020_57755_8 crossref_primary_10_3390_ijms232314909 crossref_primary_10_1097_MD_0000000000032861 crossref_primary_10_3389_fimmu_2021_586078 crossref_primary_10_3390_app112210569 crossref_primary_10_1016_j_stem_2017_03_024 crossref_primary_10_3389_fimmu_2018_01777 crossref_primary_10_1111_all_13369 crossref_primary_10_3389_fphar_2021_572463 crossref_primary_10_1183_13993003_00196_2017 crossref_primary_10_1016_j_molimm_2019_04_029 crossref_primary_10_1016_j_intimp_2024_113081 crossref_primary_10_1080_02770903_2022_2043361 crossref_primary_10_1016_j_mucimm_2024_08_001 crossref_primary_10_1016_j_advms_2022_05_002 crossref_primary_10_2147_PGPM_S303799 crossref_primary_10_1016_j_celrep_2022_111668 crossref_primary_10_1371_journal_pone_0311981 crossref_primary_10_1016_j_jaci_2021_01_026 crossref_primary_10_1152_physiolgenomics_00122_2017 crossref_primary_10_1007_s10753_024_02207_y crossref_primary_10_1128_microbiolspec_MCHD_0053_2016 crossref_primary_10_1371_journal_pone_0309868 crossref_primary_10_1093_jmcb_mjv042 crossref_primary_10_3390_life12060857 crossref_primary_10_3389_fimmu_2022_907149 crossref_primary_10_5937_mckg53_19737 crossref_primary_10_3390_foods13040611 crossref_primary_10_1183_13993003_01033_2018 crossref_primary_10_3390_ijms24054719 crossref_primary_10_3390_ijms24065176 crossref_primary_10_1016_j_jaci_2022_09_025 crossref_primary_10_1016_j_immuni_2018_06_009 crossref_primary_10_1186_s13071_015_0939_6 crossref_primary_10_1172_jci_insight_124710 crossref_primary_10_1016_j_molimm_2025_03_002 crossref_primary_10_1038_cmi_2017_163 crossref_primary_10_4110_in_2019_19_e31 crossref_primary_10_4168_aair_2024_16_1_55 crossref_primary_10_1097_JCMA_0000000000000094 crossref_primary_10_3390_ijms241310451 crossref_primary_10_1148_radiol_2016161409 crossref_primary_10_3389_fimmu_2022_943554 crossref_primary_10_1016_j_biopha_2021_111365 crossref_primary_10_1172_JCI126402 crossref_primary_10_1523_JNEUROSCI_1924_15_2015 crossref_primary_10_3389_fimmu_2018_02006 crossref_primary_10_1016_j_jaci_2017_04_049 crossref_primary_10_1038_s41385_022_00530_x crossref_primary_10_1016_j_trsl_2015_09_009 crossref_primary_10_1021_acsnano_9b06424 crossref_primary_10_1189_jlb_3MAB1115_505R crossref_primary_10_1002_iid3_1325 crossref_primary_10_1016_j_bbrc_2020_07_088 crossref_primary_10_1016_j_rmed_2022_107007 crossref_primary_10_3390_molecules26185512 |
Cites_doi | 10.1038/nri3070 10.1038/nature12902 10.4049/jimmunol.174.12.8183 10.1038/nri3073 10.1038/nn2014 10.1152/ajplung.00061.2004 10.1084/jem.193.6.727 10.1172/JCI39717 10.1038/nm1451 10.4049/jimmunol.169.8.4572 10.1164/ajrccm.156.5.9610064 10.1016/j.jaci.2008.03.008 10.1152/ajplung.90625.2008 10.1084/jem.192.6.899 10.1016/j.jaci.2012.07.023 10.1164/rccm.200501-035OC 10.1038/nm.3258 10.1371/journal.pone.0015943 10.1038/nm.2737 10.1165/rcmb.2012-0366MA 10.1084/jem.131.3.429 10.1164/rccm.201011-1891OC 10.1016/j.immuni.2013.08.007 10.4049/jimmunol.181.2.1232 10.1084/jem.20071840 10.1126/science.1242974 10.1186/1465-9921-12-34 10.1089/jir.2008.0027 10.1146/annurev.immunol.021908.132532 10.1164/rccm.201306-1014OC 10.1164/ajrccm.153.4.8616572 10.1165/rcmb.2003-0229OC 10.1165/ajrcmb.10.2.8110469 10.1124/jpet.107.128538 10.1084/jem.192.7.1075 10.1126/science.1204351 10.1016/j.jaci.2013.08.044 10.1038/nri3600 10.1016/j.immuni.2013.04.004 10.1038/nn.2887 10.1038/ni.1637 10.1084/jem.128.3.415 |
ContentType | Journal Article |
Copyright | Copyright American Thoracic Society Jun 2015 Copyright © 2015 by the American Thoracic Society 2015 |
Copyright_xml | – notice: Copyright American Thoracic Society Jun 2015 – notice: Copyright © 2015 by the American Thoracic Society 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7TM 7TO 7X7 7XB 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 5PM |
DOI | 10.1165/rcmb.2014-0255OC |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1535-4989 |
EndPage | 784 |
ExternalDocumentID | PMC4491131 3713121821 25360868 10_1165_rcmb_2014_0255OC |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL056396 – fundername: NHLBI NIH HHS grantid: P01 HL088594 – fundername: NHLBI NIH HHS grantid: P01 HL098050 – fundername: NCATS NIH HHS grantid: UL1TR000050 – fundername: NHLBI NIH HHS grantid: P50 HL056396 – fundername: NCATS NIH HHS grantid: UL1 TR000050 – fundername: NHLBI NIH HHS grantid: R01 HL103643 – fundername: NCRR NIH HHS grantid: UL1 RR025011 – fundername: NHLBI NIH HHS grantid: HL103643 – fundername: NCATS NIH HHS grantid: UL1 TR000427 |
GroupedDBID | --- 0R~ 23M 2WC 53G 5GY 5RE 7X7 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAYXX ABJNI ABUWG ACGFO ACGFS ACGOD ACPRK ADBBV AENEX AFFNX AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK DWQXO E3Z EBS EJD EMOBN F5P FYUFA GNUQQ GX1 H13 HCIFZ HMCUK HZ~ J5H LK8 M1P M2P M2Q M5~ M7P O9- OBH OFXIZ OK1 OVD OVIDX P2P PHGZM PHGZT PQQKQ PROAC PSQYO PZZ Q2X RWL S0X SJN TAE TEORI THO TR2 UKHRP W8F WOQ YHG ZGI ZXP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7T5 7TM 7TO 7XB 88A 8FK H94 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c523t-f945e9ed3dc40423db7d32facc3b49710b01ad40389178b445f88b3c1e3eddcf3 |
IEDL.DBID | 7X7 |
ISSN | 1044-1549 1535-4989 |
IngestDate | Thu Aug 21 13:33:08 EDT 2025 Fri Jul 11 05:50:31 EDT 2025 Fri Jul 11 06:58:47 EDT 2025 Fri Jul 25 11:53:17 EDT 2025 Mon Jul 21 05:55:34 EDT 2025 Tue Jul 01 03:31:31 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | MCP-1 allergic inflammation macrophages asthma airway epithelial cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-f945e9ed3dc40423db7d32facc3b49710b01ad40389178b445f88b3c1e3eddcf3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4491131 |
PMID | 25360868 |
PQID | 1687712557 |
PQPubID | 2031371 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491131 proquest_miscellaneous_1701487272 proquest_miscellaneous_1685749527 proquest_journals_1687712557 pubmed_primary_25360868 crossref_primary_10_1165_rcmb_2014_0255OC crossref_citationtrail_10_1165_rcmb_2014_0255OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-00 2015-Jun 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | American journal of respiratory cell and molecular biology |
PublicationTitleAlternate | Am J Respir Cell Mol Biol |
PublicationYear | 2015 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib14 bib36 bib15 bib37 bib12 bib34 bib13 bib35 bib10 bib32 bib11 bib33 bib30 bib31 bib29 bib27 bib28 bib40 bib25 bib26 bib23 bib24 bib21 bib22 bib41 bib20 bib42 bib9 bib7 bib8 bib5 bib18 bib6 bib19 bib3 bib16 bib38 bib4 bib17 bib39 bib1 bib2 15516494 - Am J Physiol Lung Cell Mol Physiol. 2005 Feb;288(2):L350-8 18029547 - J Pharmacol Exp Ther. 2008 Feb;324(2):769-75 24050723 - Am J Respir Crit Care Med. 2013 Oct 15;188(8):928-40 18606677 - J Immunol. 2008 Jul 15;181(2):1232-44 24012416 - Immunity. 2013 Sep 19;39(3):599-610 12370395 - J Immunol. 2002 Oct 15;169(8):4572-8 16892038 - Nat Med. 2006 Aug;12(8):955-60 8616572 - Am J Respir Crit Care Med. 1996 Apr;153(4 Pt 1):1398-404 8110469 - Am J Respir Cell Mol Biol. 1994 Feb;10(2):142-7 19441883 - J Interferon Cytokine Res. 2009 Jun;29(6):313-26 18417198 - J Allergy Clin Immunol. 2008 Jun;121(6):1372-8, 1378.e1-3 24264994 - Science. 2013 Nov 22;342(6161):1242974 18316417 - J Exp Med. 2008 Mar 17;205(3):699-710 5666958 - J Exp Med. 1968 Sep 1;128(3):415-35 14962974 - Am J Respir Cell Mol Biol. 2004 Jul;31(1):22-7 11015448 - J Exp Med. 2000 Oct 2;192(7):1075-80 16040786 - Am J Respir Crit Care Med. 2005 Oct 15;172(8):972-9 21246055 - PLoS One. 2011;6(1):e15943 21471090 - Am J Respir Crit Care Med. 2011 Sep 1;184(5):547-60 10993920 - J Exp Med. 2000 Sep 18;192(6):899-905 22561832 - Nat Med. 2012 May;18(5):684-92 22981793 - J Allergy Clin Immunol. 2012 Dec;130(6):1404-12.e7 21426578 - Respir Res. 2011;12:34 24445666 - Nat Rev Immunol. 2014 Feb;14(2):81-93 23601688 - Immunity. 2013 Apr 18;38(4):792-804 19105661 - Annu Rev Immunol. 2009;27:451-83 5413324 - J Exp Med. 1970 Mar 1;131(3):429-42 9372648 - Am J Respir Crit Care Med. 1997 Nov;156(5):1377-83 21984070 - Nat Rev Immunol. 2011 Nov;11(11):762-74 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43 21566158 - Science. 2011 Jun 10;332(6035):1284-8 23933982 - Nat Med. 2013 Sep;19(9):1166-72 19304907 - Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L936-46 19907079 - J Clin Invest. 2009 Dec;119(12):3723-38 23492192 - Am J Respir Cell Mol Biol. 2013 Aug;49(2):180-9 18660812 - Nat Immunol. 2008 Sep;9(9):1074-83 15944327 - J Immunol. 2005 Jun 15;174(12):8183-90 21997792 - Nat Rev Immunol. 2011 Nov;11(11):723-37 24176116 - J Allergy Clin Immunol. 2014 Jan;133(1):207-16.e1-11 24463523 - Nature. 2014 Feb 27;506(7489):503-6 21804537 - Nat Neurosci. 2011 Sep;14(9):1142-9 11257139 - J Exp Med. 2001 Mar 19;193(6):727-40 |
References_xml | – ident: bib23 doi: 10.1038/nri3070 – ident: bib3 doi: 10.1038/nature12902 – ident: bib39 doi: 10.4049/jimmunol.174.12.8183 – ident: bib1 doi: 10.1038/nri3073 – ident: bib24 doi: 10.1038/nn2014 – ident: bib33 doi: 10.1152/ajplung.00061.2004 – ident: bib42 doi: 10.1084/jem.193.6.727 – ident: bib2 doi: 10.1172/JCI39717 – ident: bib7 doi: 10.1038/nm1451 – ident: bib32 doi: 10.4049/jimmunol.169.8.4572 – ident: bib30 doi: 10.1164/ajrccm.156.5.9610064 – ident: bib6 doi: 10.1016/j.jaci.2008.03.008 – ident: bib17 doi: 10.1152/ajplung.90625.2008 – ident: bib37 doi: 10.1084/jem.192.6.899 – ident: bib38 doi: 10.1016/j.jaci.2012.07.023 – ident: bib5 doi: 10.1164/rccm.200501-035OC – ident: bib10 doi: 10.1038/nm.3258 – ident: bib8 doi: 10.1371/journal.pone.0015943 – ident: bib11 doi: 10.1038/nm.2737 – ident: bib16 doi: 10.1165/rcmb.2012-0366MA – ident: bib22 doi: 10.1084/jem.131.3.429 – ident: bib20 doi: 10.1164/rccm.201011-1891OC – ident: bib34 doi: 10.1016/j.immuni.2013.08.007 – ident: bib15 doi: 10.4049/jimmunol.181.2.1232 – ident: bib40 doi: 10.1084/jem.20071840 – ident: bib26 doi: 10.1126/science.1242974 – ident: bib18 doi: 10.1186/1465-9921-12-34 – ident: bib27 doi: 10.1089/jir.2008.0027 – ident: bib4 doi: 10.1146/annurev.immunol.021908.132532 – ident: bib14 doi: 10.1164/rccm.201306-1014OC – ident: bib29 doi: 10.1164/ajrccm.153.4.8616572 – ident: bib41 doi: 10.1165/rcmb.2003-0229OC – ident: bib28 doi: 10.1165/ajrcmb.10.2.8110469 – ident: bib31 doi: 10.1124/jpet.107.128538 – ident: bib36 doi: 10.1084/jem.192.7.1075 – ident: bib9 doi: 10.1126/science.1204351 – ident: bib19 doi: 10.1016/j.jaci.2013.08.044 – ident: bib13 doi: 10.1038/nri3600 – ident: bib25 doi: 10.1016/j.immuni.2013.04.004 – ident: bib35 doi: 10.1038/nn.2887 – ident: bib12 doi: 10.1038/ni.1637 – ident: bib21 doi: 10.1084/jem.128.3.415 – reference: 18316417 - J Exp Med. 2008 Mar 17;205(3):699-710 – reference: 21997792 - Nat Rev Immunol. 2011 Nov;11(11):723-37 – reference: 24176116 - J Allergy Clin Immunol. 2014 Jan;133(1):207-16.e1-11 – reference: 24445666 - Nat Rev Immunol. 2014 Feb;14(2):81-93 – reference: 18606677 - J Immunol. 2008 Jul 15;181(2):1232-44 – reference: 16040786 - Am J Respir Crit Care Med. 2005 Oct 15;172(8):972-9 – reference: 21471090 - Am J Respir Crit Care Med. 2011 Sep 1;184(5):547-60 – reference: 14962974 - Am J Respir Cell Mol Biol. 2004 Jul;31(1):22-7 – reference: 23492192 - Am J Respir Cell Mol Biol. 2013 Aug;49(2):180-9 – reference: 8110469 - Am J Respir Cell Mol Biol. 1994 Feb;10(2):142-7 – reference: 18417198 - J Allergy Clin Immunol. 2008 Jun;121(6):1372-8, 1378.e1-3 – reference: 18660812 - Nat Immunol. 2008 Sep;9(9):1074-83 – reference: 19105661 - Annu Rev Immunol. 2009;27:451-83 – reference: 11257139 - J Exp Med. 2001 Mar 19;193(6):727-40 – reference: 22981793 - J Allergy Clin Immunol. 2012 Dec;130(6):1404-12.e7 – reference: 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43 – reference: 24463523 - Nature. 2014 Feb 27;506(7489):503-6 – reference: 19907079 - J Clin Invest. 2009 Dec;119(12):3723-38 – reference: 12370395 - J Immunol. 2002 Oct 15;169(8):4572-8 – reference: 16892038 - Nat Med. 2006 Aug;12(8):955-60 – reference: 5413324 - J Exp Med. 1970 Mar 1;131(3):429-42 – reference: 21246055 - PLoS One. 2011;6(1):e15943 – reference: 9372648 - Am J Respir Crit Care Med. 1997 Nov;156(5):1377-83 – reference: 23601688 - Immunity. 2013 Apr 18;38(4):792-804 – reference: 15944327 - J Immunol. 2005 Jun 15;174(12):8183-90 – reference: 21804537 - Nat Neurosci. 2011 Sep;14(9):1142-9 – reference: 19441883 - J Interferon Cytokine Res. 2009 Jun;29(6):313-26 – reference: 21566158 - Science. 2011 Jun 10;332(6035):1284-8 – reference: 11015448 - J Exp Med. 2000 Oct 2;192(7):1075-80 – reference: 15516494 - Am J Physiol Lung Cell Mol Physiol. 2005 Feb;288(2):L350-8 – reference: 22561832 - Nat Med. 2012 May;18(5):684-92 – reference: 21984070 - Nat Rev Immunol. 2011 Nov;11(11):762-74 – reference: 23933982 - Nat Med. 2013 Sep;19(9):1166-72 – reference: 18029547 - J Pharmacol Exp Ther. 2008 Feb;324(2):769-75 – reference: 21426578 - Respir Res. 2011;12:34 – reference: 24050723 - Am J Respir Crit Care Med. 2013 Oct 15;188(8):928-40 – reference: 24012416 - Immunity. 2013 Sep 19;39(3):599-610 – reference: 19304907 - Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L936-46 – reference: 10993920 - J Exp Med. 2000 Sep 18;192(6):899-905 – reference: 5666958 - J Exp Med. 1968 Sep 1;128(3):415-35 – reference: 24264994 - Science. 2013 Nov 22;342(6161):1242974 – reference: 8616572 - Am J Respir Crit Care Med. 1996 Apr;153(4 Pt 1):1398-404 |
SSID | ssj0012811 |
Score | 2.5208807 |
Snippet | Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which... Although alveolar macrophages (AM) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 772 |
SubjectTerms | Airway management Airway Remodeling - immunology Animals Antigens, Dermatophagoides - immunology Asthma Asthma - immunology Asthma - metabolism Cell Line Cellular biology Chemokine CCL2 - physiology Chemotaxis Female Humans Leukocytes Lungs Macrophages, Alveolar - immunology Male Mice, Inbred C57BL Original Research Proteins Pyroglyphidae - immunology Transcriptome |
Title | Recruited Alveolar Macrophages, in Response to Airway Epithelial–Derived Monocyte Chemoattractant Protein 1/CCL2, Regulate Airway Inflammation and Remodeling in Allergic Asthma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25360868 https://www.proquest.com/docview/1687712557 https://www.proquest.com/docview/1685749527 https://www.proquest.com/docview/1701487272 https://pubmed.ncbi.nlm.nih.gov/PMC4491131 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1ri9NAcNE7EL-I3qkXPY8VRBAuNJtsssknibXnKfY8Dg_6LewrtNAmtU1P-q_8ic7kpVXox7Czk4SZncfOi5A3Xi64Cg1zmfQ8l8ucuzJQnpsYqcI89nUsscB5fBVd3vIvk3DSXrit27TKTibWgtqUGu_IByyKhQBtHIr3yx8uTo3C6Go7QuM-OcTWZZjSJSa9w4VBItaFJqNwsNILhclc3EVDutS7qug_-_LfNMm_9M7FY_KoNRhp2lD4CblniyNynBbgLC-29C2tUzjru_Ej8mDcRsqPyS-0BzdoT9J0fmfRgaVjifO6piBB1ud0VtCbJj_W0qqk6Wz1U27paIk1GnNgSvcj8OYdbIdTX-ptZSn2FihlVWFdFdCDXmOLB0DDBsPhV_8c0NVj7W2H63ORA7s1pZFUFgYA6rk7oCzx7SkWIYLcpem6mi7kU3J7Mfo-vHTb6QyuBue1cvOEhzaxJjCaY3KNUcIEfi61DhRPwHBRHpOGYwM_JmLFOZA-VoFmNrDG6Dx4Rg6KsrAnhBoZcx7EgNZIjh6MFYnEolqwZiTzfYcMOkJlum1djhM05lntwkRhhqTNkLQZkvbb0CHv-h3Lpm3HHtjTjvZZe4DX2R92c8jrfhmOHsZTZGHLTQ0TCnAw_X0wAq9sMdrtkOcNO_Uf5IdBBB5l7BCxw2g9ALb-3l0pZtO6BTjnoKQC9mL_p78kD-E_wyaz7ZQcVKuNfQU2VKXO6oNyRg4_jK6ub-Dp04T9BuY5Iwc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSCbggaHkECiwSICHVStZex84BIZOmamgSqqqVejPr3TWJlNghcVrlpxCfyIwfgYCUW88ej9ea984L4G0z9kTkam5x2WxaQsbCkk7UtNpaRm7s28qX1OA8GLZOLsWXK_dqB35WvTBUVlnpxFxR61TRHXmDt3zPQ2vsep9mPyzaGkXZ1WqFRsEWp2Z1gyHb4mPvCOn7zraPuxedE6vcKmApDLoyK24L17SNdrQSVBSiI087diyVciLRRoMbNbnUggbPcc-PhMAj-5GjuHGM1ip2EO8d2BUOhjI12P3cHZ6dr_MWts95lQxtuY25mkZUPiYsct1TtWn8_vNo_y3M_MvSHT-EB6WLyoKCpx7Bjkn2YD9IMDyfrth7lheN5rfxe3B3UObm9-EXeaBL8mBZMLk2FDKzgaQNYSPUWYtDNk7YeVGRa1iWsmA8v5Er1p1RV8gExcA6Qmm4xtdRz6RqlRlG0wxSmWXUyYUcwM5oqASi4Y1Op28fIrrvtH3MVLh6SYwMXjRjMploBMg3_aB5pq8H1PaImp4Fi2w0lY_h8lYo9wRqSZqYZ8C09IVwfESrpaCYyXhtSW286D9Jbtt1aFSEClU5LJ12dkzCPGhquSGRNiTShkTar506fFi_MSsGhWyBPahoH5YqYxH-YfA6vFk_RmGnDI5MTLrMYVwPQ1p7G4xHl8SUX6_D04Kd1geyXeRav-XXwdtgtDUADRvffJKMR_nQcSHQLDr8-fajv4Z7JxeDftjvDU9fwH38Z7eoqzuAWjZfmpfowWXRq1JsGHy7bUn9DcZsX5E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recruited+Alveolar+Macrophages%2C+in+Response+to+Airway+Epithelial%E2%80%93Derived+Monocyte+Chemoattractant+Protein+1%2FCCL2%2C+Regulate+Airway+Inflammation+and+Remodeling+in+Allergic+Asthma&rft.jtitle=American+journal+of+respiratory+cell+and+molecular+biology&rft.au=Lee%2C+Yong+Gyu&rft.au=Jeong%2C+Jong+Jin&rft.au=Nyenhuis%2C+Sharmilee&rft.au=Berdyshev%2C+Evgeny&rft.date=2015-06-01&rft.issn=1044-1549&rft.eissn=1535-4989&rft.volume=52&rft.issue=6&rft.spage=772&rft.epage=784&rft_id=info:doi/10.1165%2Frcmb.2014-0255OC&rft.externalDBID=n%2Fa&rft.externalDocID=10_1165_rcmb_2014_0255OC |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-1549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-1549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-1549&client=summon |