Empirical likelihood and quantile regression in longitudinal data analysis

We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean model to account for within-subject correlations. The efficiency gain is quantified theoretically and demonstrated empirically via simulation st...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 98; no. 4; pp. 1001 - 1006
Main Authors Leng, Chenlei, Tang, Cheng Yong
Format Journal Article
LanguageEnglish
Published Oxford University Press for Biometrika Trust 01.12.2011
SeriesBiometrika
Online AccessGet more information

Cover

Loading…
Abstract We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean model to account for within-subject correlations. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies and the analysis of a real dataset. Copyright 2011, Oxford University Press.
AbstractList We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean model to account for within-subject correlations. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies and the analysis of a real dataset. Copyright 2011, Oxford University Press.
Author Tang, Cheng Yong
Leng, Chenlei
Author_xml – fullname: Leng, Chenlei
– fullname: Tang, Cheng Yong
BackLink http://econpapers.repec.org/article/oupbiomet/v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001-1006.htm$$DView record in RePEc
BookMark eNotj8FOwzAQRC1UJNrCkXt-IHTtOE5zRFWBokpceo828aY1OHawU6T-PUbl8GY00u5Is2Az5x0x9sjhiUNdrFrjB5pWGAOUcMPmXCqZFyWHGZsDgMoLKeUdW8T4-RdVqebsfTuMJpgObWbNF1lz8l5n6HT2fUY3GUtZoGOgGI13mXGZ9e5oprM2Lr1onDAdo71EE-_ZbY820sO_L9nhZXvYvOX7j9fd5nmfd6Uoppw60ZMErHlVErRag-K6XYuuRqigb2XVI0gs-4pEp1AVa5S1UD1KLUGBWLL9tTbQSF0zBjNguDT-PF73Nz9NgfU6ySUhgPNkJiETY4ID8CaJak7TIH4BbV1gYQ
CitedBy_id crossref_primary_10_1002_sim_10056
crossref_primary_10_1016_j_csda_2014_11_002
crossref_primary_10_1016_j_csda_2014_11_008
crossref_primary_10_1007_s00180_017_0714_6
crossref_primary_10_1111_biom_12821
crossref_primary_10_1007_s11222_012_9358_0
crossref_primary_10_1080_10485252_2023_2236722
crossref_primary_10_1080_01621459_2013_820134
crossref_primary_10_1214_18_EJS1409
crossref_primary_10_1007_s40300_015_0072_5
crossref_primary_10_1080_10485252_2017_1285030
crossref_primary_10_1007_s00180_015_0612_8
crossref_primary_10_1038_s41598_023_50713_0
crossref_primary_10_1007_s11749_018_0616_0
crossref_primary_10_1111_sjos_12717
crossref_primary_10_1016_j_jmva_2017_02_003
crossref_primary_10_1007_s10985_016_9381_0
crossref_primary_10_1038_s41370_021_00345_1
crossref_primary_10_1111_rssb_12246
crossref_primary_10_1002_sim_8152
crossref_primary_10_1080_02331888_2016_1268615
crossref_primary_10_1016_j_jmva_2020_104691
crossref_primary_10_1007_s12190_014_0804_3
crossref_primary_10_1213_ANE_0000000000004017
crossref_primary_10_1016_j_csda_2020_106915
crossref_primary_10_1515_ijb_2020_0010
crossref_primary_10_1016_j_jmva_2015_07_004
crossref_primary_10_1016_j_jmva_2017_01_009
crossref_primary_10_1016_j_csda_2017_02_015
crossref_primary_10_1007_s11749_022_00828_9
crossref_primary_10_1007_s11425_015_0175_y
crossref_primary_10_1016_j_jspi_2015_03_008
crossref_primary_10_1080_00949655_2022_2043322
crossref_primary_10_1007_s00180_014_0550_x
crossref_primary_10_1016_j_jspi_2023_06_002
crossref_primary_10_1093_biostatistics_kxw007
crossref_primary_10_1016_j_physa_2016_03_056
crossref_primary_10_1007_s00180_022_01318_0
crossref_primary_10_1016_j_spl_2024_110227
crossref_primary_10_1007_s00180_024_01526_w
crossref_primary_10_1007_s11222_015_9621_2
crossref_primary_10_1007_s10114_023_1557_4
crossref_primary_10_1093_annweh_wxae068
crossref_primary_10_1016_j_csda_2018_10_010
crossref_primary_10_1080_00031305_2023_2250399
crossref_primary_10_1002_sim_9252
ContentType Journal Article
DBID DKI
X2L
DOI 10.1093/biomet/asr050
DatabaseName RePEc IDEAS
RePEc
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1464-3510
EndPage 1006
ExternalDocumentID oupbiomet_v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001_1006_htm
GroupedDBID -DZ
-E4
-~X
..I
.2P
.55
.DC
.GJ
.I3
08R
0R~
1TH
23N
3R3
4.4
482
48X
53G
5GY
5RE
5VS
5WA
6.Y
6J9
6OB
70D
79B
8U8
8W4
AABJS
AABMN
AAESY
AAIJN
AAIYJ
AAJKP
AAJQQ
AAMVS
AANRK
AAOGV
AAPBV
AAPQZ
AAUQX
AAVAP
AAWDT
ABBHK
ABEUO
ABFAN
ABFLS
ABIXL
ABLJU
ABNKS
ABPFR
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABYAD
ABYWD
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPQN
ACPRK
ACTMH
ACTWD
ACUFI
ACUTJ
ACYTK
ADEIU
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADOCK
ADODI
ADORX
ADQLU
ADRDM
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFVYC
AFXEN
AFXHP
AFXKK
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHGVY
AHXPO
AIAGR
AIHXQ
AIJHB
AIKOY
AJEEA
AJEUX
AJKYJ
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ANFBD
APIBT
APWMN
AQDSO
ARQIP
ASAOO
ASPBG
AS~
ATDFG
ATTQO
AUCZF
AVWKF
AXUDD
AZFZN
AZQFJ
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
BYORX
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DKI
DPORF
DPPUQ
DQDLB
DSRWC
DU5
D~K
EBS
ECEWR
EE~
EFSUC
EJD
ELUNK
ESX
F5P
F9B
FEDTE
FLIZI
FOEOM
FQBLK
FVMVE
GAUVT
GJXCC
H13
H5~
HAR
HGD
HQ6
HVGLF
HW0
HZ~
H~9
IOX
IPNFZ
J21
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
ODMLO
OJQWA
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQEST
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
UAP
UMP
WH7
X2L
X7H
X7M
XFK
XSW
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
~02
~91
ID FETCH-LOGICAL-c523t-ec2fe40a9175e0bdd061db82c9a070fb47fa04a5f7e2c6a638a4926fa4d40602
IEDL.DBID DKI
ISSN 0006-3444
IngestDate Tue Nov 15 02:04:50 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-ec2fe40a9175e0bdd061db82c9a070fb47fa04a5f7e2c6a638a4926fa4d40602
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/105114
PageCount 6
ParticipantIDs repec_primary_oupbiomet_v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001_1006_htm
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationSeriesTitle Biometrika
PublicationTitle Biometrika
PublicationYear 2011
Publisher Oxford University Press for Biometrika Trust
Publisher_xml – name: Oxford University Press for Biometrika Trust
SSID ssj0006656
Score 2.216659
Snippet We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean...
SourceID repec
SourceType Index Database
StartPage 1001
Title Empirical likelihood and quantile regression in longitudinal data analysis
URI http://econpapers.repec.org/article/oupbiomet/v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001-1006.htm
Volume 98
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUqKqQuCAqIb3lgDXUdx25GBK1KEUxF6hadYxtFlDSUFqn_nrMTKkYGhksyOIl1p_Pds87vCLnOMSo5p-IoVQ4BioltpBUTkcqZ64OToMNmztOzHL-IySyZtchP_bwHgRVUmPncLG1lG6bgWoe9xboKZ9JXva8shnSAlw2KD2F4K1AESoXiiYVwgWESAeg7rs9xOvDlfvePD9tVWsrQ2dU_RbEQouHfRIDfa34Cn0vmj-O3w0x-RZ3RPtlr0kV6W8_tgLRs2SW7dQPJTZd0fK5YUy0fksnwvSoC4wedF292XnjGYgqloR9r1B-6P13a17rutaRFSecL36xobXxjLOpLRXFwTVFyRKaj4fRuHDWtEqIckeQqsjl3VjBA8JVYpo3BMG30gOcpoE87LZQDJiBxyvJcAjodeKZAB8JgRGf8mOyUi9KeEMqFwtESX0ww20v7GriMcweGS66TxJ6SYdBHVtVsGNnWKtlfrOI5kmWGVjn7p--ck07Y5g0VJhek7dBr7SUmCit9FSz-Db5Nvhw
linkProvider Research Papers in Economics (RePEc)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+likelihood+and+quantile+regression+in+longitudinal+data+analysis&rft.jtitle=Biometrika&rft.au=Leng%2C+Chenlei&rft.au=Tang%2C+Cheng+Yong&rft.series=Biometrika&rft.date=2011-12-01&rft.pub=Oxford+University+Press+for+Biometrika+Trust&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=98&rft.issue=4&rft.spage=1001&rft.epage=1006&rft_id=info:doi/10.1093%2Fbiomet%2Fasr050&rft.externalDocID=oupbiomet_v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001_1006_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon