Empirical likelihood and quantile regression in longitudinal data analysis
We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean model to account for within-subject correlations. The efficiency gain is quantified theoretically and demonstrated empirically via simulation st...
Saved in:
Published in | Biometrika Vol. 98; no. 4; pp. 1001 - 1006 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press for Biometrika Trust
01.12.2011
|
Series | Biometrika |
Online Access | Get more information |
Cover
Loading…
Abstract | We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean model to account for within-subject correlations. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies and the analysis of a real dataset. Copyright 2011, Oxford University Press. |
---|---|
AbstractList | We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean model to account for within-subject correlations. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies and the analysis of a real dataset. Copyright 2011, Oxford University Press. |
Author | Tang, Cheng Yong Leng, Chenlei |
Author_xml | – fullname: Leng, Chenlei – fullname: Tang, Cheng Yong |
BackLink | http://econpapers.repec.org/article/oupbiomet/v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001-1006.htm$$DView record in RePEc |
BookMark | eNotj8FOwzAQRC1UJNrCkXt-IHTtOE5zRFWBokpceo828aY1OHawU6T-PUbl8GY00u5Is2Az5x0x9sjhiUNdrFrjB5pWGAOUcMPmXCqZFyWHGZsDgMoLKeUdW8T4-RdVqebsfTuMJpgObWbNF1lz8l5n6HT2fUY3GUtZoGOgGI13mXGZ9e5oprM2Lr1onDAdo71EE-_ZbY820sO_L9nhZXvYvOX7j9fd5nmfd6Uoppw60ZMErHlVErRag-K6XYuuRqigb2XVI0gs-4pEp1AVa5S1UD1KLUGBWLL9tTbQSF0zBjNguDT-PF73Nz9NgfU6ySUhgPNkJiETY4ID8CaJak7TIH4BbV1gYQ |
CitedBy_id | crossref_primary_10_1002_sim_10056 crossref_primary_10_1016_j_csda_2014_11_002 crossref_primary_10_1016_j_csda_2014_11_008 crossref_primary_10_1007_s00180_017_0714_6 crossref_primary_10_1111_biom_12821 crossref_primary_10_1007_s11222_012_9358_0 crossref_primary_10_1080_10485252_2023_2236722 crossref_primary_10_1080_01621459_2013_820134 crossref_primary_10_1214_18_EJS1409 crossref_primary_10_1007_s40300_015_0072_5 crossref_primary_10_1080_10485252_2017_1285030 crossref_primary_10_1007_s00180_015_0612_8 crossref_primary_10_1038_s41598_023_50713_0 crossref_primary_10_1007_s11749_018_0616_0 crossref_primary_10_1111_sjos_12717 crossref_primary_10_1016_j_jmva_2017_02_003 crossref_primary_10_1007_s10985_016_9381_0 crossref_primary_10_1038_s41370_021_00345_1 crossref_primary_10_1111_rssb_12246 crossref_primary_10_1002_sim_8152 crossref_primary_10_1080_02331888_2016_1268615 crossref_primary_10_1016_j_jmva_2020_104691 crossref_primary_10_1007_s12190_014_0804_3 crossref_primary_10_1213_ANE_0000000000004017 crossref_primary_10_1016_j_csda_2020_106915 crossref_primary_10_1515_ijb_2020_0010 crossref_primary_10_1016_j_jmva_2015_07_004 crossref_primary_10_1016_j_jmva_2017_01_009 crossref_primary_10_1016_j_csda_2017_02_015 crossref_primary_10_1007_s11749_022_00828_9 crossref_primary_10_1007_s11425_015_0175_y crossref_primary_10_1016_j_jspi_2015_03_008 crossref_primary_10_1080_00949655_2022_2043322 crossref_primary_10_1007_s00180_014_0550_x crossref_primary_10_1016_j_jspi_2023_06_002 crossref_primary_10_1093_biostatistics_kxw007 crossref_primary_10_1016_j_physa_2016_03_056 crossref_primary_10_1007_s00180_022_01318_0 crossref_primary_10_1016_j_spl_2024_110227 crossref_primary_10_1007_s00180_024_01526_w crossref_primary_10_1007_s11222_015_9621_2 crossref_primary_10_1007_s10114_023_1557_4 crossref_primary_10_1093_annweh_wxae068 crossref_primary_10_1016_j_csda_2018_10_010 crossref_primary_10_1080_00031305_2023_2250399 crossref_primary_10_1002_sim_9252 |
ContentType | Journal Article |
DBID | DKI X2L |
DOI | 10.1093/biomet/asr050 |
DatabaseName | RePEc IDEAS RePEc |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Biology |
EISSN | 1464-3510 |
EndPage | 1006 |
ExternalDocumentID | oupbiomet_v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001_1006_htm |
GroupedDBID | -DZ -E4 -~X ..I .2P .55 .DC .GJ .I3 08R 0R~ 1TH 23N 3R3 4.4 482 48X 53G 5GY 5RE 5VS 5WA 6.Y 6J9 6OB 70D 79B 8U8 8W4 AABJS AABMN AAESY AAIJN AAIYJ AAJKP AAJQQ AAMVS AANRK AAOGV AAPBV AAPQZ AAUQX AAVAP AAWDT ABBHK ABEUO ABFAN ABFLS ABIXL ABLJU ABNKS ABPFR ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABYAD ABYWD ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPQN ACPRK ACTMH ACTWD ACUFI ACUTJ ACYTK ADEIU ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADLSF ADOCK ADODI ADORX ADQLU ADRDM ADRIX ADRTK ADULT ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFIYH AFOFC AFRAH AFVYC AFXEN AFXHP AFXKK AGINJ AGKEF AGKRT AGQXC AGSYK AHGVY AHXPO AIAGR AIHXQ AIJHB AIKOY AJEEA AJEUX AJKYJ ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ANFBD APIBT APWMN AQDSO ARQIP ASAOO ASPBG AS~ ATDFG ATTQO AUCZF AVWKF AXUDD AZFZN AZQFJ AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN BYORX C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DKI DPORF DPPUQ DQDLB DSRWC DU5 D~K EBS ECEWR EE~ EFSUC EJD ELUNK ESX F5P F9B FEDTE FLIZI FOEOM FQBLK FVMVE GAUVT GJXCC H13 H5~ HAR HGD HQ6 HVGLF HW0 HZ~ H~9 IOX IPNFZ J21 JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST KAQDR KBUDW KC5 KOP KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- ODMLO OJQWA OVD OWPYF O~Y P2P PAFKI PB- PEELM PQEST PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI RNS ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TJP TN5 UAP UMP WH7 X2L X7H X7M XFK XSW YAYTL YKOAZ YXANX ZCG ZGI ZKX ~02 ~91 |
ID | FETCH-LOGICAL-c523t-ec2fe40a9175e0bdd061db82c9a070fb47fa04a5f7e2c6a638a4926fa4d40602 |
IEDL.DBID | DKI |
ISSN | 0006-3444 |
IngestDate | Tue Nov 15 02:04:50 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-ec2fe40a9175e0bdd061db82c9a070fb47fa04a5f7e2c6a638a4926fa4d40602 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/105114 |
PageCount | 6 |
ParticipantIDs | repec_primary_oupbiomet_v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001_1006_htm |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationSeriesTitle | Biometrika |
PublicationTitle | Biometrika |
PublicationYear | 2011 |
Publisher | Oxford University Press for Biometrika Trust |
Publisher_xml | – name: Oxford University Press for Biometrika Trust |
SSID | ssj0006656 |
Score | 2.216659 |
Snippet | We propose a novel quantile regression approach for longitudinal data analysis which naturally incorporates auxiliary information from the conditional mean... |
SourceID | repec |
SourceType | Index Database |
StartPage | 1001 |
Title | Empirical likelihood and quantile regression in longitudinal data analysis |
URI | http://econpapers.repec.org/article/oupbiomet/v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001-1006.htm |
Volume | 98 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUqKqQuCAqIb3lgDXUdx25GBK1KEUxF6hadYxtFlDSUFqn_nrMTKkYGhksyOIl1p_Pds87vCLnOMSo5p-IoVQ4BioltpBUTkcqZ64OToMNmztOzHL-IySyZtchP_bwHgRVUmPncLG1lG6bgWoe9xboKZ9JXva8shnSAlw2KD2F4K1AESoXiiYVwgWESAeg7rs9xOvDlfvePD9tVWsrQ2dU_RbEQouHfRIDfa34Cn0vmj-O3w0x-RZ3RPtlr0kV6W8_tgLRs2SW7dQPJTZd0fK5YUy0fksnwvSoC4wedF292XnjGYgqloR9r1B-6P13a17rutaRFSecL36xobXxjLOpLRXFwTVFyRKaj4fRuHDWtEqIckeQqsjl3VjBA8JVYpo3BMG30gOcpoE87LZQDJiBxyvJcAjodeKZAB8JgRGf8mOyUi9KeEMqFwtESX0ww20v7GriMcweGS66TxJ6SYdBHVtVsGNnWKtlfrOI5kmWGVjn7p--ck07Y5g0VJhek7dBr7SUmCit9FSz-Db5Nvhw |
linkProvider | Research Papers in Economics (RePEc) |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+likelihood+and+quantile+regression+in+longitudinal+data+analysis&rft.jtitle=Biometrika&rft.au=Leng%2C+Chenlei&rft.au=Tang%2C+Cheng+Yong&rft.series=Biometrika&rft.date=2011-12-01&rft.pub=Oxford+University+Press+for+Biometrika+Trust&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=98&rft.issue=4&rft.spage=1001&rft.epage=1006&rft_id=info:doi/10.1093%2Fbiomet%2Fasr050&rft.externalDocID=oupbiomet_v_3a98_3ay_3a2011_3ai_3a4_3ap_3a1001_1006_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon |