Thyroxine Increases Collagen Type II Expression and Accumulation in Scaffold-Free Tissue-Engineered Articular Cartilage

Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a mo...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering. Part A Vol. 24; no. 5-6; pp. 369 - 381
Main Authors Whitney, G. Adam, Kean, Thomas J., Fernandes, Russell J., Waldman, Stephen, Tse, M. Yat, Pang, Stephen C., Mansour, Joseph M., Dennis, James E.
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a more pronounced increase in GAG content. Thyroid hormones have been reported to stimulate collagen and GAG production, but reported outcomes, including which specific collagen types are affected, are variable throughout the literature. Here we investigated the ability of thyroxine (T4) to preferentially stimulate collagen production, as compared with GAG, in articular chondrocyte-derived scaffold-free engineered cartilage. Dose response curves for T4 in pellet cultures showed that 25 ng/mL T4 increased the total collagen content without increasing the GAG content, resulting in a statistically significant increase in the collagen-to-GAG ratio, a fold change of 2.3 ± 1.2, p  < 0.05. In contrast, another growth factor, TGFβ1, increased the GAG content in excess of threefold more than the increase in collagen. In large scaffold-free neocartilage, T4 also increased the total collagen/DNA at 1 month and at 2 months (fold increases of 2.1 ± 0.8, p  < 0.01 and 2.1 ± 0.4, p  < 0.001, respectively). Increases in GAG content were not statistically significant. The effect on collagen was largely specific to collagen type II, which showed a 2.8 ± 1.6-fold increase of COL2A1 mRNA expression ( p  < 0.01). Western blots confirmed a statistically significant increase in type II collagen protein at 1 month (fold increase of 2.2 ± 1.8); at 2 months, the fold increase of 3.7 ± 3.3 approached significance ( p  = 0.059). Collagen type X protein was less than the 0.1 μg limit of detection. T4 did not affect COL10A1 and COL1A2 gene expression in a statistically significant manner. Biglycan mRNA expression increased 2.6 ± 1.6-fold, p  < 0.05. Results of this study show that an optimized dosage of T4 is able to increase collagen type II content, and do so preferential to GAG. Moreover, the upregulation of COL2A1 gene expression and type II collagen protein accumulation, without a concomitant increase in collagens type I or type X, signifies a direct enhancement of chondrogenesis of hyaline articular cartilage without the induction of terminal differentiation.
AbstractList Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a more pronounced increase in GAG content. Thyroid hormones have been reported to stimulate collagen and GAG production, but reported outcomes, including which specific collagen types are affected, are variable throughout the literature. Here we investigated the ability of thyroxine (T4) to preferentially stimulate collagen production, as compared with GAG, in articular chondrocyte-derived scaffold-free engineered cartilage. Dose response curves for T4 in pellet cultures showed that 25 ng/mL T4 increased the total collagen content without increasing the GAG content, resulting in a statistically significant increase in the collagen-to-GAG ratio, a fold change of 2.3 ± 1.2, p &lt; 0.05. In contrast, another growth factor, TGFβ1, increased the GAG content in excess of threefold more than the increase in collagen. In large scaffold-free neocartilage, T4 also increased the total collagen/DNA at 1 month and at 2 months (fold increases of 2.1 ± 0.8, p &lt; 0.01 and 2.1 ± 0.4, p &lt; 0.001, respectively). Increases in GAG content were not statistically significant. The effect on collagen was largely specific to collagen type II, which showed a 2.8 ± 1.6-fold increase of COL2A1 mRNA expression (p &lt; 0.01). Western blots confirmed a statistically significant increase in type II collagen protein at 1 month (fold increase of 2.2 ± 1.8); at 2 months, the fold increase of 3.7 ± 3.3 approached significance (p = 0.059). Collagen type X protein was less than the 0.1 μg limit of detection. T4 did not affect COL10A1 and COL1A2 gene expression in a statistically significant manner. Biglycan mRNA expression increased 2.6 ± 1.6-fold, p &lt; 0.05. Results of this study show that an optimized dosage of T4 is able to increase collagen type II content, and do so preferential to GAG. Moreover, the upregulation of COL2A1 gene expression and type II collagen protein accumulation, without a concomitant increase in collagens type I or type X, signifies a direct enhancement of chondrogenesis of hyaline articular cartilage without the induction of terminal differentiation.
Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a more pronounced increase in GAG content. Thyroid hormones have been reported to stimulate collagen and GAG production, but reported outcomes, including which specific collagen types are affected, are variable throughout the literature. Here we investigated the ability of thyroxine (T4) to preferentially stimulate collagen production, as compared with GAG, in articular chondrocyte-derived scaffold-free engineered cartilage. Dose response curves for T4 in pellet cultures showed that 25 ng/mL T4 increased the total collagen content without increasing the GAG content, resulting in a statistically significant increase in the collagen-to-GAG ratio, a fold change of 2.3 ± 1.2, p  < 0.05. In contrast, another growth factor, TGFβ1, increased the GAG content in excess of threefold more than the increase in collagen. In large scaffold-free neocartilage, T4 also increased the total collagen/DNA at 1 month and at 2 months (fold increases of 2.1 ± 0.8, p  < 0.01 and 2.1 ± 0.4, p  < 0.001, respectively). Increases in GAG content were not statistically significant. The effect on collagen was largely specific to collagen type II, which showed a 2.8 ± 1.6-fold increase of COL2A1 mRNA expression ( p  < 0.01). Western blots confirmed a statistically significant increase in type II collagen protein at 1 month (fold increase of 2.2 ± 1.8); at 2 months, the fold increase of 3.7 ± 3.3 approached significance ( p  = 0.059). Collagen type X protein was less than the 0.1 μg limit of detection. T4 did not affect COL10A1 and COL1A2 gene expression in a statistically significant manner. Biglycan mRNA expression increased 2.6 ± 1.6-fold, p  < 0.05. Results of this study show that an optimized dosage of T4 is able to increase collagen type II content, and do so preferential to GAG. Moreover, the upregulation of COL2A1 gene expression and type II collagen protein accumulation, without a concomitant increase in collagens type I or type X, signifies a direct enhancement of chondrogenesis of hyaline articular cartilage without the induction of terminal differentiation.
Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a more pronounced increase in GAG content. Thyroid hormones have been reported to stimulate collagen and GAG production, but reported outcomes, including which specific collagen types are affected, are variable throughout the literature. Here we investigated the ability of thyroxine (T4) to preferentially stimulate collagen production, as compared with GAG, in articular chondrocyte-derived scaffold-free engineered cartilage. Dose response curves for T4 in pellet cultures showed that 25 ng/mL T4 increased the total collagen content without increasing the GAG content, resulting in a statistically significant increase in the collagen-to-GAG ratio, a fold change of 2.3 ± 1.2, p < 0.05. In contrast, another growth factor, TGFβ1, increased the GAG content in excess of threefold more than the increase in collagen. In large scaffold-free neocartilage, T4 also increased the total collagen/DNA at 1 month and at 2 months (fold increases of 2.1 ± 0.8, p < 0.01 and 2.1 ± 0.4, p < 0.001, respectively). Increases in GAG content were not statistically significant. The effect on collagen was largely specific to collagen type II, which showed a 2.8 ± 1.6-fold increase of COL2A1 mRNA expression (p < 0.01). Western blots confirmed a statistically significant increase in type II collagen protein at 1 month (fold increase of 2.2 ± 1.8); at 2 months, the fold increase of 3.7 ± 3.3 approached significance (p = 0.059). Collagen type X protein was less than the 0.1 μg limit of detection. T4 did not affect COL10A1 and COL1A2 gene expression in a statistically significant manner. Biglycan mRNA expression increased 2.6 ± 1.6-fold, p < 0.05. Results of this study show that an optimized dosage of T4 is able to increase collagen type II content, and do so preferential to GAG. Moreover, the upregulation of COL2A1 gene expression and type II collagen protein accumulation, without a concomitant increase in collagens type I or type X, signifies a direct enhancement of chondrogenesis of hyaline articular cartilage without the induction of terminal differentiation.
Author Mansour, Joseph M.
Pang, Stephen C.
Dennis, James E.
Fernandes, Russell J.
Tse, M. Yat
Whitney, G. Adam
Kean, Thomas J.
Waldman, Stephen
Author_xml – sequence: 1
  givenname: G. Adam
  surname: Whitney
  fullname: Whitney, G. Adam
  organization: 2Hope Heart Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
– sequence: 2
  givenname: Thomas J.
  surname: Kean
  fullname: Kean, Thomas J.
  organization: 3Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 3
  givenname: Russell J.
  surname: Fernandes
  fullname: Fernandes, Russell J.
  organization: 4Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
– sequence: 4
  givenname: Stephen
  surname: Waldman
  fullname: Waldman, Stephen
  organization: 5Department of Chemical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Canada
– sequence: 5
  givenname: M. Yat
  surname: Tse
  fullname: Tse, M. Yat
  organization: 6Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
– sequence: 6
  givenname: Stephen C.
  surname: Pang
  fullname: Pang, Stephen C.
  organization: 6Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
– sequence: 7
  givenname: Joseph M.
  surname: Mansour
  fullname: Mansour, Joseph M.
  organization: 7Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 8
  givenname: James E.
  surname: Dennis
  fullname: Dennis, James E.
  organization: 3Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28548569$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOA_9AW6kwI2bavNOZSMMTY82DLiwBXchk9zqyVCdtEmVTv97U_TYqCsXIZeT757k5lyis5giIPSa4AXBnX4_QlyMYBcUE7nAgrFn6IJoplrGxLezU83JObos5QFjiaVSL9A57QTvhNQX6Ofm_pDTY4jQrKPLYAuUZpmGwW4hNpvDvurrZvW4z1BKSLGx0TfXzk27abDjLITYfHG279Pg25sM0GxCKRO0q7itrpCh8nkMrvK5Wdpazt4v0fPeDgVePe1X6OvNarP81N5-_rheXt-2TlA2tmCx8kpR11NiCdWsk51gwmnNtXRecy6YclJ4UMpraoUjmDgpmfOcd56yK_Th6Luf7nbgHcQx28Hsc9jZfDDJBvP3SQz3Zpt-GNExRgWvBu-eDHL6PkEZzS4UB_WDIqSpGKIxI1JyPd_19h_0IU051vEMxVgzrBhVlSJHyuVUSob-9BiCzRyrqbHWZc0cq5ljrT1v_pzi1PE7xwqoIzDLNsYhwB3k8T-sfwHKJLV1
CitedBy_id crossref_primary_10_1080_03008207_2020_1839436
crossref_primary_10_1089_ten_teb_2021_0130
crossref_primary_10_3389_fbioe_2023_1179332
crossref_primary_10_1016_j_actbio_2022_08_058
crossref_primary_10_1089_ten_tec_2017_0513
crossref_primary_10_3389_fbioe_2022_825005
crossref_primary_10_1186_s13075_020_02325_6
crossref_primary_10_3389_fcell_2020_00092
crossref_primary_10_1177_0363546520917684
crossref_primary_10_3389_fcell_2021_647166
crossref_primary_10_1016_j_mbplus_2021_100077
crossref_primary_10_3390_toxins11110667
crossref_primary_10_1007_s40744_021_00287_y
crossref_primary_10_1007_s10439_021_02897_7
crossref_primary_10_2139_ssrn_4134999
crossref_primary_10_33145_2304_8336_2022_27_264_275
crossref_primary_10_3389_fbioe_2020_590743
Cites_doi 10.1177/1947603511420999
10.1002/jsfa.2740050504
10.1002/jor.1100080307
10.2174/187152206777435555
10.1111/aor.12199
10.1096/fasebj.3.9.2663581
10.1038/sj.emboj.7600615
10.1074/jbc.M002560200
10.1115/1.1824123
10.1002/jcp.21704
10.1002/jor.1100180510
10.1083/jcb.126.5.1311
10.1002/jbmr.5650110115
10.2106/00004623-197557040-00015
10.1186/s13075-015-0541-5
10.2106/00004623-196446060-00002
10.1016/j.matbio.2007.06.007
10.1177/002215540205000807
10.1074/jbc.M608383200
10.1002/jor.1100170119
10.1016/0304-4165(70)90388-0
10.1016/j.bbagen.2014.02.030
10.1089/biores.2012.0231
10.1016/j.matbio.2013.09.006
10.1016/0003-2697(88)90532-5
10.1002/1529-0131(200010)43:10<2202::AID-ANR7>3.0.CO;2-E
10.1016/j.matbio.2015.10.003
10.1172/JCI110641
10.1371/journal.pone.0129961
10.1089/ten.tea.2011.0234
10.1046/j.1432-1033.2003.03711.x
10.1083/jcb.116.4.1035
10.1006/abbi.1998.0745
10.1152/ajpcell.00116.2009
10.1089/ten.tea.2010.0531
10.1016/j.joca.2007.07.003
10.1002/term.1925
ContentType Journal Article
Copyright 2018, Mary Ann Liebert, Inc.
(©) Copyright 2018, Mary Ann Liebert, Inc.
Copyright 2018, Mary Ann Liebert, Inc. 2018
Copyright_xml – notice: 2018, Mary Ann Liebert, Inc.
– notice: (©) Copyright 2018, Mary Ann Liebert, Inc.
– notice: Copyright 2018, Mary Ann Liebert, Inc. 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7T5
7TK
7TM
7TO
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1089/ten.tea.2016.0533
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Journals (ProQuest Database)
Biological Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1937-335X
EndPage 381
ExternalDocumentID 10_1089_ten_tea_2016_0533
28548569
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Canada
Cleveland Ohio
Ohio
United States--US
Texas
GeographicLocations_xml – name: Canada
– name: Texas
– name: United States--US
– name: Cleveland Ohio
– name: Ohio
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE015322
– fundername: NIAMS NIH HHS
  grantid: P01 AR053622
– fundername: NIAMS NIH HHS
  grantid: T32 AR007505
– fundername: NIAMS NIH HHS
  grantid: R01 AR057025
– fundername: CIHR
  grantid: 413680
GroupedDBID ---
0R~
123
29Q
3V.
4.4
53G
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
ABBKN
ABUWG
ACGFO
ACGOD
ACPRK
AENEX
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
HCIFZ
HMCUK
IAO
IHR
LK8
M0L
M1P
M2P
M7P
MV1
NQHIM
O9-
PQQKQ
PROAC
PSQYO
RML
RNS
UE5
UKHRP
1-M
CAG
CGR
COF
CUY
CVF
ECM
EIF
IER
IGS
ITC
NPM
AAYXX
CITATION
7QP
7T5
7TK
7TM
7TO
7XB
8FK
H94
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c523t-ea07d772cf21a1293868535c99496cd944537c65de77d92a5c101c663cd448d23
IEDL.DBID BENPR
ISSN 1937-3341
IngestDate Tue Sep 17 21:22:08 EDT 2024
Fri Aug 16 04:56:54 EDT 2024
Thu Oct 10 17:29:40 EDT 2024
Fri Aug 23 01:04:51 EDT 2024
Wed Oct 16 00:50:40 EDT 2024
Fri Sep 27 01:17:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords thyroxine
engineered cartilage
extracellular matrix composition
chondrogenesis
collagen-to-GAG ratio
collagen type II
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-ea07d772cf21a1293868535c99496cd944537c65de77d92a5c101c663cd448d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc5833254?pdf=render
PMID 28548569
PQID 2009307327
PQPubID 40309
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833254
proquest_miscellaneous_1903166492
proquest_journals_2009307327
crossref_primary_10_1089_ten_tea_2016_0533
pubmed_primary_28548569
maryannliebert_primary_10_1089_ten_tea_2016_0533
PublicationCentury 2000
PublicationDate 20180301
2018-03-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 20180301
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New Rochelle
– name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA
PublicationTitle Tissue engineering. Part A
PublicationTitleAlternate Tissue Eng Part A
PublicationYear 2018
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References B20
B21
B22
B24
B25
B26
B27
B28
B29
B30
B10
B11
B33
B12
B34
B13
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
References_xml – ident: B21
  doi: 10.1177/1947603511420999
– ident: B25
  doi: 10.1002/jsfa.2740050504
– ident: B7
  doi: 10.1002/jor.1100080307
– ident: B34
  doi: 10.2174/187152206777435555
– ident: B29
  doi: 10.1111/aor.12199
– ident: B41
  doi: 10.1096/fasebj.3.9.2663581
– ident: B40
  doi: 10.1038/sj.emboj.7600615
– ident: B36
  doi: 10.1074/jbc.M002560200
– ident: B8
  doi: 10.1115/1.1824123
– ident: B38
  doi: 10.1002/jcp.21704
– ident: B10
  doi: 10.1002/jor.1100180510
– ident: B37
  doi: 10.1083/jcb.126.5.1311
– ident: B39
  doi: 10.1002/jbmr.5650110115
– ident: B1
  doi: 10.2106/00004623-197557040-00015
– ident: B20
  doi: 10.1186/s13075-015-0541-5
– ident: B2
  doi: 10.2106/00004623-196446060-00002
– ident: B27
  doi: 10.1016/j.matbio.2007.06.007
– ident: B19
  doi: 10.1177/002215540205000807
– ident: B15
  doi: 10.1074/jbc.M608383200
– ident: B4
  doi: 10.1002/jor.1100170119
– ident: B9
  doi: 10.1016/0304-4165(70)90388-0
– ident: B14
  doi: 10.1016/j.bbagen.2014.02.030
– ident: B3
  doi: 10.1089/biores.2012.0231
– ident: B28
  doi: 10.1016/j.matbio.2013.09.006
– ident: B24
  doi: 10.1016/0003-2697(88)90532-5
– ident: B11
  doi: 10.1002/1529-0131(200010)43:10<2202::AID-ANR7>3.0.CO;2-E
– ident: B33
  doi: 10.1016/j.matbio.2015.10.003
– ident: B17
  doi: 10.1172/JCI110641
– ident: B22
  doi: 10.1371/journal.pone.0129961
– ident: B5
  doi: 10.1089/ten.tea.2011.0234
– ident: B30
  doi: 10.1046/j.1432-1033.2003.03711.x
– ident: B18
  doi: 10.1083/jcb.116.4.1035
– ident: B26
  doi: 10.1006/abbi.1998.0745
– ident: B16
  doi: 10.1152/ajpcell.00116.2009
– ident: B6
  doi: 10.1089/ten.tea.2010.0531
– ident: B12
  doi: 10.1016/j.joca.2007.07.003
– ident: B13
  doi: 10.1002/term.1925
SSID ssj0060677
Score 2.345678
Snippet Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan...
SourceID pubmedcentral
proquest
crossref
pubmed
maryannliebert
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 369
SubjectTerms Animals
Biology
Biomedical engineering
Bone surgery
Cartilage (articular)
Cartilage, Articular - cytology
Cartilage, Articular - metabolism
Chondrocytes
Chondrocytes - cytology
Chondrocytes - metabolism
Chondrogenesis
Collagen
Collagen (type I)
Collagen (type II)
Collagen Type II - biosynthesis
Deoxyribonucleic acid
DNA
Dose-Response Relationship, Drug
Drug dosages
Engineering
Extracellular matrix
Gene expression
Gene Expression Regulation - drug effects
Hormones
Kinases
Male
Mechanical properties
Original
Original Articles
Orthopedics
Protein folding
Proteins
Rabbits
Statistical analysis
Studies
Thyroid gland
Thyroid hormones
Thyroxine
Thyroxine - pharmacology
Tissue Engineering
Transforming growth factor-b1
Western blotting
Title Thyroxine Increases Collagen Type II Expression and Accumulation in Scaffold-Free Tissue-Engineered Articular Cartilage
URI https://www.liebertpub.com/doi/abs/10.1089/ten.tea.2016.0533
https://www.ncbi.nlm.nih.gov/pubmed/28548569
https://www.proquest.com/docview/2009307327
https://search.proquest.com/docview/1903166492
https://pubmed.ncbi.nlm.nih.gov/PMC5833254
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RrZBAAkF5NFAqI3FCcpt1HMc-oVLtquVQIdhKe4u8tqNWKk67D9H-e2byWLoIIQ65xEmcZMbjbzyfZwA-WK2HLqiMZ054jvOx5DNvBVdhllapRzWxDUH2TJ2cyy_TfNotuC06WmVvExtD7WtHa-SHtIpP-iiKT9c3nKpGUXS1K6GxBdsCPYV0ANufR2dfv_W2WFF-tDaujEMJDXYf19TmECHpAf5HYnepA9qRujEzPaGNYzZGBIJEcP4b_vyTRnlvXho_g6cdoGRHrQY8hwch7sDDtsTk3Q48vpdw8AX8nFzczetbPMHQMBAfPSwYrR2gVYmMfFJ2espGtx07NjIbPTtybvWjq_LFLiP77mxV1Veej-chsEkjOd53E3z7KsRuZcekl_Tsl3A-Hk2OT3hXeoE79EyXPNi08Ai8XSWGliCBVjiv584YaZTzRso8K5zKfSgKb4TNHQ5th-jFefT3vMhewSDWMewCk75Cz9dUVVY56bTUqVfo5QWjg5Si0gl87H97ed1m2CibyLg2JcoID1uSjEqSUQLppmD-55a9XnRlNz4X5W9tSuD9uhlHFoVLbAz1alEiVMqGSkkjEnjdSnrdG-071bkyCRQbOrC-gLJ2b7bEy4smezdtc0Ov_M2_X-stPMIv0C3bbQ8Gy_kqvEP4s5ztw1YxLfY7Tf8F6l0HdQ
link.rule.ids 230,315,783,787,888,12068,21400,27936,27937,31731,31732,33756,33757,43322,43817,74073,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEQIkEJRSAgWMxAnJbTZxHPuEqqqrXSi9sJX2Fnn9UCuB0-5DtP-emTyWLkKIQy5xEieZ8fgbz-cZgA9GqYH1Mue5zRzH-VjwmTMZl36WhtShmpiGIHsqR2fi87SYdgtui45W2dvExlC72tIa-QGt4pM-ZuWnyytOVaMoutqV0LgL9ygPF1UwKKdrh0tSdrQ2qowDCc11H9VU-gAB6T7-ReJ2yX3aj7oxLz2mbWMmRoSBRG_-G_r8k0R5a1YaPoUnHZxkh638n8EdH7fhfltg8mYbHt1KN_gcfk7Ob-b1NZ5gaBaIje4XjFYO0KZERh4pG4_Z8XXHjY3MRMcOrV396Gp8sYvIvlkTQv3d8eHcezZp5Mb7brxrX4W4reyItJKevQNnw-PJ0Yh3hRe4Rb90yb1JS4ew24ZsYAgQKImzemG1Flpap4Uo8tLKwvmydDozhcWBbRG7WIfensvyF7AV6-hfAhMuoN-rQ8iDFVYJlTqJPp7XyguRBZXAx_63V5dtfo2qiYsrXaGM8DAVyagiGSWQbgrmf27Z60VXdaNzUf3WpQTer5txXFGwxERfrxYVAqV8IKXQWQK7raTXvdGuU1VInUC5oQPrCyhn92ZLvDhvcnfTJjf0yV_9-7XewYPR5OtJdTI-_fIaHuLXqJb3tgdby_nKv0EgtJy9bbT9F9vYCBk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BJxBIIBgDCgOMxBOStzRxHPsJjdFqBVRN0El7i1zb0SaBM_pDbP89d4lTVoQQD3mJkzjJnc_f-T7fAbwxSg2slxnPbOo4zseCz5xJufSzpEocqolpCLITeXQiPp7mp5H_tIi0ys4mNoba1ZbWyPdpFZ_0EV31KtIijj-M3l384FRBiiKtsZzGTdgqhMySHmy9H06Ov3R2WVKutDbGjMMKjXcX41R6H-HpHv5TYnrJPdqdujFL3aNNZCYEBIVEdv4bFv2TUnltjho9gPsRXLKDVhsewg0ftuFWW27yahvuXks--Ah-Ts-u5vUlnmBoJIib7heM1hHQwgRG_ikbj9nwMjJlAzPBsQNrV99jxS92HthXa6qq_ub4aO49mzZS5F033rWvQkxXdkg6Ss_egZPRcHp4xGMZBm7RS11yb5LCIQi3VTowBA-UxDk-t1oLLa3TQuRZYWXufFE4nZrc4jC3iGSsQ9_Ppdlj6IU6-KfAhKvQC9ZVlVVWWCVU4iR6fF4rL0RaqT687X57edFm2yibKLnSJcoID1OSjEqSUR-STcH8zy27nejKOFYX5W_N6sPrdTOOMgqdmODr1aJE2JQNpBQ67cOTVtLr3mgPqsql7kOxoQPrCyiD92ZLOD9rMnnTljf00J_9-7VewW1U9fLzePLpOdzBj1EtCW4Xesv5yr9AVLScvYzq_gusYg22
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thyroxine+Increases+Collagen+Type+II+Expression+and+Accumulation+in+Scaffold-Free+Tissue-Engineered+Articular+Cartilage&rft.jtitle=Tissue+engineering.+Part+A&rft.au=Whitney%2C+G.+Adam&rft.au=Kean%2C+Thomas+J.&rft.au=Fernandes%2C+Russell+J.&rft.au=Waldman%2C+Stephen&rft.date=2018-03-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=1937-3341&rft.eissn=1937-335X&rft.volume=24&rft.issue=5-6&rft.spage=369&rft.epage=381&rft_id=info:doi/10.1089%2Ften.tea.2016.0533&rft.externalDocID=10_1089_ten_tea_2016_0533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3341&client=summon