First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes
P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cell...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1860; no. 11; pp. 2335 - 2344 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.
To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.
These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.
These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.
They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.
[Display omitted]
•First comprehensive analysis of MAPK13/inhibitor complexes of widely varied potency•Inhibitors of nanomolar IC50 bind in DFG-out mode; micromolar IC50 bind DFG-in.•Nanomolar IC50 correlates with longer dissociation half-lives.•Binding thermodynamics of inhibitors correlates with potency.•The data provide a guide for designing high potency inhibitors to MAPK13. |
---|---|
AbstractList | P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.
To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.
These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.
These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.
They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. [Display omitted] •First comprehensive analysis of MAPK13/inhibitor complexes of widely varied potency•Inhibitors of nanomolar IC50 bind in DFG-out mode; micromolar IC50 bind DFG-in.•Nanomolar IC50 correlates with longer dissociation half-lives.•Binding thermodynamics of inhibitors correlates with potency.•The data provide a guide for designing high potency inhibitors to MAPK13. P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.BACKGROUNDP38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.METHODSTo facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.RESULTSThese inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.CONCLUSIONSThese studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.GENERAL SIGNIFICANCEThey also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. Background: P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. Methods: To facilitate the design of potent and specific inhibitors, we present in this paper the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. Results: These inhibitors display IC50 values either in the nanomolar range or micromolar range (> 800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. Conclusions: These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. General significance: They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. |
Author | Yurtsever, Zeynep Patel, Dhara A. Miller, Chantel A. Su, Alvin Romero, Arthur G. Holtzman, Michael J. Brett, Tom J. Kober, Daniel L. |
AuthorAffiliation | 6 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 4 Microbiology Program, Washington University School of Medicine, St. Louis, Missouri 63110 3 Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 5 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 2 Biochemistry Program, Washington University School of Medicine, St. Louis, Missouri 63110 |
AuthorAffiliation_xml | – name: 2 Biochemistry Program, Washington University School of Medicine, St. Louis, Missouri 63110 – name: 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 – name: 3 Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 – name: 5 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 – name: 6 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 – name: 4 Microbiology Program, Washington University School of Medicine, St. Louis, Missouri 63110 |
Author_xml | – sequence: 1 givenname: Zeynep surname: Yurtsever fullname: Yurtsever, Zeynep organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 2 givenname: Dhara A. surname: Patel fullname: Patel, Dhara A. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 3 givenname: Daniel L. surname: Kober fullname: Kober, Daniel L. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 4 givenname: Alvin surname: Su fullname: Su, Alvin organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 5 givenname: Chantel A. surname: Miller fullname: Miller, Chantel A. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 6 givenname: Arthur G. surname: Romero fullname: Romero, Arthur G. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 7 givenname: Michael J. surname: Holtzman fullname: Holtzman, Michael J. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States – sequence: 8 givenname: Tom J. surname: Brett fullname: Brett, Tom J. email: tbrett@wustl.edu organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27369736$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1329425$$D View this record in Osti.gov |
BookMark | eNqNUktvEzEQtlARTQv_AKEVJy4b_NwHB6SqNC2iCA5wtrz2bNbRxg62N6j_Hm-TIuAAWGN5RvPN53mdoRPnHSD0nOAlwaR6vVl2nVqDW9JsLXEWyh6hBWlqWjYYVydogRnmJSeVOEVnMW5wPqIVT9AprVnV5rtA31c2xFRov90FGMBFu4cipjDpNAU1FsqZorN-N9xFq-9tNWY1Fr4vPl58_kBYYd1gO5t8iEVSYQ3JunXxbnVdWncfPqt-SpnGmdm19QbiU_S4V2OEZ8f3HH1dXX25vClvP12_v7y4LbWgLJUa1wwazSjXbasJrU3Vtpwr3htGWa37iitRkbpuNBfUAGN9rllxQ6DSDcXsHL098O6mbgtGg0u5LLkLdqvCnfTKyt89zg5y7fdSYEIwJpng5YHAx2Rl1DaBHrR3DnSShNGWU5FBr46_BP9tgpjk1kYN46gc-ClK0lDBGcW0-Q8oqUWFBZmhL37N_WfSD9PLgDcHgA4-xgC9zOmpZP1cih0lwXJeFbmRh1WR86pInIWyHMz_CH7g_0fYsaGQp7a3EOaegNNgbJhbYrz9O8EPuJfZvA |
CitedBy_id | crossref_primary_10_22159_ijcpr_2024v16i6_6023 crossref_primary_10_1007_s13205_024_03948_1 crossref_primary_10_1016_j_jbc_2023_105175 crossref_primary_10_18632_aging_103037 crossref_primary_10_1038_s41467_018_08027_7 crossref_primary_10_1002_smll_201802291 crossref_primary_10_1080_13543776_2023_2242584 crossref_primary_10_1016_j_compbiomed_2021_104485 crossref_primary_10_3390_ijms23010370 crossref_primary_10_1016_j_lfs_2022_120809 crossref_primary_10_1016_j_tibs_2017_02_008 crossref_primary_10_1016_j_ymeth_2016_10_013 crossref_primary_10_3390_ijms231810328 crossref_primary_10_1039_D1MD00277E crossref_primary_10_3390_cancers13092077 |
Cites_doi | 10.1021/jm200677b 10.1016/S0092-8674(00)00027-1 10.1021/jm060522a 10.1038/ncomms10882 10.1016/j.bcp.2008.10.032 10.1084/jem.20120677 10.1107/S0907444904019158 10.2174/1568026054985939 10.1038/nchembio.761 10.1016/S1097-2765(05)00014-6 10.18632/oncotarget.4320 10.1073/pnas.0605224103 10.1073/pnas.180316397 10.1016/j.bmcl.2008.06.028 10.1021/jm0306430 10.1038/nsb770 10.2174/092986705774462914 10.1126/science.289.5486.1938 10.1158/0008-5472.CAN-14-0870 10.1111/j.1751-2980.2011.00525.x 10.1007/978-1-61779-337-0_7 10.1107/S0907444902016657 10.1517/17460441.2010.504203 10.1038/nprot.2007.321 10.1021/jm030644s 10.1155/2012/520289 10.1107/S090744491201997X 10.1093/nar/gkg556 10.1016/j.cell.2008.11.018 10.1074/jbc.M414221200 10.2174/138161212799436368 10.1172/JCI64896 10.1016/S0076-6879(97)76066-X 10.1016/S0969-2126(98)00113-0 10.2174/156802609789630974 10.1073/pnas.1207290109 10.1107/S1399004715001212 10.1021/ci200227u 10.1002/art.38327 10.1158/0008-5472.CAN-04-1168 10.7554/eLife.01456 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OIOZB OTOTI 5PM |
DOI | 10.1016/j.bbagen.2016.06.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 2344 |
ExternalDocumentID | PMC5011001 1329425 27369736 10_1016_j_bbagen_2016_06_023 S0304416516302288 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: UH2 HL123429 – fundername: NIGMS NIH HHS grantid: T32 GM007067 – fundername: NHLBI NIH HHS grantid: R01 HL119813 – fundername: NHLBI NIH HHS grantid: P50 HL107183 – fundername: NHLBI NIH HHS grantid: UH3 HL123429 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 AALMO ABPIF ABPTK OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c523t-c073e8c324c99c127d69944a4fd3237cf64a561778c452de33f304a4d1e6c8203 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 18:28:06 EDT 2025 Mon Jul 03 03:57:27 EDT 2023 Mon Jul 21 11:44:34 EDT 2025 Thu Jul 10 22:34:31 EDT 2025 Mon Jul 21 06:01:56 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Tue Jul 01 00:22:07 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | p38 kinase Structure-based drug design Differential scanning fluorimetry Chronic inflammatory lung disease Kinase inhibitor Inhibitor half-lives |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-c073e8c324c99c127d69944a4fd3237cf64a561778c452de33f304a4d1e6c8203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 T32-GM007067; AC02-06CH11357; AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) National Institutes of Health (NIH) American Heart Association (AHA) USDOE Office of Science (SC), Biological and Environmental Research (BER) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1329425 |
PMID | 27369736 |
PQID | 1817560518 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5011001 osti_scitechconnect_1329425 proquest_miscellaneous_1825432028 proquest_miscellaneous_1817560518 pubmed_primary_27369736 crossref_citationtrail_10_1016_j_bbagen_2016_06_023 crossref_primary_10_1016_j_bbagen_2016_06_023 elsevier_sciencedirect_doi_10_1016_j_bbagen_2016_06_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: United States |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | O'Callaghan, Fanning, Barry (bb0070) 2014; 2014 Alevy, Patel, Romero, Patel, Tucker, Roswit, Miller, Heier, Byers, Brett, Holtzman (bb0100) 2012; 122 Ittner, Block, Reichel, Varjosalo, Gehart, Sumara, Gstaiger, Krombach, Zarbock, Ricci (bb0080) 2012; 209 Risco, Cuenda (bb0065) 2012; 2012 Gouet, Robert, Courcelle (bb0215) 2003; 31 Goldstein, Gabriel (bb0055) 2005; 5 Vedadi, Niesen, Allali-Hassani, Fedorov, Finerty, Wasney, Yeung, Arrowsmith, Ball, Berglund, Hui, Marsden, Nordlund, Sundstrom, Weigelt, Edwards (bb0195) 2006; 103 Kuma, Sabio, Bain, Shpiro, Marquez, Cuenda (bb0160) 2005; 280 Fedorov, Niesen, Knapp (bb0200) 2012; 795 Zur, Garcia-Ibanez, Nunez-Buiza, Aparicio, Liappas, Escos, Risco, Page, Saiz-Ladera, Alsina-Beauchamp, Montans, Paramio, Cuenda (bb0090) 2015; 6 Emsley, Cowtan (bb0120) 2004; 60 Wang, Canagarajah, Boehm, Kassisa, Cobb, Young, Abdel-Meguid, Adams, Goldsmith (bb0185) 1998; 6 Tamura, Sudo, Senftleben, Dadak, Johnson, Karin (bb0050) 2000; 102 Yurtsever, Scheaffer, Romero, Holtzman, Brett (bb0110) 2015; 71 Morin, Eisenbraun, Key, Sanschagrin, Timony, Ottaviano, Sliz (bb0140) 2013; 2 Sumara, Formentini, Collins, Sumara, Windak, Bodenmiller, Ramracheya, Caille, Jiang, Platt, Meda, Aebersold, Rorsman, Ricci (bb0075) 2009; 136 Angell, Angell, Bamborough, Bamford, Chung, Cockerill, Flack, Jones, Laine, Longstaff, Ludbrook, Pearson, Smith, Smee, Somers, Walker (bb0170) 2008; 18 Schindler, Bornmann, Pellicena, Miller, Clarkson, Kuriyan (bb0175) 2000; 289 Lee, Dominguez (bb0105) 2005; 12 Schrodinger (bb0135) 2010 Del Reino, Alsina-Beauchamp, Escos, Cerezo-Guisado, Risco, Aparicio, Zur, Fernandez-Estevez, Collantes, Montans, Cuenda (bb0085) 2014 Feng, Li (bb0005) 2011; 12 Millan, Bunnage, Burrows, Butcher, Dodd, Evans, Fairman, Hughes, Kilty, Lemaitre, Lewthwaite, Mahnke, Mathias, Philip, Smith, Stefaniak, Yeadon, Phillips (bb0035) 2011; 54 Halgren, Murphy, Friesner, Beard, Frye, Pollard, Banks (bb0150) 2004; 47 Azevedo, van Zeeland, Raaijmakers, Kazemier, de Vlieg, Oubrie (bb0030) 2012; 68 Otwinowski, Minor (bb0115) 1997; 276 Criado, Risco, Alsina-Beauchamp, Perez-Lorenzo, Escos, Cuenda (bb0095) 2014; 66 Schieven (bb0010) 2009; 9 Muller, Knapp (bb0015) 2010; 5 Risco, del Fresno, Mambol, Alsina-Beauchamp, MacKenzie, Yang, Barber, Morcelle, Arthur, Ley, Ardavin, Cuenda (bb0060) 2012; 109 Koeberle, Romir, Fischer, Koeberle, Schattel, Albrecht, Grutter, Werz, Rauh, Stehle, Laufer (bb0025) 2012; 8 Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bb0125) 2002; 58 Lyne, Lamb, Saeh (bb0210) 2006; 49 Schnieders, Kaoud, Yan, Dalby, Ren (bb0020) 2012; 18 Wood, Truesdale, McDonald, Yuan, Hassell, Dickerson, Ellis, Pennisi, Horne, Lackey, Alligood, Rusnak, Gilmer, Shewchuk (bb0165) 2004; 64 Gruenbaum, Schwartz, Woska, DeLeon, Peet, Warren, Capolino, Mara, Morelock, Shrutkowski, Jones, Pargellis (bb0205) 2009; 77 Laskowski, Swindells (bb0130) 2011; 51 Niesen, Berglund, Vedadi (bb0190) 2007; 2 Adams, Porras, Alonso, Jones, Vintersten, Panelli, Valladares, Perez, Klein, Nebreda (bb0040) 2000; 6 Meyer, Socias, Key, Ransey, Tjon, Buschiazzo, Lei, Botka, Withrow, Neau, Rajashankar, Anderson, Baxter, Blacklow, Boggon, Bonvin, Borek, Brett, Caflisch, Chang, Chazin, Corbett, Cosgrove, Crosson, Dhe-Paganon, Di Cera, Drennan, Eck, Eichman, Fan, Ferre-D'Amare, Fromme, Garcia, Gaudet, Gong, Harrison, Heldwein, Jia, Keenan, Kruse, Kvansakul, McLellan, Modis, Nam, Otwinowski, Pai, Pereira, Petosa, Raman, Rapoport, Roll-Mecak, Rosen, Rudenko, Schlessinger, Schwartz, Shamoo, Sondermann, Tao, Tolia, Tsodikov, Westover, Wu, Foster, Fraser, Maia, Gonen, Kirchhausen, Diederichs, Crosas, Sliz (bb0145) 2016; 7 Mudgett, Ding, Guh-Siesel, Chartrain, Yang, Gopal, Shen (bb0045) 2000; 97 Friesner, Banks, Murphy, Halgren, Klicic, Mainz, Repasky, Knoll, Shelley, Perry, Shaw, Francis, Shenkin (bb0155) 2004; 47 Pargellis, Tong, Churchill, Cirillo, Gilmore, Graham, Grob, Hickey, Moss, Pav, Regan (bb0180) 2002; 9 Morin (10.1016/j.bbagen.2016.06.023_bb0140) 2013; 2 Risco (10.1016/j.bbagen.2016.06.023_bb0065) 2012; 2012 Millan (10.1016/j.bbagen.2016.06.023_bb0035) 2011; 54 Wood (10.1016/j.bbagen.2016.06.023_bb0165) 2004; 64 Wang (10.1016/j.bbagen.2016.06.023_bb0185) 1998; 6 Niesen (10.1016/j.bbagen.2016.06.023_bb0190) 2007; 2 Feng (10.1016/j.bbagen.2016.06.023_bb0005) 2011; 12 Risco (10.1016/j.bbagen.2016.06.023_bb0060) 2012; 109 Adams (10.1016/j.bbagen.2016.06.023_bb0125) 2002; 58 Adams (10.1016/j.bbagen.2016.06.023_bb0040) 2000; 6 O'Callaghan (10.1016/j.bbagen.2016.06.023_bb0070) 2014; 2014 Halgren (10.1016/j.bbagen.2016.06.023_bb0150) 2004; 47 Kuma (10.1016/j.bbagen.2016.06.023_bb0160) 2005; 280 Yurtsever (10.1016/j.bbagen.2016.06.023_bb0110) 2015; 71 Gruenbaum (10.1016/j.bbagen.2016.06.023_bb0205) 2009; 77 Koeberle (10.1016/j.bbagen.2016.06.023_bb0025) 2012; 8 Muller (10.1016/j.bbagen.2016.06.023_bb0015) 2010; 5 Tamura (10.1016/j.bbagen.2016.06.023_bb0050) 2000; 102 Gouet (10.1016/j.bbagen.2016.06.023_bb0215) 2003; 31 Otwinowski (10.1016/j.bbagen.2016.06.023_bb0115) 1997; 276 Lee (10.1016/j.bbagen.2016.06.023_bb0105) 2005; 12 Emsley (10.1016/j.bbagen.2016.06.023_bb0120) 2004; 60 Schindler (10.1016/j.bbagen.2016.06.023_bb0175) 2000; 289 Schnieders (10.1016/j.bbagen.2016.06.023_bb0020) 2012; 18 Azevedo (10.1016/j.bbagen.2016.06.023_bb0030) 2012; 68 Fedorov (10.1016/j.bbagen.2016.06.023_bb0200) 2012; 795 Ittner (10.1016/j.bbagen.2016.06.023_bb0080) 2012; 209 Alevy (10.1016/j.bbagen.2016.06.023_bb0100) 2012; 122 Lyne (10.1016/j.bbagen.2016.06.023_bb0210) 2006; 49 Schrodinger (10.1016/j.bbagen.2016.06.023_bb0135) 2010 Del Reino (10.1016/j.bbagen.2016.06.023_bb0085) 2014 Schieven (10.1016/j.bbagen.2016.06.023_bb0010) 2009; 9 Friesner (10.1016/j.bbagen.2016.06.023_bb0155) 2004; 47 Criado (10.1016/j.bbagen.2016.06.023_bb0095) 2014; 66 Angell (10.1016/j.bbagen.2016.06.023_bb0170) 2008; 18 Laskowski (10.1016/j.bbagen.2016.06.023_bb0130) 2011; 51 Mudgett (10.1016/j.bbagen.2016.06.023_bb0045) 2000; 97 Goldstein (10.1016/j.bbagen.2016.06.023_bb0055) 2005; 5 Vedadi (10.1016/j.bbagen.2016.06.023_bb0195) 2006; 103 Zur (10.1016/j.bbagen.2016.06.023_bb0090) 2015; 6 Pargellis (10.1016/j.bbagen.2016.06.023_bb0180) 2002; 9 Sumara (10.1016/j.bbagen.2016.06.023_bb0075) 2009; 136 Meyer (10.1016/j.bbagen.2016.06.023_bb0145) 2016; 7 |
References_xml | – volume: 7 start-page: 10882 year: 2016 ident: bb0145 article-title: Data publication with the structural biology data grid supports live analysis publication-title: Nat. Commun. – volume: 97 start-page: 10454 year: 2000 end-page: 10459 ident: bb0045 article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 867 year: 2010 end-page: 881 ident: bb0015 article-title: Targeting kinases for the treatment of inflammatory diseases publication-title: Expert Opin. Drug Discovery – volume: 18 start-page: 1173 year: 2012 end-page: 1185 ident: bb0020 article-title: Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases publication-title: Curr. Pharm. Des. – volume: 31 start-page: 3320 year: 2003 end-page: 3323 ident: bb0215 article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins publication-title: Nucleic Acids Res. – volume: 122 start-page: 4555 year: 2012 end-page: 4568 ident: bb0100 article-title: IL-13-induced airway mucus production is attenuated by MAPK13 inhibition publication-title: J. Clin. Invest. – volume: 12 start-page: 2979 year: 2005 end-page: 2994 ident: bb0105 article-title: MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein publication-title: Curr. Med. Chem. – volume: 2 year: 2013 ident: bb0140 article-title: Collaboration gets the most out of software publication-title: Elife – year: 2010 ident: bb0135 article-title: The PyMOL Molecular Graphics System, Version 1.3r1 – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bb0115 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 209 start-page: 2229 year: 2012 end-page: 2246 ident: bb0080 article-title: Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung publication-title: J. Exp. Med. – volume: 9 start-page: 268 year: 2002 end-page: 272 ident: bb0180 article-title: Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site publication-title: Nat. Struct. Biol. – volume: 71 start-page: 790 year: 2015 end-page: 799 ident: bb0110 article-title: The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 280 start-page: 19472 year: 2005 end-page: 19479 ident: bb0160 article-title: BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo publication-title: J. Biol. Chem. – volume: 6 start-page: 1117 year: 1998 end-page: 1128 ident: bb0185 article-title: Structural basis of inhibitor selectivity in MAP kinases publication-title: Structure – volume: 136 start-page: 235 year: 2009 end-page: 248 ident: bb0075 article-title: Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis publication-title: Cell – volume: 102 start-page: 221 year: 2000 end-page: 231 ident: bb0050 article-title: Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis publication-title: Cell – volume: 51 start-page: 2778 year: 2011 end-page: 2786 ident: bb0130 article-title: LigPlot publication-title: J. Chem. Inf. Model. – volume: 18 start-page: 4433 year: 2008 end-page: 4437 ident: bb0170 article-title: Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes publication-title: Bioorg. Med. Chem. Lett. – volume: 12 start-page: 327 year: 2011 end-page: 332 ident: bb0005 article-title: The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease publication-title: J. Dig. Dis. – volume: 2012 start-page: 520289 year: 2012 ident: bb0065 article-title: New insights into the p38gamma and p38delta MAPK pathways publication-title: J. Signal. Transduct. – volume: 49 start-page: 4805 year: 2006 end-page: 4808 ident: bb0210 article-title: Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring publication-title: J. Med. Chem. – volume: 289 start-page: 1938 year: 2000 end-page: 1942 ident: bb0175 article-title: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase publication-title: Science – volume: 47 start-page: 1739 year: 2004 end-page: 1749 ident: bb0155 article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J. Med. Chem. – volume: 54 start-page: 7797 year: 2011 end-page: 7814 ident: bb0035 article-title: Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease publication-title: J. Med. Chem. – volume: 5 start-page: 1017 year: 2005 end-page: 1029 ident: bb0055 article-title: Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development publication-title: Curr. Top. Med. Chem. – volume: 66 start-page: 1208 year: 2014 end-page: 1217 ident: bb0095 article-title: Alternative p38 MAPKs are essential for collagen-induced arthritis publication-title: Arthritis Rheum. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bb0120 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 2 start-page: 2212 year: 2007 end-page: 2221 ident: bb0190 article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability publication-title: Nat. Protoc. – volume: 77 start-page: 422 year: 2009 end-page: 432 ident: bb0205 article-title: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling publication-title: Biochem. Pharmacol. – volume: 8 start-page: 141 year: 2012 end-page: 143 ident: bb0025 article-title: Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor publication-title: Nat. Chem. Biol. – volume: 6 start-page: 12920 year: 2015 end-page: 12935 ident: bb0090 article-title: Combined deletion of p38gamma and p38delta reduces skin inflammation and protects from carcinogenesis publication-title: Oncotarget – volume: 103 start-page: 15835 year: 2006 end-page: 15840 ident: bb0195 article-title: Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2014 start-page: 272689 year: 2014 ident: bb0070 article-title: p38delta MAPK: emerging roles of a neglected isoform publication-title: Int. J. Cell. Biol. – volume: 6 start-page: 109 year: 2000 end-page: 116 ident: bb0040 article-title: Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development publication-title: Mol. Cell – year: 2014 ident: bb0085 article-title: Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38gamma and p38delta, linking inflammation and cancer in colitis-associated colon cancer publication-title: Cancer Res. – volume: 47 start-page: 1750 year: 2004 end-page: 1759 ident: bb0150 article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening publication-title: J. Med. Chem. – volume: 64 start-page: 6652 year: 2004 end-page: 6659 ident: bb0165 article-title: A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells publication-title: Cancer Res. – volume: 795 start-page: 109 year: 2012 end-page: 118 ident: bb0200 article-title: Kinase inhibitor selectivity profiling using differential scanning fluorimetry publication-title: Methods Mol. Biol. – volume: 109 start-page: 11200 year: 2012 end-page: 11205 ident: bb0060 article-title: p38gamma and p38delta kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 1038 year: 2009 end-page: 1048 ident: bb0010 article-title: The p38alpha kinase plays a central role in inflammation publication-title: Curr. Top. Med. Chem. – volume: 68 start-page: 1041 year: 2012 end-page: 1050 ident: bb0030 article-title: X-ray structure of p38alpha bound to TAK-715: comparison with three classic inhibitors publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 58 start-page: 1948 year: 2002 end-page: 1954 ident: bb0125 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 54 start-page: 7797 year: 2011 ident: 10.1016/j.bbagen.2016.06.023_bb0035 article-title: Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease publication-title: J. Med. Chem. doi: 10.1021/jm200677b – volume: 102 start-page: 221 year: 2000 ident: 10.1016/j.bbagen.2016.06.023_bb0050 article-title: Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis publication-title: Cell doi: 10.1016/S0092-8674(00)00027-1 – volume: 49 start-page: 4805 year: 2006 ident: 10.1016/j.bbagen.2016.06.023_bb0210 article-title: Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring publication-title: J. Med. Chem. doi: 10.1021/jm060522a – volume: 7 start-page: 10882 year: 2016 ident: 10.1016/j.bbagen.2016.06.023_bb0145 article-title: Data publication with the structural biology data grid supports live analysis publication-title: Nat. Commun. doi: 10.1038/ncomms10882 – volume: 77 start-page: 422 year: 2009 ident: 10.1016/j.bbagen.2016.06.023_bb0205 article-title: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2008.10.032 – volume: 209 start-page: 2229 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0080 article-title: Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung publication-title: J. Exp. Med. doi: 10.1084/jem.20120677 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.bbagen.2016.06.023_bb0120 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 5 start-page: 1017 year: 2005 ident: 10.1016/j.bbagen.2016.06.023_bb0055 article-title: Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026054985939 – volume: 8 start-page: 141 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0025 article-title: Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.761 – volume: 6 start-page: 109 year: 2000 ident: 10.1016/j.bbagen.2016.06.023_bb0040 article-title: Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development publication-title: Mol. Cell doi: 10.1016/S1097-2765(05)00014-6 – volume: 6 start-page: 12920 year: 2015 ident: 10.1016/j.bbagen.2016.06.023_bb0090 article-title: Combined deletion of p38gamma and p38delta reduces skin inflammation and protects from carcinogenesis publication-title: Oncotarget doi: 10.18632/oncotarget.4320 – volume: 103 start-page: 15835 year: 2006 ident: 10.1016/j.bbagen.2016.06.023_bb0195 article-title: Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0605224103 – volume: 2014 start-page: 272689 year: 2014 ident: 10.1016/j.bbagen.2016.06.023_bb0070 article-title: p38delta MAPK: emerging roles of a neglected isoform publication-title: Int. J. Cell. Biol. – volume: 97 start-page: 10454 year: 2000 ident: 10.1016/j.bbagen.2016.06.023_bb0045 article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.180316397 – volume: 18 start-page: 4433 year: 2008 ident: 10.1016/j.bbagen.2016.06.023_bb0170 article-title: Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2008.06.028 – volume: 47 start-page: 1739 year: 2004 ident: 10.1016/j.bbagen.2016.06.023_bb0155 article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J. Med. Chem. doi: 10.1021/jm0306430 – volume: 9 start-page: 268 year: 2002 ident: 10.1016/j.bbagen.2016.06.023_bb0180 article-title: Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site publication-title: Nat. Struct. Biol. doi: 10.1038/nsb770 – volume: 12 start-page: 2979 year: 2005 ident: 10.1016/j.bbagen.2016.06.023_bb0105 article-title: MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein publication-title: Curr. Med. Chem. doi: 10.2174/092986705774462914 – volume: 289 start-page: 1938 year: 2000 ident: 10.1016/j.bbagen.2016.06.023_bb0175 article-title: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase publication-title: Science doi: 10.1126/science.289.5486.1938 – year: 2014 ident: 10.1016/j.bbagen.2016.06.023_bb0085 article-title: Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38gamma and p38delta, linking inflammation and cancer in colitis-associated colon cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0870 – volume: 12 start-page: 327 year: 2011 ident: 10.1016/j.bbagen.2016.06.023_bb0005 article-title: The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease publication-title: J. Dig. Dis. doi: 10.1111/j.1751-2980.2011.00525.x – volume: 795 start-page: 109 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0200 article-title: Kinase inhibitor selectivity profiling using differential scanning fluorimetry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-337-0_7 – volume: 58 start-page: 1948 year: 2002 ident: 10.1016/j.bbagen.2016.06.023_bb0125 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444902016657 – volume: 5 start-page: 867 year: 2010 ident: 10.1016/j.bbagen.2016.06.023_bb0015 article-title: Targeting kinases for the treatment of inflammatory diseases publication-title: Expert Opin. Drug Discovery doi: 10.1517/17460441.2010.504203 – volume: 2 start-page: 2212 year: 2007 ident: 10.1016/j.bbagen.2016.06.023_bb0190 article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.321 – volume: 47 start-page: 1750 year: 2004 ident: 10.1016/j.bbagen.2016.06.023_bb0150 article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening publication-title: J. Med. Chem. doi: 10.1021/jm030644s – volume: 2012 start-page: 520289 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0065 article-title: New insights into the p38gamma and p38delta MAPK pathways publication-title: J. Signal. Transduct. doi: 10.1155/2012/520289 – volume: 68 start-page: 1041 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0030 article-title: X-ray structure of p38alpha bound to TAK-715: comparison with three classic inhibitors publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S090744491201997X – volume: 31 start-page: 3320 year: 2003 ident: 10.1016/j.bbagen.2016.06.023_bb0215 article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg556 – volume: 136 start-page: 235 year: 2009 ident: 10.1016/j.bbagen.2016.06.023_bb0075 article-title: Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis publication-title: Cell doi: 10.1016/j.cell.2008.11.018 – volume: 280 start-page: 19472 year: 2005 ident: 10.1016/j.bbagen.2016.06.023_bb0160 article-title: BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414221200 – volume: 18 start-page: 1173 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0020 article-title: Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases publication-title: Curr. Pharm. Des. doi: 10.2174/138161212799436368 – volume: 122 start-page: 4555 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0100 article-title: IL-13-induced airway mucus production is attenuated by MAPK13 inhibition publication-title: J. Clin. Invest. doi: 10.1172/JCI64896 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.bbagen.2016.06.023_bb0115 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – year: 2010 ident: 10.1016/j.bbagen.2016.06.023_bb0135 – volume: 6 start-page: 1117 year: 1998 ident: 10.1016/j.bbagen.2016.06.023_bb0185 article-title: Structural basis of inhibitor selectivity in MAP kinases publication-title: Structure doi: 10.1016/S0969-2126(98)00113-0 – volume: 9 start-page: 1038 year: 2009 ident: 10.1016/j.bbagen.2016.06.023_bb0010 article-title: The p38alpha kinase plays a central role in inflammation publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802609789630974 – volume: 109 start-page: 11200 year: 2012 ident: 10.1016/j.bbagen.2016.06.023_bb0060 article-title: p38gamma and p38delta kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1207290109 – volume: 71 start-page: 790 year: 2015 ident: 10.1016/j.bbagen.2016.06.023_bb0110 article-title: The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S1399004715001212 – volume: 51 start-page: 2778 year: 2011 ident: 10.1016/j.bbagen.2016.06.023_bb0130 article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200227u – volume: 66 start-page: 1208 year: 2014 ident: 10.1016/j.bbagen.2016.06.023_bb0095 article-title: Alternative p38 MAPKs are essential for collagen-induced arthritis publication-title: Arthritis Rheum. doi: 10.1002/art.38327 – volume: 64 start-page: 6652 year: 2004 ident: 10.1016/j.bbagen.2016.06.023_bb0165 article-title: A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-1168 – volume: 2 year: 2013 ident: 10.1016/j.bbagen.2016.06.023_bb0140 article-title: Collaboration gets the most out of software publication-title: Elife doi: 10.7554/eLife.01456 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2723 |
Snippet | P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the... Background: P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2335 |
SubjectTerms | BASIC BIOLOGICAL SCIENCES Binding Sites Chronic inflammatory lung disease crystal structure Differential scanning fluorimetry half life Humans hydrogen bonding Inhibitor half-lives inhibitory concentration 50 interferometry Kinase inhibitor mitogen-activated protein kinase Mitogen-Activated Protein Kinase 13 - antagonists & inhibitors Mitogen-Activated Protein Kinase 13 - chemistry Mitogen-Activated Protein Kinase 13 - metabolism p38 kinase pharmacokinetics Protein Binding Protein Kinase Inhibitors - chemistry Protein Kinase Inhibitors - pharmacology Quantitative Structure-Activity Relationship Structure-based drug design |
Title | First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes |
URI | https://dx.doi.org/10.1016/j.bbagen.2016.06.023 https://www.ncbi.nlm.nih.gov/pubmed/27369736 https://www.proquest.com/docview/1817560518 https://www.proquest.com/docview/1825432028 https://www.osti.gov/servlets/purl/1329425 https://pubmed.ncbi.nlm.nih.gov/PMC5011001 |
Volume | 1860 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NRQheEIyvbjAZiVdTEjtx_FgVSqHahICJvVmJ7aieUFKxThMv_O3cxUmhCJjEQ9W6PVeJ78O_yHe_A3hupdPeioRrrzMuM-94UdQvucuVT2pF5dd0ont8ki9O5buz7GwPZkMtDKVV9rE_xvQuWvffTPrVnKxDmHykQz2EExkiCiJxoYJfKRVZ-YvvP9M8ED5k8SRBcpIeyue6HK-qQqclFtQk71g8U_G37WnUosf9CYX-nkz5y-40vwt3eljJpvHK78Geb_bhZmw0-W0fbs2Gvm734WoeEPExyiX_6lcxf51FGlmi4GBl41gV2nWvQBxH2hLW1ux4-n6ZCBaaVagC9elhMZMc9z_2av6Gh6abTh_byw3-TVczw6jdzsUDOJ2__jRb8L79Arf4dLrhFr3fFxYRl9XaJqlyudZSlrJ2IhXK1rksEX0pVViZpc4LUeMil9IlPrcILMRDGDVt4x8DSxGWVlpgsNCF9Cjk6IDYi1JVtsLRGMSw6sb23OTUIuOLGZLQzk3UlSFdGcrFS8UY-HbWOnJzXCOvBoWaHRszuH1cM_OQ9E-ziFrXUg4STsMneY0xbwzPBrMwqEs6cSkb315eGIRPCiFllhT_kiGHSBHnjeFRNKXt3SC2zDW-8Mp3jGwrQOTgu780YdWRhGcdGWBy8N_3fAi3aRTrLp_ACO3QP0UAtqmOOg87ghvTt8vFCb0vP3xe_gCPgjEt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aRWh7mWBcVsbFSPBoSmzn4gcepo3S0XVCYpP2ZhLHUTNNSUU7TXvZn-IPck6cFIqASUh7qNQ0dpr4HJ_zRf78HYDXVuXaWRlw7XTIVehyniTFO55HsQuKmLZf04ru5CganahPp-HpGnzv9sIQrbKN_T6mN9G6_WXQjuZgVpaDL7Soh3AiRERBIi5Jy6wcu6tLfG-bvz_YRyO_EWL44XhvxNvSAtzim9eCW_Rsl1hEE1ZrG4g4j7RWKlVFLoWMbRGpFJFFHCdWhSJ3Uhb4b6nKAxdZTJoSr3sH7ioMF1Q24e31T14J4pXQL10oTrfX7ddrSGVZhlGCZFeDqJENFfJv-bBX4xT_E-z9nb35Szoc3ofNFseyXT9UD2DNVVtwz1e2vNqC9b2ukNxDuByWCDEZkde_uaknzDOvW0uaHyytcpaV9az1GDz2OimsLthk9_M4kKyspmVWUmEg5qnrmHDZ_vAjL6umO32tLxZ4mWaTDqP6PvNHcHIrRnkMvaqu3DYwgTg40xKjk06Uw0Y5rUg7mcaZzfCoD7IbdWNbMXSqyXFuOtbbmfG2MmQrQ-Q_IfvAl71mXgzkhvZxZ1Cz4tQG89UNPXfI_tSLtHwtkZ6wWyCFxiDbh1edWxi0JS3xpJWrL-YG8VqMGDYMkn-1oRkoEFj24Yl3peXTIJiNNH7wzlecbNmA1MhXz1TltFElDxv1weDpfz_zS1gfHU8OzeHB0XgHNuiM3_T5DHrok-45or9F9qKZbQy-3vb0_gGfgWl6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+comprehensive+structural+and+biophysical+analysis+of+MAPK13+inhibitors+targeting+DFG-in+and+DFG-out+binding+modes&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Yurtsever%2C+Zeynep&rft.au=Patel%2C+Dhara+A&rft.au=Kober%2C+Daniel+L&rft.au=Su%2C+Alvin&rft.date=2016-11-01&rft.issn=0006-3002&rft.volume=1860&rft.issue=11+Pt+A&rft.spage=2335&rft_id=info:doi/10.1016%2Fj.bbagen.2016.06.023&rft_id=info%3Apmid%2F27369736&rft.externalDocID=27369736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |