First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes

P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cell...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1860; no. 11; pp. 2335 - 2344
Main Authors Yurtsever, Zeynep, Patel, Dhara A., Kober, Daniel L., Su, Alvin, Miller, Chantel A., Romero, Arthur G., Holtzman, Michael J., Brett, Tom J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. [Display omitted] •First comprehensive analysis of MAPK13/inhibitor complexes of widely varied potency•Inhibitors of nanomolar IC50 bind in DFG-out mode; micromolar IC50 bind DFG-in.•Nanomolar IC50 correlates with longer dissociation half-lives.•Binding thermodynamics of inhibitors correlates with potency.•The data provide a guide for designing high potency inhibitors to MAPK13.
AbstractList P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.
P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.
P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties. [Display omitted] •First comprehensive analysis of MAPK13/inhibitor complexes of widely varied potency•Inhibitors of nanomolar IC50 bind in DFG-out mode; micromolar IC50 bind DFG-in.•Nanomolar IC50 correlates with longer dissociation half-lives.•Binding thermodynamics of inhibitors correlates with potency.•The data provide a guide for designing high potency inhibitors to MAPK13.
P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.BACKGROUNDP38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases.To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.METHODSTo facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency.These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.RESULTSThese inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors.These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.CONCLUSIONSThese studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors.They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.GENERAL SIGNIFICANCEThey also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.
Background: P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. Methods: To facilitate the design of potent and specific inhibitors, we present in this paper the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. Results: These inhibitors display IC50 values either in the nanomolar range or micromolar range (> 800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. Conclusions: These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. General significance: They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.
Author Yurtsever, Zeynep
Patel, Dhara A.
Miller, Chantel A.
Su, Alvin
Romero, Arthur G.
Holtzman, Michael J.
Brett, Tom J.
Kober, Daniel L.
AuthorAffiliation 6 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
4 Microbiology Program, Washington University School of Medicine, St. Louis, Missouri 63110
3 Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
5 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
2 Biochemistry Program, Washington University School of Medicine, St. Louis, Missouri 63110
AuthorAffiliation_xml – name: 2 Biochemistry Program, Washington University School of Medicine, St. Louis, Missouri 63110
– name: 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
– name: 3 Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
– name: 5 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
– name: 6 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
– name: 4 Microbiology Program, Washington University School of Medicine, St. Louis, Missouri 63110
Author_xml – sequence: 1
  givenname: Zeynep
  surname: Yurtsever
  fullname: Yurtsever, Zeynep
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 2
  givenname: Dhara A.
  surname: Patel
  fullname: Patel, Dhara A.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 3
  givenname: Daniel L.
  surname: Kober
  fullname: Kober, Daniel L.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 4
  givenname: Alvin
  surname: Su
  fullname: Su, Alvin
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 5
  givenname: Chantel A.
  surname: Miller
  fullname: Miller, Chantel A.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 6
  givenname: Arthur G.
  surname: Romero
  fullname: Romero, Arthur G.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 7
  givenname: Michael J.
  surname: Holtzman
  fullname: Holtzman, Michael J.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
– sequence: 8
  givenname: Tom J.
  surname: Brett
  fullname: Brett, Tom J.
  email: tbrett@wustl.edu
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27369736$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1329425$$D View this record in Osti.gov
BookMark eNqNUktvEzEQtlARTQv_AKEVJy4b_NwHB6SqNC2iCA5wtrz2bNbRxg62N6j_Hm-TIuAAWGN5RvPN53mdoRPnHSD0nOAlwaR6vVl2nVqDW9JsLXEWyh6hBWlqWjYYVydogRnmJSeVOEVnMW5wPqIVT9AprVnV5rtA31c2xFRov90FGMBFu4cipjDpNAU1FsqZorN-N9xFq-9tNWY1Fr4vPl58_kBYYd1gO5t8iEVSYQ3JunXxbnVdWncfPqt-SpnGmdm19QbiU_S4V2OEZ8f3HH1dXX25vClvP12_v7y4LbWgLJUa1wwazSjXbasJrU3Vtpwr3htGWa37iitRkbpuNBfUAGN9rllxQ6DSDcXsHL098O6mbgtGg0u5LLkLdqvCnfTKyt89zg5y7fdSYEIwJpng5YHAx2Rl1DaBHrR3DnSShNGWU5FBr46_BP9tgpjk1kYN46gc-ClK0lDBGcW0-Q8oqUWFBZmhL37N_WfSD9PLgDcHgA4-xgC9zOmpZP1cih0lwXJeFbmRh1WR86pInIWyHMz_CH7g_0fYsaGQp7a3EOaegNNgbJhbYrz9O8EPuJfZvA
CitedBy_id crossref_primary_10_22159_ijcpr_2024v16i6_6023
crossref_primary_10_1007_s13205_024_03948_1
crossref_primary_10_1016_j_jbc_2023_105175
crossref_primary_10_18632_aging_103037
crossref_primary_10_1038_s41467_018_08027_7
crossref_primary_10_1002_smll_201802291
crossref_primary_10_1080_13543776_2023_2242584
crossref_primary_10_1016_j_compbiomed_2021_104485
crossref_primary_10_3390_ijms23010370
crossref_primary_10_1016_j_lfs_2022_120809
crossref_primary_10_1016_j_tibs_2017_02_008
crossref_primary_10_1016_j_ymeth_2016_10_013
crossref_primary_10_3390_ijms231810328
crossref_primary_10_1039_D1MD00277E
crossref_primary_10_3390_cancers13092077
Cites_doi 10.1021/jm200677b
10.1016/S0092-8674(00)00027-1
10.1021/jm060522a
10.1038/ncomms10882
10.1016/j.bcp.2008.10.032
10.1084/jem.20120677
10.1107/S0907444904019158
10.2174/1568026054985939
10.1038/nchembio.761
10.1016/S1097-2765(05)00014-6
10.18632/oncotarget.4320
10.1073/pnas.0605224103
10.1073/pnas.180316397
10.1016/j.bmcl.2008.06.028
10.1021/jm0306430
10.1038/nsb770
10.2174/092986705774462914
10.1126/science.289.5486.1938
10.1158/0008-5472.CAN-14-0870
10.1111/j.1751-2980.2011.00525.x
10.1007/978-1-61779-337-0_7
10.1107/S0907444902016657
10.1517/17460441.2010.504203
10.1038/nprot.2007.321
10.1021/jm030644s
10.1155/2012/520289
10.1107/S090744491201997X
10.1093/nar/gkg556
10.1016/j.cell.2008.11.018
10.1074/jbc.M414221200
10.2174/138161212799436368
10.1172/JCI64896
10.1016/S0076-6879(97)76066-X
10.1016/S0969-2126(98)00113-0
10.2174/156802609789630974
10.1073/pnas.1207290109
10.1107/S1399004715001212
10.1021/ci200227u
10.1002/art.38327
10.1158/0008-5472.CAN-04-1168
10.7554/eLife.01456
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
– name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OIOZB
OTOTI
5PM
DOI 10.1016/j.bbagen.2016.06.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 2344
ExternalDocumentID PMC5011001
1329425
27369736
10_1016_j_bbagen_2016_06_023
S0304416516302288
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: UH2 HL123429
– fundername: NIGMS NIH HHS
  grantid: T32 GM007067
– fundername: NHLBI NIH HHS
  grantid: R01 HL119813
– fundername: NHLBI NIH HHS
  grantid: P50 HL107183
– fundername: NHLBI NIH HHS
  grantid: UH3 HL123429
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c523t-c073e8c324c99c127d69944a4fd3237cf64a561778c452de33f304a4d1e6c8203
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Thu Aug 21 18:28:06 EDT 2025
Mon Jul 03 03:57:27 EDT 2023
Mon Jul 21 11:44:34 EDT 2025
Thu Jul 10 22:34:31 EDT 2025
Mon Jul 21 06:01:56 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Tue Jul 01 00:22:07 EDT 2025
Fri Feb 23 02:34:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords p38 kinase
Structure-based drug design
Differential scanning fluorimetry
Chronic inflammatory lung disease
Kinase inhibitor
Inhibitor half-lives
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-c073e8c324c99c127d69944a4fd3237cf64a561778c452de33f304a4d1e6c8203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
T32-GM007067; AC02-06CH11357; AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
National Institutes of Health (NIH)
American Heart Association (AHA)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://www.osti.gov/servlets/purl/1329425
PMID 27369736
PQID 1817560518
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5011001
osti_scitechconnect_1329425
proquest_miscellaneous_1825432028
proquest_miscellaneous_1817560518
pubmed_primary_27369736
crossref_citationtrail_10_1016_j_bbagen_2016_06_023
crossref_primary_10_1016_j_bbagen_2016_06_023
elsevier_sciencedirect_doi_10_1016_j_bbagen_2016_06_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: United States
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References O'Callaghan, Fanning, Barry (bb0070) 2014; 2014
Alevy, Patel, Romero, Patel, Tucker, Roswit, Miller, Heier, Byers, Brett, Holtzman (bb0100) 2012; 122
Ittner, Block, Reichel, Varjosalo, Gehart, Sumara, Gstaiger, Krombach, Zarbock, Ricci (bb0080) 2012; 209
Risco, Cuenda (bb0065) 2012; 2012
Gouet, Robert, Courcelle (bb0215) 2003; 31
Goldstein, Gabriel (bb0055) 2005; 5
Vedadi, Niesen, Allali-Hassani, Fedorov, Finerty, Wasney, Yeung, Arrowsmith, Ball, Berglund, Hui, Marsden, Nordlund, Sundstrom, Weigelt, Edwards (bb0195) 2006; 103
Kuma, Sabio, Bain, Shpiro, Marquez, Cuenda (bb0160) 2005; 280
Fedorov, Niesen, Knapp (bb0200) 2012; 795
Zur, Garcia-Ibanez, Nunez-Buiza, Aparicio, Liappas, Escos, Risco, Page, Saiz-Ladera, Alsina-Beauchamp, Montans, Paramio, Cuenda (bb0090) 2015; 6
Emsley, Cowtan (bb0120) 2004; 60
Wang, Canagarajah, Boehm, Kassisa, Cobb, Young, Abdel-Meguid, Adams, Goldsmith (bb0185) 1998; 6
Tamura, Sudo, Senftleben, Dadak, Johnson, Karin (bb0050) 2000; 102
Yurtsever, Scheaffer, Romero, Holtzman, Brett (bb0110) 2015; 71
Morin, Eisenbraun, Key, Sanschagrin, Timony, Ottaviano, Sliz (bb0140) 2013; 2
Sumara, Formentini, Collins, Sumara, Windak, Bodenmiller, Ramracheya, Caille, Jiang, Platt, Meda, Aebersold, Rorsman, Ricci (bb0075) 2009; 136
Angell, Angell, Bamborough, Bamford, Chung, Cockerill, Flack, Jones, Laine, Longstaff, Ludbrook, Pearson, Smith, Smee, Somers, Walker (bb0170) 2008; 18
Schindler, Bornmann, Pellicena, Miller, Clarkson, Kuriyan (bb0175) 2000; 289
Lee, Dominguez (bb0105) 2005; 12
Schrodinger (bb0135) 2010
Del Reino, Alsina-Beauchamp, Escos, Cerezo-Guisado, Risco, Aparicio, Zur, Fernandez-Estevez, Collantes, Montans, Cuenda (bb0085) 2014
Feng, Li (bb0005) 2011; 12
Millan, Bunnage, Burrows, Butcher, Dodd, Evans, Fairman, Hughes, Kilty, Lemaitre, Lewthwaite, Mahnke, Mathias, Philip, Smith, Stefaniak, Yeadon, Phillips (bb0035) 2011; 54
Halgren, Murphy, Friesner, Beard, Frye, Pollard, Banks (bb0150) 2004; 47
Azevedo, van Zeeland, Raaijmakers, Kazemier, de Vlieg, Oubrie (bb0030) 2012; 68
Otwinowski, Minor (bb0115) 1997; 276
Criado, Risco, Alsina-Beauchamp, Perez-Lorenzo, Escos, Cuenda (bb0095) 2014; 66
Schieven (bb0010) 2009; 9
Muller, Knapp (bb0015) 2010; 5
Risco, del Fresno, Mambol, Alsina-Beauchamp, MacKenzie, Yang, Barber, Morcelle, Arthur, Ley, Ardavin, Cuenda (bb0060) 2012; 109
Koeberle, Romir, Fischer, Koeberle, Schattel, Albrecht, Grutter, Werz, Rauh, Stehle, Laufer (bb0025) 2012; 8
Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bb0125) 2002; 58
Lyne, Lamb, Saeh (bb0210) 2006; 49
Schnieders, Kaoud, Yan, Dalby, Ren (bb0020) 2012; 18
Wood, Truesdale, McDonald, Yuan, Hassell, Dickerson, Ellis, Pennisi, Horne, Lackey, Alligood, Rusnak, Gilmer, Shewchuk (bb0165) 2004; 64
Gruenbaum, Schwartz, Woska, DeLeon, Peet, Warren, Capolino, Mara, Morelock, Shrutkowski, Jones, Pargellis (bb0205) 2009; 77
Laskowski, Swindells (bb0130) 2011; 51
Niesen, Berglund, Vedadi (bb0190) 2007; 2
Adams, Porras, Alonso, Jones, Vintersten, Panelli, Valladares, Perez, Klein, Nebreda (bb0040) 2000; 6
Meyer, Socias, Key, Ransey, Tjon, Buschiazzo, Lei, Botka, Withrow, Neau, Rajashankar, Anderson, Baxter, Blacklow, Boggon, Bonvin, Borek, Brett, Caflisch, Chang, Chazin, Corbett, Cosgrove, Crosson, Dhe-Paganon, Di Cera, Drennan, Eck, Eichman, Fan, Ferre-D'Amare, Fromme, Garcia, Gaudet, Gong, Harrison, Heldwein, Jia, Keenan, Kruse, Kvansakul, McLellan, Modis, Nam, Otwinowski, Pai, Pereira, Petosa, Raman, Rapoport, Roll-Mecak, Rosen, Rudenko, Schlessinger, Schwartz, Shamoo, Sondermann, Tao, Tolia, Tsodikov, Westover, Wu, Foster, Fraser, Maia, Gonen, Kirchhausen, Diederichs, Crosas, Sliz (bb0145) 2016; 7
Mudgett, Ding, Guh-Siesel, Chartrain, Yang, Gopal, Shen (bb0045) 2000; 97
Friesner, Banks, Murphy, Halgren, Klicic, Mainz, Repasky, Knoll, Shelley, Perry, Shaw, Francis, Shenkin (bb0155) 2004; 47
Pargellis, Tong, Churchill, Cirillo, Gilmore, Graham, Grob, Hickey, Moss, Pav, Regan (bb0180) 2002; 9
Morin (10.1016/j.bbagen.2016.06.023_bb0140) 2013; 2
Risco (10.1016/j.bbagen.2016.06.023_bb0065) 2012; 2012
Millan (10.1016/j.bbagen.2016.06.023_bb0035) 2011; 54
Wood (10.1016/j.bbagen.2016.06.023_bb0165) 2004; 64
Wang (10.1016/j.bbagen.2016.06.023_bb0185) 1998; 6
Niesen (10.1016/j.bbagen.2016.06.023_bb0190) 2007; 2
Feng (10.1016/j.bbagen.2016.06.023_bb0005) 2011; 12
Risco (10.1016/j.bbagen.2016.06.023_bb0060) 2012; 109
Adams (10.1016/j.bbagen.2016.06.023_bb0125) 2002; 58
Adams (10.1016/j.bbagen.2016.06.023_bb0040) 2000; 6
O'Callaghan (10.1016/j.bbagen.2016.06.023_bb0070) 2014; 2014
Halgren (10.1016/j.bbagen.2016.06.023_bb0150) 2004; 47
Kuma (10.1016/j.bbagen.2016.06.023_bb0160) 2005; 280
Yurtsever (10.1016/j.bbagen.2016.06.023_bb0110) 2015; 71
Gruenbaum (10.1016/j.bbagen.2016.06.023_bb0205) 2009; 77
Koeberle (10.1016/j.bbagen.2016.06.023_bb0025) 2012; 8
Muller (10.1016/j.bbagen.2016.06.023_bb0015) 2010; 5
Tamura (10.1016/j.bbagen.2016.06.023_bb0050) 2000; 102
Gouet (10.1016/j.bbagen.2016.06.023_bb0215) 2003; 31
Otwinowski (10.1016/j.bbagen.2016.06.023_bb0115) 1997; 276
Lee (10.1016/j.bbagen.2016.06.023_bb0105) 2005; 12
Emsley (10.1016/j.bbagen.2016.06.023_bb0120) 2004; 60
Schindler (10.1016/j.bbagen.2016.06.023_bb0175) 2000; 289
Schnieders (10.1016/j.bbagen.2016.06.023_bb0020) 2012; 18
Azevedo (10.1016/j.bbagen.2016.06.023_bb0030) 2012; 68
Fedorov (10.1016/j.bbagen.2016.06.023_bb0200) 2012; 795
Ittner (10.1016/j.bbagen.2016.06.023_bb0080) 2012; 209
Alevy (10.1016/j.bbagen.2016.06.023_bb0100) 2012; 122
Lyne (10.1016/j.bbagen.2016.06.023_bb0210) 2006; 49
Schrodinger (10.1016/j.bbagen.2016.06.023_bb0135) 2010
Del Reino (10.1016/j.bbagen.2016.06.023_bb0085) 2014
Schieven (10.1016/j.bbagen.2016.06.023_bb0010) 2009; 9
Friesner (10.1016/j.bbagen.2016.06.023_bb0155) 2004; 47
Criado (10.1016/j.bbagen.2016.06.023_bb0095) 2014; 66
Angell (10.1016/j.bbagen.2016.06.023_bb0170) 2008; 18
Laskowski (10.1016/j.bbagen.2016.06.023_bb0130) 2011; 51
Mudgett (10.1016/j.bbagen.2016.06.023_bb0045) 2000; 97
Goldstein (10.1016/j.bbagen.2016.06.023_bb0055) 2005; 5
Vedadi (10.1016/j.bbagen.2016.06.023_bb0195) 2006; 103
Zur (10.1016/j.bbagen.2016.06.023_bb0090) 2015; 6
Pargellis (10.1016/j.bbagen.2016.06.023_bb0180) 2002; 9
Sumara (10.1016/j.bbagen.2016.06.023_bb0075) 2009; 136
Meyer (10.1016/j.bbagen.2016.06.023_bb0145) 2016; 7
References_xml – volume: 7
  start-page: 10882
  year: 2016
  ident: bb0145
  article-title: Data publication with the structural biology data grid supports live analysis
  publication-title: Nat. Commun.
– volume: 97
  start-page: 10454
  year: 2000
  end-page: 10459
  ident: bb0045
  article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 867
  year: 2010
  end-page: 881
  ident: bb0015
  article-title: Targeting kinases for the treatment of inflammatory diseases
  publication-title: Expert Opin. Drug Discovery
– volume: 18
  start-page: 1173
  year: 2012
  end-page: 1185
  ident: bb0020
  article-title: Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases
  publication-title: Curr. Pharm. Des.
– volume: 31
  start-page: 3320
  year: 2003
  end-page: 3323
  ident: bb0215
  article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins
  publication-title: Nucleic Acids Res.
– volume: 122
  start-page: 4555
  year: 2012
  end-page: 4568
  ident: bb0100
  article-title: IL-13-induced airway mucus production is attenuated by MAPK13 inhibition
  publication-title: J. Clin. Invest.
– volume: 12
  start-page: 2979
  year: 2005
  end-page: 2994
  ident: bb0105
  article-title: MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein
  publication-title: Curr. Med. Chem.
– volume: 2
  year: 2013
  ident: bb0140
  article-title: Collaboration gets the most out of software
  publication-title: Elife
– year: 2010
  ident: bb0135
  article-title: The PyMOL Molecular Graphics System, Version 1.3r1
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: bb0115
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
– volume: 209
  start-page: 2229
  year: 2012
  end-page: 2246
  ident: bb0080
  article-title: Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung
  publication-title: J. Exp. Med.
– volume: 9
  start-page: 268
  year: 2002
  end-page: 272
  ident: bb0180
  article-title: Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site
  publication-title: Nat. Struct. Biol.
– volume: 71
  start-page: 790
  year: 2015
  end-page: 799
  ident: bb0110
  article-title: The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 280
  start-page: 19472
  year: 2005
  end-page: 19479
  ident: bb0160
  article-title: BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 1117
  year: 1998
  end-page: 1128
  ident: bb0185
  article-title: Structural basis of inhibitor selectivity in MAP kinases
  publication-title: Structure
– volume: 136
  start-page: 235
  year: 2009
  end-page: 248
  ident: bb0075
  article-title: Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis
  publication-title: Cell
– volume: 102
  start-page: 221
  year: 2000
  end-page: 231
  ident: bb0050
  article-title: Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis
  publication-title: Cell
– volume: 51
  start-page: 2778
  year: 2011
  end-page: 2786
  ident: bb0130
  article-title: LigPlot
  publication-title: J. Chem. Inf. Model.
– volume: 18
  start-page: 4433
  year: 2008
  end-page: 4437
  ident: bb0170
  article-title: Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 12
  start-page: 327
  year: 2011
  end-page: 332
  ident: bb0005
  article-title: The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease
  publication-title: J. Dig. Dis.
– volume: 2012
  start-page: 520289
  year: 2012
  ident: bb0065
  article-title: New insights into the p38gamma and p38delta MAPK pathways
  publication-title: J. Signal. Transduct.
– volume: 49
  start-page: 4805
  year: 2006
  end-page: 4808
  ident: bb0210
  article-title: Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring
  publication-title: J. Med. Chem.
– volume: 289
  start-page: 1938
  year: 2000
  end-page: 1942
  ident: bb0175
  article-title: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase
  publication-title: Science
– volume: 47
  start-page: 1739
  year: 2004
  end-page: 1749
  ident: bb0155
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
  publication-title: J. Med. Chem.
– volume: 54
  start-page: 7797
  year: 2011
  end-page: 7814
  ident: bb0035
  article-title: Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease
  publication-title: J. Med. Chem.
– volume: 5
  start-page: 1017
  year: 2005
  end-page: 1029
  ident: bb0055
  article-title: Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development
  publication-title: Curr. Top. Med. Chem.
– volume: 66
  start-page: 1208
  year: 2014
  end-page: 1217
  ident: bb0095
  article-title: Alternative p38 MAPKs are essential for collagen-induced arthritis
  publication-title: Arthritis Rheum.
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bb0120
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 2
  start-page: 2212
  year: 2007
  end-page: 2221
  ident: bb0190
  article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
  publication-title: Nat. Protoc.
– volume: 77
  start-page: 422
  year: 2009
  end-page: 432
  ident: bb0205
  article-title: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling
  publication-title: Biochem. Pharmacol.
– volume: 8
  start-page: 141
  year: 2012
  end-page: 143
  ident: bb0025
  article-title: Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor
  publication-title: Nat. Chem. Biol.
– volume: 6
  start-page: 12920
  year: 2015
  end-page: 12935
  ident: bb0090
  article-title: Combined deletion of p38gamma and p38delta reduces skin inflammation and protects from carcinogenesis
  publication-title: Oncotarget
– volume: 103
  start-page: 15835
  year: 2006
  end-page: 15840
  ident: bb0195
  article-title: Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2014
  start-page: 272689
  year: 2014
  ident: bb0070
  article-title: p38delta MAPK: emerging roles of a neglected isoform
  publication-title: Int. J. Cell. Biol.
– volume: 6
  start-page: 109
  year: 2000
  end-page: 116
  ident: bb0040
  article-title: Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development
  publication-title: Mol. Cell
– year: 2014
  ident: bb0085
  article-title: Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38gamma and p38delta, linking inflammation and cancer in colitis-associated colon cancer
  publication-title: Cancer Res.
– volume: 47
  start-page: 1750
  year: 2004
  end-page: 1759
  ident: bb0150
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
  publication-title: J. Med. Chem.
– volume: 64
  start-page: 6652
  year: 2004
  end-page: 6659
  ident: bb0165
  article-title: A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells
  publication-title: Cancer Res.
– volume: 795
  start-page: 109
  year: 2012
  end-page: 118
  ident: bb0200
  article-title: Kinase inhibitor selectivity profiling using differential scanning fluorimetry
  publication-title: Methods Mol. Biol.
– volume: 109
  start-page: 11200
  year: 2012
  end-page: 11205
  ident: bb0060
  article-title: p38gamma and p38delta kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 1038
  year: 2009
  end-page: 1048
  ident: bb0010
  article-title: The p38alpha kinase plays a central role in inflammation
  publication-title: Curr. Top. Med. Chem.
– volume: 68
  start-page: 1041
  year: 2012
  end-page: 1050
  ident: bb0030
  article-title: X-ray structure of p38alpha bound to TAK-715: comparison with three classic inhibitors
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  ident: bb0125
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 54
  start-page: 7797
  year: 2011
  ident: 10.1016/j.bbagen.2016.06.023_bb0035
  article-title: Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease
  publication-title: J. Med. Chem.
  doi: 10.1021/jm200677b
– volume: 102
  start-page: 221
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.023_bb0050
  article-title: Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00027-1
– volume: 49
  start-page: 4805
  year: 2006
  ident: 10.1016/j.bbagen.2016.06.023_bb0210
  article-title: Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060522a
– volume: 7
  start-page: 10882
  year: 2016
  ident: 10.1016/j.bbagen.2016.06.023_bb0145
  article-title: Data publication with the structural biology data grid supports live analysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10882
– volume: 77
  start-page: 422
  year: 2009
  ident: 10.1016/j.bbagen.2016.06.023_bb0205
  article-title: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2008.10.032
– volume: 209
  start-page: 2229
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0080
  article-title: Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20120677
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.023_bb0120
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 5
  start-page: 1017
  year: 2005
  ident: 10.1016/j.bbagen.2016.06.023_bb0055
  article-title: Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026054985939
– volume: 8
  start-page: 141
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0025
  article-title: Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.761
– volume: 6
  start-page: 109
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.023_bb0040
  article-title: Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(05)00014-6
– volume: 6
  start-page: 12920
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.023_bb0090
  article-title: Combined deletion of p38gamma and p38delta reduces skin inflammation and protects from carcinogenesis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4320
– volume: 103
  start-page: 15835
  year: 2006
  ident: 10.1016/j.bbagen.2016.06.023_bb0195
  article-title: Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0605224103
– volume: 2014
  start-page: 272689
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.023_bb0070
  article-title: p38delta MAPK: emerging roles of a neglected isoform
  publication-title: Int. J. Cell. Biol.
– volume: 97
  start-page: 10454
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.023_bb0045
  article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.180316397
– volume: 18
  start-page: 4433
  year: 2008
  ident: 10.1016/j.bbagen.2016.06.023_bb0170
  article-title: Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2008.06.028
– volume: 47
  start-page: 1739
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.023_bb0155
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0306430
– volume: 9
  start-page: 268
  year: 2002
  ident: 10.1016/j.bbagen.2016.06.023_bb0180
  article-title: Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb770
– volume: 12
  start-page: 2979
  year: 2005
  ident: 10.1016/j.bbagen.2016.06.023_bb0105
  article-title: MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986705774462914
– volume: 289
  start-page: 1938
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.023_bb0175
  article-title: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase
  publication-title: Science
  doi: 10.1126/science.289.5486.1938
– year: 2014
  ident: 10.1016/j.bbagen.2016.06.023_bb0085
  article-title: Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38gamma and p38delta, linking inflammation and cancer in colitis-associated colon cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0870
– volume: 12
  start-page: 327
  year: 2011
  ident: 10.1016/j.bbagen.2016.06.023_bb0005
  article-title: The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease
  publication-title: J. Dig. Dis.
  doi: 10.1111/j.1751-2980.2011.00525.x
– volume: 795
  start-page: 109
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0200
  article-title: Kinase inhibitor selectivity profiling using differential scanning fluorimetry
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-337-0_7
– volume: 58
  start-page: 1948
  year: 2002
  ident: 10.1016/j.bbagen.2016.06.023_bb0125
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444902016657
– volume: 5
  start-page: 867
  year: 2010
  ident: 10.1016/j.bbagen.2016.06.023_bb0015
  article-title: Targeting kinases for the treatment of inflammatory diseases
  publication-title: Expert Opin. Drug Discovery
  doi: 10.1517/17460441.2010.504203
– volume: 2
  start-page: 2212
  year: 2007
  ident: 10.1016/j.bbagen.2016.06.023_bb0190
  article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.321
– volume: 47
  start-page: 1750
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.023_bb0150
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
  publication-title: J. Med. Chem.
  doi: 10.1021/jm030644s
– volume: 2012
  start-page: 520289
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0065
  article-title: New insights into the p38gamma and p38delta MAPK pathways
  publication-title: J. Signal. Transduct.
  doi: 10.1155/2012/520289
– volume: 68
  start-page: 1041
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0030
  article-title: X-ray structure of p38alpha bound to TAK-715: comparison with three classic inhibitors
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S090744491201997X
– volume: 31
  start-page: 3320
  year: 2003
  ident: 10.1016/j.bbagen.2016.06.023_bb0215
  article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg556
– volume: 136
  start-page: 235
  year: 2009
  ident: 10.1016/j.bbagen.2016.06.023_bb0075
  article-title: Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.11.018
– volume: 280
  start-page: 19472
  year: 2005
  ident: 10.1016/j.bbagen.2016.06.023_bb0160
  article-title: BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414221200
– volume: 18
  start-page: 1173
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0020
  article-title: Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161212799436368
– volume: 122
  start-page: 4555
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0100
  article-title: IL-13-induced airway mucus production is attenuated by MAPK13 inhibition
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64896
– volume: 276
  start-page: 307
  year: 1997
  ident: 10.1016/j.bbagen.2016.06.023_bb0115
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– year: 2010
  ident: 10.1016/j.bbagen.2016.06.023_bb0135
– volume: 6
  start-page: 1117
  year: 1998
  ident: 10.1016/j.bbagen.2016.06.023_bb0185
  article-title: Structural basis of inhibitor selectivity in MAP kinases
  publication-title: Structure
  doi: 10.1016/S0969-2126(98)00113-0
– volume: 9
  start-page: 1038
  year: 2009
  ident: 10.1016/j.bbagen.2016.06.023_bb0010
  article-title: The p38alpha kinase plays a central role in inflammation
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802609789630974
– volume: 109
  start-page: 11200
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.023_bb0060
  article-title: p38gamma and p38delta kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1207290109
– volume: 71
  start-page: 790
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.023_bb0110
  article-title: The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S1399004715001212
– volume: 51
  start-page: 2778
  year: 2011
  ident: 10.1016/j.bbagen.2016.06.023_bb0130
  article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
– volume: 66
  start-page: 1208
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.023_bb0095
  article-title: Alternative p38 MAPKs are essential for collagen-induced arthritis
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.38327
– volume: 64
  start-page: 6652
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.023_bb0165
  article-title: A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-1168
– volume: 2
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.023_bb0140
  article-title: Collaboration gets the most out of software
  publication-title: Elife
  doi: 10.7554/eLife.01456
SSID ssj0000595
ssj0025309
Score 2.2723
Snippet P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the...
Background: P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2335
SubjectTerms BASIC BIOLOGICAL SCIENCES
Binding Sites
Chronic inflammatory lung disease
crystal structure
Differential scanning fluorimetry
half life
Humans
hydrogen bonding
Inhibitor half-lives
inhibitory concentration 50
interferometry
Kinase inhibitor
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase 13 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 13 - chemistry
Mitogen-Activated Protein Kinase 13 - metabolism
p38 kinase
pharmacokinetics
Protein Binding
Protein Kinase Inhibitors - chemistry
Protein Kinase Inhibitors - pharmacology
Quantitative Structure-Activity Relationship
Structure-based drug design
Title First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes
URI https://dx.doi.org/10.1016/j.bbagen.2016.06.023
https://www.ncbi.nlm.nih.gov/pubmed/27369736
https://www.proquest.com/docview/1817560518
https://www.proquest.com/docview/1825432028
https://www.osti.gov/servlets/purl/1329425
https://pubmed.ncbi.nlm.nih.gov/PMC5011001
Volume 1860
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NRQheEIyvbjAZiVdTEjtx_FgVSqHahICJvVmJ7aieUFKxThMv_O3cxUmhCJjEQ9W6PVeJ78O_yHe_A3hupdPeioRrrzMuM-94UdQvucuVT2pF5dd0ont8ki9O5buz7GwPZkMtDKVV9rE_xvQuWvffTPrVnKxDmHykQz2EExkiCiJxoYJfKRVZ-YvvP9M8ED5k8SRBcpIeyue6HK-qQqclFtQk71g8U_G37WnUosf9CYX-nkz5y-40vwt3eljJpvHK78Geb_bhZmw0-W0fbs2Gvm734WoeEPExyiX_6lcxf51FGlmi4GBl41gV2nWvQBxH2hLW1ux4-n6ZCBaaVagC9elhMZMc9z_2av6Gh6abTh_byw3-TVczw6jdzsUDOJ2__jRb8L79Arf4dLrhFr3fFxYRl9XaJqlyudZSlrJ2IhXK1rksEX0pVViZpc4LUeMil9IlPrcILMRDGDVt4x8DSxGWVlpgsNCF9Cjk6IDYi1JVtsLRGMSw6sb23OTUIuOLGZLQzk3UlSFdGcrFS8UY-HbWOnJzXCOvBoWaHRszuH1cM_OQ9E-ziFrXUg4STsMneY0xbwzPBrMwqEs6cSkb315eGIRPCiFllhT_kiGHSBHnjeFRNKXt3SC2zDW-8Mp3jGwrQOTgu780YdWRhGcdGWBy8N_3fAi3aRTrLp_ACO3QP0UAtqmOOg87ghvTt8vFCb0vP3xe_gCPgjEt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aRWh7mWBcVsbFSPBoSmzn4gcepo3S0XVCYpP2ZhLHUTNNSUU7TXvZn-IPck6cFIqASUh7qNQ0dpr4HJ_zRf78HYDXVuXaWRlw7XTIVehyniTFO55HsQuKmLZf04ru5CganahPp-HpGnzv9sIQrbKN_T6mN9G6_WXQjuZgVpaDL7Soh3AiRERBIi5Jy6wcu6tLfG-bvz_YRyO_EWL44XhvxNvSAtzim9eCW_Rsl1hEE1ZrG4g4j7RWKlVFLoWMbRGpFJFFHCdWhSJ3Uhb4b6nKAxdZTJoSr3sH7ioMF1Q24e31T14J4pXQL10oTrfX7ddrSGVZhlGCZFeDqJENFfJv-bBX4xT_E-z9nb35Szoc3ofNFseyXT9UD2DNVVtwz1e2vNqC9b2ukNxDuByWCDEZkde_uaknzDOvW0uaHyytcpaV9az1GDz2OimsLthk9_M4kKyspmVWUmEg5qnrmHDZ_vAjL6umO32tLxZ4mWaTDqP6PvNHcHIrRnkMvaqu3DYwgTg40xKjk06Uw0Y5rUg7mcaZzfCoD7IbdWNbMXSqyXFuOtbbmfG2MmQrQ-Q_IfvAl71mXgzkhvZxZ1Cz4tQG89UNPXfI_tSLtHwtkZ6wWyCFxiDbh1edWxi0JS3xpJWrL-YG8VqMGDYMkn-1oRkoEFj24Yl3peXTIJiNNH7wzlecbNmA1MhXz1TltFElDxv1weDpfz_zS1gfHU8OzeHB0XgHNuiM3_T5DHrok-45or9F9qKZbQy-3vb0_gGfgWl6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+comprehensive+structural+and+biophysical+analysis+of+MAPK13+inhibitors+targeting+DFG-in+and+DFG-out+binding+modes&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Yurtsever%2C+Zeynep&rft.au=Patel%2C+Dhara+A&rft.au=Kober%2C+Daniel+L&rft.au=Su%2C+Alvin&rft.date=2016-11-01&rft.issn=0006-3002&rft.volume=1860&rft.issue=11+Pt+A&rft.spage=2335&rft_id=info:doi/10.1016%2Fj.bbagen.2016.06.023&rft_id=info%3Apmid%2F27369736&rft.externalDocID=27369736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon